JPH04184901A - Rare earth iron based permanent magnet and its manufacture - Google Patents

Rare earth iron based permanent magnet and its manufacture

Info

Publication number
JPH04184901A
JPH04184901A JP2314642A JP31464290A JPH04184901A JP H04184901 A JPH04184901 A JP H04184901A JP 2314642 A JP2314642 A JP 2314642A JP 31464290 A JP31464290 A JP 31464290A JP H04184901 A JPH04184901 A JP H04184901A
Authority
JP
Japan
Prior art keywords
rare earth
permanent magnet
iron
rich phase
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2314642A
Other languages
Japanese (ja)
Inventor
Masanobu Shimao
正信 島尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2314642A priority Critical patent/JPH04184901A/en
Publication of JPH04184901A publication Critical patent/JPH04184901A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain a magnet which is excellent in magnetic characteristics and has stable quality, by constituting a sintered body of permanent magnet alloy wherein a specified atomic % of rare earth metal R containing Nd, and a specified atomic % of B are contained and the residual part is constituted of iron, and including nonmagnetic rich phase in an alloy texture body. CONSTITUTION:A sintered body of permanent magnetic alloy is composed of the following: 10-25 atomic % of rare earth element R (where R is at least one or more kinds of elements out of rare earth elements containing Nd), 1-20 atomic % of boron, and iron of the residual part. Nonmagnetic R rich phase is included in an alloy texture body. Carbon content in the permanent magnet alloy is 0.03-0.11wt.%. In this permanent magnetic alloy composition, iron is substituted by 0-20 atomic % of at least one or more kinds of elements selected out of Co, Al, Nb, Mo, Ga, Ti, V, Ni, Si, Bi, Hf, W, Cr, etc., and the inclusion of O, N, H, Cl, F, S, etc., contains inevitable impurities. Thereby a magnet which is excellent in magnetic characteristics and has stable quality can be manufactured.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、電気、電子分野に有用な希土類鉄系永久磁石
およびその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a rare earth iron permanent magnet useful in the electrical and electronic fields and a method for manufacturing the same.

(従来の技術) R−Fe−B系希土類鉄系永久磁石は、R−Go系希土
類鉄系永久磁石より高い磁気特性を有し、最大エネルギ
ー積(以下、(BH) 、、、で示す)で見ると基本組
成であるNd+5FeyyBaで35MGOeまでに達
し、組成改良した量産レベルのもので37MGOeの磁
石が提供されている。さらに現在(BH) 、、、、 
40MGOe以上の高特性磁石が開発されつつあり、R
−Go系磁石で得られる33MGOeを大きく上回って
いる。また、Feの一部をCoで置換することによりキ
ューリー温度が向上すること、Al、 Bi、 Zr、
 If、 V、 W、 Mo、 Cr、 Ta、 Sb
、 Ge、 Nb、 Ni、 Ti、 Snなどの添加
により保磁力(iHc)が向上することが知られている
(Prior art) R-Fe-B rare earth iron permanent magnets have higher magnetic properties than R-Go rare earth iron permanent magnets, and have a maximum energy product (hereinafter referred to as (BH)). Looking at this, the basic composition of Nd+5FeyyBa reaches up to 35MGOe, and a mass-produced magnet with an improved composition of 37MGOe is available. Furthermore, now (BH)...
High-performance magnets of 40 MGOe or higher are being developed, and R
- This greatly exceeds 33MGOe obtained with Go-based magnets. In addition, the Curie temperature is improved by replacing a part of Fe with Co, and Al, Bi, Zr,
If, V, W, Mo, Cr, Ta, Sb
, Ge, Nb, Ni, Ti, Sn, etc., is known to improve coercive force (iHc).

(発明が解決しようとする課題) しかしながら、このような高特性を有するR−Fe−B
系希土類鉄系永久磁石は、この原料金属を混合熔融し粉
砕した磁石合金粉末が非常に酸化され易いため、この粉
砕を酸化防止に窒素のような非酸化性ガスあるいはアル
ゴン(Ar)のような不活性ガス中、もしくはヘキサン
のような有機溶剤中で実施しなければならない。R−F
e−B系永久磁石合金は、前記添加元素以外の不純物元
素が混入すると、著しく磁気特性を低下させる場合があ
る。即ち、これら不純物元素は主成分元素であるR、F
eおよびBと化合物もしくは固溶体を生成し、これら化
合物もしくは固溶体が磁石合金内に析7、出した場合に
磁気特性を低下させるものと考えられる。しかし、どの
ように精製された元素を用いたとしても磁石製造工程中
に不純物は混入は避けられず磁気特性を低下させる原因
となる。
(Problem to be solved by the invention) However, R-Fe-B having such high properties
Rare earth iron-based permanent magnets are made by mixing and melting raw metals and pulverizing the magnetic alloy powder, which is highly susceptible to oxidation. It must be carried out in an inert gas or in an organic solvent such as hexane. R-F
If impurity elements other than the above-mentioned additive elements are mixed into the e-B permanent magnet alloy, the magnetic properties may be significantly deteriorated. That is, these impurity elements are the main component elements R and F.
It is thought that a compound or solid solution is formed with e and B, and that when these compounds or solid solution precipitate in the magnet alloy, the magnetic properties are degraded. However, no matter how refined the elements are, impurities are inevitably mixed in during the magnet manufacturing process, causing deterioration of the magnetic properties.

本発明の目的は、これら不純物元素の混入に対しても有
効な磁気特性を得るため、永久磁石合金の組成、組織を
改良することにより磁気特性の低下の極めて少ない希土
類鉄系永久磁石およびその製造方法を提供するしようす
るものである。
The purpose of the present invention is to provide a rare earth iron-based permanent magnet with extremely minimal deterioration in magnetic properties by improving the composition and structure of a permanent magnet alloy, and to manufacture the same, in order to obtain magnetic properties that are effective against the contamination of these impurity elements. The purpose is to provide a method.

(課題を解決するための手段) 本発明者等は、このような課題を解決するために研究を
重ねた結果、R−Fe−B系永久磁石合金焼結体は希土
類元素やその他原料元素に含まれる不純物により様々な
影響を受けることを見出し、これら不純物含有量と磁気
特性との関係を究明して本発明を完成させた。
(Means for Solving the Problems) As a result of repeated research in order to solve these problems, the present inventors have found that R-Fe-B permanent magnet alloy sintered bodies contain rare earth elements and other raw material elements. The present invention was completed by discovering that magnetic properties are affected in various ways by the impurities contained, and by investigating the relationship between the content of these impurities and magnetic properties.

本発明の要旨とするところは、 希土類元素R10〜25原子%(但し、RはNdを含む
希土類元素のうち少なくとも1種以上の希土類元素)、
ボロンB1−20原子%および残部が鉄Feからなる永
久磁石合金の焼結体でかつ合金組織内に非磁性Rリッチ
相を含有することを特徴とする希土類鉄系永久磁石、お
よび粉末冶金法による希土類鉄系永久磁石の製造におい
て、最終工程である成形焼結体の熱処理温度を500〜
i、ooo ”c、処理時間を0.5〜10時間−とす
ることを特徴とする希土類鉄系永久磁石の製造方法にあ
る。
The gist of the present invention is that rare earth elements R10 to 25 at% (however, R is at least one rare earth element among rare earth elements including Nd);
A rare earth iron-based permanent magnet characterized by being a sintered body of a permanent magnet alloy consisting of 1-20 atomic percent of boron B and the balance being iron-Fe and containing a non-magnetic R-rich phase in the alloy structure, and a powder metallurgy method. In the production of rare earth iron permanent magnets, the heat treatment temperature of the shaped sintered body, which is the final step, is set at 500 to 500℃.
i, ooo "c, A method for producing a rare earth iron permanent magnet, characterized in that the processing time is 0.5 to 10 hours.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明の希土類鉄系永久磁石の組成は、希土類元素R(
但し、RはNdを含む希土類元素のうち少なくとも1種
以上の希土類元素)とボロン(B)および残部が鉄(F
e)からなる永久磁石合金の焼結体であって、先ず、磁
石合金成分Rとしては、Ndを含むY 、La、Ce、
Pr、Pm、Sm、Eu、Gd、Tb、Dy、Ho+E
r。
The composition of the rare earth iron-based permanent magnet of the present invention is the rare earth element R (
However, R is at least one rare earth element (including Nd), boron (B), and the balance is iron (F
e) A sintered body of a permanent magnet alloy consisting of: first, the magnet alloy components R include Y containing Nd, La, Ce,
Pr, Pm, Sm, Eu, Gd, Tb, Dy, Ho+E
r.

T■、YbおよびLuの各希土類元素の内少なくとも1
種以上の希土類元素をlO〜25原子%含有することが
必要で、10原子%未満では磁石焼結体中の粒子の配向
を乱すα−Feの析出が起こり、25原子%を越えると
実用的な磁束密度が得られない。Bは1〜20原子%を
必須要件とし、1原子%未満では軟磁性相のRaFe+
を化合物が析出し、磁気特性が低下し、20原子%を越
えると非磁性R+Fe4B aの析出により充分な磁束
密度が得られない。これらR9Bを除く残部はFeとす
れば良(、FeをGo、 Al。
At least one of each of the rare earth elements T■, Yb and Lu
It is necessary to contain 10 to 25 at.% of rare earth elements. If it is less than 10 at.%, precipitation of α-Fe will occur, which disturbs the orientation of the particles in the magnet sintered body, and if it exceeds 25 at.%, it is not practical. A magnetic flux density cannot be obtained. B is required to be in the range of 1 to 20 at%, and if it is less than 1 at%, the soft magnetic phase of RaFe+
A compound precipitates out, deteriorating the magnetic properties, and if it exceeds 20 atomic %, a sufficient magnetic flux density cannot be obtained due to the precipitation of non-magnetic R+Fe4Ba. The rest except for R9B may be Fe (, Fe is Go, Al).

Nb、 Zr、 Mo、 Ga、 Ti、 V、 Ni
、 Si、 Bi、 Hf、 W。
Nb, Zr, Mo, Ga, Ti, V, Ni
, Si, Bi, Hf, W.

Cr、 Ta、 Sb、 Ge、 Sn等から選択され
る少なくとも1種以上の元素でO〜20原子%置換する
こと、および0.N、H,C1,F、S等の混入が不可
避な不純物を含むことは磁気特性を損なわない限り任意
である。
Substituting O to 20 atomic % with at least one element selected from Cr, Ta, Sb, Ge, Sn, etc., and 0. The inclusion of unavoidable impurities such as N, H, C1, F, and S is optional as long as the magnetic properties are not impaired.

ここで特に注目すべきは希土類元素R1その他原料元素
であるFe、 B中に含まれる不純物Cであって、Cが
多量に混入すると、保磁力を著しく低下させたり、焼結
時に焼結体の密度が充分上がらないことが判明し、後述
する理由から該磁石合金焼結体中のC含有量は0.03
〜0.11重量%であることを必須要件とするもので、
0.03重量%未満では充分な保磁力は得られず、0.
11重量%を越えると焼結体の密度低下となる。
What is particularly noteworthy here is the impurity C contained in the rare earth element R1 and other raw material elements Fe and B. If a large amount of C is mixed in, it can significantly reduce the coercive force and cause damage to the sintered body during sintering. It was found that the density did not increase sufficiently, and for the reasons described later, the C content in the magnetic alloy sintered body was set at 0.03.
The essential requirement is ~0.11% by weight,
If it is less than 0.03% by weight, sufficient coercive force cannot be obtained;
If it exceeds 11% by weight, the density of the sintered body will decrease.

以下、不純物Cの混入許容量を決定する要因についそさ
らに詳しく説明する。本発明者等は、不純物Cが希土類
Fe系永久磁石に与える影響について、詳細に研究を重
ねた結果、Cは主相であるR、Fe、4B組織の全域に
亙って固溶し、RJe+40を生成し、磁気特性はC濃
度が増えることにより、飽和磁束密度、および異方性磁
場が減少することが判った。即ち、主相にCが混入する
と磁気特性は低下してしまう。
Hereinafter, the factors that determine the allowable amount of impurity C to be mixed will be explained in more detail. As a result of detailed research into the influence of impurity C on rare earth Fe-based permanent magnets, the present inventors found that C is dissolved throughout the main phase R, Fe, and 4B structures, and the RJe+40 It was found that as the C concentration increases, the saturation magnetic flux density and anisotropy magnetic field decrease. That is, when C is mixed into the main phase, the magnetic properties deteriorate.

また金属組織については、粉末冶金法により磁石合金イ
ンゴットを粉砕し、成形、焼結した焼結体を最終工程で
ある熱処理後の焼結体(以下、熱処理焼結体という)に
ついて電子線微小深針分析装置により分析した結果、こ
の熱処理焼結体中に希土類元素と炭素との金属間化合物
R−Cを形成しており、磁石合金インゴット中のC含有
量に□よりこのR−Cの量は増加する傾向にあることが
判った。このR−Cは、磁石合金インゴット中および焼
結直後の焼結体中には殆ど観測されず、Rリッチ相中に
固溶している形で存在しているが、特定の熱処理温度で
焼結後の焼結体を熱処理したところ、このR−Cは熱処
理焼結体中にも生成されることも判った。即ち、本発明
によれば不純物Cが混入しても熱処理焼結体中の主相に
Cが侵入せず、Rリッチ相中にFeを含むRリッチ相と
Cを含むRリッチ相とに分離し、且つRリッチ相中にR
−Cが孤立して存在していることを特徴とするもので、
混入不可否の不純物Cを一成分として有効に利用し、磁
気特性に従来法と比較して同等遜色のない永久磁石を作
製することが出来た。
In addition, regarding the metallographic structure, the sintered compact obtained by crushing the magnetic alloy ingot using the powder metallurgy method, forming and sintering the sintered compact after the final process of heat treatment (hereinafter referred to as the heat-treated sintered compact) is As a result of analysis using a needle analyzer, it was found that an intermetallic compound R-C of rare earth elements and carbon was formed in this heat-treated sintered body, and the amount of this R-C was determined by the C content in the magnetic alloy ingot. It was found that there is a tendency to increase. This R-C is hardly observed in the magnet alloy ingot or in the sintered body immediately after sintering, and exists in the form of solid solution in the R-rich phase, but at a specific heat treatment temperature, When the sintered body was heat-treated after sintering, it was found that this RC was also generated in the heat-treated sintered body. That is, according to the present invention, even if impurity C is mixed, C does not invade the main phase in the heat-treated sintered body, and the R-rich phase is separated into an R-rich phase containing Fe and an R-rich phase containing C. and R in the R-rich phase.
-C is characterized by its existence in isolation,
By effectively utilizing impurity C, which cannot be mixed in, as one component, it was possible to produce a permanent magnet whose magnetic properties are comparable to those of conventional methods.

このCの混入量を許容範囲以内に制御するには、原料金
属を厳選することが必要であるが、通常希土類金属中に
0.02〜0.1重量%程度含有するものが用いられ、
フェロボロン(FeB)を使用する時は高炭素のもので
約2重量%、低炭素のものでも約0.2重量%程度であ
る。また、電解Fe中には約0.01重量%以下の含有
量である。さらに、磁石合金インゴットを微粉砕後、磁
場中プレス成形時には、成形体の磁場配向性を改善する
ために炭素を含んだ潤滑剤を磁石微粉に混練し用いられ
る場合があるのでこれらの量的関係から最終的な磁石製
品の炭素含有量を決定することになる。
In order to control the amount of C mixed within the allowable range, it is necessary to carefully select the raw material metal, but usually rare earth metals containing about 0.02 to 0.1% by weight are used.
When ferroboron (FeB) is used, the amount is about 2% by weight if it is high carbon, and about 0.2% by weight if it is low carbon. Moreover, the content in electrolytic Fe is about 0.01% by weight or less. Furthermore, after finely pulverizing a magnetic alloy ingot, during press forming in a magnetic field, a lubricant containing carbon may be mixed into the fine magnetic powder to improve the magnetic field orientation of the compact, so the quantitative relationship between these is This will determine the carbon content of the final magnet product.

本発明の希土類鉄系永久磁石は、粉末冶金法によって作
製される。即ち、原料金属の配合、熔融冷却により磁石
合金インゴットを作製し、微粉砕、磁界中成形、熱処理
、加工の各工程を経て製造される。原料金属の溶解は、
通常の方法でアルゴンないし真空中で高周波溶解し、希
土類元素は最後に投入する。粉砕は粗粉砕と微粉砕にわ
かれ、粗粉砕はスタンプミル、ジジークラッシャー、ブ
ラウンミルで、また微粉砕はジェットミル、ボールミル
等で平均粒径的3μm程度に微粉砕される。いずれも酸
化を防ぐために、非酸化性の雰囲気中で行なうが、有機
溶剤や不活性ガスも用いられる。成形は金型成形により
、約I Te5la(=10KOe)の磁場中で約0.
8ton/cm”でプレス成形する0次いで得られた成
形体を真空中、アルゴン、窒素等の不活性ガスあるいは
非酸化性雰囲気中で、1,000〜1,200℃の範囲
内の所定の温度に30〜120分間保持して焼結し、さ
らにその後、350℃〜焼結温度の範囲内で、30分間
〜10時間、好ましくは、500〜1,000℃、0.
5〜4時間熱処理する。
The rare earth iron-based permanent magnet of the present invention is produced by a powder metallurgy method. That is, a magnetic alloy ingot is produced by blending raw metals, melting and cooling, and is manufactured through the steps of pulverization, forming in a magnetic field, heat treatment, and processing. The melting of raw metal is
High frequency melting is performed in argon or vacuum using the usual method, and the rare earth elements are added last. The pulverization is divided into coarse pulverization and fine pulverization, and the coarse pulverization is performed using a stamp mill, a Ziggy crusher, or a Braun mill, and the fine pulverization is performed using a jet mill, a ball mill, etc. to an average particle size of about 3 μm. In order to prevent oxidation, both are carried out in a non-oxidizing atmosphere, and organic solvents and inert gases are also used. The molding is carried out by molding in a magnetic field of approximately 0.
Press molding at a pressure of 8 ton/cm'' is then carried out in vacuum, in an inert gas such as argon or nitrogen, or in a non-oxidizing atmosphere at a predetermined temperature within the range of 1,000 to 1,200°C. 30 to 120 minutes for sintering, and then sintered at a temperature of 350°C to sintering temperature for 30 minutes to 10 hours, preferably 500 to 1,000°C, 0.
Heat treat for 5-4 hours.

本発明のCを非磁性Rリッチ相の組織中にR−Cとして
孤立した形で存在させるためには、この最終工程の熱処
理条件を厳密に制御する必要があり、磁石合金インゴッ
トのC含有量を測定して、処理温度および処理時間を決
める。上述の範囲外、即ち、350℃未満または30分
間未満?は充分な熱処理効果は得られず、焼結温度を越
えるか、または10時間以上では主相の粒子が反応成長
し、保磁力低下となる。
In order to make the C of the present invention exist in an isolated form as R-C in the structure of the non-magnetic R-rich phase, it is necessary to strictly control the heat treatment conditions of this final step, and the C content of the magnetic alloy ingot must be controlled strictly. Measure the temperature and time to determine the treatment temperature and time. Outside the above range, i.e. less than 350°C or less than 30 minutes? A sufficient heat treatment effect cannot be obtained, and if the temperature exceeds the sintering temperature or exceeds 10 hours, the main phase particles will react and grow, resulting in a decrease in coercive force.

以下、本発明の具体的実施態様を実施例と比較例を挙げ
て説明するが、本発明はこれらに限定されるものではな
い。
Hereinafter, specific embodiments of the present invention will be described with reference to Examples and Comparative Examples, but the present invention is not limited thereto.

(実施例1.2、比較例1.2) 出発原料として、純度99.7重量%以上のNd、ここ
で炭素含有量は0.061重量%、0.102重量%、
0.280重量%、0.412重量%の4種類のものを
用い、純度99.9重量%の電解Fe、純度99.5重
量%のボロンを使用し、これらを高周波溶解し、鋳型に
鋳造し、NdtsFeysB aなる組成の磁石合金イ
ンゴットを得た。これらインゴットの炭素含有量は、非
分散型赤外線法の分析結果から、それぞれ0.021重
量%(比較例1)、0.035重量%(実施例1)、 
0.096重量%(実施例2)、 0.141重量%(
比較例2)であった。これら各インゴットをショークラ
ッシャー、ブラウンミルで32メツシユ以下に粗粉砕し
、その後ジェットミルにより窒素気流中で粉砕し、平均
粒径3μmの原料磁石粉を得た。この磁石粉を用いて、
成形は金型成形により、約I Tealaの磁場中で約
0.8ton/cm″でプレス成形する。次いで得られ
た成形体を真空中、アルゴン、窒素等の不活性ガスある
いは非酸化性雰囲気中で、1,100℃の温度に60分
間保持して焼結し、さらに、その後、650℃x2時間
熱処理して試料とした。これら4種類の炭素含有量をも
つ焼結体を電子線微小探針分析装置を用いてRリッチ相
を観察したところ、実施例1.2、および比較例2はR
リッチ相に多量のR−C金属間化合物と少量のFeを含
むRリッチ相が観察され、特に実施例1および2は、非
磁性Rリッチ相中に金属間化合物R−C相が孤立して存
在していた。また。比較例1についてはFeを含むRリ
ッチ相のみが観察された。
(Example 1.2, Comparative Example 1.2) As a starting material, Nd with a purity of 99.7% by weight or more, where the carbon content is 0.061% by weight, 0.102% by weight,
Using four types of 0.280% by weight and 0.412% by weight, electrolytic Fe with a purity of 99.9% by weight and boron with a purity of 99.5% by weight, these were melted at high frequency and cast into a mold. A magnetic alloy ingot having a composition of NdtsFeysBa was obtained. The carbon content of these ingots was 0.021% by weight (Comparative Example 1), 0.035% by weight (Example 1), and
0.096% by weight (Example 2), 0.141% by weight (
Comparative Example 2). Each of these ingots was coarsely crushed to 32 meshes or less using a show crusher and a brown mill, and then crushed in a nitrogen stream using a jet mill to obtain raw material magnet powder with an average particle size of 3 μm. Using this magnetic powder,
The molding is performed by press molding in a magnetic field of approximately I teala at approximately 0.8 ton/cm''.Then, the obtained molded body is placed in a vacuum, an inert gas such as argon or nitrogen, or a non-oxidizing atmosphere. The sintered bodies were held at a temperature of 1,100°C for 60 minutes, and then heat-treated at 650°C for 2 hours to prepare samples.The sintered bodies with these four types of carbon content were subjected to electron beam microprobing. When the R-rich phase was observed using a needle analyzer, it was found that the R-rich phase of Example 1.2 and Comparative Example 2 was
An R-rich phase containing a large amount of R-C intermetallic compound and a small amount of Fe was observed in the rich phase, and especially in Examples 1 and 2, the intermetallic compound R-C phase was isolated in the nonmagnetic R-rich phase. It existed. Also. Regarding Comparative Example 1, only an R-rich phase containing Fe was observed.

これらの焼結体の磁気特性を表−1に示す。比較例1、
および実施例1.2は、密度の低下はなく7.4g/c
c程度であるが、比較例2の炭素濃度になると密度低下
(6,8g/cc )を惹き起し磁気特性は低下した。
Table 1 shows the magnetic properties of these sintered bodies. Comparative example 1,
and Example 1.2 had no decrease in density and was 7.4 g/c
However, when the carbon concentration reached Comparative Example 2, the density decreased (6.8 g/cc) and the magnetic properties deteriorated.

(実施例1、比較例3.4) 実施例1について表−2は熱処理温度に対する磁気特性
の変化を示している。熱処理温度650℃×2時間で保
磁力はピークを示し、それ以上またはそれ以下の温度で
は減少している。また、焼結体の組織を観察すると、実
施例1は、比較例3(550℃) 、4 (750℃)
に較べ、Rリッチ相中にR−C相の孤立化が促進されて
いた。
(Example 1, Comparative Examples 3.4) Regarding Example 1, Table 2 shows changes in magnetic properties with respect to heat treatment temperature. The coercive force shows a peak at a heat treatment temperature of 650° C. for 2 hours, and decreases at temperatures higher or lower than that. Moreover, when observing the structure of the sintered body, Example 1, Comparative Examples 3 (550°C), 4 (750°C)
Compared to the above, isolation of the R-C phase in the R-rich phase was promoted.

(実施例3、比較例5) 出発原料として、純度99.7重量%以上のNdおよび
Dy、ここで希土類元素全体で炭素含有量が0.085
重量%(実施例4)および0.042重量%(比較例5
)の2種類のものを用い、純度99.9重量%の電解F
eおよびコバルト(CO)、純度99.5重量%の硼素
(B) 、A1. Nbを使用し、これらを高周波溶解
して鋳型に鋳造し、Nd+s、 oaDyo、 t4F
etr、 *aCOs、 114B 、Al+Nbo、
 4なる組成のインゴットを得た。得られたインゴット
の炭素含有量は、非分散型赤外線法の分析結果から、夫
々0.060重量%、0.021重量%であった。この
インゴットを実施例1と同様の工程で、磁石焼結体を得
た。但し、熱処理温度は570℃とした。この焼結体の
組織を電子線微小探針分析装置で観察した結果、焼結体
中のRリッチ相中の相状態は添加元素が種々含まれるた
めより複雑になっていた。これら焼結体の磁気特性を表
−3に示す。
(Example 3, Comparative Example 5) As starting materials, Nd and Dy with a purity of 99.7% by weight or more, where the carbon content of all rare earth elements is 0.085%.
% by weight (Example 4) and 0.042% by weight (Comparative Example 5)
) using two types of electrolytic F with a purity of 99.9% by weight.
e and cobalt (CO), boron (B) with a purity of 99.5% by weight, A1. Using Nb, these were melted by high frequency and cast into a mold to produce Nd+s, oaDyo, t4F.
etr, *aCOs, 114B, Al+Nbo,
An ingot having a composition of 4 was obtained. The carbon content of the obtained ingot was 0.060% by weight and 0.021% by weight, respectively, based on the results of analysis using a non-dispersive infrared method. This ingot was subjected to the same process as in Example 1 to obtain a magnet sintered body. However, the heat treatment temperature was 570°C. As a result of observing the structure of this sintered body using an electron beam microprobe analyzer, it was found that the phase state of the R-rich phase in the sintered body was more complicated due to the inclusion of various additive elements. The magnetic properties of these sintered bodies are shown in Table 3.

(発明の効果) 本発明によれば、磁石合金インゴットを粉末冶表−1 表−2 表−3 合法で粉砕、成形、焼結、熱処理して作った磁石焼結体
の組織中にはR−C金属間化合物がRリッチ相中に孤立
して存在し、密度および配向低下も見られず、磁気特性
に優れ、且つ品質の一定した希土類鉄系永久磁石が得ら
れ、産業上その利用価値は極めて高い。
(Effects of the Invention) According to the present invention, the structure of a magnet sintered body made by legally crushing, forming, sintering, and heat treating a magnet alloy ingot contains R. The -C intermetallic compound exists isolated in the R-rich phase, and there is no decrease in density or orientation, and a rare earth iron permanent magnet with excellent magnetic properties and constant quality can be obtained, and its utility value in industry. is extremely high.

特許出願人  信越化学工業株式会社 代理人・弁理士  山 本 亮 − 代理人・弁理士  荒 井 鐘 司Patent applicant: Shin-Etsu Chemical Co., Ltd. Agent/Patent Attorney Ryo Yamamoto - Agent/Patent Attorney Tsukasa Arai

Claims (6)

【特許請求の範囲】[Claims] 1.希土類元素R10〜25原子%(但し、RはNdを
含む希土類元素のうち少なくとも1種以上の希土類元素
)、ボロンB1〜20原子%および残部が鉄Feからな
る永久磁石合金の焼結体でかつ合金組織内に非磁性Rリ
ッチ相を含有することを特徴とする希土類鉄系永久磁石
1. A sintered body of a permanent magnet alloy consisting of 10 to 25 at.% of rare earth element R (wherein R is at least one rare earth element among rare earth elements including Nd), 1 to 20 at.% of boron B, and the balance being iron-Fe, and A rare earth iron permanent magnet characterized by containing a non-magnetic R-rich phase in its alloy structure.
2.該永久磁石合金中の炭素C含有量が0.03〜0.
11重量%であることを特徴とする請求項第1項に記載
の希土類鉄系永久磁石。
2. The carbon C content in the permanent magnet alloy is 0.03 to 0.
2. The rare earth iron permanent magnet according to claim 1, wherein the content is 11% by weight.
3.該永久磁石合金組成において、FeをCo,Al,
Nb,Zr,Mo,Ga,Ti,V,Ni,Si,Bi
,Hf,W,Cr,Ta,Sb,Ge,Snから選択さ
れる少なくとも1種以上の元素で0〜20原子%置換す
ること、およびO,N,H,Cl,F,S等の混入が不
可避的不純物を含むことを特徴とする請求項第1項また
は第2項に記載の希土類鉄系永久磁石。
3. In the permanent magnet alloy composition, Fe is replaced by Co, Al,
Nb, Zr, Mo, Ga, Ti, V, Ni, Si, Bi
, Hf, W, Cr, Ta, Sb, Ge, Sn by 0 to 20 atomic %, and mixing of O, N, H, Cl, F, S, etc. The rare earth iron-based permanent magnet according to claim 1 or 2, characterized in that it contains unavoidable impurities.
4.非磁性Rリッチ相内に希土類元素と炭素Cの金属間
化合物が存在することを特徴とする請求項第1項〜第3
項のいずれかに記載の希土類鉄系永久磁石。
4. Claims 1 to 3, characterized in that an intermetallic compound of a rare earth element and carbon C is present in the nonmagnetic R-rich phase.
A rare earth iron permanent magnet as described in any of the above.
5.非磁性Rリッチ相内にFeを含むRリッチ相とCを
含むRリッチ相とを分離して析出させてなることを特徴
とする請求項第1項〜第4項のいずれかに記載の希土類
鉄系永久磁石。
5. The rare earth according to any one of claims 1 to 4, wherein an R-rich phase containing Fe and an R-rich phase containing C are separately precipitated in a nonmagnetic R-rich phase. Iron-based permanent magnet.
6.粉末冶金法による請求項第1項〜第5項のいずれか
に記載の希土類鉄系永久磁石の製造において、最終工程
である成形焼結体の熱処理温度を500〜1,000℃
、処理時間を0.5〜10時間とすることを特徴とする
希土類鉄系永久磁石の製造方法。
6. In the production of the rare earth iron permanent magnet according to any one of claims 1 to 5 by a powder metallurgy method, the heat treatment temperature of the shaped sintered body in the final step is 500 to 1,000 °C.
A method for producing a rare earth iron permanent magnet, characterized in that the treatment time is 0.5 to 10 hours.
JP2314642A 1990-11-20 1990-11-20 Rare earth iron based permanent magnet and its manufacture Pending JPH04184901A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2314642A JPH04184901A (en) 1990-11-20 1990-11-20 Rare earth iron based permanent magnet and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2314642A JPH04184901A (en) 1990-11-20 1990-11-20 Rare earth iron based permanent magnet and its manufacture

Publications (1)

Publication Number Publication Date
JPH04184901A true JPH04184901A (en) 1992-07-01

Family

ID=18055785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2314642A Pending JPH04184901A (en) 1990-11-20 1990-11-20 Rare earth iron based permanent magnet and its manufacture

Country Status (1)

Country Link
JP (1) JPH04184901A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06104108A (en) * 1992-09-18 1994-04-15 Hitachi Metals Ltd Nd-fe-co-b type sintered magnet
EP0680054A1 (en) * 1994-04-29 1995-11-02 Crucible Materials Corporation Re-Fe-B magnets and manufacturing method for the same
US7488395B2 (en) * 2005-03-23 2009-02-10 Shin-Etsu Chemical Co., Ltd. Functionally graded rare earth permanent magnet
US7488393B2 (en) * 2005-03-23 2009-02-10 Shin-Etsu Chemical Co., Ltd. Rare earth permanent magnet
US7488394B2 (en) * 2005-03-23 2009-02-10 Shin-Etsu Chemical Co., Ltd. Rare earth permanent magnet
US7520941B2 (en) * 2005-03-23 2009-04-21 Shin-Etsu Chemical Co., Ltd. Functionally graded rare earth permanent magnet
US7883587B2 (en) 2006-11-17 2011-02-08 Shin-Etsu Chemical Co., Ltd. Method for preparing rare earth permanent magnet
US7955443B2 (en) 2006-04-14 2011-06-07 Shin-Etsu Chemical Co., Ltd. Method for preparing rare earth permanent magnet material
US8211327B2 (en) 2004-10-19 2012-07-03 Shin-Etsu Chemical Co., Ltd. Preparation of rare earth permanent magnet material
US8231740B2 (en) 2006-04-14 2012-07-31 Shin-Etsu Chemical Co., Ltd. Method for preparing rare earth permanent magnet material
US8420010B2 (en) 2006-04-14 2013-04-16 Shin-Etsu Chemical Co., Ltd. Method for preparing rare earth permanent magnet material
JPWO2021095633A1 (en) * 2019-11-11 2021-05-20
WO2021095630A1 (en) * 2019-11-11 2021-05-20 信越化学工業株式会社 R-fe-b sintered magnet

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61222102A (en) * 1985-03-28 1986-10-02 Toshiba Corp Rare earth iron group permanent magnet
JPH023205A (en) * 1988-06-20 1990-01-08 Seiko Epson Corp Manufacture of permanent magnet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61222102A (en) * 1985-03-28 1986-10-02 Toshiba Corp Rare earth iron group permanent magnet
JPH023205A (en) * 1988-06-20 1990-01-08 Seiko Epson Corp Manufacture of permanent magnet

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06104108A (en) * 1992-09-18 1994-04-15 Hitachi Metals Ltd Nd-fe-co-b type sintered magnet
EP0680054A1 (en) * 1994-04-29 1995-11-02 Crucible Materials Corporation Re-Fe-B magnets and manufacturing method for the same
US8377233B2 (en) 2004-10-19 2013-02-19 Shin-Etsu Chemical Co., Ltd. Preparation of rare earth permanent magnet material
US8211327B2 (en) 2004-10-19 2012-07-03 Shin-Etsu Chemical Co., Ltd. Preparation of rare earth permanent magnet material
US7488394B2 (en) * 2005-03-23 2009-02-10 Shin-Etsu Chemical Co., Ltd. Rare earth permanent magnet
US7520941B2 (en) * 2005-03-23 2009-04-21 Shin-Etsu Chemical Co., Ltd. Functionally graded rare earth permanent magnet
US7488393B2 (en) * 2005-03-23 2009-02-10 Shin-Etsu Chemical Co., Ltd. Rare earth permanent magnet
US7488395B2 (en) * 2005-03-23 2009-02-10 Shin-Etsu Chemical Co., Ltd. Functionally graded rare earth permanent magnet
US7955443B2 (en) 2006-04-14 2011-06-07 Shin-Etsu Chemical Co., Ltd. Method for preparing rare earth permanent magnet material
US8231740B2 (en) 2006-04-14 2012-07-31 Shin-Etsu Chemical Co., Ltd. Method for preparing rare earth permanent magnet material
US8420010B2 (en) 2006-04-14 2013-04-16 Shin-Etsu Chemical Co., Ltd. Method for preparing rare earth permanent magnet material
US7883587B2 (en) 2006-11-17 2011-02-08 Shin-Etsu Chemical Co., Ltd. Method for preparing rare earth permanent magnet
JPWO2021095633A1 (en) * 2019-11-11 2021-05-20
WO2021095630A1 (en) * 2019-11-11 2021-05-20 信越化学工業株式会社 R-fe-b sintered magnet
WO2021095633A1 (en) * 2019-11-11 2021-05-20 信越化学工業株式会社 R-fe-b-based sintered magnet
JPWO2021095630A1 (en) * 2019-11-11 2021-05-20

Similar Documents

Publication Publication Date Title
TWI476791B (en) RTB rare earth publication magnet
KR960008185B1 (en) Rare earth-iron system permanent magnet and process for producing the same
JP2746818B2 (en) Manufacturing method of rare earth sintered permanent magnet
JPH0521218A (en) Production of rare-earth permanent magnet
JP2001093713A (en) Multi-element-based rare earth-iron lattice interstitial permanent magnet material, permanent magnet composed of the material and manufacture of the material and the permanent magnet
JPWO2002103719A1 (en) Rare earth permanent magnet material
WO2007010860A1 (en) Rare earth sintered magnet and method for production thereof
WO2005015580A1 (en) R-t-b sintered magnet and rare earth alloy
JPH04184901A (en) Rare earth iron based permanent magnet and its manufacture
JP3121824B2 (en) Sintered permanent magnet
JP2000114017A (en) Permanent magnet and material thereof
EP0029071B1 (en) Process for producing permanent magnet alloy
US20070240790A1 (en) Rare-earth sintered magnet and method for producing the same
JP2853838B2 (en) Manufacturing method of rare earth permanent magnet
JP3066806B2 (en) Rare earth permanent magnet with excellent touch resistance
EP0414645B2 (en) Permanent magnet alloy having improved resistance to oxidation and process for production thereof
JPH08181009A (en) Permanent magnet and its manufacturing method
JPH06207204A (en) Production of rare earth permanent magnet
JP2739860B2 (en) MAGNETIC MATERIAL, MAGNET COMPRISING THE SAME, AND PROCESS FOR PRODUCING THEM
JPH05182813A (en) Manufacture of rare earth permanent magnet
JP4687493B2 (en) Rare earth sintered magnet and manufacturing method thereof
JP5235264B2 (en) Rare earth sintered magnet and manufacturing method thereof
JPH0521219A (en) Production of rare-earth permanent magnet
JPS62257704A (en) Permanent magnet
JPS63278208A (en) Manufacture of rare earth permanent magnet