JP3296507B2 - Rare earth permanent magnet - Google Patents

Rare earth permanent magnet

Info

Publication number
JP3296507B2
JP3296507B2 JP01543193A JP1543193A JP3296507B2 JP 3296507 B2 JP3296507 B2 JP 3296507B2 JP 01543193 A JP01543193 A JP 01543193A JP 1543193 A JP1543193 A JP 1543193A JP 3296507 B2 JP3296507 B2 JP 3296507B2
Authority
JP
Japan
Prior art keywords
phase
rich phase
rare earth
permanent magnet
volume ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP01543193A
Other languages
Japanese (ja)
Other versions
JPH06231926A (en
Inventor
実 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=11888603&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3296507(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP01543193A priority Critical patent/JP3296507B2/en
Publication of JPH06231926A publication Critical patent/JPH06231926A/en
Application granted granted Critical
Publication of JP3296507B2 publication Critical patent/JP3296507B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、VCM(ボイスコイル
モータ)、回転機器等に使用される高性能希土類永久磁
石に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high performance rare earth permanent magnet used for a VCM (voice coil motor), a rotating device, and the like.

【0002】[0002]

【従来の技術】Nd−Fe−B系磁石(特許公告 昭6
3−65742)は飽和磁化が大きく、高エネルギ−積
が得られることから幅広い用途に使用されるようになっ
た。これまで問題とされていた耐熱性および耐食性とい
った問題はある程度解決され、実用上は問題ある程度解
決された。最大エネルギ−積も30〜40MGOeのも
のが生産されるになった。
2. Description of the Related Art Nd-Fe-B magnets (patent publication No. 6)
No. 3-65742) has been used in a wide range of applications because of its high saturation magnetization and high energy product. Problems such as heat resistance and corrosion resistance, which have been problematic until now, have been solved to some extent, and some problems have been solved in practical use. Products with a maximum energy product of 30 to 40 MGOe have been produced.

【0003】[0003]

【発明が解決しようとする課題】近時永久磁石を用いた
装置のより一層の小型化が要求されており、それにとも
ないより高いエネルギー積を有する永久磁石の登場が望
まれている。そこで本発明は、エネルギー積の高い希土
類磁石の提供を課題とする。
Recently, there has been a demand for further downsizing of a device using a permanent magnet, and accordingly, a permanent magnet having a higher energy product has been desired. Therefore, an object of the present invention is to provide a rare earth magnet having a high energy product.

【0004】[0004]

【課題を解決するための手段】Nd−Fe−B系磁石を
高性能化するには結晶粒の配向度を向上させ、且つ酸素
量を低減することにより全希土類元素量を低減し、主相
体積率を向上させることが不可欠となる。ここで配向度
とは各々の結晶粒において磁化容易軸がどの程度揃って
いるかを表す数値で、通常残留磁束密度Brと飽和磁化
Msの比(Br/Ms)で表される。配向度を向上させ
るには、成形過程で磁界中配向した場合微粉砕粉が磁気
的に凝集するので、この磁気凝集を緩和し、配向を乱さ
ないように成形する必要がある。また、主相体積率を向
上させるにはNdリッチ相,Bリッチ相,酸化物相,N
b析出物,ポア等の非磁性相を最小限に抑えることが必
要となる。しかし、主相体積率を多くしても、Ndリッ
チ相がないと良好な磁気特性が得られないし、Bリッチ
相がなくなるとFeが生成し、角型性を悪くする。この
ため、Ndリッチ相とBリッチ相には良好な磁気特性を
出すための範囲が存在する。
In order to improve the performance of the Nd-Fe-B magnet, the degree of orientation of crystal grains is improved, and the amount of oxygen is reduced to reduce the total rare earth element content. It is essential to improve the volume ratio. Here, the degree of orientation is a numerical value indicating how much the easy axis of magnetization is aligned in each crystal grain, and is usually expressed by the ratio (Br / Ms) between the residual magnetic flux density Br and the saturation magnetization Ms. In order to improve the degree of orientation, the finely pulverized powder magnetically aggregates when it is oriented in a magnetic field during the molding process. Therefore, it is necessary to reduce the magnetic aggregation and to perform molding without disturbing the orientation. In order to improve the volume fraction of the main phase, the Nd-rich phase, B-rich phase, oxide phase, N
b It is necessary to minimize non-magnetic phases such as precipitates and pores. However, even when the volume fraction of the main phase is increased, good magnetic properties cannot be obtained without the Nd-rich phase, and when the B-rich phase disappears, Fe is generated, deteriorating the squareness. For this reason, the Nd-rich phase and the B-rich phase have ranges for obtaining good magnetic characteristics.

【0005】本発明は以上の知見にもとづきなされたも
のであり、R214B化合物(Rは希土類金属元素、T
は遷移金属元素)を主体とする主相と非磁性相とから構
成されるR−T−B系希土類永久磁石であり、配向度
(Br/Ms)が0.90〜0.97で、主相体積率が8
9〜97%、Ndリッチ相およびBリッチ相を必須とす
る非磁性相の体積率が3〜10%である焼結体からなる
ことを特徴とするである。
The present invention has been made on the basis of the above-mentioned findings, and is directed to an R 2 T 14 B compound (R is a rare earth metal element, T
Is a R-T-B rare earth permanent magnet composed of a main phase mainly composed of a transition metal element) and a non-magnetic phase, and has an orientation degree (Br / Ms) of 0.90 to 0.97. 8 phase volume fraction
It is characterized by comprising a sintered body having a volume ratio of 3 to 10% of a nonmagnetic phase having 9 to 97% and an Nd-rich phase and a B-rich phase as essential.

【0006】以下本発明をさらに詳述する。本発明希土
類永久磁石は、配向度(Br/Ms)が0.90〜0.9
7で、主相体積率が89〜97%、Ndリッチ相および
Bリッチ相を必須とする非磁性相の体積率が3〜10%
であるが、配向度(Br/Ms)が0.90〜0.94
で、主相体積率が89〜95%、Ndリッチ相およびB
リッチ相を必須とする非磁性相の体積率が5〜10%の
場合に(BH)max=40〜46MGOeの特性が、
また配向度(Br/Ms)が0.92〜0.97で、主相
体積率が92〜97%で、Ndリッチ相およびBリッチ
相を必須とする非磁性相の体積率が3〜7%の場合に
(BH)max=42〜53MGOeの特性が得られ
る。
Hereinafter, the present invention will be described in more detail. The rare earth permanent magnet of the present invention has an orientation degree (Br / Ms) of 0.90 to 0.9.
7, the volume fraction of the main phase is 89 to 97%, and the volume fraction of the non-magnetic phase essentially including the Nd-rich phase and the B-rich phase is 3 to 10%.
Where the degree of orientation (Br / Ms) is 0.90 to 0.94.
, The main phase volume fraction is 89 to 95%, the Nd-rich phase and B
When the volume fraction of the non-magnetic phase that requires a rich phase is 5 to 10%, the characteristic of (BH) max = 40 to 46 MGOe is
Further, the degree of orientation (Br / Ms) is 0.92 to 0.97, the volume ratio of the main phase is 92 to 97%, and the volume ratio of the nonmagnetic phase which essentially includes the Nd-rich phase and the B-rich phase is 3 to 7%. %, A characteristic of (BH) max = 42 to 53 MGOe is obtained.

【0007】主相以外の非磁性相は、Ndリッチ相の体
積率が2〜8%で、Bリッチ相の体積率が0.1〜8%
であることが好ましい。Ndリッチ相は体積率で2%未
満では液相焼結ができずに、良好な特性が得られないの
で体積率で2%以上とする。望ましくは2.3%以上で
ある。Bリッチ相が存在しない場合にはFeが生成し角
型性が悪くなり、体積率で0.1%以上ならFeは生成
せず優れた磁気特性が得られる。よって体積率で0.5
%以上とする。しかし、Ndリッチ相、Bリッチ相はそ
れぞれ8%を超えて存在すると磁気特性を低下させるの
で好ましくない。
In the non-magnetic phase other than the main phase, the volume ratio of the Nd-rich phase is 2 to 8%, and the volume ratio of the B-rich phase is 0.1 to 8%.
It is preferable that If the Nd-rich phase has a volume ratio of less than 2%, liquid phase sintering cannot be performed and good characteristics cannot be obtained, so the volume ratio is set to 2% or more. Desirably, it is 2.3% or more. When the B-rich phase does not exist, Fe is formed and the squareness is deteriorated. If the volume ratio is 0.1% or more, no Fe is formed and excellent magnetic properties can be obtained. Therefore, the volume ratio is 0.5
% Or more. However, it is not preferable that the Nd-rich phase and the B-rich phase each exceed 8%, since magnetic properties are deteriorated.

【0008】本発明希土類永久磁石の組成としては下記
のものが望ましい。 (Nd1-X-Y-ZCeXPrYDyZaFebCocdADe
fAlg (ここで、0.001≦X≦0.1、0.05≦Y≦
0.5、0.001≦Z≦0.25、ADはCu,Z
n,Gaのうち少なくとも1種で、MはV,Mo,N
b,Wのうち少なくとも1種で、5≦a≦18at%、
65≦b≦85 at%、0≦c≦20 at%、
4≦d≦15at%、0≦e≦7at%、0≦f≦
7at%、0≦g≦5at%) 希土類元素Rは5at%以上、18at%以下で、好ま
しくは10at%以上、16at%以下の範囲で含有さ
れる。Ceの過剰な添加は好ましくなく、0.001≦
X≦0.1が望ましい。Prは0.05≦Y≦0.5の
範囲で使用すれば保磁力・耐熱性の向上に効果がある
が、これ以上の添加は飽和磁化を減少させ、耐食性も低
下させる。Dyを含む場合に大きい保磁力が得られ、N
d+Ce+PrとDyの比率としては99.95:0.
05から75:25の範囲が飽和磁化を大きく低下せず
に、高保磁力が得られるため望ましい。
The following are desirable as the composition of the rare earth permanent magnet of the present invention. (Nd 1-XYZ Ce X Pr Y Dy Z) a Fe b Co c B d AD e
M f Al g (where 0.001 ≦ X ≦ 0.1, 0.05 ≦ Y ≦
0.5, 0.001 ≦ Z ≦ 0.25, AD is Cu, Z
n is at least one of Ga and M is V, Mo, N
at least one of b and W, 5 ≦ a ≦ 18 at%;
65 ≦ b ≦ 85 at%, 0 ≦ c ≦ 20 at%,
4 ≦ d ≦ 15 at%, 0 ≦ e ≦ 7 at%, 0 ≦ f ≦
(7 at%, 0 ≦ g ≦ 5 at%) The rare earth element R is contained in a range of 5 at% or more and 18 at% or less, preferably 10 at% or more and 16 at% or less. Excessive addition of Ce is not preferred, and 0.001 ≦
X ≦ 0.1 is desirable. If Pr is used in the range of 0.05 ≦ Y ≦ 0.5, it is effective in improving coercive force and heat resistance. However, addition of Pr further reduces saturation magnetization and also reduces corrosion resistance. A large coercive force is obtained when Dy is included, and N
The ratio of d + Ce + Pr to Dy is 99.95: 0.
The range of 05 to 75:25 is desirable because a high coercive force can be obtained without significantly lowering the saturation magnetization.

【0009】Feは65≦b≦85at%の範囲で含ま
れる。65at%未満では飽和磁化が低く、また85a
t%を越えると保磁力が著しく低下するからである。
Fe is contained in a range of 65 ≦ b ≦ 85 at%. If it is less than 65 at%, the saturation magnetization is low.
If it exceeds t%, the coercive force is significantly reduced.

【0010】Coは熱安定性向上に寄与する元素であ
り、20at%以下の範囲で含まれる。20at%を越
えると飽和磁化と保磁力が低下するからである。なお、
FeとCoの比率は、適度な角型性と保磁力を保持する
ため99.95:0.05から77:23の範囲にする
のが望ましい。
[0010] Co is an element that contributes to improvement in thermal stability, and is contained in a range of 20 at% or less. If the content exceeds 20 at%, the saturation magnetization and the coercive force decrease. In addition,
The ratio between Fe and Co is preferably in the range of 99.95: 0.05 to 77:23 in order to maintain appropriate squareness and coercive force.

【0011】Bの量は4≦d≦15at%が好ましく、
この範囲外では残留磁束密度と保磁力が小さくなる。
The amount of B is preferably 4 ≦ d ≦ 15 at%,
Outside this range, the residual magnetic flux density and the coercive force become small.

【0012】ADは保磁力を向上させるための元素であ
るが、7at%を越えると残留磁束密度を低下させるの
で7at%以下とする。0.01≦e≦4at%の範囲
とするのが好ましい。
AD is an element for improving the coercive force, but if it exceeds 7 at%, the residual magnetic flux density is reduced, so that it is set to 7 at% or less. It is preferable that the range is 0.01 ≦ e ≦ 4 at%.

【0013】M元素は結晶粒成長抑制および熱安定性向
上に効果のある元素であるが、過剰に含まれると飽和磁
化を低下させるので添加する場合は7at%以下とする
のが好ましい。
The M element is an element effective for suppressing the growth of crystal grains and improving the thermal stability. However, if it is contained excessively, it reduces the saturation magnetization. Therefore, when added, the content is preferably 7 at% or less.

【0014】Alは保磁力向上に効果があり、Ferro−
Bからおよび溶解時に混入してくる。しかし過剰に含ま
れるとキュリー温度を下げるので、添加する場合は5a
t%以下とする。
Al is effective in improving the coercive force, and Ferro-
From B and upon dissolution. However, excessive addition lowers the Curie temperature.
t% or less.

【0015】次に本発明磁石の製造方法について説明す
る。本発明磁石は、焼結法により作製することができ
る。溶解インゴットを作製しこのインゴットに水素吸蔵
・脱水素処理を施した後、微粉砕し、その後に磁場中成
形、焼結、熱処理することにより得られる。
Next, a method for manufacturing the magnet of the present invention will be described. The magnet of the present invention can be manufactured by a sintering method. It is obtained by preparing a melted ingot, subjecting the ingot to a hydrogen storage / dehydrogenation treatment, finely pulverizing, then forming, sintering, and heat-treating in a magnetic field.

【0016】[0016]

【実施例】【Example】

(実施例1)金属Nd、金属Dy、Fe、Co、fer
ro−B、ferro−Nbを下記組成になるように秤
量し、これを真空溶解して重量10kgのインゴットを
作製した。NdxDy0.4Fe88.1-xCo4.56Nb0.5
Al0.5(X=12.1〜15.0)このインゴットをハ
ンマーで解砕した後、さらに粗粉砕機を用い不活性ガス
雰囲気中での粗粉砕を行い500μm以下の粒度の粗粉
を得た。この粗粉を同じくジェットミルを用い不活性ガ
ス雰囲気中で微粉砕をして微粉を得た。この微粉は平均
粒径4.0μm(F.S.S.S.)であった。次に、
この微粉を磁場中プレス成形し、20×20×15の成
形体を作製した。この成形体を焼結し、さらに熱処理を
施すことによって永久磁石を得た。図1にNd量による
(BH)maxの変化を示すが、Nd量が12.7at
%以下の場合Ndリッチ相の減少により良好な特性が得
られない。また、図1から明かなように、配向度(Br
/Ms)が0.91の場合には(BH)max=45M
GOeを得られていないが、配向度が0.93の場合に
は(BH)max=45MGOeが得られるているのが
わかる。図2にNd12.8Dy0.4Fe75.3Co4.56.0
Nb0.5Al0.5の組成における酸素量とBリッチ相、N
dリッチ相、酸化物相、Nb析出物の体積率の変化を示
す。酸素量の増加とともに酸化物相は増加するが、Nd
リッチ相は減少する。Nb析出物およびBリッチ相は酸
素量に拘らずほぼ一定である。なお酸素量が0.3wt
%の時の主相体積率は94.28%であった。
(Example 1) Metal Nd, metal Dy, Fe, Co, fer
ro-B and ferro-Nb were weighed so as to have the following composition, and were melted under vacuum to produce an ingot weighing 10 kg. Nd x Dy 0.4 Fe 88.1-x Co 4.5 B 6 Nb 0.5
Al 0.5 (X = 12.1 to 15.0) After crushing this ingot with a hammer, it was further coarsely crushed in an inert gas atmosphere using a coarse crusher to obtain a coarse powder having a particle size of 500 μm or less. . The coarse powder was similarly pulverized in an inert gas atmosphere using a jet mill to obtain a fine powder. This fine powder had an average particle size of 4.0 μm (FSSS). next,
This fine powder was press-molded in a magnetic field to produce a 20 × 20 × 15 compact. This molded body was sintered and subjected to a heat treatment to obtain a permanent magnet. FIG. 1 shows a change in (BH) max depending on the amount of Nd, and the amount of Nd is 12.7 at.
%, Good characteristics cannot be obtained due to a decrease in the Nd-rich phase. Also, as is clear from FIG. 1, the degree of orientation (Br
/ Ms) is 0.91, (BH) max = 45M
Although GOe was not obtained, it can be seen that (BH) max = 45 MGOe was obtained when the degree of orientation was 0.93. FIG. 2 shows Nd 12.8 Dy 0.4 Fe 75.3 Co 4.5 B 6.0
Oxygen content and B-rich phase in composition of Nb 0.5 Al 0.5 , N
The change of the volume ratio of a d-rich phase, an oxide phase, and Nb precipitate is shown. The oxide phase increases with an increase in the amount of oxygen, but Nd
The rich phase decreases. The Nb precipitate and the B-rich phase are almost constant irrespective of the amount of oxygen. The oxygen content is 0.3wt
%, The volume fraction of the main phase was 94.28%.

【0017】(実施例2)実施例1と同様にして組成N
12.4Dy0.4Fe75.9Co4.55.9Nb0.4Al
0.5で、酸素量0.1wt%、ポア0.5vol%の磁
石を得た。この磁石の配向度による(BH)maxの変
化を図3に示す。この組成において配向度を0.958
以上とすれば(BH)max=50MGOeの特性が得
られることがわかる。この時の主相体積は95.96
%、Bリッチ相は0.1%、Ndリッチ相は2.62
%、酸化物相は0.65%、Nb析出物は0.17%で
あった。
(Example 2) In the same manner as in Example 1, the composition N
d 12.4 Dy 0.4 Fe 75.9 Co 4.5 B 5.9 Nb 0.4 Al
At 0.5 , a magnet having an oxygen content of 0.1 wt% and a pore volume of 0.5 vol% was obtained. FIG. 3 shows a change in (BH) max depending on the degree of orientation of the magnet. In this composition, the degree of orientation is 0.958.
With the above, it can be seen that the characteristic of (BH) max = 50 MGOe can be obtained. The main phase volume at this time was 95.96.
%, B-rich phase 0.1%, Nd-rich phase 2.62
%, The oxide phase was 0.65%, and the Nb precipitate was 0.17%.

【0018】[0018]

【発明の効果】R−T−B系磁石において配向度と主相
体積率、さらにNdリッチ相、Bリッチ相の最適化を図
ることにより高性能磁石を得ることができた。
According to the present invention, a high-performance magnet can be obtained by optimizing the orientation degree, the main phase volume ratio, and the Nd-rich phase and the B-rich phase in the RTB-based magnet.

【図面の簡単な説明】[Brief description of the drawings]

【図1】NdxDy0.4Fe88.1-xCo4.56Nb0.5
0.5(x=12.1〜15.0)の磁石においてNd
量による(BH)maxの変化を示すグラフである。
FIG. 1 Nd x Dy 0.4 Fe 88.1-x Co 4.5 B 6 Nb 0.5 A
Nd for a magnet of l 0.5 (x = 12.1 to 15.0)
It is a graph which shows the change of (BH) max with quantity.

【図2】Nd12.8Dy0.4Fe75.3Co4.56.0Nb0.5
Al0.5の組成で酸素量を変化させた時のBリッチ相、
Ndリッチ相、酸化物相、Nb析出物の体積率の関係を
示すグラフである。
FIG. 2 Nd 12.8 Dy 0.4 Fe 75.3 Co 4.5 B 6.0 Nb 0.5
B-rich phase when the oxygen content is changed with the composition of Al 0.5 ,
It is a graph which shows the relationship of the volume ratio of a Nd rich phase, an oxide phase, and a Nb precipitate.

【図3】Nd12.4Dy0.4Fe75.9Co4.55.9Nb0.4
Al0.5で、酸素量0.1 wt%、ポア0.5vol
%の場合における、配向度による(BH)maxの変化
を示すグラフである。
FIG. 3 Nd 12.4 Dy 0.4 Fe 75.9 Co 4.5 B 5.9 Nb 0.4
Al 0.5 , oxygen content 0.1 wt%, pore 0.5 vol
5 is a graph showing a change in (BH) max depending on the degree of orientation in the case of%.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 R214B化合物(Rは希土類金属元素、
Tは遷移金属元素)を主体とする主相と非磁性相とから
構成されるR−T−B系希土類永久磁石であり、配向度
(Br/Ms)が0.90〜0.97で、主相体積率が8
9〜97%、Ndリッチ相およびBリッチ相を必須とす
非磁性相の体積率が3〜10%である焼結体からなる
ことを特徴とする希土類永久磁石。
An R 2 T 14 B compound (R is a rare earth metal element,
T is an RTB-based rare earth permanent magnet composed of a main phase mainly composed of a transition metal element) and a nonmagnetic phase, and has a degree of orientation (Br / Ms) of 0.90 to 0.97; Main phase volume ratio is 8
9-97%, Nd-rich phase and B-rich phase are essential
Non rare earth permanent magnet magnetic phase volume fraction is characterized by comprising the sintered body is 3-10% that.
【請求項2】 2 14 B化合物(Rは希土類金属元素、
Tは遷移金属元素)を主体とする主相と非磁性相とから
構成されるR−T−B系希土類永久磁石であり、配向度
(Br/Ms)が0.90〜0.97で、主相体積率が8
9〜95%、Ndリッチ相およびBリッチ相を必須とす
非磁性相の体積率が5〜10%で、(BH)maxが
38〜46MGOeであることを特徴とする希土類永久
磁石。
2. An R 2 T 14 B compound (R is a rare earth metal element,
T is a transition metal element) from the main phase and the non-magnetic phase
It is an RTB-based rare earth permanent magnet composed of
(Br / Ms) is 0.90 to 0.97 and the main phase volume ratio is 8
9-95%, Nd-rich phase and B-rich phase are essential
A non-magnetic phase having a volume fraction of 5 to 10% and a (BH) max of 38 to 46 MGOe.
【請求項3】 主相体積率が92〜97%、Ndリッチ
相およびBリッチ相を必須とする非磁性相の体積率が3
〜7%で、(BH)maxが42〜53MGOeである
請求項1に記載の希土類永久磁石。
3. A main phase volume ratio of 92 to 97%, Nd rich
Phase and a non-magnetic phase having a B-rich phase as essential volume ratio of 3
The rare-earth permanent magnet according to claim 1, wherein (BH) max is 42 to 53 MGOe at 〜7%.
【請求項4】 Ndリッチ相の体積率が2〜8%で、B
リッチ相の体積率が0.05〜8%である請求項1〜3
のいずれかに記載の希土類永久磁石。
4. The method according to claim 1, wherein the volume fraction of the Nd-rich phase is 2 to 8%,
The volume ratio of the rich phase is 0.05 to 8%.
A rare earth permanent magnet according to any one of the above.
JP01543193A 1993-02-02 1993-02-02 Rare earth permanent magnet Expired - Lifetime JP3296507B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01543193A JP3296507B2 (en) 1993-02-02 1993-02-02 Rare earth permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01543193A JP3296507B2 (en) 1993-02-02 1993-02-02 Rare earth permanent magnet

Publications (2)

Publication Number Publication Date
JPH06231926A JPH06231926A (en) 1994-08-19
JP3296507B2 true JP3296507B2 (en) 2002-07-02

Family

ID=11888603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01543193A Expired - Lifetime JP3296507B2 (en) 1993-02-02 1993-02-02 Rare earth permanent magnet

Country Status (1)

Country Link
JP (1) JP3296507B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4243413B2 (en) * 2000-05-31 2009-03-25 セイコーエプソン株式会社 Magnet powder manufacturing method and bonded magnet manufacturing method
JP4243415B2 (en) * 2000-06-06 2009-03-25 セイコーエプソン株式会社 Magnet powder manufacturing method and bonded magnet manufacturing method
JP4605013B2 (en) 2003-08-12 2011-01-05 日立金属株式会社 R-T-B system sintered magnet and rare earth alloy
CN103918041B (en) 2011-11-14 2017-02-22 丰田自动车株式会社 Rare-earth magnet and process for producing same
JP5790617B2 (en) 2012-10-18 2015-10-07 トヨタ自動車株式会社 Rare earth magnet manufacturing method
CN103887028B (en) * 2012-12-24 2017-07-28 北京中科三环高技术股份有限公司 A kind of Sintered NdFeB magnet and its manufacture method
JP6003920B2 (en) * 2014-02-12 2016-10-05 トヨタ自動車株式会社 Rare earth magnet manufacturing method
JP7167484B2 (en) * 2018-05-17 2022-11-09 Tdk株式会社 Cast alloy flakes for RTB rare earth sintered magnets

Also Published As

Publication number Publication date
JPH06231926A (en) 1994-08-19

Similar Documents

Publication Publication Date Title
US5071493A (en) Rare earth-iron-boron-based permanent magnet
JP2751109B2 (en) Sintered permanent magnet with good thermal stability
JPH0510806B2 (en)
JP3296507B2 (en) Rare earth permanent magnet
JPH01219143A (en) Sintered permanent magnet material and its production
JPH01220803A (en) Magnetic anisotropic sintered magnet and manufacture thereof
US5230749A (en) Permanent magnets
JPH0561345B2 (en)
JP3209380B2 (en) Rare earth sintered magnet and manufacturing method thereof
JP3298220B2 (en) Rare earth-Fe-Nb-Ga-Al-B sintered magnet
JP3080275B2 (en) R-Fe-Co-Al-Nb-Ga-B sintered magnet excellent in corrosion resistance and heat resistance and method for producing the same
JP2868062B2 (en) Manufacturing method of permanent magnet
JPH068488B2 (en) Permanent magnet alloy
JPH0536494B2 (en)
JPS6318603A (en) Permanent magnet
JP2577373B2 (en) Sintered permanent magnet
JP2825449B2 (en) Manufacturing method of permanent magnet
JPH0815123B2 (en) permanent magnet
JP3298221B2 (en) Rare earth-Fe-V-Ga-Al-B sintered magnet
JP2514155B2 (en) Method for manufacturing permanent magnet alloy
JP3253006B2 (en) RE-T-M-B sintered magnet with excellent magnetic properties
JPS62170455A (en) Permanent magnet alloy
JPH04246803A (en) Rare earth-fe-b anisotropic magnet
JPH0583627B2 (en)
JPH0529121A (en) Permanent magnet