JPH0815123B2 - permanent magnet - Google Patents

permanent magnet

Info

Publication number
JPH0815123B2
JPH0815123B2 JP60198531A JP19853185A JPH0815123B2 JP H0815123 B2 JPH0815123 B2 JP H0815123B2 JP 60198531 A JP60198531 A JP 60198531A JP 19853185 A JP19853185 A JP 19853185A JP H0815123 B2 JPH0815123 B2 JP H0815123B2
Authority
JP
Japan
Prior art keywords
rich phase
permanent magnet
weight
phase
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60198531A
Other languages
Japanese (ja)
Other versions
JPS6260208A (en
Inventor
勲 酒井
徹彦 溝口
浩一郎 猪俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60198531A priority Critical patent/JPH0815123B2/en
Publication of JPS6260208A publication Critical patent/JPS6260208A/en
Publication of JPH0815123B2 publication Critical patent/JPH0815123B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は永久磁石に関する。Description: TECHNICAL FIELD OF THE INVENTION The present invention relates to a permanent magnet.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

R2(CoCuFeM)17型等の希土類コバルト系磁石は高性能
磁石として良く知られている。この希土類コバルト系磁
石は、最大エネルギー積BHmaxが大きくても30MGOe程度
である。近年の各種電子機器における小型化,高性能化
の要求は強く、さらに大きいBHmaxを有する等の高性能
磁石の開発が望まれていた。またこの希土類コバルト系
磁石は比較的高価なCoを大量に用いるため、コスト的に
も問題があった。
Rare earth cobalt-based magnets such as R 2 (CoCuFeM) 17 type are well known as high-performance magnets. This rare earth cobalt-based magnet has a maximum energy product BH max of about 30 MGOe even if it is large. In recent years, there have been strong demands for miniaturization and higher performance in various electronic devices, and the development of high-performance magnets with even higher BH max has been desired. Further, since this rare earth cobalt-based magnet uses a large amount of relatively expensive Co, there is a problem in cost.

このような要望に答えて近年鉄を主体とした希土類磁
石の研究が各所で行なわれている(特開昭59−46008号
等)。この永久磁石は、Nd,Pr等の希土類元素及び硼素
を含み残部実質的に鉄からなるものであり、BHmaxが30M
GOeを越えるものを得ることができ、また、Coに比べ安
価なFeを主体としているため、高性能磁石を低コストで
得ることができ、非常に有望な材料である。より優れた
特性を得るため、Coの添加(特開昭59−64733号)、Al,
Ti,V,Cr,Mn,Zr,Hf,Nb,Ta,Mo,Ge,Sb,Sn,Bi,Ni,W添加(特
開昭59−89401号,特開昭59−132104号)、Cu,S,C,Pの
添加(特開昭59−132105号,特開昭59−163803号)さら
にそれらの組合せ(特開昭59−163804号,特開昭59−16
3805号)等の組成面からの研究がなされている。
In response to such demands, research on rare earth magnets mainly composed of iron has been conducted in various places in recent years (Japanese Patent Laid-Open No. 59-46008, etc.). This permanent magnet contains rare earth elements such as Nd and Pr and boron, and the balance consists essentially of iron, and has a BH max of 30M.
It is a very promising material because high-performance magnets can be obtained at low cost because it is possible to obtain materials that exceed GOe and Fe that is cheaper than Co as the main component. In order to obtain more excellent characteristics, addition of Co (JP-A-59-64733), Al,
Addition of Ti, V, Cr, Mn, Zr, Hf, Nb, Ta, Mo, Ge, Sb, Sn, Bi, Ni, W (JP-A-59-89401, JP-A-59-132104), Cu, Addition of S, C and P (JP-A-59-132105, JP-A-59-163803) and combinations thereof (JP-A-59-163804, JP-A-59-16)
3805), etc. have been studied in terms of composition.

しかしながらこの希土類鉄系永久磁石に対しても、よ
り高いBHmax等、高性能化への要求は強く、各所で開発
が進められている。
However, even for this rare earth iron-based permanent magnet, there is a strong demand for higher performance such as higher BH max , and development is being promoted in various places.

〔発明の目的〕[Object of the Invention]

本発明は以上の点を考慮してなされたもので、より優
れた磁気特性、特に保磁力特性に優れた永久磁石を提供
することを目的とする。
The present invention has been made in view of the above points, and an object of the present invention is to provide a permanent magnet having more excellent magnetic characteristics, particularly coercive force characteristics.

〔発明の概要〕[Outline of Invention]

従来から希土類鉄系磁石は、強磁性Fe rich相,R rich
相及びB rich相の3相組織をとっていることが知られて
いる(IEEE Trans Magn.MAG−20,1584(1984))。各相
の量は組成,製造条件等で変化する。本発明者等はこの
組織及び添加元素と磁気特性との関係に着目して研究を
進めた。
Conventionally, rare earth iron-based magnets are ferromagnetic Fe rich phase, R rich
It is known to have a three-phase structure of a phase and a B rich phase (IEEE Trans Magn. MAG-20,1584 (1984)). The amount of each phase varies depending on the composition and manufacturing conditions. The present inventors proceeded with the research by paying attention to the relationship between the microstructure and the additive element and the magnetic properties.

その結果、希土類鉄系永久磁石においては、原料合金
中の酸素濃度が保磁力特性に顕著な影響を与えるという
知見を得た。また、希土類鉄系永久磁石に対する添加元
素としてTiを用い、このTiがBリッチ相に含有された
時、特異的に保磁力特性が向上することが見出された。
As a result, it has been found that in rare earth iron-based permanent magnets, the oxygen concentration in the raw material alloy significantly affects the coercive force characteristics. Further, it has been found that when Ti is used as an additive element to the rare earth iron-based permanent magnet and this Ti is contained in the B-rich phase, the coercive force characteristic is specifically improved.

すなわち本発明は、R(イットリウムを含む希土類元
素)10〜40重量%,B0.1〜8重量%,Ti0.1〜5重量%,
酸素0.005〜0.03重量%及び残部Feの合金の焼結体で、R
2Fe14B1で示される正方晶系の強磁性Feリッチ相を主相
とし、この主相よりBの含有比率の高いR及びFeを含有
する正方晶系の非磁性Bリッチ相と、この主相よりRの
含有比率の高い立方晶系の非磁性Rリッチ相とを含みこ
のTiの70重量%以上が前記Bリッチ相に含有されたこと
を特徴とする永久磁石である。
That is, the present invention relates to R (rare earth element including yttrium) 10 to 40% by weight, B 0.1 to 8% by weight, Ti 0.1 to 5% by weight,
Oxygen 0.005-0.03% by weight and the balance Fe alloy sintered body, R
2 Fe 14 B 1 is a tetragonal ferromagnetic Fe-rich phase as a main phase, and a tetragonal non-magnetic B-rich phase containing R and Fe having a higher B content than this main phase, A permanent magnet comprising a cubic nonmagnetic R-rich phase having a higher R content than the main phase, and 70% by weight or more of Ti being contained in the B-rich phase.

Bリッチ相は金属間化合物Nd2Fe7B6の正方晶系の非磁
性相である。本発明においては、このBリッチ相にTiが
含有される。Tiは置換型原子の形でこのBリッチ相にと
りこまれた形で存在する。
The B-rich phase is a tetragonal non-magnetic phase of the intermetallic compound Nd 2 Fe 7 B 6 . In the present invention, Ti is contained in this B-rich phase. Ti exists as a substitutional atom and is incorporated in this B-rich phase.

希土類鉄系の永久磁石においては、前述のごとくBリ
ッチ相の他にもFeリッチ相,Rリッチ相が存在する。Feリ
ッチ相は例えばNd2Fe14Bの正方晶系の強磁性相であり、
Rリッチ相はNd97Fe3,Nd95Fe5等のR90重量%以上を含
む立方晶系の非磁性相である。全体としてFeリッチ相80
〜95%,Bリッチ相0.1〜5%,Rリッチ相1〜20%程度で
ある。
In the rare earth iron-based permanent magnet, there are Fe-rich phase and R-rich phase in addition to the B-rich phase as described above. The Fe-rich phase is, for example, a tetragonal ferromagnetic phase of Nd 2 Fe 14 B,
The R-rich phase is a cubic non-magnetic phase containing 90 wt% or more of Rd such as Nd 97 Fe 3 and Nd 95 Fe 5 . Fe-rich phase 80 as a whole
~ 95%, B rich phase 0.1 ~ 5%, R rich phase 1 ~ 20%.

TiがBリッチ相に含有されるとき特異的に保磁力が増
大し、(BH)max′温度特性等の磁気特性が向上する。こ
のメカニズムの詳細は明らかではないが、Tiの混入した
Bリッチ相が、磁性を担うFeリッチ相の粒界を浄化した
ためと考えられる。また永久磁石全体として同量のTiを
含有する場合でも、Bリッチ相以外、すなわちFeリッチ
相,Rリッチ相にTiが含有される場合は本発明の効果を得
ることはできない。また、本発明においては合金成分で
あるTiの大部分がBリッチ相に含まれるが、永久磁石全
体としてみた場合、Ti量の少なくとも70wt%以上、好ま
しくは80wt%以上がBリッチ相に含まれていることが必
要である。
When Ti is contained in the B-rich phase, the coercive force is specifically increased, and the magnetic properties such as (BH) max 'temperature property are improved. Although the details of this mechanism are not clear, it is considered that the B-rich phase in which Ti is mixed purifies the grain boundaries of the Fe-rich phase that is responsible for magnetism. Even when the same amount of Ti is contained in the permanent magnet as a whole, the effect of the present invention cannot be obtained when Ti is contained in the phases other than the B-rich phase, that is, in the Fe-rich phase and the R-rich phase. Further, in the present invention, most of Ti, which is an alloy component, is contained in the B-rich phase, but when viewed as the whole permanent magnet, at least 70 wt% or more, preferably 80 wt% or more of the Ti amount is contained in the B-rich phase. It is necessary to have

以下の本発明に用いる合金組成について詳述する。 The alloy composition used in the present invention will be described in detail below.

Rが10重量%未満では保磁力が小さく、40重量%を超
えてしまうとBrが低下し、(BH)maxが低下してしまう。
従ってRは10〜40重量%が好ましい。
If R is less than 10% by weight, the coercive force is small, and if it exceeds 40% by weight, Br is lowered and (BH) max is lowered.
Therefore, R is preferably 10 to 40% by weight.

又、希土類元素の中でも、Nd及びPrは特に高(BH)max
を得るのに有効であり、Rとしてこの2元素の少なくと
も一種を含有することが好ましい。このNd,Pr特にNdの
R量中の割合は70%以上(R量全部でも良い)であるこ
とが好ましい。
Among rare earth elements, Nd and Pr are particularly high (BH) max.
It is effective to obtain R and preferably contains at least one of these two elements as R. The ratio of Nd and Pr, especially Nd, in the R amount is preferably 70% or more (the entire R amount may be sufficient).

又、硼素(B)が0.1重量%未満ではiHcが低下してし
まい、8重量%を超えるとBrの低下が顕著である。よっ
て0.1〜8重量%が好ましい。
Further, when the content of boron (B) is less than 0.1% by weight, iHc is lowered, and when it exceeds 8% by weight, the reduction of Br is remarkable. Therefore, 0.1 to 8% by weight is preferable.

なお、Bの一部をC,N,Si,P,Ge等で置換することも可
能である。これにより焼結性の向上ひいてはBr,(BH)max
の増大を図ることができる。この場合の置換量はBの80
%程度までである。
It is also possible to replace a part of B with C, N, Si, P, Ge or the like. As a result, the sinterability is improved, and thus Br, (BH) max
Can be increased. The replacement amount in this case is 80 of B.
Up to about%.

チタン(Ti)は保磁力の向上に有効な元素であるが、
0.1重量%未満ではiHcの増大が得られず、5重量%を超
えるとBrの低下が顕著となる。よって、チタンの含有率
は0.1〜5重量%が良い。
Titanium (Ti) is an element effective in improving the coercive force,
If it is less than 0.1% by weight, iHc cannot be increased, and if it exceeds 5% by weight, the decrease in Br becomes remarkable. Therefore, the titanium content is preferably 0.1 to 5% by weight.

この永久磁石合金中の酸素含有量は重要である。酸素
量が多いと粒界における酸素の残留量が多くなって保磁
力が低下してしまい、高(BH)maxを得ることができなく
なるため、0.03重量%以下であることが必要である。
又、あまり少ないと原料合金の粉砕が困難になり、製造
コストの大幅な上昇をもたらす。粉砕は2〜10μm程度
の微粉砕が要求されるが、酸素量が少ないと微粉砕が困
難であり、粒径も不均一となり、磁場中成形時の配向性
の低下に伴なうBrの減少、ひいては(BH)maxの低下をも
たらす。従って酸素量は0.005〜0.03重量%の範囲内に
設定される。
The oxygen content in this permanent magnet alloy is important. When the amount of oxygen is large, the residual amount of oxygen at the grain boundaries is large and the coercive force is lowered, and it is not possible to obtain a high (BH) max . Therefore, it is necessary to be 0.03% by weight or less.
On the other hand, if the amount is too small, it becomes difficult to pulverize the raw material alloy, resulting in a large increase in manufacturing cost. Grinding requires pulverization of about 2 to 10 μm, but if the amount of oxygen is small, it is difficult to pulverize, and the particle size becomes non-uniform, and Br decreases with the decrease in orientation during molding in a magnetic field. As a result, it causes a decrease in (BH) max . Therefore, the oxygen amount is set within the range of 0.005 to 0.03% by weight.

酸素の永久磁石合金中の働きは明らかではないもの
の、以下のごとくの振舞により、高性能の永久磁石を得
ることができるものと推測される。
Although the action of oxygen in the permanent magnet alloy is not clear, it is presumed that a high-performance permanent magnet can be obtained by the following behavior.

すなわち、溶解合金中の酸素の一部は主成分元素であ
るR,Fe原子と結合して酸化物となり、残りの酸素ととも
に合金結晶粒界等に偏析して存在していると考えられ
る。特にR rich相に吸収され、磁気特性を阻外してしま
う。R−Fe−B系磁石が微粒子磁石であり、その保磁力
が主として逆磁区発生磁場により決定されることを考慮
すると、酸化物、偏析等の欠陥が多い場合、これらが逆
磁区発生源として作用することにより保磁力が低下して
しまうと考えられる。又、欠陥が少ない場合は粒界破壊
等が起こりにくくなるため、粉砕性が劣化すると予想さ
れる。
That is, it is considered that a part of oxygen in the molten alloy is combined with R and Fe atoms which are main constituent elements to form an oxide, and segregated to the alloy crystal grain boundaries and the like together with the remaining oxygen. In particular, it is absorbed in the R rich phase and impedes the magnetic properties. Considering that the R-Fe-B magnet is a fine particle magnet, and its coercive force is mainly determined by the magnetic field for generating the reverse magnetic domain, when there are many defects such as oxides and segregation, these act as the source of the reverse magnetic domain. It is considered that the coercive force is reduced by doing so. Further, when the number of defects is small, grain boundary destruction or the like is less likely to occur, so that it is expected that the pulverizability will deteriorate.

永久磁石合金中の酸素量は高純度の原料を用いるとと
もに、原料合金溶解等の炉中酸素量を厳密に制御するこ
とにより、コントロールすることができる。
The amount of oxygen in the permanent magnet alloy can be controlled by using a high-purity raw material and strictly controlling the amount of oxygen in the furnace such as melting of the raw material alloy.

また本発明に係る永久磁石合金はR−Fe−B−Tiの四
元系を基本とするが、Feの一部をCo,Cr,Al,Zr,Hf,Nb,T
a,V,Mn,Mo,W等で置換することもできる。このような添
加物はその特性により、B,Fe,R成分と置換した形で各相
中にはいる。あまり多量の添加はBHmax低下等の磁気特
性の劣化の要因となるため、20wt%程度までである。特
にCoはキユリー温度の上昇に寄与し、磁気特性の温度特
性向上に有効であるため、1〜20wt%さらには10〜20wt
%の添加が好ましい。
Further, the permanent magnet alloy according to the present invention is based on the quaternary system of R-Fe-B-Ti, but a part of Fe is Co, Cr, Al, Zr, Hf, Nb, T.
It can be replaced with a, V, Mn, Mo, W, etc. Due to their properties, such additives enter each phase in the form of substitution with B, Fe and R components. Addition of an excessively large amount causes deterioration of magnetic properties such as a decrease in BH max, so the content is up to about 20 wt%. In particular, Co contributes to an increase in the Curie temperature and is effective in improving the temperature characteristics of the magnetic characteristics.
% Addition is preferred.

本発明永久磁石は以下の如くにして製造される。まず
所定の組成を有する原料合金をボールミル等の粉砕手段
を用いて粉砕する。この際、後工程の成形と焼結を容易
にし、かつ磁気特性を良好にするために、粉末の平均粒
径が2〜10μmとなるように微粉砕することが望まし
い。粒径が10μmを超えるとiHcの低下をもたらし、一
方2μm未満にまで粉砕することは困難であるうえに、
Br等の磁気特性の低下を招く。
The permanent magnet of the present invention is manufactured as follows. First, a raw material alloy having a predetermined composition is crushed using a crushing means such as a ball mill. At this time, it is desirable that the powder is finely pulverized so that the powder has an average particle diameter of 2 to 10 μm in order to facilitate molding and sintering in the subsequent steps and to improve magnetic properties. When the particle size exceeds 10 μm, iHc is lowered, while it is difficult to grind to less than 2 μm.
This causes deterioration of magnetic properties such as Br.

次いで、微粉砕された永久磁石合金粉末を所望の形状
にプレス成形する。成形の際には通常の焼結磁石を製造
するのと同様に、例えば15KOe程度の磁場を印加し、配
向処理を行なう。続いて、例えば1000〜1200℃,0.5〜5
時間程度の条件で成形体を焼結する。この焼結は合金中
の酸素濃度を増加させないように、Arガス等の不活性ガ
ス雰囲気中,真空中で行なうことが望ましい。
Next, the finely ground permanent magnet alloy powder is pressed into a desired shape. At the time of molding, a magnetic field of, for example, about 15 KOe is applied and orientation treatment is performed as in the case of manufacturing a normal sintered magnet. Then, for example, 1000-1200 ℃, 0.5-5
The compact is sintered under the condition of about time. It is desirable that this sintering be performed in a vacuum in an inert gas atmosphere such as Ar gas so as not to increase the oxygen concentration in the alloy.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明によれば、iHcが大であり
磁気特性に優れた希土類鉄系の永久磁石を得ることがで
きる。
As described above, according to the present invention, it is possible to obtain a rare earth iron-based permanent magnet having a large iHc and excellent magnetic characteristics.

〔発明の実施例〕Example of Invention

以下に本発明の実施例を説明する。 Examples of the present invention will be described below.

〔実施例1〕 Nd32.8wt%,B1.0wt%,Co13.5wt%,Ti0.7wt%,酸素0.
03wt%残部Feから成る磁性合金を作製し、永久磁石を製
造した。その磁石特性およびXMAにより調べたB rich相
中のTi量を第1表に示す。
[Example 1] Nd32.8 wt%, B1.0 wt%, Co13.5 wt%, Ti0.7 wt%, oxygen 0.
A permanent magnet was manufactured by producing a magnetic alloy containing 03 wt% balance Fe. Table 1 shows the magnet characteristics and the Ti content in the B rich phase examined by XMA.

またNd32.5wt%,B1.1wt%,Co13.6wt%酸素0.02wt%残
部Feから成る磁性合金粉末100gとTi粉末0.7gとを混合し
た合金粉末を用いて永久磁石を製造した。これを比較例
として、磁石特性およびXMAより調べたB rich相中のTi
量を第1表に示す。
A permanent magnet was manufactured using an alloy powder prepared by mixing 100 g of a magnetic alloy powder consisting of Nd 32.5 wt%, B1.1 wt%, Co 13.6 wt%, oxygen 0.02 wt% and the balance Fe and 0.7 g of Ti powder. Using this as a comparative example, the Ti in the B rich phase investigated by magnet characteristics and XMA
The amounts are shown in Table 1.

(実施例2) 種々の組成及びB rich相中のB含有量を有する磁石を
製造し、その磁石特性を調べた。なおここでは、いずれ
も酸素濃度が0.005〜0.03wt%の範囲内にある原料合金
を用いた。結果を第2表に示す。
(Example 2) Magnets having various compositions and B contents in the B rich phase were manufactured, and their magnet characteristics were examined. Here, in each case, a raw material alloy having an oxygen concentration in the range of 0.005 to 0.03 wt% was used. The results are shown in Table 2.

以上の結果から明らかなように、TiがB rich相中に70
%以上、特に80%以上含まれる場合優れた永久磁石を得
ることができる。
As is clear from the above results, Ti was 70% during the B rich phase.
% Or more, particularly 80% or more, an excellent permanent magnet can be obtained.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01F 1/053 (56)参考文献 特開 昭62−23959(JP,A) 特開 昭62−23960(JP,A) 特開 昭59−222564(JP,A)Continuation of the front page (51) Int.Cl. 6 Identification number Internal reference number for FI Technical indication H01F 1/053 (56) References JP 62-23959 (JP, A) JP 62-23960 (JP) , A) JP 59-222564 (JP, A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】R(イットリウムを含む希土類元素)10〜
40重量%,B0.1〜8重量%,Ti0.1〜5重量%,酸素0.005
〜0.03重量%及び残部Feの合金の焼結体で、R2Fe14B1
示される正方晶系の強磁性Feリッチ相を主相とし、この
主相よりBの含有比率の高いR及びFeを含有する正方晶
系の非磁性Bリッチ相と、この主相よりRの含有比率の
高い立方晶系の非磁性Rリッチ相とを含みこのTiの70重
量%以上が前記Bリッチ相に含有されたことを特徴とす
る永久磁石。
1. R (rare earth element containing yttrium) 10 to
40% by weight, B0.1-8% by weight, Ti0.1-5% by weight, oxygen 0.005
In the sintered body of an alloy of 0.03 wt% and the balance Fe, the tetragonal ferromagnetic Fe rich phase represented by R 2 Fe 14 B 1 is the main phase, and the content ratio of B is higher than that of the main phase. A tetragonal non-magnetic B-rich phase containing Fe and a cubic non-magnetic R-rich phase having a higher R content than the main phase are contained, and 70% by weight or more of Ti is contained in the B-rich phase. A permanent magnet characterized by being contained.
【請求項2】前記合金成分中のTiの80重量%以上が前記
Bリッチ相に含有されたことを特徴とする特許請求の範
囲第1項記載の永久磁石。
2. The permanent magnet according to claim 1, wherein 80% by weight or more of Ti in the alloy component is contained in the B-rich phase.
JP60198531A 1985-09-10 1985-09-10 permanent magnet Expired - Lifetime JPH0815123B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60198531A JPH0815123B2 (en) 1985-09-10 1985-09-10 permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60198531A JPH0815123B2 (en) 1985-09-10 1985-09-10 permanent magnet

Publications (2)

Publication Number Publication Date
JPS6260208A JPS6260208A (en) 1987-03-16
JPH0815123B2 true JPH0815123B2 (en) 1996-02-14

Family

ID=16392693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60198531A Expired - Lifetime JPH0815123B2 (en) 1985-09-10 1985-09-10 permanent magnet

Country Status (1)

Country Link
JP (1) JPH0815123B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0831386B2 (en) * 1990-03-09 1996-03-27 富士電気化学株式会社 Method for manufacturing anisotropic rare earth permanent magnet
JPH0831385B2 (en) * 1990-03-09 1996-03-27 富士電気化学株式会社 Method for manufacturing anisotropic rare earth permanent magnet
CN111091945B (en) * 2019-12-31 2021-09-28 厦门钨业股份有限公司 R-T-B series permanent magnetic material, raw material composition, preparation method and application

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0778269B2 (en) * 1983-05-31 1995-08-23 住友特殊金属株式会社 Rare earth / iron / boron tetragonal compound for permanent magnet
JPH066777B2 (en) * 1985-07-24 1994-01-26 住友特殊金属株式会社 High-performance permanent magnet material
JPS6223959A (en) * 1985-07-25 1987-01-31 Sumitomo Special Metals Co Ltd High-efficiency permanent magnet material

Also Published As

Publication number Publication date
JPS6260208A (en) 1987-03-16

Similar Documents

Publication Publication Date Title
EP0197712B1 (en) Rare earth-iron-boron-based permanent magnet
EP0216254B1 (en) Permanent magnet
JPH07105289B2 (en) Rare earth permanent magnet manufacturing method
JP2002038245A (en) Rare earth alloy powder for rermanent magnet and method for manufacturing rare earth permanent magnet
JPH0696928A (en) Rare-earth sintered magnet and its manufacture
JP2537189B2 (en) permanent magnet
JPH0685369B2 (en) Permanent magnet manufacturing method
JP3296507B2 (en) Rare earth permanent magnet
JPH11251125A (en) Rare-earth-iron-boron sintered magnet and its manufacture
JP2853839B2 (en) Manufacturing method of rare earth permanent magnet
JP2747236B2 (en) Rare earth iron permanent magnet
JPH0561345B2 (en)
JPH0815123B2 (en) permanent magnet
JPH068488B2 (en) Permanent magnet alloy
JP2868062B2 (en) Manufacturing method of permanent magnet
JPS6260207A (en) Permanent magnet
JPS62291903A (en) Permanent magnet and manufacture of the same
JPS6318603A (en) Permanent magnet
JP2577373B2 (en) Sintered permanent magnet
JP2825449B2 (en) Manufacturing method of permanent magnet
JP2514155B2 (en) Method for manufacturing permanent magnet alloy
JPS62257704A (en) Permanent magnet
KR900000427B1 (en) Permanent magnet
JPH07120575B2 (en) Permanent magnet and manufacturing method thereof
JP2886384B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term