JP3080275B2 - R-Fe-Co-Al-Nb-Ga-B sintered magnet excellent in corrosion resistance and heat resistance and method for producing the same - Google Patents

R-Fe-Co-Al-Nb-Ga-B sintered magnet excellent in corrosion resistance and heat resistance and method for producing the same

Info

Publication number
JP3080275B2
JP3080275B2 JP04249113A JP24911392A JP3080275B2 JP 3080275 B2 JP3080275 B2 JP 3080275B2 JP 04249113 A JP04249113 A JP 04249113A JP 24911392 A JP24911392 A JP 24911392A JP 3080275 B2 JP3080275 B2 JP 3080275B2
Authority
JP
Japan
Prior art keywords
heat treatment
content
ihc
max
sintered magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP04249113A
Other languages
Japanese (ja)
Other versions
JPH06104108A (en
Inventor
山口  聡
公穂 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP04249113A priority Critical patent/JP3080275B2/en
Priority to DE4331563A priority patent/DE4331563A1/en
Publication of JPH06104108A publication Critical patent/JPH06104108A/en
Application granted granted Critical
Publication of JP3080275B2 publication Critical patent/JP3080275B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は耐食性、耐熱性、熱処理
性に優れたR−Fe−Co−Al−Nb−Ga−B系焼
結磁石及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an R-Fe-Co-Al-Nb-Ga-B sintered magnet excellent in corrosion resistance, heat resistance and heat treatment and a method for producing the same.

【0002】[0002]

【従来の技術】Nd−Fe−B系焼結磁石及びNd−F
e−Co−B系焼結磁石は、SmCo型焼結磁石或い
はSmCo17型焼結磁石と比較して高い最大エネル
ギー積(BH)maxを有するので、種々の用途に使用さ
れるようになっている。しかしながら、Nd−Fe−B
系焼結磁石及びNd−Fe−Co−B系焼結磁石は、こ
れらSm−Co系焼結磁石に比較して熱安定性に劣るの
で、その熱安定性を増す為に種々の試みが提案されてい
る。特開昭64−7503号公報には、熱安定性の良好
な永久磁石として一般式: R(Fe1−x−y−x−zCoGa (但し、Rは希土類元素から選ばれた少なくとも1種で
あり、0≦x≦0.7、0.02≦y≦0.3、0.0
01≦z≦0.15、4.0≦A≦7.5である)、及
び、 R(Fe1−x−y−zCoGa (但し、Rは希土類元素から選ばれた少なくとも1種で
あり、MはNb,W,V,Ta及びMoから選ばれた1
種または2種以上の元素であり、0≦x≦0.7、0.
02≦y≦0.3、0.001≦z≦0.15、u≦
0.1、4.0≦A≦7.5である)により表されるも
のを開示している。
2. Description of the Related Art Nd-Fe-B sintered magnets and Nd-F
The e-Co-B based sintered magnet is SmCo5Type sintered magnet or
Is Sm2Co17Highest energy compared to sintered type magnets
Energy (BH) max, so it can be used for various purposes.
It is supposed to be. However, Nd-Fe-B
Based magnets and Nd-Fe-Co-B based sintered magnets
Thermal stability is inferior to these Sm-Co based sintered magnets.
Various attempts have been proposed to increase the thermal stability.
You. JP-A-64-7503 discloses that heat stability is good.
The general formula: R (Fe1-xy-x-zCoxByGaz)A  (Where R is at least one selected from rare earth elements)
Yes, 0 ≦ x ≦ 0.7, 0.02 ≦ y ≦ 0.3, 0.0
01 ≦ z ≦ 0.15, 4.0 ≦ A ≦ 7.5), and
And R (Fe1-xyzCoxByGazMu)A  (Where R is at least one selected from rare earth elements)
And M is 1 selected from Nb, W, V, Ta and Mo
Species or two or more elements, 0 ≦ x ≦ 0.7, 0.
02 ≦ y ≦ 0.3, 0.001 ≦ z ≦ 0.15, u ≦
0.1, 4.0 ≦ A ≦ 7.5)
Is disclosed.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、高耐食
性、高耐熱特性、良好な熱処理性を有し、かつ同時に高
い水準の保磁力iHc、最大エネルギー積(BH)max
を兼ね備えたNd−Fe−Co−B系の異方性焼結磁石
を安定的に生産しようとする場合には前記公知技術を超
えて更に詳細な研究・検討に基づいた成分組成範囲の限
定、酸化物の限定等が必要であることがわかった。本発
明はこのような知見に基づき、特に耐食性、耐熱性、熱
処理性に優れたR−Fe−Co−Al−Nb−Ga−B
系焼結磁石を提供するものである。本発明は、Co、D
y、Nbを有効に利用することによって耐食性を著しく
高め、Dy量、Ga量を特定範囲とすることにより高耐
熱性を付与し、更にCo含有量とAl含有量とのバラン
スを図ることにより第2次熱処理の許容温度範囲を広
げ、同時に希土類R量を低め、かつ、酸素量を限定する
ことによりiHcと(BH)maxの大きいR−Fe−C
o−Al−Nb−Ga−B系焼結磁石及びその製造方法
を提供するものである。
However, it has high corrosion resistance, high heat resistance and good heat treatment, and at the same time has a high level of coercive force iHc and maximum energy product (BH) max.
In the case of stably producing an Nd-Fe-Co-B-based anisotropic sintered magnet having both of the above, limitation of the component composition range based on more detailed research and examination beyond the above-mentioned known technology, It was found that it was necessary to limit oxides and the like. The present invention is based on such knowledge, and particularly, is R-Fe-Co-Al-Nb-Ga-B having excellent corrosion resistance, heat resistance, and heat treatment properties.
The present invention provides a sintered sintered magnet. The present invention relates to Co, D
By effectively utilizing y and Nb, the corrosion resistance is remarkably enhanced, the Dy content and the Ga content are set in a specific range to provide high heat resistance, and the balance between the Co content and the Al content is further improved. By increasing the allowable temperature range of the secondary heat treatment, simultaneously reducing the amount of rare earth R and limiting the amount of oxygen, R-Fe-C having a large iHc and (BH) max
An object of the present invention is to provide an o-Al-Nb-Ga-B based sintered magnet and a method for manufacturing the same.

【0004】[0004]

【課題を解決するための手段】本発明は、主成分として
28〜32wt%のR(実質的にRがNdとDyまたは
NdとDyとPrとからなり、Rの内の3〜8wt%が
Dyである)、5wt%以下のCo(0を含まず)、
0.1〜1wt%のAl、0.5〜2wt%のB、0.
1〜2wt%のNb、0.05〜1wt%のGa、残部
Fe、及び不可避的不純物成分として1000〜600
0ppmの酸素を含有してなるR−Fe−Co−Al−
Nb−Ga−B系焼結体に、800〜1000℃×0.
2〜5時間の第1次熱処理と、540〜640℃×0.
2〜3時間の第2次熱処理とを順次施すことにより20
kOe以上の保磁力(iHc)と30MGOe以上の最
大エネルギー積((BH)max)とを付与する耐食性、
耐熱性、熱処理性に優れたR−Fe−Co−Al−Nb
−Ga−B系焼結磁石の製造方法である。また本発明
は、主成分として28〜32wt%のR(実質的にRが
NdとDyまたはNdとDyとPrとからなり、Rの内
の3wt%以上5wt%未満がDyである)、5wt%
以下のCo(0を含まず)、0.1〜1wt%のAl、
0.5〜2wt%のB、0.1〜2wt%のNb、0.
05〜1wt%のGa、残部Fe、及び不可避的不純物
成分として1000〜6000ppmの酸素を含有して
なるとともに、20kOe以上の保磁力(iHc)と3
5MGOe以上の最大エネルギー積((BH)max))
とを有する耐食性、耐熱性、熱処理性に優れたR−Fe
−Co−Al−Nb−Ga−B系焼結磁石である。また
本発明は、主成分として28〜32wt%のR(実質的
にRがNdとDyまたはNdとDyとPrとからなり、
Rの内の5〜8wt%がDyである)、5wt%以下の
Co(0を含まず)、0.1〜1wt%のAl、0.5
〜2wt%のB、0.1〜2wt%のNb、0.05〜
1wt%のGa、残部Fe 、及び不可避的不純物成分
として1000〜6000ppmの酸素を含有してなる
とともに、25kOe以上の保磁力(iHc)と30M
GOe以上の最大エネルギー積((BH)max)とを有
する耐食性、耐熱性、熱処理性に優れたR−Fe−Co
−Al−Nb−Ga−B系焼結磁石である。本発明の焼
結磁石の組成の限定理由について、以下詳細に説明す
る。
According to the present invention, as a main component, 28 to 32 wt% of R (R is substantially composed of Nd and Dy or Nd, Dy and Pr, and 3 to 8 wt% of R is contained) Dy) 5 wt% or less of Co (not including 0),
0.1-1 wt% Al, 0.5-2 wt% B, 0.
1-2 wt% Nb, 0.05-1 wt% Ga, balance Fe, and 1000-600 as inevitable impurity components.
R-Fe-Co-Al- containing 0 ppm of oxygen
The Nb-Ga-B-based sintered body has a temperature of 800 to 1000C x 0.
Primary heat treatment for 2 to 5 hours, 540 to 640 ° C. × 0.
By sequentially performing a second heat treatment for 2-3 hours,
Corrosion resistance that gives a coercive force (iHc) of kOe or more and a maximum energy product ((BH) max) of 30 MGOe or more;
R-Fe-Co-Al-Nb with excellent heat resistance and heat treatment
This is a method for producing a Ga-B based sintered magnet. In the present invention, R is 28 to 32 wt% as a main component (substantially, R is composed of Nd and Dy or Nd, Dy and Pr, and 3 wt% or more and less than 5 wt% of R is Dy), 5 wt% %
The following Co (not including 0), 0.1 to 1 wt% Al,
0.5-2 wt% B, 0.1-2 wt% Nb, 0.
Containing 0.5 to 1 wt% of Ga, the balance of Fe, and 1000 to 6000 ppm of oxygen as an unavoidable impurity component, and having a coercive force (iHc) of 20 kOe or more and 3
Maximum energy product of 5MGOe or more ((BH) max))
R-Fe with excellent corrosion resistance, heat resistance and heat treatment properties
-Co-Al-Nb-Ga-B based sintered magnet. In the present invention, the main component is R of 28 to 32 wt% (R is substantially composed of Nd and Dy or Nd, Dy and Pr,
5 to 8 wt% of R is Dy), 5 wt% or less of Co (not including 0), 0.1 to 1 wt% of Al, 0.5
~ 2 wt% B, 0.1 ~ 2 wt% Nb, 0.05 ~
It contains 1 wt% of Ga, the balance Fe, and 1000 to 6000 ppm of oxygen as an unavoidable impurity component, and has a coercive force (iHc) of 25 kOe or more and 30M
R-Fe-Co having a maximum energy product ((BH) max) equal to or higher than GOe and excellent in corrosion resistance, heat resistance and heat treatment properties
-Al-Nb-Ga-B based sintered magnet. The reason for limiting the composition of the sintered magnet of the present invention will be described in detail below.

【0005】本発明においてRは28〜32wt%の範
囲で含有される。後述の実施例に示されるようにR量が
32wt%以下でより少ないほど(BH)max及び耐食
性の向上に有効である。しかし、28wt%未満ではイ
ンゴット中にα−Feが発生し易くなり(BH)maxの
増大は期待しにくい。よってR量は28〜32wt%と
する。RはNdを主体とするために、R成分の内、50
at%以上のNdを含有するものとする。Rの内には3
〜8wt%のDyを含有する。Prの含有はiHcの向
上に効果がある。
[0005] In the present invention, R is contained in the range of 28 to 32 wt%. As will be described later in Examples, the smaller the R content is at 32 wt% or less, the more effective it is to improve (BH) max and corrosion resistance. However, when the content is less than 28 wt%, α-Fe is easily generated in the ingot, and it is difficult to expect an increase in (BH) max. Therefore, the R amount is set to 28 to 32 wt%. Since R is mainly composed of Nd, 50 of the R components are used.
At% or more of Nd is contained. 3 in R
Contains ~ 8 wt% Dy. The inclusion of Pr is effective in improving iHc.

【0006】DyをR成分として含有させることによっ
て、キュリー点Tcが上昇するとともに異方性磁場(H
)が増大してiHcが向上し、耐熱性を著しく向上さ
せる。また、Dyは耐食性向上にも効果がある。本発明
において、Dyの含有量が3wt%より少ないと、熱安
定性、耐食性を向上させるという本発明の目的は達成さ
れない。しかし、8wt%よりも含有量が多くなると、
残留磁束密度Br及び最大エネルギー積(BH)maxの
低下が著しい。したがって、Dyの含有量は3〜8wt
%とする。Dy含有量が5〜8wt%では、Br及び
(BH)maxの低下はあるものの、25kOe以上のi
Hcを得ることができる。よってより高い保磁力特性を
得ようとする場合にはDyの含有量を5〜8wt%とす
る。逆により高いBr及び(BH)maxを得ようとする
場合にはDyの含有量を3wt%以上5wt%未満とす
ればよい。
By including Dy as the R component, the Curie point Tc increases and the anisotropic magnetic field (H
A ) is increased, iHc is improved, and heat resistance is significantly improved. Dy is also effective in improving corrosion resistance. In the present invention, if the content of Dy is less than 3 wt%, the object of the present invention of improving thermal stability and corrosion resistance cannot be achieved. However, if the content is more than 8 wt%,
The residual magnetic flux density Br and the maximum energy product (BH) max are significantly reduced. Therefore, the content of Dy is 3 to 8 wt.
%. When the Dy content is 5 to 8 wt%, Br and (BH) max are reduced, but i of 25 kOe or more is obtained.
Hc can be obtained. Therefore, in order to obtain higher coercive force characteristics, the Dy content is set to 5 to 8 wt%. Conversely, in order to obtain higher Br and (BH) max, the content of Dy may be set to 3 wt% or more and less than 5 wt%.

【0007】本発明において、CoはBrを殆ど低下さ
せることなく磁石合金自身の耐食性を改善するとともに
耐食コーティングであるNiメッキの密着性を向上する
ことにより耐食性を向上させる効果がある。また、主相
(NdFe14B)中のFeがCoに置換されること
によりキュリー点Tcを上昇させる効果もある。しかし
ながらCoの置換量を多くすると、焼結時の異常粒成長
を原因とする粗大結晶粒が発生し、iHc及びヒステリ
シスカーブの角型性が低下する。したがってCo含有量
は5wt%以下(0を含まず)とする。
[0007] In the present invention, Co has the effect of improving the corrosion resistance of the magnet alloy itself without substantially reducing Br, and improving the corrosion resistance by improving the adhesion of Ni plating, which is a corrosion-resistant coating. Further, there is also an effect of increasing the Curie point Tc by replacing Fe in the main phase (Nd 2 Fe 14 B) with Co. However, when the substitution amount of Co is increased, coarse crystal grains are generated due to abnormal grain growth during sintering, and the squareness of iHc and hysteresis curve is reduced. Therefore, the Co content is set to 5 wt% or less (excluding 0).

【0008】本発明においてAlは、Co添加材の第2
次熱処理の許容温度条件を緩和する効果がある。すなわ
ち、Coを含有してなるNd−Fe−Co−B系焼結磁
石材料は第2次熱処理温度の変動に対して磁気特性や熱
安定性の変動が大きい。そこに適量のAlを添加する
と、第2次熱処理の温度条件が多少変動しても磁気特性
や熱安定性が変動しなくなる。これにより、永久磁石の
生産管理が容易となり、品質の安定した永久磁石を効率
よく生産できるようになる。Alの含有量が0.1wt
%未満では上記の効果は不十分である。一方、1wt%
を超えると、Brの低下が顕著になる。したがってAl
の含有量は0.1〜1wt%とする。B含有量が0.5
wt%未満の場合には高保磁力が得られず、一方、2w
t%を越えるとBに富む非磁性相が増加しBrが低下す
る。よってB含有量を0.5〜2wt%とする。より好
ましいB含有量は0.8〜1.2wt%である。
In the present invention, Al is the second of the Co additives.
This has the effect of relaxing the allowable temperature conditions for the subsequent heat treatment. That is, the Nd-Fe-Co-B based sintered magnet material containing Co has large fluctuations in magnetic properties and thermal stability with respect to fluctuations in the second heat treatment temperature. When an appropriate amount of Al is added thereto, the magnetic properties and thermal stability do not change even if the temperature conditions of the second heat treatment slightly change. As a result, the production management of the permanent magnet is facilitated, and the permanent magnet with stable quality can be efficiently produced. Al content is 0.1wt
%, The above effect is insufficient. On the other hand, 1wt%
Is exceeded, the decrease of Br becomes remarkable. Therefore, Al
Is 0.1 to 1% by weight. B content is 0.5
If it is less than 2 wt%, a high coercive force cannot be obtained.
If it exceeds t%, the B-rich nonmagnetic phase increases and Br decreases. Therefore, the B content is set to 0.5 to 2 wt%. A more preferable B content is 0.8 to 1.2 wt%.

【0009】GaはiHcを顕著に向上する効果があ
る。Ga含有量が0.05wt%未満の場合はiHcを
向上する効果が十分でなく、1wt%を超えるとBrが
低下し高い最大エネルギー積が得られない。よって、G
a含有量は0.05〜1wt%とする。Ga含有量が多
いとヒステリシスカーブの角形性が悪くなるので、高い
角形性を付与するためにより好ましいGa含有量は0.
05〜0.8wt%である。更に好ましいGaの含有量
は0.1〜0.6wt%であり、特に好ましくは0.1
〜0.4wt%である。
Ga has the effect of significantly improving iHc. If the Ga content is less than 0.05 wt%, the effect of improving iHc is not sufficient, and if it exceeds 1 wt%, Br is reduced and a high maximum energy product cannot be obtained. Therefore, G
The content of a is 0.05 to 1 wt%. If the Ga content is large, the squareness of the hysteresis curve is deteriorated. Therefore, a more preferable Ga content for imparting high squareness is 0.1.
Between 0.5 and 0.8 wt%. The content of Ga is more preferably 0.1 to 0.6 wt%, particularly preferably 0.1 to 0.6 wt%.
0.40.4 wt%.

【0010】本発明の永久磁石は、上記成分の他に0.
1〜2wt%のNbを含有する。Nbは焼結時に結晶粒
が粗大化するのを抑制する効果がある。この効果によ
り、iHcが向上し、ヒステリシスカーブの角型性が良
好になる。また、焼結体の結晶粒が微細になることは良
好な着磁性に大きく寄与し、更に優れた耐熱性を付与す
る。よって、耐熱性のためにNbは有効な添加物であ
る。Nbの含有量が0.1wt%未満の場合は粗大粒を
抑制する効果が不十分であり、2wt%を超える場合に
はNbもしくはNb−Feの非磁性ホウ化物が多く発生
し、Br及びキュリー点Tcが著しく低下する。よっ
て、Nbの含有量は0.1〜2wt%とする。より好ま
しくは、0.1〜1wt%である。
[0010] In addition to the above components, the permanent magnet of the present invention contains 0.1%
Contains 1-2 wt% Nb. Nb has the effect of suppressing the crystal grains from becoming coarse during sintering. With this effect, iHc is improved, and the squareness of the hysteresis curve is improved. Further, the fine crystal grains of the sintered body greatly contribute to good magnetism, and further provide excellent heat resistance. Therefore, Nb is an effective additive for heat resistance. When the content of Nb is less than 0.1 wt%, the effect of suppressing coarse grains is insufficient, and when it exceeds 2 wt%, a large amount of Nb or Nb-Fe nonmagnetic boride is generated, and Br and Curie are generated. The point Tc drops significantly. Therefore, the content of Nb is set to 0.1 to 2 wt%. More preferably, it is 0.1 to 1 wt%.

【0011】酸素含有量は、1000〜6000ppm
とする。酸素が1000ppmより少ないものは工業生
産上製造が困難である。一方、6000ppmより多い
場合には酸素が希土類R成分と反応して希土類酸化物を
形成する量が増大し、高い保磁力及び高い最大エネルギ
ー積の磁石を得るのが困難になる。
The oxygen content is 1000-6000 ppm
And If the amount of oxygen is less than 1000 ppm, it is difficult to produce in industrial production. On the other hand, if it is more than 6000 ppm, the amount of oxygen that reacts with the rare-earth R component to form a rare-earth oxide increases, making it difficult to obtain a magnet having a high coercive force and a high maximum energy product.

【0012】本発明の焼結磁石は、例えば次のようにし
て製造することができる。すなわち、一定の成分組成を
有するインゴットを真空溶解で製作し、次にこのインゴ
ットを粗粉砕することにより粒径500μm程度の粗粉
を得る。この粗粉をジェットミルを用い、不活性ガス雰
囲気で微粉砕し平均粒径3.0〜6.0μm(F.S.S.
S.)の微粉を得る。次にこの微粉を配向磁場15kO
e、成形圧力1.5ton/cmの条件下で磁場中プ
レス成形後、1000〜1150℃の温度範囲で焼結す
る。焼結後の熱処理は、次のようにして行なうことがで
きる。成形体を焼結後いったん室温まで冷却する。焼結
後の冷却速度は最終製品の保磁力iHcに殆ど影響を与
えない。次いで、800〜1000℃の温度に加熱し、
0.2〜5時間保持する。これを第1次熱処理とする。
加熱温度が800℃未満または1000℃を超える場
合、充分な高保磁力が得られない。加熱保持の後で0.
3〜50℃/分の冷却速度で室温ないし600℃の温度
まで冷却する。冷却速度が50℃/分を超える場合は、
時効のために必要な平衡相が得られず、充分な高保磁力
が得られない。また、0.3℃/分未満の冷却速度は熱
処理に時間を要し、工業生産上経済的でない。より好ま
しくは0.6〜2.0℃/分の冷却速度が選ばれる。冷
却終了温度は室温が望ましいが、多少iHcを犠牲にす
れば600℃までとし、その温度以下は急冷してもよ
い。より好ましくは室温〜400℃の温度まで冷却す
る。熱処理は更に540〜640℃の温度で0.2〜3
時間行う。これを第2次熱処理とする。熱処理温度が5
40℃未満及び640℃より高い場合は、高保磁力が得
られても不可逆減磁率の低下が顕著である。熱処理後は
第1次熱処理と同様、0.3〜400℃/分の冷却速度
で冷却する。冷却は水中、シリコンオイル中、アルゴン
気流中等で行うことができる。冷却速度が400℃/分
を越える場合、急冷により磁石に亀裂が入り、工業的に
価値のある永久磁石材料が得られない。また、0.3℃
/分未満の場合、冷却過程でiHcに好ましくない相が
出現する。
The sintered magnet of the present invention can be manufactured, for example, as follows. That is, an ingot having a fixed component composition is produced by vacuum melting, and then the ingot is roughly pulverized to obtain a coarse powder having a particle size of about 500 μm. This coarse powder was finely pulverized in an inert gas atmosphere using a jet mill to have an average particle size of 3.0 to 6.0 μm (FSS
S. ). Next, this fine powder is subjected to an orientation magnetic field of 15 kO.
e. After press molding in a magnetic field under the condition of a molding pressure of 1.5 ton / cm 2 , sintering is performed in a temperature range of 1000 to 1150 ° C. The heat treatment after sintering can be performed as follows. After sintering, the compact is once cooled to room temperature. The cooling rate after sintering hardly affects the coercive force iHc of the final product. Then, it is heated to a temperature of 800 to 1000C,
Hold for 0.2-5 hours. This is the first heat treatment.
If the heating temperature is lower than 800 ° C. or higher than 1000 ° C., a sufficiently high coercive force cannot be obtained. After heating and holding.
Cool at room temperature to 600 ° C. at a cooling rate of 3-50 ° C./min. If the cooling rate exceeds 50 ° C / min,
An equilibrium phase necessary for aging cannot be obtained, and a sufficiently high coercive force cannot be obtained. On the other hand, a cooling rate of less than 0.3 ° C./minute requires time for heat treatment, and is not economical for industrial production. More preferably, a cooling rate of 0.6 to 2.0 ° C / min is selected. Although the cooling end temperature is desirably room temperature, it may be up to 600 ° C. if iHc is somewhat sacrificed, and may be rapidly cooled below that temperature. More preferably, it is cooled to a temperature from room temperature to 400 ° C. Heat treatment is further performed at a temperature of 540 to 640 ° C. for 0.2 to 3
Do time. This is a second heat treatment. Heat treatment temperature is 5
When the temperature is lower than 40 ° C. or higher than 640 ° C., the irreversible demagnetization rate is remarkably reduced even if a high coercive force is obtained. After the heat treatment, cooling is performed at a cooling rate of 0.3 to 400 ° C./min, as in the first heat treatment. Cooling can be performed in water, in silicon oil, in a stream of argon, or the like. When the cooling rate exceeds 400 ° C./min, the magnet is cracked by rapid cooling, and an industrially valuable permanent magnet material cannot be obtained. 0.3 ° C
If it is less than / min, an unfavorable phase appears in iHc during the cooling process.

【0013】[0013]

【実施例】以下、実施例により本発明を更に詳細に説明
する。 (参考例1) 金属Nd、金属Dy、Fe、Co、ferro−B、f
erro−Nb、金属Gaを所定の重量秤量し、これを
真空溶解して重量10kgのインゴットを作製した。こ
のインゴットの成分分析を行なうと重量比で以下のよう
な組成であった。 Nd27.5−Dy3.6−B1.03−Nb0.58−Ga0.18−C
o2.02−Al0.35−Febal. (wt%) このインゴットをハンマーで解砕した後、さらに粗粉砕
機を用い不活性ガス雰囲気中で粗粉砕を行い粒径500
μm以下の粗粉を得た。この粗粉を同じくジェットミル
を用い不活性ガス雰囲気中で微粉砕して平均粒径4.0
μm(F.S.S.S.)、含有酸素量5500ppmの微粉を得
た。次に、この微粉を用いて配向磁場強度15kOe、
成形圧力1.5ton/cmの条件で磁場中成形し、
30×20×15の成形体を作製した。この成形体は実
質的に真空の条件で1080℃×3hrの焼結を行い、
得られた焼結体に900℃×2hrの第1次熱処理、次
いで530℃×2hrの第2次熱処理を施した。得られ
た焼結体の密度は7.55g/cc、また含有酸素量は
4800ppmであった。得られた焼結磁石の常温磁気
特性を測定したところ以下のような値を得た。 Br=12.6kG bHc=11.6kOe iHc=21.8kOe (BH)max=35.6MGOe 更にキュリー点Tcとして340℃、23℃から120
℃のBrとiHcの温度係数α、βとして各々−0.1
0、−0.52%/℃の値を得た。またパーミアンス係
数Pc=1.0,2.0形状をした試料の100℃での
不可逆減磁率は各々2.1,1.1%であり優れた耐熱
性を有している。
The present invention will be described in more detail with reference to the following examples. (Reference Example 1) Metal Nd, metal Dy, Fe, Co, ferro-B, f
Erro-Nb and metal Ga were weighed to a predetermined weight, and were melted in vacuum to produce an ingot weighing 10 kg. The composition of this ingot was as follows by weight. Nd27.5-Dy3.6-B1.03-Nb0.58-Ga0.18-C
o2.02-Al0.35-Febal. (wt%) After crushing this ingot with a hammer, it was further coarsely crushed in an inert gas atmosphere using a coarse crusher to obtain a particle size of 500.
A coarse powder having a size of μm or less was obtained. The coarse powder is similarly pulverized in an inert gas atmosphere using a jet mill to obtain an average particle size of 4.0.
A fine powder having a μm (FSSS) and an oxygen content of 5500 ppm was obtained. Next, using this fine powder, the orientation magnetic field strength is 15 kOe,
Molding in a magnetic field under conditions of molding pressure 1.5 ton / cm 2 ,
A 30 × 20 × 15 compact was produced. This molded body is sintered at 1080 ° C. for 3 hours under substantially vacuum conditions,
The obtained sintered body was subjected to a first heat treatment at 900 ° C. × 2 hr, and then to a second heat treatment at 530 ° C. × 2 hr. The density of the obtained sintered body was 7.55 g / cc, and the oxygen content was 4800 ppm. When the room-temperature magnetic properties of the obtained sintered magnet were measured, the following values were obtained. Br = 12.6 kG bHc = 11.6 kOe iHc = 21.8 kOe (BH) max = 35.6 MGOe Further, the Curie point Tc is 120 from 340 ° C. and 23 ° C.
° C as temperature coefficients α and β of Br and iHc, respectively.
A value of 0, -0.52% / ° C was obtained. Further, the irreversible demagnetization rates at 100 ° C. of the samples having the permeance coefficients Pc = 1.0 and 2.0 are 2.1 and 1.1%, respectively, and have excellent heat resistance.

【0014】(参考例2) 合金組成及び焼結条件を変えた以外は実施例1と同様に
して次の実験結果を得た。 組成 : Nd25.5−Dy6.4−B1.04−Nb0.55−Ga0.22 −Co2.00−Al0.36−Febal.(wt%) 焼結 : 1100℃×2hr 第1次熱処理 : 900℃×2hr 第2次熱処理 : 530℃×2hr 常温磁気特性 : Br = 11.4kG bHc = 11.0kOe iHc = 27.8kOe (BH)max = 31.3MGOe キュリー点 : Tc = 340℃ 不可逆減磁率 [at 100℃] : Pc = 1.0 → 1.8% Pc = 2.0 → 0.8% Br温度係数(α),iHc温度係数(β) [23℃〜120℃] : α= −0.09%/℃ β= −0.51%/℃ 焼結体含有酸素量 : 5800ppm 実施例1同様、常温磁気特性と共に高温特性に優れてお
り、耐熱性に優れた磁石を得ることができる。
Reference Example 2 The following experimental results were obtained in the same manner as in Example 1 except that the alloy composition and the sintering conditions were changed. Composition: Nd25.5-Dy6.4-B1.04-Nb0.55-Ga0.22-Co2.00-Al0.36-Febal. (Wt%) Sintering: 1100 ° C x 2hr Primary heat treatment: 900 ° C × 2 hr Secondary heat treatment: 530 ° C. × 2 hr Room temperature magnetic properties: Br = 11.4 kG bHc = 11.0 kOe iHc = 27.8 kOe (BH) max = 31.3 MGOe Curie point: Tc = 340 ° C. Irreversible demagnetization rate 100 ° C.]: Pc = 1.0 → 1.8% Pc = 2.0 → 0.8% Br temperature coefficient (α), iHc temperature coefficient (β) [23 ° C. to 120 ° C.]: α = −0. 09% / ° C. β = −0.51% / ° C. Oxygen content in the sintered body: 5800 ppm As in Example 1, a magnet having excellent high-temperature properties as well as ordinary-temperature magnetic properties and excellent heat resistance can be obtained.

【0015】(参考例3) ジジムメタル(Nd70wt%−Pr30wt%)を使
用し、合金組成、焼結条件、第2次熱処理条件を変えた
以外は実施例1、2と同様にして次の実験結果を得た。 組成 : Nd18.9−Pr5.1−Dy7.3−B1.10−Nb0.71−Ga0.37 −Co4.72−Al0.33−Febal.(wt%) 焼結 : 1080℃×2hr 第1次熱処理 : 900℃×2hr 第2次熱処理 : 520℃×2hr 常温磁気特性 : Br = 11.5kG bHc = 10.9kOe iHc = 30.0kOe (BH)max = 31.2MGOe キュリー点 : Tc = 375℃ 不可逆減磁率 [at 100℃] : Pc = 1.0 → 1.4% Pc = 2.0 → 0.5% Br温度係数(α),iHc温度係数(β) [23℃〜120℃] : α= −0.09%/℃ β= −0.48%/℃ 焼結体含有酸素量 : 5400ppm ジジムメタルを用いた場合でも、実施例1、2と同様常
温磁気特性、高温特性、耐熱性に優れた磁石を得ること
ができる。
Reference Example 3 The following experimental results were obtained in the same manner as in Examples 1 and 2, except that didymium metal (Nd 70 wt% -Pr 30 wt%) was used and the alloy composition, sintering conditions, and secondary heat treatment conditions were changed. I got Composition: Nd18.9-Pr5.1-Dy7.3-B1.10-Nb0.71-Ga0.37-Co4.72-Al0.33-Febal. (Wt%) Sintering: 1080 [deg.] C. × 2 hr Primary Heat treatment: 900 ° C. × 2 hr Secondary heat treatment: 520 ° C. × 2 hr Room temperature magnetic properties: Br = 11.5 kG bHc = 10.9 kOe iHc = 30.0 kOe (BH) max = 31.2 MGOe Curie point: Tc = 375 ° C. Irreversible Demagnetization rate [at 100 ° C.]: Pc = 1.0 → 1.4% Pc = 2.0 → 0.5% Br temperature coefficient (α), iHc temperature coefficient (β) [23 ° C. to 120 ° C.]: α = −0.09% / ° C. β = −0.48% / ° C. Oxygen content in sintered body: 5400 ppm Even when using dizyme metal, it is excellent in normal temperature magnetic properties, high temperature properties and heat resistance as in Examples 1 and 2. Can be obtained.

【0016】(実施例1) 金属Nd、金属Dy、Fe、Co、ferro−B、f
erro−Nb、金属Gaを所定の重量秤量し、これを
真空溶解して重量各10kgのインゴットを作製した。
このインゴットの成分分析を行なうと重量比で以下のよ
うな組成であった。 Nda−Dyb−B1.05−Nb0.58−Ga0.20 −Co0.20−Al0.33−Febal. (a+b=TRE,b=3.7) (wt%) 各々のインゴットをハンマーで解砕した後、さらに粗粉
砕機を用い不活性ガス雰囲気中で粗粉砕を行い粒径50
0μm以下の粗粉を得た。この粗粉を同じくジェットミ
ルを用い不活性ガス雰囲気中で微粉砕して平均粒径3.
7μm(F.S.S.S.)、含有酸素量1500〜5000pp
mの微粉を得た。次に、この微粉を用いて配向磁場強度
15kOe、成形圧力1.5ton/cmの条件下で
磁場中成形し、30×20×15の成形体を作製した。
この成形体は実質的に真空の条件で1070℃×2hr
の焼結を行い、得られた焼結体に900℃×2hrの第
1次熱処理、次いで540℃×2hrの第2次熱処理を
施した。得られた焼結体の密度は7.55〜7.58g
/cc、また含有酸素量は1000〜4000ppmで
あった。得られた焼結磁石について、TRE含有量に対
して(BH)max及び腐食減量がどのように変化するか
を測定し、図1に示すような結果を得た。腐食減量は磁
石を温度120℃,湿度90%,気圧1.0atmの環
境中に100時間暴露したときに得られたものである。
図1に示されるようにTRE量を少なくすることによっ
て(BH)maxを向上することができるが、28wt%
未満とするとインゴット中にα−Feが発生し易くなり
(BH)maxの増大は期待しにくい。腐食減量もやはり
TRE量を少なくすることによって減少させることがで
きる。これは、TREを少なくすることによって腐食し
やすいNd−rich相が減少する為である。しかしな
がら、TRE量を28〜32wt%という低い値として
も含有酸素量が6000ppmを超えてしまうとiHc
の減少が著しくなるため、酸素量は1000〜6000
ppmとする。図2に本発明に係わる焼結磁石中の酸素
含有量と磁気特性の関係を示す。
(Example 1) Metal Nd, metal Dy, Fe, Co, ferro-B, f
Erro-Nb and metal Ga were weighed to a predetermined weight, and were melted in vacuum to produce an ingot having a weight of 10 kg.
The composition of this ingot was as follows by weight. Nda-Dyb-B1.05-Nb0.58-Ga0.20-Co0.20-Al0.33-Febal. (A + b = TRE, b = 3.7) (wt%) Each ingot was crushed with a hammer. Thereafter, coarse pulverization is further performed in an inert gas atmosphere using a coarse pulverizer to obtain a particle size of 50.
A coarse powder of 0 μm or less was obtained. This coarse powder is similarly pulverized in an inert gas atmosphere using a jet mill to obtain an average particle size of 3.
7μm (FSSS), oxygen content 1500-5000pp
m of fine powder was obtained. Next, this fine powder was molded in a magnetic field under the conditions of an orientation magnetic field strength of 15 kOe and a molding pressure of 1.5 ton / cm 2 to produce a 30 × 20 × 15 compact.
This molded body is 1070 ° C. × 2 hours under a substantially vacuum condition.
Was sintered, and the obtained sintered body was subjected to a first heat treatment at 900 ° C. × 2 hr and a second heat treatment at 540 ° C. × 2 hr. The density of the obtained sintered body is 7.55 to 7.58 g.
/ Cc, and the oxygen content was 1000 to 4000 ppm. With respect to the obtained sintered magnet, how the (BH) max and the corrosion weight loss change with respect to the TRE content was measured, and the results as shown in FIG. 1 were obtained. The corrosion weight loss was obtained when the magnet was exposed to an environment at a temperature of 120 ° C., a humidity of 90%, and a pressure of 1.0 atm for 100 hours.
(BH) max can be improved by reducing the amount of TRE as shown in FIG.
If it is less than this, α-Fe is likely to be generated in the ingot, and it is difficult to expect an increase in (BH) max. Corrosion weight loss can also be reduced by reducing the amount of TRE. This is because the Nd-rich phase which is susceptible to corrosion is reduced by reducing the TRE. However, even when the TRE content is as low as 28 to 32 wt%, if the oxygen content exceeds 6000 ppm, iHc
The amount of oxygen is 1000 to 6000
ppm. FIG. 2 shows the relationship between the oxygen content in the sintered magnet according to the present invention and the magnetic properties.

【0017】(実施例2) 金属Nd、金属Dy、Fe、Co、ferro−B、f
erro−Nb、金属Gaを所定の重量秤量し、これを
真空溶解して重量各10kgのインゴットを作製した。
このインゴットの成分分析を行なうと重量比で以下のよ
うな組成であった。 Nd30.5-a−Dya−B1.03−Nb0.59−Gab −Co2.10−Al0.34−Febal. (2.8≦a≦8.5,0≦b≦1.2) (wt%) 各々のインゴットをハンマーで解砕した後、さらに粗粉
砕機を用い不活性ガス雰囲気中で粗粉砕を行い粒径50
0μm以下の粗粉を得た。この粗粉を同じくジェットミ
ルを用い不活性ガス雰囲気中で微粉砕して平均粒径3.
8μm(F.S.S.S.)、含有酸素量5500〜6400pp
mの微粉を得た。次に、この微粉を用いて配向磁場強度
15kOe、成形圧力1.5ton/cmの条件で磁
場中成形し、30×20×15の成形体を作製した。こ
の成形体は実質的に真空の条件で1100℃×2hrの
焼結を行い、得られた焼結体に900℃×2hrの第1
次熱処理、次いで580℃×2hrの第2次熱処理を施
した。得られた焼結体の密度は7.55〜7.59g/
cc、また含有酸素量は5000〜5900ppmであ
った。得られた焼結磁石について、常温磁気特性を測定
し、図3、図4及び図5に示すような結果を得た。図3
はDy=5.0wt%の場合の測定結果であり、Ga含
有量が0.05wt%未満では効果を発揮しにくいが、
1.0wt%を越えても(BH)maxの減少が著しくな
るので0.05〜1.0wt%が適量である。GaはD
yに比較して(BH)maxを著しく低下することなく保
磁力iHcを向上させる効果が大きい。図4にはGa含
有量を0.20wt%としてDy含有量を変化させた結
果を示す。Dyの含有はiHcの向上に大きく貢献する
が一方で(BH)maxを著しく低下させるので含有量は
3.0〜8.0wt%が適量である。図5にはDy含有
量をパラメータとしてGa含有量を0〜0.6wt%ま
で変化させた場合の結果を示すが、Dy含有量が8.0
wt%を超えると(BH)maxが著しく低下する。ま
た、Dy含有量が3.0wt%未満であると、20kO
eを越える高保磁力を得ることが困難である。
Example 2 Metal Nd, metal Dy, Fe, Co, ferro-B, f
Erro-Nb and metal Ga were weighed to a predetermined weight, and were melted in vacuum to produce an ingot having a weight of 10 kg.
The composition of this ingot was as follows by weight. Nd30.5-a-Dya-B1.03-Nb0.59-Gab-Co2.10-Al0.34-Febal. (2.8≤a≤8.5, 0≤b≤1.2) (wt%) Each ingot was hammered. And then coarsely crushed in an inert gas atmosphere using a coarse crusher to obtain a particle size of 50.
A coarse powder of 0 μm or less was obtained. This coarse powder is similarly pulverized in an inert gas atmosphere using a jet mill to obtain an average particle size of 3.
8 μm (FSSS), oxygen content 5500-6400pp
m of fine powder was obtained. Next, this fine powder was molded in a magnetic field under the conditions of an orientation magnetic field strength of 15 kOe and a molding pressure of 1.5 ton / cm 2 to produce a 30 × 20 × 15 compact. This molded body was sintered at 1100 ° C. × 2 hr under substantially vacuum conditions, and the obtained sintered body was subjected to the first sintering at 900 ° C. × 2 hr.
A second heat treatment was performed, followed by a second heat treatment at 580 ° C. × 2 hr. The density of the obtained sintered body is 7.55 to 7.59 g /
cc and the content of oxygen were 5000 to 5900 ppm. The room-temperature magnetic properties of the obtained sintered magnet were measured, and the results as shown in FIGS. 3, 4, and 5 were obtained. FIG.
Is a measurement result in the case of Dy = 5.0 wt%, and when the Ga content is less than 0.05 wt%, the effect is hardly exhibited,
Even if it exceeds 1.0 wt%, the decrease of (BH) max becomes remarkable, so that 0.05 to 1.0 wt% is an appropriate amount. Ga is D
Compared with y, the effect of improving the coercive force iHc without significantly lowering (BH) max is large. FIG. 4 shows the result of changing the Dy content with the Ga content being 0.20 wt%. Although the content of Dy greatly contributes to the improvement of iHc, on the other hand, (BH) max is remarkably reduced, so that the content is appropriately 3.0 to 8.0 wt%. FIG. 5 shows the results when the Ga content was changed from 0 to 0.6 wt% using the Dy content as a parameter, and the Dy content was 8.0.
If it exceeds wt%, (BH) max is significantly reduced. When the Dy content is less than 3.0 wt%, the content of 20 kO
It is difficult to obtain a high coercive force exceeding e.

【0018】(参考例4) ジジムメタル(Nd70wt%−Pr30wt%)、金
属Dy、Fe、Co、ferro−B、ferro−N
b、金属Gaを所定の重量秤量し、これを真空溶解して
重量各10kgのインゴットを作製した。このインゴッ
トの成分分析を行なうと重量比で以下のような組成であ
った。 (Nd+Pr)28.1−Dy3.6−B1.03−Nb0.58−G
ab−Co2.05−Al0.35−Febal. (0≦b≦0.6)
(wt%) 各々のインゴットをハンマーで解砕した後、さらに粗粉
砕機を用い不活性ガス雰囲気中で粗粉砕を行い粒径50
0μm以下の粗粉を得た。この粗粉を同じくジェットミ
ルを用い不活性ガス雰囲気中で微粉砕して平均粒径3.
7μm(F.S.S.S.)、含有酸素量5600ppmの微粉を
得た。次に、この微粉を用いて配向磁場強度15kO
e、成形圧力1.5ton/cmの条件で磁場中成形
し、30×20×15の成形体を作製した。この成形体
は実質的に真空の条件で1080℃×2.5hrの焼結
を行い、得られた焼結体に890℃×2hrの第1次熱
処理、次いで530℃×2hrの第2次熱処理を施し
た。得られた焼結体の密度は7.55〜7.58g/c
c、また含有酸素量は2800ppmであった。得られ
た焼結磁石について、常温磁気特性を測定し、図6に示
すような結果を得た。図6に示されるようにGaを含有
させることによってiHc及びヒステリシスループの角
形性の尺度であるHkの向上が認められるので0.05
wt%以上の含有が必須となる。しかしながら、Gaが
0.4wt%を超えるとHkが低下しヒステリシスルー
プの角形性が低下するので上限は1.0wt%である
が、より好ましくは0.8wt%、更に好ましくは0.
6wt%、特に好ましくは0.4wt%である。
Reference Example 4 Didymium metal (Nd 70 wt% -Pr 30 wt%), metal Dy, Fe, Co, ferro-B, ferro-N
b, a predetermined weight of metal Ga was weighed and melted in vacuum to produce an ingot weighing 10 kg each. The composition of this ingot was as follows by weight. (Nd + Pr) 28.1-Dy3.6-B1.03-Nb0.58-G
ab-Co2.05-Al0.35-Febal. (0 ≦ b ≦ 0.6)
(Wt%) After each ingot was crushed with a hammer, coarse crushing was further performed in an inert gas atmosphere using a coarse crusher to obtain a particle size of 50%.
A coarse powder of 0 μm or less was obtained. This coarse powder is similarly pulverized in an inert gas atmosphere using a jet mill to obtain an average particle size of 3.
A fine powder having a thickness of 7 μm (FSSS) and an oxygen content of 5600 ppm was obtained. Next, an orientation magnetic field strength of 15 kO
(e) Molding was performed in a magnetic field under the conditions of a molding pressure of 1.5 ton / cm 2 to produce a molded body of 30 × 20 × 15. This molded body is sintered at 1080 ° C. × 2.5 hr under substantially vacuum conditions, and the obtained sintered body is subjected to a first heat treatment at 890 ° C. × 2 hr and then to a second heat treatment at 530 ° C. × 2 hr. Was given. The density of the obtained sintered body is 7.55 to 7.58 g / c.
c and the oxygen content was 2800 ppm. The room-temperature magnetic properties of the obtained sintered magnet were measured, and the results shown in FIG. 6 were obtained. As shown in FIG. 6, the inclusion of Ga improves iHc and Hk, which is a measure of the squareness of the hysteresis loop.
The content of not less than wt% is essential. However, if Ga exceeds 0.4 wt%, Hk decreases and the squareness of the hysteresis loop decreases, so the upper limit is 1.0 wt%, more preferably 0.8 wt%, and still more preferably 0.1 wt%.
6 wt%, particularly preferably 0.4 wt%.

【0019】(参考例5) ジジムメタル(Nd70wt%−Pr30wt%)、金
属Dy、Fe、Co、ferro−B、ferro−N
b、金属Gaを所定の重量秤量し、これを真空溶解して
重量各10kgのインゴットを作製した。このインゴッ
トの成分分析を行なうと重量比で以下のような組成であ
った。 (Nd+Pr)28.0−Dy4.0−B1.03−Nbx−Ga0.
15−Co2.04−Al0.35−Febal. (0≦x≦1.0)
(wt%) 各々のインゴットをハンマーで解砕した後、さらに粗粉
砕機を用い不活性ガス雰囲気中で粗粉砕を行い粒径50
0μm以下の粗粉を得た。この粗粉を同じくジェットミ
ルを用い不活性ガス雰囲気中で微粉砕して平均粒径3.
8μm(F.S.S.S.)、含有酸素量4900ppmの微粉を
得た。次に、この微粉を用いて配向磁場強度15kO
e、成形圧力1.5ton/cmの条件で磁場中成形
し、30×20×15の成形体を作製した。この成形体
は実質的に真空の条件で1080℃×3hrの焼結を行
い、得られた焼結体に900℃×2hrの第1次熱処
理、次いで530℃×2hrの第2次熱処理を施した。
得られた焼結体の密度は7.55〜7.58g/cc、
また含有酸素量は4400ppmであった。得られた焼
結磁石について、常温磁気特性、及び平均結晶粒径を測
定し、図7に示すような結果を得た。図7に示されるよ
うにNbを含有させることにより焼結時の結晶粒成長を
抑制できる。また、この効果によりiHcを向上でき
る。しかし、Nb含有量が2.0wt%を越えると(B
H)maxの低下が大きくなるので0.1〜2.0wt%
のNb含有量が適している。
Reference Example 5 Didymium metal (Nd 70 wt% -Pr 30 wt%), metal Dy, Fe, Co, ferro-B, ferro-N
b, a predetermined weight of metal Ga was weighed and melted in vacuum to produce an ingot weighing 10 kg each. The composition of this ingot was as follows by weight. (Nd + Pr) 28.0-Dy4.0-B1.03-Nbx-Ga0.
15-Co2.04-Al0.35-Febal. (0 ≦ x ≦ 1.0)
(Wt%) After each ingot was crushed with a hammer, coarse crushing was further performed in an inert gas atmosphere using a coarse crusher to obtain a particle size of 50%.
A coarse powder of 0 μm or less was obtained. This coarse powder is similarly pulverized in an inert gas atmosphere using a jet mill to obtain an average particle size of 3.
A fine powder having a thickness of 8 μm (FSSS) and an oxygen content of 4900 ppm was obtained. Next, an orientation magnetic field strength of 15 kO
(e) Molding was performed in a magnetic field under the conditions of a molding pressure of 1.5 ton / cm 2 to produce a molded body of 30 × 20 × 15. This compact was sintered at 1080 ° C. for 3 hours under substantially vacuum conditions, and the obtained sintered body was subjected to a first heat treatment at 900 ° C. for 2 hours and then a second heat treatment at 530 ° C. for 2 hours. did.
The density of the obtained sintered body is 7.55 to 7.58 g / cc,
The oxygen content was 4,400 ppm. With respect to the obtained sintered magnet, the room-temperature magnetic properties and the average crystal grain size were measured, and the results shown in FIG. 7 were obtained. As shown in FIG. 7, the crystal grain growth during sintering can be suppressed by containing Nb. Also, iHc can be improved by this effect. However, when the Nb content exceeds 2.0 wt% (B
H) 0.1 to 2.0 wt% because the decrease in max becomes large
Is suitable.

【0020】(実施例3) 金属Nd、金属Dy、Fe、Co、ferro−B、f
erro−Nb、金属Gaを所定の重量秤量し、これを
真空溶解して重量10kgのインゴットを作製した。こ
のインゴットの成分分析を行なうと重量比で以下のよう
な組成であった。 Nd27.5−Dy4.0−B1.04−Nb0.59−Ga0.19 −Coa−Alb−Febal. a=0 b=0 a=2.02 b=0 a=2.10 b=0.34 (wt%) 各々のインゴットをハンマーで解砕した後、更に粗粉砕
機を用い不活性ガス雰囲気中で粗粉砕を行い粒径500
μm以下の粗粉を得た。この粗粉を同じくジェットミル
を用い不活性ガス雰囲気中で微粉砕して平均粒径3.8
μm(F.S.S.S)、含有酸素量6000〜6400ppm
の微粉を得た。次に、この微粉を用いて配向磁場強度1
5kOe、成形圧力1.5ton/cmの条件で磁場
中成形し、30×20×15の成形体を作製した。この
成形体は実質的に真空の条件で1100℃×2hrの焼
結を行い、得られた焼結体に900℃×2hrの第1次
熱処理、次いで500〜600℃×2hrの第2次熱処
理を施した。得られた焼結体の密度は7.56〜7.5
9g/cc、また含有酸素量は5400〜5900pp
mであった。得られた焼結磁石について常温磁気特性を
測定し、図8に示されるような結果を得た。図8に示さ
れるように、(Co添加)のものは(Co及びAl
無添加)のものと比較してiHcに対する第2次熱処理
温度依存性が非常に大きくなっている。すなわち、図8
において、評価した第2次熱処理温度の全域にわたっ
て、(Co添加)のものは(Co及びAl無添加)
のものに比べて得られるiHcが小さくかつiHcばら
つきが非常に大きいことがわかる。これでは、工業生産
上安定してばらつきが小さくかつ高いiHcを有するR
−Fe−Co−B系異方性焼結磁石を得ることが困難で
ある。これに対し、(Co及びAl添加)のものでは
図8に示すように第2次熱処理温度依存性を小さくで
き、この問題を回避できる。特に、第2次熱処理温度が
540℃以上の条件ではほぼ(Co添加)のもののi
Hcを越えて(Co及びAl無添加)のものと略同等
の高いiHcまでが得られ、かつiHcばらつきも小さ
いことがわかる。本発明において、熱処理性に優れると
は、図8の(Co及びAl添加)のものに例示される
ように、(Co添加)のものに比べて高いiHcでか
つiHcばらつきが小さいものが得られる第2次熱処理
温度として540〜640℃という広い許容温度範囲を
有することを意味している。次に前記(Co及びAl
無添加)、(Co添加)、(Co及びAl添加)の
組成を有する各焼結磁石にNiメッキを施して、その密
着性を評価した。Niメッキは、ワット浴による電解メ
ッキで膜厚10μmとした。メッキ処理後水洗いして1
00℃で5分間乾燥後メッキ密着性試験を行った。結果
は下記の通りであり、本発明磁石()が優れたメッキ
密着性を有する。 材 質 密着強度(Kgf/cm) (Co及びAl無添加) 180 (Co添加) 680 (Co及びAl添加) 700
Example 3 Metal Nd, metal Dy, Fe, Co, ferro-B, f
Erro-Nb and metal Ga were weighed to a predetermined weight, and were melted in vacuum to produce an ingot weighing 10 kg. The composition of this ingot was as follows by weight. Nd27.5-Dy4.0-B1.04-Nb0.59-Ga0.19-Coa-Alb-Febal. A = 0 b = 0 a = 2.02 b = 0 a = 2.10 b = 0.34 (wt%) After crushing the ingot with a hammer, the material is further coarsely crushed in an inert gas atmosphere using a coarse crusher to obtain a particle size of 500.
A coarse powder having a size of μm or less was obtained. This coarse powder is similarly pulverized in an inert gas atmosphere using a jet mill to obtain an average particle size of 3.8.
μm (FSSS), oxygen content 6000-6400ppm
Was obtained. Next, an orientation magnetic field intensity of 1
Molding was performed in a magnetic field under the conditions of 5 kOe and a molding pressure of 1.5 ton / cm 2 to produce a 30 × 20 × 15 molded body. The molded body is sintered at 1100 ° C. × 2 hr under substantially vacuum conditions, and the obtained sintered body is subjected to a first heat treatment at 900 ° C. × 2 hr, and then to a second heat treatment at 500 to 600 ° C. × 2 hr. Was given. The density of the obtained sintered body is 7.56 to 7.5.
9g / cc, oxygen content is 5400-5900pp
m. The room-temperature magnetic characteristics of the obtained sintered magnet were measured, and the results as shown in FIG. 8 were obtained. As shown in FIG. 8, the (Co-added) type (Co and Al
The temperature dependence of the second heat treatment on iHc is very large as compared with the case of (no addition). That is, FIG.
In (1), (Co added) is (Co and Al free) over the entire range of the evaluated secondary heat treatment temperature.
It can be seen that the obtained iHc is small and the iHc variation is very large as compared with the case of the above. In this case, R having stable and small variation and high iHc in industrial production
-It is difficult to obtain an Fe-Co-B based anisotropic sintered magnet. On the other hand, in the case of (Co and Al addition), as shown in FIG. 8, the dependence of the second heat treatment on temperature can be reduced, and this problem can be avoided. In particular, under the condition that the second heat treatment temperature is 540 ° C. or higher, i of almost (Co added)
It can be seen that a high iHc higher than that of Hc (without addition of Co and Al) is obtained and the iHc variation is small. In the present invention, excellent heat treatment means that a material having a higher iHc and a smaller variation in iHc than that obtained with (Co added) can be obtained, as exemplified in (Co and Al added) in FIG. This means that the second heat treatment temperature has a wide allowable temperature range of 540 to 640 ° C. Next, (Co and Al
Ni plating was applied to each sintered magnet having the composition of (no addition), (Co addition), (Co and Al addition), and the adhesion was evaluated. Ni plating was performed to a film thickness of 10 μm by electrolytic plating using a Watts bath. Wash with water after plating 1
After drying at 00 ° C. for 5 minutes, a plating adhesion test was performed. The results are as follows, and the magnet () of the present invention has excellent plating adhesion. Material Adhesion strength (Kgf / cm 2 ) (Co and Al not added) 180 (Co added) 680 (Co and Al added) 700

【0021】[0021]

【発明の効果】本発明によれば、従来に比して安定して
高いiHcと高い(BH)maxが得られるとともに、耐
熱性、耐食性、熱処理性に優れたR−Fe−Co−Al
−Nb−Ga−B系異方性焼結磁石及びその製造方法を
提供することができ、極めて実用性に富むものである。
According to the present invention, R-Fe-Co-Al is obtained which has a high iHc and a high (BH) max stably as compared with the prior art, and is excellent in heat resistance, corrosion resistance and heat treatment.
The present invention can provide an —Nb—Ga—B based anisotropic sintered magnet and a method for manufacturing the same, and is extremely practical.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わる全希土類量に対する(BH)ma
x及び腐食減量の相関の一例を示す図である。
FIG. 1 shows (BH) ma with respect to the total rare earth content according to the present invention.
It is a figure which shows an example of the correlation of x and corrosion weight loss.

【図2】本発明に係わる含有酸素量に対する(BH)ma
x及びiHcの相関の一例を示す図である。
FIG. 2 shows (BH) ma with respect to oxygen content according to the present invention.
It is a figure showing an example of correlation of x and iHc.

【図3】本発明に係わるGa含有量(0〜1.2wt
%)に対する(BH)max及びiHcの相関の一例を示
す図である。
FIG. 3 shows a Ga content (0 to 1.2 wt.) According to the present invention.
(%) With respect to (BH) max and iHc.

【図4】本発明に係わるDy含有量に対する(BH)ma
x、iHc、及び腐食減量の相関の一例を示す図であ
る。
FIG. 4 shows the relationship between (BH) ma and Dy content according to the present invention.
It is a figure which shows an example of the correlation of x, iHc, and corrosion weight loss.

【図5】本発明に係わるGa含有量(0〜0.6wt
%)及びDy含有量に対する(BH)max及びiHcの
相関の他の例を示す図である。
FIG. 5 shows a Ga content (0 to 0.6 wt.) According to the present invention.
FIG. 7 is a diagram showing another example of the correlation between (BH) max and iHc with respect to the content (%) and the Dy content.

【図6】本発明に係わるGa含有量(0〜0.6wt
%)に対する(BH)max、iHcの相関の更に他の例
及び角型性(Hk)の相関の一例を示す図である。
FIG. 6 shows a Ga content (0 to 0.6 wt.) According to the present invention.
FIG. 11 is a diagram showing still another example of the correlation of (BH) max and iHc with respect to (%) and an example of the correlation of squareness (Hk).

【図7】本発明に係わるNb含有量に対する焼結体平均
結晶粒径、(BH)maxの相関の一例を示す図である。
FIG. 7 is a diagram showing an example of a correlation between the average crystal grain size of a sintered body and (BH) max with respect to the Nb content according to the present invention.

【図8】本発明に係わるiHcに対するCo及びAl添
加による第2次熱処理温度依存性の緩和状況の一例を示
す図である。
FIG. 8 is a diagram showing an example of a state of relaxation of the second heat treatment temperature dependency by adding Co and Al to iHc according to the present invention.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 主成分として28〜32wt%のR(
質的にRがNdとDyまたはNdとDyとPrとからな
、Rの内3〜8wt%がDyである)、5wt%以
下のCo(0を含まず)、0.1〜1wt%のAl、
0.5〜2wt%のB、0.1〜2wt%のNb、0.
05〜1wt%のGa、残部Fe、及び不可避的不純物
成分として1000〜6000ppmの酸素を含有し
なるR−Fe−Co−Al−Nb−Ga−B系焼結体
に、800〜1000℃×0.2〜5時間の第1次熱処
理と、540〜640℃×0.2〜3時間の第2次熱処
理とを順次施すことにより20kOe以上の保磁力(i
Hc)と30MGOe以上の最大エネルギー積((B
H)max)とを付与することを特徴とする耐食性、耐熱
、熱処理性に優れたR−Fe−Co−Al−Nb−G
a−B系焼結磁石の製造方法
(1) As a main component, 28 to 32 wt% of R ( actual
Qualitatively, R consists of Nd and Dy or Nd, Dy and Pr.
Ri, 3~8wt% of R is Dy), not including the following Co (0 5wt%), 0.1~1wt % of Al,
0.5-2 wt% B, 0.1-2 wt% Nb, 0.
0.5 to 1 wt% of Ga, balance Fe, and unavoidable impurities
Contain oxygen 1000~6000ppm as component
R-Fe-Co-Al-Nb-Ga-B based sintered body
First heat treatment at 800-1000 ° C. × 0.2-5 hours
And a second heat treatment at 540-640 ° C. × 0.2-3 hours.
The coercive force (i) of 20 kOe or more
Hc) and the maximum energy product of 30 MGOe or more ((B
H) max) and R-Fe-Co-Al-Nb-G having excellent corrosion resistance, heat resistance and heat treatment properties.
A method for producing an a-B based sintered magnet.
【請求項2】 主成分として28〜32wt%のR(実
質的にRがNdとDyまたはNdとDyとPrとからな
り、Rの内の3wt%以上5wt%未満がDyであ
る)、5wt%以下のCo(0を含まず)、0.1〜1
wt%のAl、0.5〜2wt%のB、0.1〜2wt
%のNb、0.05〜1wt%のGa、残部Fe 、及
び不可避的不純物成分として1000〜6000ppm
の酸素を含有してなるとともに、20kOe以上の保磁
力(iHc)と35MGOe以上の最大エネルギー積
((BH)max))とを有することを特徴とする耐食
性、耐熱性、熱処理性に優れたR−Fe−Co−Al−
Nb−Ga−B系焼結磁石。
2. The method according to claim 1, wherein the main component is 28 to 32 wt% of R (actual
Qualitatively, R consists of Nd and Dy or Nd, Dy and Pr.
In addition, 3 wt% or more and less than 5 wt% of R is Dy.
5% by weight or less of Co (not including 0), 0.1 to 1
wt% Al, 0.5-2 wt% B, 0.1-2 wt%
% Nb, 0.05-1 wt% Ga, balance Fe 2,
1000-6000ppm as unavoidable impurity components
And containing more than 20kOe of coercivity
Force (iHc) and maximum energy product of 35MGOe or more
((BH) max))
-Fe-Co-Al- with excellent heat resistance, heat resistance and heat treatment
Nb-Ga-B based sintered magnet.
【請求項3】 主成分として28〜32wt%のR(実
質的にRがNdとDyまたはNdとDyとPrとからな
り、Rの内の5〜8wt%がDyである)、5wt%以
下のCo(0を含まず)、0.1〜1wt%のAl、
0.5〜2wt%のB、0.1〜2wt%のNb、0.
05〜1wt%のGa、残部Fe 、及び不可避的不純
物成分として1000〜6000ppmの酸素を含有し
てなるとともに、25kOe以上の保磁力(iHc)と
30MGOe以上の最大エネルギ ー積((BH)max)
とを有することを特徴とする耐食性、耐熱性、熱処理性
に優れたR−Fe−Co−Al−Nb−Ga−B系焼結
磁石。
3. The method according to claim 1, wherein the main component is 28 to 32 wt% of R (actual
Qualitatively, R consists of Nd and Dy or Nd, Dy and Pr.
5 to 8 wt% of R is Dy).
Lower Co (not including 0), 0.1-1 wt% Al,
0.5-2 wt% B, 0.1-2 wt% Nb, 0.
0.5 to 1 wt% Ga, balance Fe 2, and inevitable impurities
Containing 1000-6000 ppm of oxygen as a material component
And a coercive force (iHc) of 25 kOe or more
30MGOe or more of the maximum energy product ((BH) max)
Corrosion resistance, heat resistance, heat treatment characteristics characterized by having
Excellent R-Fe-Co-Al-Nb-Ga-B based sintering
magnet.
JP04249113A 1992-09-18 1992-09-18 R-Fe-Co-Al-Nb-Ga-B sintered magnet excellent in corrosion resistance and heat resistance and method for producing the same Expired - Lifetime JP3080275B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP04249113A JP3080275B2 (en) 1992-09-18 1992-09-18 R-Fe-Co-Al-Nb-Ga-B sintered magnet excellent in corrosion resistance and heat resistance and method for producing the same
DE4331563A DE4331563A1 (en) 1992-09-18 1993-09-16 Sintered permanent magnet with good thermal stability - containing defined percentages by weight of specified elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04249113A JP3080275B2 (en) 1992-09-18 1992-09-18 R-Fe-Co-Al-Nb-Ga-B sintered magnet excellent in corrosion resistance and heat resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JPH06104108A JPH06104108A (en) 1994-04-15
JP3080275B2 true JP3080275B2 (en) 2000-08-21

Family

ID=17188151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04249113A Expired - Lifetime JP3080275B2 (en) 1992-09-18 1992-09-18 R-Fe-Co-Al-Nb-Ga-B sintered magnet excellent in corrosion resistance and heat resistance and method for producing the same

Country Status (1)

Country Link
JP (1) JP3080275B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018220588A1 (en) 2017-12-05 2019-06-06 Tdk Corporation Permanent magnet based on R-T-B

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3171415B2 (en) * 1993-01-29 2001-05-28 日立金属株式会社 Rare earth-Fe-Co-Al-Nb-Ga-B based sintered magnet
CN100545959C (en) 2003-08-12 2009-09-30 日立金属株式会社 R-T-B is sintered magnet and rare earth alloy

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2577373B2 (en) * 1986-06-12 1997-01-29 株式会社東芝 Sintered permanent magnet
JPH04184901A (en) * 1990-11-20 1992-07-01 Shin Etsu Chem Co Ltd Rare earth iron based permanent magnet and its manufacture

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018220588A1 (en) 2017-12-05 2019-06-06 Tdk Corporation Permanent magnet based on R-T-B
US11710587B2 (en) 2017-12-05 2023-07-25 Tdk Corporation R-T-B based permanent magnet

Also Published As

Publication number Publication date
JPH06104108A (en) 1994-04-15

Similar Documents

Publication Publication Date Title
EP0134304B1 (en) Permanent magnets
JPH0510806B2 (en)
JP2751109B2 (en) Sintered permanent magnet with good thermal stability
JP3298219B2 (en) Rare earth-Fe-Co-Al-V-Ga-B based sintered magnet
EP0029071B1 (en) Process for producing permanent magnet alloy
JPH0316761B2 (en)
JPH01219143A (en) Sintered permanent magnet material and its production
JP3560387B2 (en) Magnetic material and its manufacturing method
JP3296507B2 (en) Rare earth permanent magnet
US5230749A (en) Permanent magnets
JP3080275B2 (en) R-Fe-Co-Al-Nb-Ga-B sintered magnet excellent in corrosion resistance and heat resistance and method for producing the same
JPH04268051A (en) R-fe-co-b-c permanent magnet alloy reduced in irreversible demagnetization and excellent in heat stability
JPH0561345B2 (en)
JP3645312B2 (en) Magnetic materials and manufacturing methods
JPH0536495B2 (en)
JPH04268050A (en) R-fe-b-c permanent magnet alloy reduced in irreversible demagnetization and excellent in heat stability
JPH045739B2 (en)
JP3298220B2 (en) Rare earth-Fe-Nb-Ga-Al-B sintered magnet
JPH0547533A (en) Sintered permanent magnet and manufacture thereof
JP3171415B2 (en) Rare earth-Fe-Co-Al-Nb-Ga-B based sintered magnet
JPH0536494B2 (en)
JPH0535211B2 (en)
JPH06124812A (en) Nitride magnet powder and its synthesizing method
Yang et al. Study of permanent magnetic properties of the 1‐12 nitrides with Nd and Pr
JPH03148803A (en) Permanent magnet

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080623

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130623

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130623

Year of fee payment: 13