JP3645312B2 - Magnetic materials and manufacturing methods - Google Patents

Magnetic materials and manufacturing methods Download PDF

Info

Publication number
JP3645312B2
JP3645312B2 JP12172495A JP12172495A JP3645312B2 JP 3645312 B2 JP3645312 B2 JP 3645312B2 JP 12172495 A JP12172495 A JP 12172495A JP 12172495 A JP12172495 A JP 12172495A JP 3645312 B2 JP3645312 B2 JP 3645312B2
Authority
JP
Japan
Prior art keywords
magnetic material
magnetic
component
alloy
coercive force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12172495A
Other languages
Japanese (ja)
Other versions
JPH0845718A (en
Inventor
伸嘉 今岡
岡本  敦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP12172495A priority Critical patent/JP3645312B2/en
Publication of JPH0845718A publication Critical patent/JPH0845718A/en
Application granted granted Critical
Publication of JP3645312B2 publication Critical patent/JP3645312B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2

Description

【0001】
【産業上の利用分野】
本発明は、特に小型モーター、アクチュエーターなどの用途に最適な、磁気特性、中でも保磁力に優れた磁性材料に関するものである。
【0002】
【従来の技術】
磁性材料は家庭電化製品、音響製品、自動車部品やコンピューターの周辺端末機まで、幅広い分野で使用されており、エレクトロニクス材料としての重要性は年々増大しつつある。特に最近、各種電気・電子機器の小型化、高効率化が要求されてきたため、より高性能の磁性材料が求められている。このような要請に応え、Sm−Co系(SmCo5系及びSm2Co17系)、Nd−Fe−B系などの希土類磁性材料の需要が急激に増大しているが、Sm−Co系は原料供給が不安定で原料コストが高く、Nd−Fe−B系は耐熱性、耐食性に劣る問題点がある。
【0003】
一方、新しい希土類系磁性材料として、希土類−鉄−窒素系磁性材料が提案されている(例えば特開平2−57663号公報)。この材料は、磁化、異方性磁界、キュリー点が高く、Sm−Co系、Nd−Fe−B系の欠点を補う磁性材料として期待されている。しかしながら、前述の公報に開示された希土類−鉄−窒素系材料は10μm以下に細かく粉砕して使用しなければ、高い保磁力が達成されないが、10μm以下に粉砕すると、表面が酸化されて保磁力が低下するという問題点があった。さらに、これらの材料の保磁力の温度変化率βも−0.45%/℃と実用物性を充分満足するものではなかった。
【0004】
この対策として、菱面体晶の結晶構造を有した希土類−鉄−窒素系材料にM成分を含ませることにより保磁力及び保磁力の安定性を向上させることが考えられ、この材料は特開平3−16102号公報、特開平6−96918号公報に開示されているが、保磁力の安定性の抜本的な改善には至らず、特に保磁力の温度変化率βはほとんど改善されない。
【0005】
なおここで保磁力の安定性とは、表面が酸化されても保磁力が低下しない特性(保磁力の耐酸化性能という)と温度変化率βの2つの特性を総称していう。
以上の材料が、110℃を越える高温用途や偏平材料用途など、より広い実用範囲で好ましく用いられるためには、保磁力の安定性がさらに改善された希土類−鉄−窒素系材料とすることが望まれている。
【0006】
【発明が解決しようとする課題】
本発明は、菱面体晶又は六方晶の結晶構造を有した希土類−鉄−窒素系材料に金属元素Mを共存させ、かつ、窒素量を高窒化領域に限定することにより、10μm以上の大粒径においても高い保磁力を有し、前述の保磁力の安定性などの問題点を解決した希土類−鉄−M−窒素組成の磁性材料を提供することを目的とする。
【0007】
【課題を解決するための手段】
高い保磁力と保磁力の安定性を有する10μm以上の希土類−鉄−窒素系磁性材料を得るために、母合金に種々の元素(M)を添加した系について鋭意検討した結果、保磁力及び保磁力の安定性が高くなる結晶構造および組成、さらに微構造を有した希土類(R)−鉄(Fe)−M−窒素(N)系磁性材料とその製造法を見いだし、本発明を成すに至った。
【0008】
即ち、本発明は
(1)一般式RαFe(100-α-β-γ)MβNγで表される磁性材料であり、(但し、Rは希土類元素のうち少なくとも一種、MはCr、Ti、Zr,Hfのうち少なくとも1種、α、β、γは原子%で、下式を満たす)
3≦α≦20
1≦β≦25
17≦γ≦25
その主相が、少なくとも前記R、Fe、M及びNを成分とする菱面体晶又は六方晶の結晶構造を有した相であり、主相の周りが、10〜200nmの結晶粒子径を有すると共に、N濃度の高い部分及び/又は結晶格子の崩れた或いは崩れかけた部分で取り囲まれたセル構造を有し、かつ該磁性材料の平均粒子径が10μm以上であってその保磁力が3.5kOeを超えることを特徴とする磁性材料。
(2)上記(1)に記載の磁性材料の成分であるFeの0.01〜50原子%をCoで置換した組成を有することを特徴とする磁性材料、及び、
(3)上記(1)、(2)に記載の磁性材料の成分であるRの50原子%以上がSmである組成を有することを特徴とする磁性材料、
(4)上記(1)〜(3)に記載の磁性材料の成分であるMがCrであることを特徴とする磁性材料、
(5)実質的にR、Fe、Mからなる合金を、アンモニアガスを含む雰囲気下で、200〜650℃の範囲で熱処理することを特徴とする上記(1)〜(4)に記載の磁性材料の製造法、
(6)実質的にR−Fe−Mからなる合金を、不活性ガス及び水素ガスのうち少なくとも一種を含む雰囲気中、または真空中で、600〜1300℃の範囲で熱処理したのち、アンモニアガスを含む雰囲気下で、200〜650℃の範囲で熱処理して窒素を導入することを特徴とする上記(1)〜(4)に記載の磁性材料の製造法である。
【0009】
以下本発明について詳細に説明する。
希土類元素(R)としては、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、YbおよびLuのうち少なくとも一種を含めば良く、従って、ミッシュメタルやジジム等の二種以上の希土類元素の混合物を用いても良いが、好ましい希土類としては、Y、Ce、Pr、Nd、Sm、Gd、Dy、Erである。さらに好ましくは、Y、Ce、Pr、Nd、Smである。特に、SmをR成分全体の50原子%以上含むと、保磁力が際立って高い材料が得られる。さらに、Smを70原子%以上含むことが好ましい。
【0010】
ここで用いる希土類元素は工業的生産により入手可能な純度でよく、製造上混入が避けられない不純物、例えばO、H、C、Al、Si、F、Na、Mg、Ca、Liなどが存在しているものであっても差し支えない。
本発明の磁性粉体中において、R成分は、3〜20原子%含有する。R成分が3原子%未満のとき、鉄成分を多く含む軟磁性相が母合金鋳造・焼鈍後も許容量を越えて分離し、このような種類の軟磁性相は窒化物の保磁力に悪影響を及ぼすので実用的な永久磁石材料として好ましくない。またR成分が20原子%を越えると、残留磁束密度が低下して好ましくない。特に好ましいRの範囲は6〜12原子%である。
【0011】
鉄(Fe)は、強磁性を担う本磁性材料の基本組成であり、30原子%以上含むことが好ましい。30原子%未満であると磁化が小さくなる傾向がある。鉄成分の組成範囲が50〜77原子%の領域にあれば、粗粉体の保磁力と磁化のバランスが取れた材料となり、特に好ましい。
Feのうち0.01〜50原子%を、Coで置換することができ、Coの導入により、キュリー点と磁化とが上昇するとともに、耐酸化性も向上できる。(以下においては、”Fe成分”、”鉄成分”と表記した場合、または”R−Fe−M−N系”などの式の中でFeと表記した場合、Feの0.01〜50原子%をCoで置換したものを含むものとする。)
CoのFe置換量の特に好ましい範囲は1〜30原子%である。Coが30原子%を越えると、原料コストが上昇する割りに上記の効果が小さく不安定となり、逆に1原子%未満であると、置換効果がほとんど見られない。CoのFe置換量の特に好ましい範囲は2〜20原子%である。
【0012】
本発明おいては、さらにCr、Ti、Zr、Hfから選ばれるM成分のうち一種を含む必要がある。R−Fe−N系磁性材料に対するM成分の添加効果は、粗粉体で大きな保磁力を発現させることである。この中でCrは母合金の均一性の点で優れており、特にCoと共添することで保磁力の大きさは非常に高くなる。
【0013】
M成分の含有量は、1〜25原子%の範囲とする。25原子%を越えると飽和磁化が低下して好ましくない。M成分の含有量は15原子%以下に押さえた方が特に好ましい。1原子%未満の場合は粉体粒径10μm以上での保磁力が低いので好ましくない。
M成分に加えて、Mn、Ga、Al、Zn、Sn、Ni、V、Nb、Ta、Mo、W、Pd、C、Si、Geの元素のうち1種または2種以上(M’成分)を添加しても良いが、これらの含有量はM成分の量を越えないで、しかもM成分との合計量が1〜25原子%の範囲にある様にする。M’成分のうちで本発明の効果を際立たせるために共添加する元素として好ましいのはMnである。(以下、M成分またはMという場合は、その中に上記M’成分を含有している場合も含むこととする。)
前記の組成に導入される窒素(N)量は、17〜25原子%とされる。25原子%を越えると、磁化が低くなり磁石材料用途としての実用性はあまり高くなくなる。17原子%未満では粗粉体の保磁力をあまり向上させる(3.5kOe以下)ことができず、好ましくない。
【0014】
窒素量の好ましい範囲は、目的とするR−Fe−M成分−N系磁性材料のR−Fe−M成分組成比や副相の量比さらに結晶構造などによって、最適な窒素量は異なるので、その量によるが、例えば菱面体構造を有するSm10.5Fe76.1Co8.9Cr4.5を原料合金として選ぶと、17〜23原子%付近が最適な窒素量となる。
【0015】
このときの最適な窒素量とは、目的に応じて異なるが材料の耐酸化性及び磁気特性のうち少なくとも一項目が最適となる窒素量であり、磁気特性が最適とは磁気異方性比、減磁率及び保磁力の温度変化率の絶対値は極小、その他は極大となることである。
本発明におけるR−Fe−M−N系磁性材料の各組成は、希土類成分が3〜20原子%、鉄成分が30〜79原子%、M成分が1〜25原子%、Nが17〜25原子%の範囲とし、これらを同時に満たすものである。
【0016】
さらに本発明で得られるR−Fe−M−N系磁性材料には水素(H)が0.01〜10原子%含まれてもよい。特に好ましい本発明のR−Fe−M−N系磁性材料の組成は、一般式RαFe(100- α- β- γ- δ) MβNγHδで表わしたとき、α、β、γ、δは原子%で、
3≦α/(1−δ/100)≦20
1≦β/(1−δ/100)≦25
17≦γ/(1−δ/100)≦25
0.01≦δ≦10
の範囲である。但し、Fe成分は30原子%以上、及び上記4式とが同時に成り立つようにα、β、γ、δが選ばれる。
【0017】
さらに製造法によっては、酸素(O)が1〜10原子%含まれることがあり、その場合には磁石の成形性、磁気特性等の高い材料とすることができる。
本発明の磁性材料中には、菱面体晶又は六方晶の結晶構造を有する相を含有することが必要である。本発明では、これらの結晶構造を作り、少なくともR、Fe、M、Nを含む相を主相といい、該結晶構造を作らないか、または他の結晶構造を作る組成を有する相を副相と呼ぶ。主相にはR、Fe成分、M成分、Nに加え、HやOを含むことがある。但し、O成分は主相に含まれていても、極めて少量で0.01〜1原子%程度である。
【0018】
好ましい主相の結晶構造の例としては、Th2Zn17などと同様な結晶構造を有する菱面体晶、または、Th2Ni17、TbCu7、CaZn5 などと同様な結晶構造を有する六方晶が挙げられ、これらのうち少なくとも1種を含むことが必要である。この中でTh2Zn17などと同様な結晶構造を有する菱面体晶が最も好ましい。
【0019】
例えば、磁性材料中に副相として、RFe12-XXy相といった正方晶を取る磁性の高い窒化物相を含んでいても良いが、本発明の効果を充分に発揮させるためには、その体積分率は主相の含有量より低く押さえる必要があり、主相の含有量が75体積%を越えることが実用上極めて好ましい。
R−Fe−M−N系材料の主相は、主原料相であるR−Fe−M合金の格子間に窒素が侵入し、結晶格子が多くの場合膨張することによって得られるが、その結晶構造は、主原料相とほぼ同じ対称性を有する。
【0020】
ここにいう主原料相とは、少なくともR、Fe、Mを含みかつNを含まず、かつ菱面体晶又は六方晶の結晶構造を作る相のことである。(なお、それ以外の組成または結晶構造を有し、かつNの含まない相を副原料相と呼ぶ。)
窒素の侵入による結晶格子の膨張に伴い、耐酸化性能または磁気特性の各特性のうち一特性以上が向上し、実用上好適な磁性材料となる。なおここにいう磁気特性とは、材料の飽和磁化(4πIs)、残留磁束密度(Br)、磁気異方性磁界(Ha)、磁気異方性エネルギー(Ea)、磁気異方性比、キュリー点(Tc)、固有保磁力(iHc)、角形比(Br/4πIs)、最大エネルギー積[(BH)max]、熱減磁率(α、磁化の可逆温度係数と同義)、保磁力の温度変化率(β、保磁力の可逆温度係数と同義)のうち少なくとも一つを言う。但し、磁気異方性比とは、外部磁場を15kOe印加した時の困難磁化方向の磁化(a)と容易磁化方向の磁化(b)の比(a/b)であり、磁気異方性比が小さいもの程、磁気異方性エネルギーが高いと評価される。
【0021】
例えば、希土類−鉄−M母合金の主原料相として、菱面体構造を有するSm10.5Fe85.0Cr4.5 を選んだ場合、窒素を導入することによって、結晶磁気異方性が面内異方性から硬磁性材料として好適な一軸異方性に変化し、磁気異方性エネルギーを初めとする磁気特性と耐酸化性が向上する。
本発明の磁性材料は、平均粒径10μmを越える値の粗粉体であり、好ましくは10〜200μmである。平均粒径が10μm以下であると、保磁力の低下や磁粉の凝集が著しくなり、本来材料が持っている磁気特性を充分発揮しえないので好ましくない。ここで平均粒径とは特に断らない限り、通常用いられる粒子径分布測定装置で得られた体積相当径分布曲線をもとにして求めたメジアン径のことをいう。
【0022】
本発明の材料のうち、菱面体晶を有するSm2 ([Fe,Co],Cr)17母合金を窒化した材料を例として以下に詳しく述べる。
Sm2Fe17に窒素を導入した場合、Sm2Fe17あたり窒素が3個であるSm2Fe173であると、磁気異方性エネルギー、磁化、キュリー温度など多くの磁気特性が最適となる(例えば、IEEE Trans. Magn.,28,2326(1992))ことが知られている。さらに、この導入窒素量をSm2 Fe17あたり5〜5.5個程度まで増やすと、粗粉体の状態での保磁力が最大となる。
【0023】
しかし、NがSm2 ([Fe,Co],Cr)17あたり3個を越えて増加すると、Nは格子間に侵入するため結晶格子が広がり、不安定な状態を経て、ついに、N濃度分布に濃淡が生じたり、結晶格子が崩れた或いは崩れかけた部分が生じる。さらに、合金組成や窒素量、窒化条件や窒化後の焼鈍条件によっては、菱面体晶又は六方晶の結晶構造を有する強磁性相の周りをN濃度の高い結晶格子の崩れた或いは崩れかけた部分が取り囲む、セルのような構造(この構造を以降セル構造と呼ぶ)が生じる場合もある。
【0024】
Sm−Fe−N3元系でも、NがSm2 Fe17あたり3個を越えて4個まで増加すると、同様な微構造を生じることが知られている(日本応用磁気学会誌、18巻、201ページ、1994年)。
このとき、Crが共存した場合、高窒化領域での保磁力が大きく増加する。例えば30μm程度の粗粉体Sm−Fe−N3元系では、上述のように保磁力の最大値が2kOe程度であるのに対して、Crが共存すると、保磁力は9〜12kOeまで増加する。Crの役割については不明であるが、N濃度の高い部分、または、結晶格子の崩れた或いは崩れかけた部分にCrが存在することにより、磁化反転をくい止める効果が生じるものと考える。
【0025】
また、Crの組成比にもよるが、Sm2 ([Fe,Co],Cr)17あたりのNの数が4個あたりから6個あたりまでの本発明の材料について、磁気曲線の立ち上がりや保磁力の着磁磁場依存性などを調べた結果、この材料の磁化反転機構はピンニング型であることがわかった。この傾向はCoを含む、含まないにかかわらず同様に見られる。
【0026】
磁粉体の表面付近が酸化劣化して、逆磁区の芽となりうる軟磁性な部分が生じた場合を考える。ニュークリエーション型の材料は磁壁の移動が容易に起こるため、逆磁区が発生すると容易に成長して、保磁力が劣化する。このタイプの材料として、前述のSm2Fe173材料が挙げられる。一方ピンニング型の材料は、表面付近に逆磁区が生じても磁壁の移動が起こりづらく、高い保磁力を維持する。
さらに、保磁力の温度変化率βも磁化反転の機構が異なることにより、大きく改善される可能性がある。
【0027】
ところで、既存のSm2 Co17系材料は、セル型の微構造を持った2相分離型磁石となるが、その製造工程の中で、溶体化及び時効処理工程の制御が非常に重要である。この材料の成分はSm、Co、Cuを必須成分として、この外にFe、Zr、Ti、Hf、Ceなどを含んでおり、これらの金属元素を溶解したのち、900〜1250℃程度の高温で熱処理する。以上の成分を有するSm2Co17合金には、高温では均一に固溶しているが、室温付近の低温では相分離するような、固溶限の広い高温安定相が主相として存在する。この高温で安定な相を保ったまま室温まで冷却させるため、溶体化ののち、一般的に水中や油中にクエンチしたり、ガスを吹き付けて急冷処理を行う。この溶体化工程で得た合金を、400〜900℃の温度で1段若しくは多段の時効処理を行い、組成が均一な状態を保っていた合金主相内にCuなどのM''成分濃度が大きな相を微細に析出させ、熱力学的に安定な方向である2相分離型の構造を調整する。この微細に析出したM成分濃度の大きな低磁性相がピニング点となり、既存のSm2 Co17系材料はピンニング型の磁化反転機構を持つことになる。なお、以上の溶体化−時効工程では、熱処理温度、時間、冷却速度の精密な制御が極めて大切で、例えば溶体化ののち急冷するか、徐冷するかで最終的な保磁力の大きさは全く異なったものとなる。
【0028】
これに対し、本発明の範囲において、母合金となるSm−Fe−Cr合金の主原料相の結晶構造は常温で2−17組成を有した菱面体晶であり、高温においても固溶限の低いほぼラインフェイズとなるため、Fe成分及びCrは主原料相中に均一に固溶していて、溶体化や時効処理によってCrやCr化合物がFe主体の主原料相内に微細析出することはない。従って、時効処理は必要でなく、冷却速度にも保磁力は依存しない。この主原料相にNをSm2Fe17あたり約3個(約13.6原子%)となるよう導入した場合、全ての窒素が結晶格子間に入って均一な微構造となり、前述のようなニュークリエーション型の磁性材料となる。NをSm2([Co、Fe]、Cr)17あたり4個(17.4原子%)を越えて導入した場合にはじめて、不均一な微構造が得られ充分なピンニング点となり得る窒素濃度の高い部分が主相内に生じる。この事実は、CrやCr化合物の析出によりピンニング型微構造が誘導されるのではなく、微細なN濃度の濃淡によりピンニング型微構造が得られるのであることを示している。
【0029】
微細なN濃度の不均一性、即ちN濃度の濃淡の周期は、10〜200nm程度であることが、TEM観察により明かになっている。CuなどのM’’成分(M'';Cu、Zr、Hf、Nb、Ta、W、Mo、Ti、V、Cr、Mn)を希土類−鉄−窒素系材料に添加して溶体化や時効処理を行い、M''成分やM''化合物を主相中に微細析出させ粗粉体の保磁力を高めるという試みが具体的に例示されている(特開平4−216601号公報、特開平6−20813号公報)が、これらの材料はNの含有量が13〜15原子%と低い値に留まっているため、充分なピンニング点を発生させるだけのN濃度分布の濃淡を生じさせることはできない。
【0030】
従って本発明の材料は、Crの微細析出ではなくNの不均一によりピンニング型微構造を生ずるのであるから、上述の公報で開示された磁性材料とは全く異なった磁性材料となる。
以下、本発明の製造法について例示する。
(1)母合金の調製
本発明の磁性材料は、過剰のNを導入することによりR−Fe−M合金中にピンニング点が微分散する微構造、例示すればセル構造の境界にピンニング点が存在する微構造をとったとき、ピンニング点にMが共存すると保磁力の値が極めて大きくなる。従って、M成分の添加は母合金調整の段階で行う。
【0031】
R−Fe−M合金の製造法としては、イ)R、Fe成分、M金属を高周波により溶解し、鋳型などに鋳込む高周波溶解法、ロ)銅などのボートに金属成分を仕込み、アーク放電により溶かし込むアーク溶解法、ハ)高周波溶解した溶湯を、回転させた銅ロール上に落しリボン状の合金を得る超急冷法、ニ)高周波溶解した溶湯をガスで噴霧して合金粉体を得るガスアトマイズ法、ホ)Fe成分及びまたはMの粉体またはFe−M合金粉体、R及びまたはMの酸化物粉体、及び還元剤を高温下で反応させ、RまたはR及びMを還元しながら、RまたはR及びMを、Fe成分及びまたはFe−M合金粉末中に拡散させるR/D法、ヘ)各金属成分単体及びまたは合金をボールミルなどで微粉砕しながら反応させるメカニカルアロイング法、ト)上記何れかの方法で得た合金を水素雰囲気下で加熱し、一旦R及びまたはMの水素化物と、Fe成分及びまたはMまたはFe−M合金に分解し、この後高温下で低圧として水素を追い出しながら再結合させ合金化するHDDR法のいずれを用いてもよい。
【0032】
高周波溶解法、アーク溶解法を用いた場合、溶融状態から、合金が凝固する際にFe主体の軟磁性成分が析出しやすく、特に窒化工程を経た後も保磁力の低下をひきおこす。そこで、この軟磁性成分を消失させたり、菱面体晶や六方晶の結晶構造を増大させたりする目的で、アルゴン、ヘリウムなどの不活性ガス、水素ガスのうち少なくとも1種を含むガス中もしくは真空中、600℃〜1300℃の温度範囲で焼鈍を行うことが有効である。この方法で作製した合金は、超急冷法などを用いた場合に比べ、結晶粒径が大きく結晶性が良好であり、高い残留磁束密度を有している。従って、この合金は均質な主原料相を多量に含んでおり、本発明の磁性材料を得る母合金として最も好ましい。
(2)粗粉砕及び分級
上記方法で作製した合金インゴットを直接窒化することも可能であるが、結晶粒径が500μmより大きいと窒化処理時間が長くなり、粗粉砕を行ってから窒化する方が効率的である。200μm以下とすれば、窒化効率がさらに向上し、特に好ましい。
【0033】
粗粉砕はジョ−クラッシャー、ハンマー、スタンプミル、ローターミル、ピンミル、コーヒーミルなどを用いて行う。また、ボールミルやジェットミルなどのような粉砕機を用いても、条件次第では窒化に適当な、合金粉末の調製が可能である。母合金に水素を吸蔵させたのち上記粉砕機で粉砕する方法、水素の吸蔵・放出を繰り返し粉化する方法を用いても良い。
【0034】
さらに、粗粉砕の後、ふるい、振動式あるいは音波式分級機、サイクロンなどを用いて粒度調整を行うことも、より均質な窒化を行うために有効である。
粗粉砕、分級の後、不活性ガスや水素中で焼鈍を行うと構造の欠陥を除去することができ、場合によっては効果がある。
以上で、本発明の製造法における希土類−鉄成分−M成分合金の粉体原料またはインゴット原料の調製法を例示したが、これらの原料の結晶粒径、粉砕粒径、表面状態などにより、以下に示す窒化の最適条件に違いが見られる。
(3)窒化・焼鈍
窒化はアンモニアガス、窒素ガスなどの窒素源を含むガスを、上記(1)または、(1)及び(2)で得たR−Fe−M成分合金粉体またはインゴットに接触させて、結晶構造内に窒素を導入する工程である。
【0035】
このとき、窒化雰囲気ガス中に水素を共存させると、窒化効率が高いうえに、結晶構造が安定なまま窒化できる点で好ましい。また反応を制御するために、アルゴン、ヘリウム、ネオンなどの不活性ガスなどを共存させる場合もある。
最も好ましい窒化雰囲気としては、アンモニアと水素の混合ガスであり、特にアンモニア分圧を0.1〜0.7の範囲に制御すれば、窒化効率が高い上に本発明の窒素量範囲全域の磁性材料を作製することができる。
【0036】
窒化反応は、ガス組成、加熱温度、加熱処理時間、加圧力で制御し得る。
このうち加熱温度は、母合金組成、窒化雰囲気によって異なるが、200〜650℃の範囲で選ばれるのが望ましい。200℃未満であると窒化が進まず、650℃を越えると主原料相が分解して、菱面体晶または六方晶の結晶構造を保ったまま窒化することができない。窒化効率と主相の含有率を高くするために、さらに好ましい温度範囲は250〜600℃である。
【0037】
また窒化を行った後、不活性ガス及び又は水素ガス中で焼鈍することは磁気特性を向上させる点で好ましい。
窒化・焼鈍装置としては、横型、縦型の管状炉、回転式反応炉、密閉式反応炉などが挙げられる。何れの装置においても、本発明の磁性材料を調整することが可能であるが、特に窒素組成分布の揃った粉体を得るためには回転式反応炉を用いるのが好ましい。
【0038】
反応に用いるガスは、ガス組成を一定に保ちながら1気圧以上の気流を反応炉の送り込む気流方式、ガスを容器に加圧力0.01〜70気圧の領域で封入する封入方式、或いはそれらの組合せなどで供給する。
本磁性材料の製造方法としては、(1)又は、(1)及び(2)に例示した方法でR−Fe−M組成の母合金を調製してから、(3)で示した方法で窒化する工程を用いるのが最も好ましい。特に(1)で得られた合金又はこれを(2)の方法で粉砕、分級した合金を、不活性ガス及び水素ガスのうち少なくとも一種を含む雰囲気下で、600〜1300℃で熱処理したのち、アンモニアガスを含む雰囲気下で、200〜650℃の範囲で熱処理することによる、焼鈍処理を行ったのち窒化を行うと、酸化による保磁力の劣化が極めて小さい磁性材料を得ることができる。
【0039】
以上が本発明のR−Fe−M−N系磁性材料の製造法に関する説明であるが、特に実用的な硬磁性材料として本発明の磁性材料を応用する際には、(4)再粉砕、(5)磁場成形、(6)着磁を行う場合がある。この中で(4)再粉砕工程でO成分を導入し、より成形性、磁石特性の高い材料とする方法は有効である。以下、その例を簡単に示す。
(4)再粉砕
再粉砕工程は、上記のR−Fe−M−N系材料より細かい微粉体まで粉砕する場合や、R−Fe−M−N−H−O系材料を得るために、上述のR−Fe−M−N系磁性材料にO及びH成分を導入する目的で行われる工程である。
【0040】
再粉砕の方法としては(2)で挙げた方法のほか、回転ボールミル、振動ボールミル、遊星ボールミル、ウエットミル、ジェットミル、カッターミル、ピンミル、自動乳鉢及びそれらの組合せなどが用いられる。
O成分やH成分を導入する際、その導入量を本発明の範囲に調整する方法としては、再粉砕雰囲気中の水分量や酸素濃度を制御する方法が挙げられる。
【0041】
例えば、ジェットミル等の乾式粉砕機を用いる場合は、粉砕ガス中の水分量を1ppm〜1%、酸素濃度を0.01〜5%の範囲の所定濃度に保ったり、またボールミル等の湿式粉砕機を用いる場合は、エタノールや他の粉砕溶媒中の水分量を0.1重量ppm〜80重量%、溶存酸素量を0.1重量ppm〜10重量ppmの範囲に調整するなどで酸素量を適当な範囲に制御する。
【0042】
また、再粉砕した粒子の取扱い操作をさまざまな酸素分圧に制御されたグローブボックス中で行うことにより、酸素量を調節することもできる。
再粉砕により、10μm未満の粒径となった微粉体は、若干耐酸化性能に劣るが、後述のように、本発明の10μm以上の粗粉体と組み合わせて用いると、磁気特性を高めることができ、むしろ好ましい場合がある。
【0043】
本発明の磁性材料は、粉砕粒径によって、ほとんど保磁力が変化せず、また磁化の低下も著しくない。従って、10μm以上の本発明の粗粉体と上記の方法で粉砕した微粉体を混合して成形すると、充填率が高まるので、磁化や最大エネルギー積の高い成形体が作製でき、実用上好ましい磁石材料となる。但し、粗粉体と微粉体の配合比、即ち粒子径分布によって、角形比が低下する場合があるので注意を要する。
(5)磁場成形
例えば、(3)又は、(3)及び(4)で得た磁性粉体を異方性ボンド磁石に応用する場合、熱硬化性樹脂や金属バインダーと混合したのち磁場中で圧縮成形したり、熱可塑性樹脂と共に混練したのち磁場中で射出成形を行ったりして、磁場成形する。
【0044】
磁場成形は、R−Fe−M−N系磁性材料を充分に磁場配向せしめるため、好ましくは10kOe以上、さらに好ましくは15kOe以上の磁場中で行う。
(6)着磁
(5)で得た異方性ボンド磁石材料や焼結磁石材料、(3)または、(3)及び(4)で得た粉体を樹脂や金属バインダーとともに成形した等方性ボンド磁石や焼結磁石材料については、磁石性能を高めるために、通常着磁が行われる。
【0045】
着磁は、例えば静磁場を発生する電磁石、パルス磁場を発生するコンデンサー着磁器などによって行う。充分着磁を行わしめるための、磁場強度は、好ましくは15kOe以上、さらに好ましくは30kOe以上である。
(7)M’成分の添加
(3)又は、(3)及び(4)で得た磁性粉体にZnなどのM’成分をさらに添加し、(5)の工程前或は後に熱処理を行って各種磁石材料とする方法は、角形比を向上させる点で有効な方法である。
【0046】
【実施例】
以下、実施例により本発明を具体的に説明する。
評価方法は以下のとおりである。
(1)磁気特性
平均粒径約30〜36μmの粗粉体または約2μmの微粉体であるR−Fe−M−N系磁性材料またはR−Fe−N系磁性材料に銅粉を混ぜ、外部磁場15kOe中、2ton/cm2で成形し、室温中80kOeの磁場でパルス着磁した後、振動試料型磁力計(VSM)を用いて、室温の固有保磁力(iHc/kOe)及び磁化(emu/g)を測定した。
【0047】
成形磁石については、室温中80kOeの磁場でパルス着磁した後、室温の固有保磁力(iHc/kOe)、磁化(kG)、(BH)max[MGOe]を測定した。
(2)窒素量、酸素量及び水素量
Si34(SiO2を定量含む)を標準試料として、不活性ガス融解法により窒素量を定量した。
(3)平均粒径
レーザー回折式粒度分布計を用いて、体積相当径分布を測定し、その分布曲線より求めたメジアン径にて評価した。
(4)耐酸化性能
平均粒径約30〜36μmまたは約2μmの粉体を、110℃の恒温槽に入れ、200時間後の固有保磁力を(1)と同様にして測定し、(1)の結果と比較して固有保磁力の保持率(%)を求めた。成形磁石も同様にして評価した。保持率の高いものほど、耐酸化性能が高い。特に、本試験では各種バインダーを添加せず評価しているため、保持率90%を越えるものは、例えばボンド磁石とした時の実用物性として充分使用可能で、保持率95%を越えるものは実用上極めて好適な材料と判定できる。
(5)温度特性試験
VSMを用い、室温〜150℃までの温度範囲にて、(1)で調製した試料の固有保磁力を測定した。室温と150℃の固有保磁力の値から、1℃あたりの保磁力の低下率を計算し、保磁力の温度変化率β[固有保磁力の可逆温度係数](%/℃)を求めた。保磁力の温度変化率の小さいものほど実用的に優れた材料である。このような材料はパーミアンスの小さな永久磁石材料に応用する際、室温での保磁力がさほど高くなくても、一般に不可逆温度係数が小さくなり、より高温用途、偏平材料用途に好ましく用いられる。
【0048】
【実施例1】
純度99.9%のSm、純度99.9%のFe及び純度99.9%のCrを用いてアルゴンガス雰囲気下高周波溶解炉で溶解混合し、さらにアルゴン雰囲気中、1150℃で20時間焼鈍し徐冷することにより、Sm10.5Fe85.0Cr4.5組成の合金を調製した。
【0049】
この合金をジョークラッシャーにより粉砕し、次いで窒素雰囲気中ローターミルでさらに粉砕した後、ふるいで粒度を調整して、平均粒径約50μmの粉体を得た。
このSm−Fe−Cr合金粉体を横型管状炉に仕込み、465℃において、アンモニア分圧0.35atm、水素ガス0.65atmの混合気流中で1.75時間加熱処理し、続いてアルゴン気流中で1時間焼鈍したのち、平均粒径約30μmに調整した。
【0050】
得られたSm−Fe−Cr−N系粉体の組成、磁気特性、耐酸化性能、温度特性試験結果を表1に示した。
なお、X線回折法により解析した結果、主に菱面体晶を示す回折線が認められ、更に、2θ=44゜(Cu、Kα線)付近にも回折線が認められた。
【0051】
【実施例2】
母合金の組成を、表1に示す組成に変更する以外は実施例1と同様な操作によって、平均粒径約30μmのR−Fe−Co−Cr−N系粉体を得た。その結果を表1に示す。
なお、X線回折法により解析した結果、主に菱面体晶を示す回折線が観測されたほか、2θ=44゜(Cu、Kα線)付近に比較的大きな回折線が認められた。
【0052】
さらに、実施例2の粉体を、ボールミルにより平均粒径約2μmまで粉砕した。この材料のiHcは8.5kOeであった。
この結果は、実施例2の粉体において、固有保磁力iHcに粒径依存性がないことを示している。
なお、平均粒径約2μmの粉体の評価結果を表1(参考例1)に併せて示した。
【0053】
【実施例3〜10】
母合金の組成を、表1に示す組成に変更する以外は、実施例1とほぼ同様な操作によって、平均粒径約30μmの希土類−鉄成分−M成分−窒素系粉体を得た。その結果を表1に示す。
【0054】
【比較例1】
Crを加えず、窒化時間を2時間とする以外は実施例1と同様にして、表1に示した組成のSm−Fe−N系粉体を得た。この材料のiHcは0.5kOeであった。さらに、この材料をボールミルで約2μmまで微粉砕した。これらの結果を表1に示す。
【0055】
【比較例2】
窒化条件を420℃、アンモニア分圧0.30atm、水素分圧0.70atm、2.5時間とする以外は実施例1と同様にして、表1に示した組成のSm−Fe−Cr−N系粉体を得た。この材料のiHcは0.35kOeであった。さらに、この材料をボールミルで約2μmまで微粉砕した。これらの結果を表1に示す。
【0056】
【比較例3】
実施例1で得た粒径約30μmのSm−Fe−Cr−N系粉体を、2ton/cm2 、15kOeの条件で磁場成形したあと、アルゴン雰囲気下、1100℃、1時間の条件で熱処理を行った。これを急冷したときの成形体のiHcは0.1kOe以下であった。この成形体を再び約30μmに粉砕した粉体のiHcは0.1kOe以下であった。なおこの材料の結晶構造をX線回折により解析した結果、α−鉄、窒化鉄に対応する回折線が主に検出された。このものは本発明における菱面体晶または六方晶の結晶構造を含有しないものであった。
【0057】
【比較例4】
Sm11.0Fe85.0Zr1.0Mn3.0の組成となるよう高周波誘導炉を用いて溶解、鋳造し、合金インゴットを得た。この合金をアルゴン雰囲気中で1100℃、24時間溶体化処理し、次いで800℃1時間の時効処理を行った。溶体化処理は室温までガス急冷、時効処理は炉冷とした。また、XRDにより、溶体化処理後の母合金はほとんどSm2Fe17単相であるが、僅かにSmリッチ相が存在することを確認した。
【0058】
得られた合金をアルゴン雰囲気中でジョークラッシャーとコーヒーミルを用いて粉砕し、45〜150μmに分級して得た合金粉末をアルミナボートに入れ、窒化処理炉内に保持した。窒化処理は1atmの純窒素中で500℃、24時間の条件で行った。次いで窒化した合金は窒化処理炉内で炉冷してから取りだした。
【0059】
得られたSm−Fe−M’’成分−N系材料の窒素含有量は5.0原子%、飽和磁化114emu/g、固有保磁力0.09kOeであった。
【0060】
【比較例5】
Sm11.0Fe65.0Co20.0Ti1.0Mn3.0の組成となるように、高周波溶解炉を用いて溶解鋳造し、合金インゴットを得た。これを比較例4と同様に処理し、Sm−Fe−M’’成分−N系材料粉体を得た。
得られた磁性粉体の窒素含有量は4.6原子%、飽和磁化132emu/g、固有保磁力0.08kOeであった。
【0061】
【比較例6】
Sm10.0Ce2.0Fe64.0Co20.0Ti1.0Mn3.0 の組成となるように、高周波溶解炉を用いて溶解鋳造し、合金インゴットを得た。これを比較例4と同様に処理し、Sm−Fe−M’’成分−N系材料粉体を得た。
得られた磁性粉体の窒素含有量は7.3原子%、飽和磁化131emu/g、保磁力0.1kOeであった。
【0062】
【表1】

Figure 0003645312
【0063】
【発明の効果】
以上説明した様に、本発明によれば、10μm以上の粗粉体で保磁力の高く、優れた耐酸化性能と温度特性を有した希土類−鉄成分−M成分−窒素(−水素−酸素)系磁性材料を提供することができる。[0001]
[Industrial application fields]
The present invention relates to a magnetic material excellent in magnetic characteristics, particularly coercive force, which is most suitable for applications such as small motors and actuators.
[0002]
[Prior art]
Magnetic materials are used in a wide range of fields from home appliances, acoustic products, automobile parts and computer peripheral terminals, and their importance as electronic materials is increasing year by year. In recent years, there has been a demand for miniaturization and high efficiency of various electric / electronic devices, and therefore higher performance magnetic materials are required. In response to these requests, Sm-Co (SmCo Five System and Sm 2 Co 17 ), Nd—Fe—B, and other rare earth magnetic materials are rapidly increasing in demand. However, the Sm—Co system is unstable in the supply of raw materials and has a high raw material cost, and the Nd—Fe—B system is heat resistant. There is a problem inferior in corrosion resistance.
[0003]
On the other hand, a rare earth-iron-nitrogen based magnetic material has been proposed as a new rare earth based magnetic material (for example, JP-A-2-57663). This material has high magnetization, anisotropic magnetic field, and Curie point, and is expected as a magnetic material that compensates for the shortcomings of Sm—Co and Nd—Fe—B systems. However, if the rare earth-iron-nitrogen material disclosed in the above-mentioned publication is not finely pulverized to 10 μm or less, high coercive force cannot be achieved. There has been a problem of lowering. Furthermore, the temperature change rate β of the coercive force of these materials is also −0.45. % / ℃ The practical properties were not fully satisfied.
[0004]
As a countermeasure, it is conceivable to improve the coercive force and the stability of the coercive force by including an M component in a rare earth-iron-nitrogen based material having a rhombohedral crystal structure. Although disclosed in JP-A-16102 and JP-A-6-96918, the stability of the coercive force is not drastically improved, and in particular, the temperature change rate β of the coercive force is hardly improved.
[0005]
Here, the stability of the coercive force is a collective term for two characteristics, that is, a characteristic that the coercive force does not decrease even if the surface is oxidized (referred to as oxidation resistance of the coercive force) and a temperature change rate β.
In order for the above materials to be preferably used in a wider practical range, such as high-temperature applications exceeding 110 ° C. and flat material applications, a rare earth-iron-nitrogen-based material with further improved coercive force stability should be used. It is desired.
[0006]
[Problems to be solved by the invention]
The present invention provides a large grain of 10 μm or more by coexisting a metal element M in a rare earth-iron-nitrogen based material having a rhombohedral or hexagonal crystal structure and limiting the amount of nitrogen to a high nitriding region. An object of the present invention is to provide a magnetic material having a rare earth-iron-M-nitrogen composition that has a high coercive force in diameter and solves the problems such as the stability of the coercive force described above.
[0007]
[Means for Solving the Problems]
In order to obtain a rare earth-iron-nitrogen based magnetic material having a high coercive force and stability of coercive force of 10 μm or more, as a result of intensive studies on a system in which various elements (M) are added to the master alloy, The inventors have found a rare earth (R) -iron (Fe) -M-nitrogen (N) -based magnetic material having a crystal structure and composition that increases the stability of magnetic force, and a microstructure, and a method for producing the same. It was.
[0008]
That is, the present invention
(1) A magnetic material represented by the general formula RαFe (100-α-β-γ) MβNγ, where R is at least one of rare earth elements, and M is at least one of Cr, Ti, Zr, and Hf. Species, α, β and γ are atomic% and satisfy the following formula)
3 ≦ α ≦ 20
1 ≦ β ≦ 25
17 ≦ γ ≦ 25
The main phase is a phase having a rhombohedral or hexagonal crystal structure containing at least R, Fe, M and N as components, Having a crystal particle size of 10-200 nm, A cell structure surrounded by a portion with a high N concentration and / or a portion where a crystal lattice is broken or broken, and Of the magnetic material If the average particle size is 10μm or more And its coercive force exceeds 3.5 kOe Magnetic material characterized by that.
(2) A magnetic material having a composition in which 0.01 to 50 atomic% of Fe, which is a component of the magnetic material described in (1) above, is substituted with Co, and
(3) A magnetic material having a composition in which 50 atomic% or more of R which is a component of the magnetic material according to (1) or (2) is Sm,
(4) A magnetic material, wherein M, which is a component of the magnetic material according to (1) to (3) above, is Cr.
(5) The magnetism described in (1) to (4) above, wherein the alloy substantially consisting of R, Fe, and M is heat-treated at 200 to 650 ° C. in an atmosphere containing ammonia gas. Manufacturing method of materials,
(6) An alloy consisting essentially of R—Fe—M is heat-treated at 600 to 1300 ° C. in an atmosphere containing at least one of an inert gas and a hydrogen gas or in a vacuum, and then ammonia gas is used. The method for producing a magnetic material according to any one of (1) to (4) above, wherein nitrogen is introduced by heat treatment in a range of 200 to 650 ° C. in a contained atmosphere.
[0009]
The present invention will be described in detail below.
The rare earth element (R) may include at least one of Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu. A mixture of two or more rare earth elements such as misch metal and didymium may be used, but preferred rare earths are Y, Ce, Pr, Nd, Sm, Gd, Dy, and Er. More preferred are Y, Ce, Pr, Nd, and Sm. In particular, when Sm is contained in an amount of 50 atomic% or more of the entire R component, a material having a remarkably high coercive force can be obtained. Furthermore, it is preferable to contain 70 atomic% or more of Sm.
[0010]
The rare earth element used here may have a purity that can be obtained by industrial production, and impurities such as O, H, C, Al, Si, F, Na, Mg, Ca, and Li that are unavoidable in production are present. It does not matter even if it is.
In the magnetic powder of the present invention, the R component is contained in an amount of 3 to 20 atomic%. When the R component is less than 3 atomic%, the soft magnetic phase containing a large amount of iron component is separated beyond the allowable amount even after casting and annealing of the master alloy, and this kind of soft magnetic phase has an adverse effect on the coercive force of nitride. Therefore, it is not preferable as a practical permanent magnet material. On the other hand, if the R component exceeds 20 atomic%, the residual magnetic flux density decreases, which is not preferable. A particularly preferable range of R is 6 to 12 atomic%.
[0011]
Iron (Fe) is the basic composition of the present magnetic material responsible for ferromagnetism, and is preferably contained at 30 atomic% or more. If it is less than 30 atomic%, the magnetization tends to be small. If the composition range of the iron component is in the region of 50 to 77 atomic%, it becomes a material in which the coercive force and magnetization of the coarse powder are balanced, which is particularly preferable.
Of Fe, 0.01 to 50 atomic% can be substituted with Co. By introducing Co, the Curie point and the magnetization increase and the oxidation resistance can be improved. (In the following, when expressed as “Fe component”, “iron component”, or when expressed as Fe in an expression such as “R—Fe—MN system”, 0.01 to 50 atoms of Fe % Is replaced with Co.)
A particularly preferable range of the amount of Co substitution for Fe is 1 to 30 atomic%. If Co exceeds 30 atomic%, the above effect becomes small and unstable for an increase in raw material cost. Conversely, if it is less than 1 atomic%, the substitution effect is hardly seen. A particularly preferred range of the amount of substitution of Co by Fe is 2 to 20 atomic%.
[0012]
The present invention In In addition, Cr, Ti, Zr, From Hf It is necessary to include one of the selected M components. The effect of adding the M component to the R—Fe—N magnetic material is to develop a large coercive force with the coarse powder. Among them, Cr is excellent in terms of the uniformity of the mother alloy, and the coercive force becomes very high when co-added with Co.
[0013]
Content of M component shall be the range of 1-25 atomic%. If it exceeds 25 atomic%, the saturation magnetization is lowered, which is not preferable. The content of the M component is particularly preferably suppressed to 15 atomic% or less. If it is less than 1 atomic%, the coercive force at a particle size of 10 μm or more is low, which is not preferable.
In addition to the M component, Mn, Ga, Al, Zn, Sn, One or more of the elements of Ni, V, Nb, Ta, Mo, W, Pd, C, Si, and Ge (M ′ component) may be added. The total amount with the M component is in the range of 1 to 25 atomic% without exceeding the amount. Among the M ′ components, Mn is preferable as an element to be co-added in order to make the effects of the present invention stand out. (Hereinafter, the term “M component” or “M” includes the case where the M ′ component is contained therein.)
The amount of nitrogen (N) introduced into the composition is 17 to 25 atomic%. If it exceeds 25 atomic%, the magnetization becomes low and the practicality as a magnet material application is not so high. If it is less than 17 atomic%, the coercive force of the coarse powder cannot be improved so much (3.5 kOe or less), which is not preferable.
[0014]
The preferable range of nitrogen amount depends on the R-Fe-M component-N-based magnetic material R-Fe-M component composition ratio, the sub-phase amount ratio, the crystal structure, etc. Depending on the amount, for example, Sm with rhombohedral structure 10.5 Fe 76.1 Co 8.9 Cr 4.5 Is selected as a raw material alloy, the optimum nitrogen amount is around 17 to 23 atomic%.
[0015]
The optimum amount of nitrogen at this time is the amount of nitrogen at which at least one item of the oxidation resistance and magnetic properties of the material is optimum, although it varies depending on the purpose, and the optimum magnetic property is the magnetic anisotropy ratio, The absolute value of the temperature change rate of the demagnetization factor and the coercive force is minimum, and the others are maximum.
Each composition of the R—Fe—M—N magnetic material in the present invention is 3 to 20 atom% for the rare earth component, 30 to 79 atom% for the iron component, 1 to 25 atom% for the M component, and 17 to 25 for N. The atomic% range is satisfied at the same time.
[0016]
Further, the R—Fe—MN magnetic material obtained in the present invention may contain 0.01 to 10 atomic% of hydrogen (H). The composition of the particularly preferred R—Fe—M—N magnetic material of the present invention has the general formula RαFe (100- α - β - γ - δ ) When expressed by MβNγHδ, α, β, γ, and δ are atomic%,
3 ≦ α / (1-δ / 100) ≦ 20
1 ≦ β / (1-δ / 100) ≦ 25
17 ≦ γ / (1-δ / 100) ≦ 25
0.01 ≦ δ ≦ 10
Range. However, α, β, γ, and δ are selected so that the Fe component is 30 atomic% or more and the above four expressions are satisfied simultaneously.
[0017]
Further, depending on the production method, oxygen (O) may be contained in an amount of 1 to 10 atomic%. In that case, a material having high magnet moldability, magnetic properties, and the like can be obtained.
The magnetic material of the present invention needs to contain a phase having a rhombohedral or hexagonal crystal structure. In the present invention, these crystal structures are formed, and a phase containing at least R, Fe, M, and N is referred to as a main phase, and a phase having a composition that does not form the crystal structure or generates another crystal structure is a subphase. Call it. The main phase may contain H and O in addition to R, Fe component, M component and N. However, even if O component is contained in the main phase, it is about 0.01 to 1 atomic% in a very small amount.
[0018]
Examples of preferred main phase crystal structures include Th 2 Zn 17 Rhombohedral crystals having the same crystal structure as 2 Ni 17 , TbCu 7 , CaZn Five And hexagonal crystals having the same crystal structure as those described above, and it is necessary to include at least one of them. Th 2 Zn 17 A rhombohedral crystal having the same crystal structure as the above is most preferable.
[0019]
For example, RFe as a subphase in a magnetic material 12-X M X N y Although it may contain a highly magnetic nitride phase such as a tetragonal phase, in order to fully demonstrate the effects of the present invention, its volume fraction needs to be kept lower than the content of the main phase, It is extremely preferable for practical use that the content of the main phase exceeds 75% by volume.
The main phase of the R—Fe—M—N-based material is obtained by nitrogen intruding between the lattices of the R—Fe—M alloy, which is the main raw material phase, and the crystal lattice often expands. The structure has almost the same symmetry as the main raw material phase.
[0020]
The main raw material phase referred to here is a phase that contains at least R, Fe, and M, does not contain N, and forms a rhombohedral or hexagonal crystal structure. (A phase having a composition or crystal structure other than that and containing no N is referred to as a secondary raw material phase.)
Accompanying the expansion of the crystal lattice due to the penetration of nitrogen, one or more of the oxidation resistance or magnetic properties are improved, and a practically suitable magnetic material is obtained. The magnetic properties referred to here are the material saturation magnetization (4πIs), residual magnetic flux density (Br), magnetic anisotropy magnetic field (Ha), magnetic anisotropy energy (Ea), magnetic anisotropy ratio, and Curie point. (Tc), intrinsic coercivity (iHc), squareness ratio (Br / 4πIs), maximum energy product [(BH) max], thermal demagnetization factor (α, synonymous with reversible temperature coefficient of magnetization), temperature change rate of coercivity (Β, synonymous with reversible temperature coefficient of coercive force). However, the magnetic anisotropy ratio is the ratio (a / b) of the magnetization (a) in the difficult magnetization direction and the magnetization (b) in the easy magnetization direction when an external magnetic field of 15 kOe is applied. The smaller is, the higher the magnetic anisotropy energy is evaluated.
[0021]
For example, Sm having a rhombohedral structure as a main raw material phase of a rare earth-iron-M master alloy 10.5 Fe 85.0 Cr 4.5 By introducing nitrogen, the magnetocrystalline anisotropy changes from in-plane anisotropy to uniaxial anisotropy suitable as a hard magnetic material, and magnetic characteristics including magnetic anisotropy energy and Improves oxidation resistance.
The magnetic material of the present invention is a coarse powder having an average particle size exceeding 10 μm, preferably 10 to 200 μm. When the average particle size is 10 μm or less, the coercive force is lowered and the magnetic powder is remarkably aggregated, and the magnetic properties inherent to the material cannot be fully exhibited. Here, unless otherwise specified, the average particle diameter means a median diameter obtained on the basis of a volume equivalent diameter distribution curve obtained by a commonly used particle diameter distribution measuring apparatus.
[0022]
Among the materials of the present invention, Sm having rhombohedral crystals 2 ([Fe, Co], Cr) 17 An example of a material obtained by nitriding the mother alloy will be described in detail below.
Sm 2 Fe 17 When nitrogen is introduced into the 2 Fe 17 Sm with 3 nitrogens 2 Fe 17 N Three , Many magnetic properties such as magnetic anisotropy energy, magnetization, and Curie temperature are optimal (for example, IEEE Trans. Magn., 28 2326 (1992)). Further, the amount of introduced nitrogen is reduced to Sm. 2 Fe 17 When the number is increased to about 5 to 5.5, the coercive force in the state of coarse powder becomes maximum.
[0023]
But N is Sm 2 ([Fe, Co], Cr) 17 When the number exceeds 3 per unit, N penetrates between the lattices, so that the crystal lattice spreads and goes through an unstable state. Finally, the N concentration distribution is shaded, or the crystal lattice is broken or broken. Occurs. Furthermore, depending on the alloy composition, nitrogen content, nitriding conditions and annealing conditions after nitriding, the portion where the crystal lattice with a high N concentration is broken or broken around the ferromagnetic phase having a rhombohedral or hexagonal crystal structure A cell-like structure surrounded by (this structure is hereinafter referred to as a cell structure) may occur.
[0024]
Even in the Sm-Fe-N ternary system, N is Sm. 2 Fe 17 It is known that the same fine structure is produced when the number is increased from 3 to 4 (Japanese Journal of Applied Magnetics, Vol. 18, p. 201, 1994).
At this time, when Cr coexists, the coercive force in the high nitriding region greatly increases. For example, in the coarse powder Sm—Fe—N ternary system of about 30 μm, the maximum coercive force is about 2 kOe as described above, but when Cr coexists, the coercive force increases to 9 to 12 kOe. Although the role of Cr is unknown, it is considered that the presence of Cr in a portion where the N concentration is high, or in a portion where the crystal lattice is broken or broken, has the effect of preventing magnetization reversal.
[0025]
Also, depending on the Cr composition ratio, Sm 2 ([Fe, Co], Cr) 17 As a result of investigating the rise of the magnetic curve and the dependence of the coercive force on the magnetization field of the material of the present invention in which the number of per N is around 4 to 6, the magnetization reversal mechanism of this material is a pinning type. I found out. This tendency is similarly seen whether or not Co is contained.
[0026]
Consider a case where the surface of the magnetic powder is oxidized and deteriorated to generate a soft magnetic part that can be a bud of a reverse magnetic domain. In the case of the new creation type material, the domain wall easily moves. Therefore, when the reverse magnetic domain is generated, it easily grows and the coercive force is deteriorated. As this type of material, the aforementioned Sm 2 Fe 17 N Three Materials. On the other hand, the pinning-type material maintains high coercive force because it is difficult for the domain wall to move even if a reverse magnetic domain occurs near the surface.
Furthermore, the temperature change rate β of the coercive force may be greatly improved due to the different magnetization reversal mechanism.
[0027]
By the way, existing Sm 2 Co 17 The system material is a two-phase separated magnet having a cell-type microstructure, but in the manufacturing process, it is very important to control the solution treatment and the aging treatment process. The components of this material include Sm, Co, and Cu as essential components, and in addition to this, Fe, Zr, Ti, Hf, Ce, etc. are contained. After these metal elements are dissolved, the material is heated at a high temperature of about 900 to 1250 ° C. Heat treatment. Sm having the above components 2 Co 17 The alloy has a high-temperature stable phase with a wide solid solubility limit, which is homogeneously dissolved at high temperatures but phase-separates at low temperatures near room temperature. In order to cool to room temperature while maintaining a stable phase at this high temperature, after solutionization, quenching is generally performed in water or oil, or a rapid cooling treatment is performed by blowing gas. The alloy obtained in this solution treatment step is subjected to one-stage or multi-stage aging treatment at a temperature of 400 to 900 ° C., and the concentration of M ″ component such as Cu is contained in the alloy main phase in which the composition remains in a uniform state. A large phase is finely precipitated to adjust a two-phase separation structure that is thermodynamically stable. This finely precipitated low magnetic phase with a large M component concentration becomes the pinning point, and the existing Sm 2 Co 17 The system material has a pinning type magnetization reversal mechanism. In the above solution-aging process, precise control of the heat treatment temperature, time, and cooling rate is extremely important. For example, the final coercivity depends on whether the solution is rapidly cooled or slowly cooled. It will be completely different.
[0028]
On the other hand, within the scope of the present invention, the crystal structure of the main raw material phase of the Sm—Fe—Cr alloy as a mother alloy is a rhombohedral crystal having a 2-17 composition at room temperature, and the solid solubility limit is high even at high temperatures. Since it is a low almost line phase, the Fe component and Cr are uniformly dissolved in the main raw material phase, and Cr and Cr compounds are finely precipitated in the main raw material phase mainly composed of Fe by solution treatment and aging treatment. Absent. Therefore, no aging treatment is required, and the coercive force does not depend on the cooling rate. N in this main raw material phase is Sm 2 Fe 17 When introduced so as to be about 3 (about 13.6 atomic%) per unit, all the nitrogen enters between the crystal lattices to form a uniform microstructure, and the above-mentioned nucleation type magnetic material is obtained. N to Sm 2 ([Co, Fe], Cr) 17 Only when it is introduced in excess of 4 per 1 (17.4 atomic%), a portion having a high nitrogen concentration that can provide a non-uniform microstructure and can be a sufficient pinning point occurs in the main phase. This fact indicates that the pinning type microstructure is not induced by the precipitation of Cr or Cr compounds, but the pinning type microstructure can be obtained by the density of fine N concentration.
[0029]
The non-uniformity of the fine N concentration, that is, the period of the density of the N concentration is about 10 to 200 nm. By TEM observation It is clear. M ″ component such as Cu (M ″; Cu, Zr, Hf, Nb, Ta, W, Mo, Ti, V, Cr, Mn) is added to the rare earth-iron-nitrogen-based material to form a solution or age. An attempt to increase the coercive force of the coarse powder by performing a treatment to finely precipitate the M ″ component or M ″ compound in the main phase is specifically exemplified (Japanese Patent Laid-Open Nos. Hei 4-216601 and Hei Hei). However, since the N content of these materials remains as low as 13 to 15 atomic%, it is not possible to generate the density of the N concentration distribution enough to generate a sufficient pinning point. Can not.
[0030]
Therefore, the material of the present invention produces a pinning type microstructure by non-uniformity of N, not by the fine precipitation of Cr. Therefore, the magnetic material is completely different from the magnetic material disclosed in the above publication.
Hereinafter, the production method of the present invention will be exemplified.
(1) Preparation of master alloy
The magnetic material of the present invention has a microstructure in which pinning points are finely dispersed in the R-Fe-M alloy by introducing excess N, for example, a microstructure in which pinning points exist at the boundaries of the cell structure. When M coexists at the pinning point, the value of the coercive force becomes extremely large. Therefore, the M component is added at the stage of adjusting the mother alloy.
[0031]
R-Fe-M alloys can be manufactured by b) high-frequency melting method in which R, Fe components, and M metal are melted by high frequency and cast into a mold, and b) metal components are loaded into a boat such as copper, and arc discharge is performed. C) Arc melting method that melts by means of c) Super rapid cooling method in which molten metal melted at high frequency is dropped on a rotating copper roll to obtain a ribbon-like alloy; d) Alloy powder is obtained by spraying molten metal melted at high frequency with gas Gas atomization method, e) Fe component and / or M powder or Fe-M alloy powder, R and / or M oxide powder, and reducing agent are reacted at a high temperature to reduce R or R and M R / D method in which R or R and M are diffused into Fe component and / or Fe-M alloy powder, and f) Mechanical alloying method in which each metal component and / or alloy is reacted while being pulverized with a ball mill or the like, G) Top The alloy obtained by either method is heated in a hydrogen atmosphere, once decomposed into R and / or M hydride, Fe component and / or M or Fe-M alloy, and then expelled hydrogen as low pressure at high temperature. However, any of the HDDR methods of recombining and alloying may be used.
[0032]
When the high frequency melting method or the arc melting method is used, the soft magnetic component mainly composed of Fe is likely to precipitate when the alloy is solidified from the molten state, and the coercive force is lowered particularly after the nitriding step. Therefore, for the purpose of eliminating this soft magnetic component or increasing the crystal structure of rhombohedral or hexagonal crystals, a gas or a vacuum containing at least one of an inert gas such as argon and helium and a hydrogen gas is used. It is effective to perform annealing in the temperature range of 600 ° C to 1300 ° C. The alloy produced by this method has a large crystal grain size, good crystallinity, and a high residual magnetic flux density as compared with the case of using an ultra-quenching method or the like. Therefore, this alloy contains a large amount of a homogeneous main raw material phase, and is most preferable as a master alloy for obtaining the magnetic material of the present invention.
(2) Coarse grinding and classification
Although it is possible to directly nitride the alloy ingot produced by the above method, if the crystal grain size is larger than 500 μm, the nitriding time becomes longer, and it is more efficient to perform nitriding after coarse pulverization. When the thickness is 200 μm or less, the nitriding efficiency is further improved, which is particularly preferable.
[0033]
The coarse pulverization is performed using a jaw crusher, a hammer, a stamp mill, a rotor mill, a pin mill, a coffee mill or the like. Even if a pulverizer such as a ball mill or a jet mill is used, an alloy powder suitable for nitriding can be prepared depending on conditions. A method in which hydrogen is occluded in the mother alloy and then pulverized by the pulverizer, or a method in which hydrogen is occluded and released repeatedly may be used.
[0034]
Further, after coarse pulverization, adjusting the particle size using a sieve, a vibration or sonic classifier, a cyclone, etc. is also effective for more uniform nitriding.
After rough pulverization and classification, annealing in an inert gas or hydrogen can remove structural defects and is effective in some cases.
In the above, the preparation method of the powder raw material or ingot raw material of the rare earth-iron component-M component alloy in the production method of the present invention has been illustrated. Depending on the crystal grain size, pulverized particle size, surface state, etc. of these raw materials, There is a difference in the optimum conditions for nitriding as shown in FIG.
(3) Nitriding and annealing
Nitriding is performed by bringing a gas containing a nitrogen source such as ammonia gas or nitrogen gas into contact with the R—Fe—M component alloy powder or ingot obtained in the above (1) or (1) and (2) to obtain a crystal structure. This is a step of introducing nitrogen into the inside.
[0035]
At this time, it is preferable to coexist hydrogen in the nitriding atmosphere gas because nitriding efficiency is high and nitriding can be performed while the crystal structure is stable. In order to control the reaction, an inert gas such as argon, helium, or neon may coexist.
The most preferable nitriding atmosphere is a mixed gas of ammonia and hydrogen. In particular, if the ammonia partial pressure is controlled in the range of 0.1 to 0.7, the nitriding efficiency is high and the entire nitrogen content range of the present invention is magnetized. A material can be made.
[0036]
The nitriding reaction can be controlled by gas composition, heating temperature, heat treatment time, and applied pressure.
Of these, the heating temperature varies depending on the mother alloy composition and the nitriding atmosphere, but is preferably selected in the range of 200 to 650 ° C. When the temperature is lower than 200 ° C., nitriding does not proceed. When the temperature exceeds 650 ° C., the main raw material phase is decomposed, and nitriding cannot be performed while maintaining the rhombohedral or hexagonal crystal structure. In order to increase the nitriding efficiency and the main phase content, a more preferable temperature range is 250 to 600 ° C.
[0037]
In addition, annealing in an inert gas and / or hydrogen gas after nitriding is preferable in terms of improving magnetic properties.
Examples of the nitriding / annealing apparatus include horizontal and vertical tubular furnaces, rotary reactors, and sealed reactors. In any apparatus, it is possible to adjust the magnetic material of the present invention, but it is particularly preferable to use a rotary reactor to obtain a powder having a uniform nitrogen composition distribution.
[0038]
The gas used for the reaction is an air flow system in which an air flow of 1 atm or more is sent to the reactor while keeping the gas composition constant, an encapsulating system in which the gas is sealed in a region of a pressure of 0.01 to 70 atm, or a combination thereof. Etc.
As a manufacturing method of this magnetic material, after preparing a mother alloy having an R—Fe—M composition by the method illustrated in (1) or (1) and (2), nitriding is performed by the method shown in (3). Most preferably, a process is used. In particular, after heat-treating the alloy obtained in (1) or an alloy obtained by pulverizing and classifying the alloy by the method (2) at 600 to 1300 ° C. in an atmosphere containing at least one of an inert gas and a hydrogen gas, When nitriding is performed after performing an annealing process by heat treatment in an atmosphere containing ammonia gas at a temperature in the range of 200 to 650 ° C., a magnetic material with extremely little deterioration in coercive force due to oxidation can be obtained.
[0039]
The above is an explanation of the method for producing the R—Fe—M—N magnetic material of the present invention. In particular, when the magnetic material of the present invention is applied as a practical hard magnetic material, (4) (5) Magnetic field shaping, (6) Magnetization may be performed. Of these, (4) a method of introducing a component O in the re-pulverization step to obtain a material with higher moldability and magnet characteristics is effective. An example is briefly shown below.
(4) Re-grinding
In the re-pulverization step, in order to pulverize finer powder than the R-Fe-MN-based material, or in order to obtain the R-Fe-MNH-O-based material, the R-Fe-MN- This is a process performed for the purpose of introducing O and H components into the MN magnetic material.
[0040]
As the re-pulverization method, in addition to the method described in (2), a rotating ball mill, a vibration ball mill, a planetary ball mill, a wet mill, a jet mill, a cutter mill, a pin mill, an automatic mortar, and combinations thereof are used.
As a method for adjusting the amount of introduction of the O component and H component within the range of the present invention, there is a method of controlling the amount of water and oxygen concentration in the regrinding atmosphere.
[0041]
For example, when a dry pulverizer such as a jet mill is used, the moisture content in the pulverized gas is maintained at a predetermined concentration in the range of 1 ppm to 1% and the oxygen concentration is in the range of 0.01 to 5%, or wet pulverization such as a ball mill. When using a machine, the amount of oxygen is adjusted by adjusting the water content in ethanol or other grinding solvent to a range of 0.1 wt ppm to 80 wt% and the dissolved oxygen content in the range of 0.1 wt ppm to 10 wt ppm. Control within an appropriate range.
[0042]
Further, the amount of oxygen can be adjusted by carrying out the handling operation of the re-pulverized particles in a glove box controlled to various oxygen partial pressures.
The fine powder having a particle size of less than 10 μm by re-grinding is slightly inferior in oxidation resistance, but when used in combination with the coarse powder of 10 μm or more of the present invention as described later, the magnetic properties can be improved. Yes, it may be preferable.
[0043]
In the magnetic material of the present invention, the coercive force hardly changes depending on the pulverized particle diameter, and the magnetization is not significantly reduced. Therefore, when the coarse powder of the present invention having a size of 10 μm or more and the fine powder pulverized by the above method are mixed and molded, the filling rate is increased, so that a molded product with high magnetization and maximum energy product can be produced, and a practically preferable magnet. Become a material. However, it should be noted that the squareness ratio may be lowered depending on the mixing ratio of the coarse powder and the fine powder, that is, the particle size distribution.
(5) Magnetic field shaping
For example, when the magnetic powder obtained in (3) or (3) and (4) is applied to an anisotropic bonded magnet, it is compression molded in a magnetic field after being mixed with a thermosetting resin or a metal binder, After kneading with a thermoplastic resin, injection molding is performed in a magnetic field, and magnetic field molding is performed.
[0044]
The magnetic field shaping is preferably performed in a magnetic field of 10 kOe or more, more preferably 15 kOe or more, in order to sufficiently align the R—Fe—MN magnetic material.
(6) Magnetization
Anisotropic bonded magnets and sintered magnet materials obtained in (5), isotropic bonded magnets and sintered powders obtained by molding the powder obtained in (3) or (3) and (4) together with resin and metal binder. The magnetized material is usually magnetized in order to enhance the magnet performance.
[0045]
Magnetization is performed by, for example, an electromagnet that generates a static magnetic field, a condenser magnetizer that generates a pulsed magnetic field, or the like. The magnetic field strength for sufficiently magnetizing is preferably 15 kOe or more, more preferably 30 kOe or more.
(7) Addition of M 'component
(3) or a method in which M ′ component such as Zn is further added to the magnetic powder obtained in (3) and (4), and heat treatment is performed before or after the step (5) to obtain various magnetic materials. This is an effective method in terms of improving the squareness ratio.
[0046]
【Example】
Hereinafter, the present invention will be described specifically by way of examples.
The evaluation method is as follows.
(1) Magnetic properties
Copper powder is mixed with R-Fe-MN magnetic material or R-Fe-N magnetic material, which is a coarse powder with an average particle size of about 30-36 μm or a fine powder of about 2 μm, in an external magnetic field of 15 kOe for 2 tons. / Cm 2 After molding with a magnetic field of 80 kOe at room temperature, the intrinsic coercivity (iHc / kOe) and magnetization (emu / g) at room temperature were measured using a vibrating sample magnetometer (VSM).
[0047]
For molded magnets, pulse magnetizing with a magnetic field of 80 kOe at room temperature, followed by room temperature intrinsic coercivity (iHc / kOe), magnetization (kG), (BH) max [MGOe] was measured.
(2) Nitrogen content, oxygen content and hydrogen content
Si Three N Four (SiO 2 The amount of nitrogen was quantified by an inert gas melting method.
(3) Average particle size
The volume equivalent diameter distribution was measured using a laser diffraction particle size distribution analyzer, and the median diameter obtained from the distribution curve was evaluated.
(4) Oxidation resistance
A powder having an average particle size of about 30 to 36 μm or about 2 μm is put in a thermostatic bath at 110 ° C., and the intrinsic coercive force after 200 hours is measured in the same manner as in (1), and compared with the result of (1). The retention ratio (%) of the intrinsic coercive force was obtained. The molded magnet was evaluated in the same manner. The higher the retention rate, the higher the oxidation resistance. In particular, in this test, evaluation was made without adding various binders, so those with a retention rate exceeding 90% can be used as practical physical properties when, for example, a bonded magnet is used, and those with a retention rate exceeding 95% are practical. It can be determined that the material is extremely suitable.
(5) Temperature characteristic test
Using the VSM, the intrinsic coercivity of the sample prepared in (1) was measured in the temperature range from room temperature to 150 ° C. The rate of decrease in coercivity per 1 ° C. was calculated from the values of room temperature and the intrinsic coercivity at 150 ° C., and the temperature change rate β [reversible temperature coefficient of intrinsic coercivity] (% / ° C.) was determined. The smaller the coercive force temperature change rate, the better the material. When such a material is applied to a permanent magnet material having a small permeance, the irreversible temperature coefficient is generally small even if the coercive force at room temperature is not so high, and is preferably used for higher temperature applications and flat material applications.
[0048]
[Example 1]
Using Sm with a purity of 99.9%, Fe with a purity of 99.9% and Cr with a purity of 99.9%, melting and mixing in a high-frequency melting furnace in an argon gas atmosphere, and further annealing in an argon atmosphere at 1150 ° C. for 20 hours Sm 10.5 Fe 85.0 Cr 4.5 An alloy of composition was prepared.
[0049]
This alloy was pulverized with a jaw crusher, then further pulverized with a rotor mill in a nitrogen atmosphere, and the particle size was adjusted with a sieve to obtain a powder having an average particle size of about 50 μm.
This Sm—Fe—Cr alloy powder was charged into a horizontal tube furnace and heated at 465 ° C. for 1.75 hours in a mixed gas stream of ammonia partial pressure 0.35 atm and hydrogen gas 0.65 atm, followed by argon stream After annealing for 1 hour, the average particle size was adjusted to about 30 μm.
[0050]
Table 1 shows the composition, magnetic characteristics, oxidation resistance, and temperature characteristics test results of the obtained Sm—Fe—Cr—N powder.
As a result of analysis by the X-ray diffraction method, diffraction lines mainly showing rhombohedral crystals were observed, and diffraction lines were also observed near 2θ = 44 ° (Cu, Kα rays).
[0051]
[Example 2]
An R—Fe—Co—Cr—N-based powder having an average particle size of about 30 μm was obtained in the same manner as in Example 1 except that the composition of the mother alloy was changed to the composition shown in Table 1. The results are shown in Table 1.
As a result of analysis by the X-ray diffraction method, diffraction lines mainly showing rhombohedral crystals were observed, and relatively large diffraction lines were observed in the vicinity of 2θ = 44 ° (Cu, Kα rays).
[0052]
Furthermore, the powder of Example 2 was pulverized by a ball mill to an average particle size of about 2 μm. The iHc of this material was 8.5 kOe.
This result shows that the intrinsic coercive force iHc has no particle size dependency in the powder of Example 2.
The evaluation results of the powder having an average particle size of about 2 μm are also shown in Table 1 (Reference Example 1).
[0053]
Examples 3 to 10
Except for changing the composition of the mother alloy to the composition shown in Table 1, a rare earth-iron component-M component-nitrogen powder having an average particle size of about 30 μm was obtained by substantially the same operation as in Example 1. The results are shown in Table 1.
[0054]
[Comparative Example 1]
Sm—Fe—N-based powders having the compositions shown in Table 1 were obtained in the same manner as in Example 1 except that Cr was not added and the nitriding time was 2 hours. The iHc of this material was 0.5 kOe. Further, this material was pulverized to about 2 μm with a ball mill. These results are shown in Table 1.
[0055]
[Comparative Example 2]
Sm—Fe—Cr—N having the composition shown in Table 1 was used in the same manner as in Example 1 except that the nitriding conditions were 420 ° C., ammonia partial pressure 0.30 atm, hydrogen partial pressure 0.70 atm, and 2.5 hours. A system powder was obtained. The iHc of this material was 0.35 kOe. Further, this material was pulverized to about 2 μm with a ball mill. These results are shown in Table 1.
[0056]
[Comparative Example 3]
The Sm—Fe—Cr—N-based powder having a particle size of about 30 μm obtained in Example 1 was 2 ton / cm. 2 After magnetic field shaping under the condition of 15 kOe, heat treatment was performed under conditions of 1100 ° C. and 1 hour in an argon atmosphere. The iHc of the molded product when rapidly cooled was 0.1 kOe or less. The iHc of the powder obtained by pulverizing this compact again to about 30 μm was 0.1 kOe or less. As a result of analyzing the crystal structure of this material by X-ray diffraction, diffraction lines corresponding to α-iron and iron nitride were mainly detected. This did not contain the rhombohedral or hexagonal crystal structure in the present invention.
[0057]
[Comparative Example 4]
Sm 11.0 Fe 85.0 Zr 1.0 Mn 3.0 An alloy ingot was obtained by melting and casting using a high frequency induction furnace so that the composition of This alloy was subjected to a solution treatment in an argon atmosphere at 1100 ° C. for 24 hours, and then an aging treatment at 800 ° C. for 1 hour. The solution treatment was gas quenching to room temperature, and the aging treatment was furnace cooling. Also, by XRD, the mother alloy after solution treatment is mostly Sm. 2 Fe 17 Although it was a single phase, it was confirmed that a slightly Sm-rich phase was present.
[0058]
The obtained alloy was pulverized in an argon atmosphere using a jaw crusher and a coffee mill and classified to 45 to 150 μm, and the obtained alloy powder was put in an alumina boat and held in a nitriding furnace. The nitriding treatment was performed in 1 atm of pure nitrogen at 500 ° C. for 24 hours. Next, the nitrided alloy was taken out after being cooled in a nitriding furnace.
[0059]
The obtained Sm—Fe—M ″ component-N-based material had a nitrogen content of 5.0 atomic%, a saturation magnetization of 114 emu / g, and an intrinsic coercive force of 0.09 kOe.
[0060]
[Comparative Example 5]
Sm 11.0 Fe 65.0 Co 20.0 Ti 1.0 Mn 3.0 Thus, an alloy ingot was obtained by melting and casting using a high-frequency melting furnace. This was processed in the same manner as in Comparative Example 4 to obtain Sm—Fe—M ″ component—N-based material powder.
The obtained magnetic powder had a nitrogen content of 4.6 atomic%, a saturation magnetization of 132 emu / g, and an intrinsic coercive force of 0.08 kOe.
[0061]
[Comparative Example 6]
Sm 10.0 Ce 2.0 Fe 64.0 Co 20.0 Ti 1.0 Mn 3.0 Thus, an alloy ingot was obtained by melting and casting using a high-frequency melting furnace. This was processed in the same manner as in Comparative Example 4 to obtain Sm—Fe—M ″ component—N-based material powder.
The obtained magnetic powder had a nitrogen content of 7.3 atomic%, a saturation magnetization of 131 emu / g, and a coercive force of 0.1 kOe.
[0062]
[Table 1]
Figure 0003645312
[0063]
【The invention's effect】
As described above, according to the present invention, rare earth-iron component-M component-nitrogen (-hydrogen-oxygen) having a coarse powder of 10 μm or more, high coercive force, and excellent oxidation resistance and temperature characteristics. A magnetic system material can be provided.

Claims (6)

一般式RαFe(100-α-β-γ)MβNγで表される磁性材料であり、(但し、Rは希土類元素のうち少なくとも一種、MはCr、Ti、Zr,Hfのうち少なくとも1種、α、β、γは原子%で、下式を満たす)
3≦α≦20
1≦β≦25
17≦γ≦25
その主相が、少なくとも前記R、Fe、M及びNを成分とする菱面体晶又は六方晶の結晶構造を有した相であり、主相の周りが、10〜200nmの結晶粒子径を有すると共に、N濃度の高い部分及び/又は結晶格子の崩れた或いは崩れかけた部分で取り囲まれたセル構造を有し、かつ該磁性材料の平均粒子径が10μm以上であってその保磁力が3.5kOeを超えることを特徴とする磁性材料。
A magnetic material represented by the general formula RαFe (100-α-β-γ) MβNγ, wherein R is at least one of rare earth elements, M is at least one of Cr, Ti, Zr, and Hf, α , Β and γ are atomic% and satisfy the following formula)
3 ≦ α ≦ 20
1 ≦ β ≦ 25
17 ≦ γ ≦ 25
The main phase is a phase having a rhombohedral or hexagonal crystal structure containing at least R, Fe, M and N as components, and the main phase has a crystal particle diameter of 10 to 200 nm. a high N concentration portion and / or has a cell structure that is surrounded by the collapsed or crumbling portions of the crystal lattice, and the coercive force average particle diameter of the magnetic material is not more 10μm or 3.5kOe A magnetic material characterized by exceeding .
Fe成分の0.01〜50原子%をCoで置換した組成を有する請求項1の磁性材料。2. The magnetic material according to claim 1 , having a composition in which 0.01 to 50 atomic% of the Fe component is substituted with Co. R成分の50原子%以上がSmである請求項1または2のいずれかの磁性材料。One of magnetic material according to claim 1 or 2 to 50 atom% of R component is Sm. M成分がCrである請求項1ないしのいずれかの磁性材料。One of the magnetic material of claims 1 to 3 M component is Cr. 実質的にR、Fe、Mからなる合金を、アンモニアガスを含む雰囲気下で、200〜650℃の範囲で熱処理することを特徴とする請求項1ないしのいずれかに記載の磁性材料の製造法。The magnetic material according to any one of claims 1 to 4 , wherein the alloy substantially consisting of R, Fe, and M is heat-treated at 200 to 650 ° C in an atmosphere containing ammonia gas. Law. 実質的にR−Fe−Mからなる合金を、不活性ガス及び水素ガスのうち少なくとも一種を含む雰囲気中、または真空中で、600〜1300℃の範囲で熱処理したのち、アンモニアガスを含む雰囲気下で、200〜650℃の範囲で熱処理して窒素を導入することを特徴とする請求項1ないし4のいずれかに記載の磁性材料の製造法。  An alloy consisting essentially of R—Fe—M is heat-treated in an atmosphere containing at least one of an inert gas and a hydrogen gas or in a vacuum at a temperature in the range of 600 to 1300 ° C., and then in an atmosphere containing ammonia gas. 5. The method for producing a magnetic material according to claim 1, wherein nitrogen is introduced by heat treatment in a range of 200 to 650 ° C. 6.
JP12172495A 1994-05-25 1995-05-19 Magnetic materials and manufacturing methods Expired - Lifetime JP3645312B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12172495A JP3645312B2 (en) 1994-05-25 1995-05-19 Magnetic materials and manufacturing methods

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-111019 1994-05-25
JP11101994 1994-05-25
JP12172495A JP3645312B2 (en) 1994-05-25 1995-05-19 Magnetic materials and manufacturing methods

Publications (2)

Publication Number Publication Date
JPH0845718A JPH0845718A (en) 1996-02-16
JP3645312B2 true JP3645312B2 (en) 2005-05-11

Family

ID=26450505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12172495A Expired - Lifetime JP3645312B2 (en) 1994-05-25 1995-05-19 Magnetic materials and manufacturing methods

Country Status (1)

Country Link
JP (1) JP3645312B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1187118A (en) * 1997-09-01 1999-03-30 Toshiba Corp Material and manufacture of magnet and bond magnet using the same
US7713360B2 (en) 2004-02-26 2010-05-11 Shin-Etsu Chemical Co., Ltd. Rare earth permanent magnet
JP2005243883A (en) * 2004-02-26 2005-09-08 Shin Etsu Chem Co Ltd Rare earth permanent magnet
CN109982791B (en) * 2016-11-28 2022-02-22 国立大学法人东北大学 Rare earth iron-nitrogen-based magnetic powder and method for producing same
WO2021085521A1 (en) * 2019-10-29 2021-05-06 Tdk株式会社 Sm-Fe-N RARE EARTH MAGNET, PRODUCTION METHOD THEREFOR, AND RARE EARTH MAGNET POWDER

Also Published As

Publication number Publication date
JPH0845718A (en) 1996-02-16

Similar Documents

Publication Publication Date Title
EP0101552B2 (en) Magnetic materials, permanent magnets and methods of making those
Rong et al. Nanocrystalline and nanocomposite permanent magnets by melt spinning technique
JP2751109B2 (en) Sintered permanent magnet with good thermal stability
Chen et al. Magnetic properties and microstructure of mechanically milled Sm 2 (Co, M) 17-based powders with M= Zr, Hf, Nb, V, Ti, Cr, Cu and Fe
JP3715573B2 (en) Magnet material and manufacturing method thereof
EP1127358B1 (en) Sm (Co, Fe, Cu, Zr, C) COMPOSITIONS AND METHODS OF PRODUCING SAME
JP3560387B2 (en) Magnetic material and its manufacturing method
JP3488358B2 (en) Method for producing microcrystalline permanent magnet alloy and permanent magnet powder
JPH01219143A (en) Sintered permanent magnet material and its production
JP4170468B2 (en) permanent magnet
JPH06207203A (en) Production of rare earth permanent magnet
JP3645312B2 (en) Magnetic materials and manufacturing methods
WO2004030000A1 (en) Method for producing r-t-b based rare earth element permanent magnet
JP2740981B2 (en) R-Fe-Co-BC permanent magnet alloy with excellent thermal stability with small irreversible demagnetization
JP3303044B2 (en) Permanent magnet and its manufacturing method
JP3784085B2 (en) Magnetic material having stable coercive force and method for producing the same
JPH06207204A (en) Production of rare earth permanent magnet
JPH06124812A (en) Nitride magnet powder and its synthesizing method
JP3209291B2 (en) Magnetic material and its manufacturing method
JPH06112019A (en) Nitride magnetic material
JP3294645B2 (en) Nitride magnetic powder and its production method
JPH04260302A (en) Magnetic powder and its manufacture and bonded magnet
JP3209292B2 (en) Magnetic material and its manufacturing method
JP2000216015A (en) Compressed type rigid magnetic material and manufacture thereof
JP5235264B2 (en) Rare earth sintered magnet and manufacturing method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040809

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050203

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 5

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term