JP3784085B2 - Magnetic material having stable coercive force and method for producing the same - Google Patents

Magnetic material having stable coercive force and method for producing the same Download PDF

Info

Publication number
JP3784085B2
JP3784085B2 JP29006494A JP29006494A JP3784085B2 JP 3784085 B2 JP3784085 B2 JP 3784085B2 JP 29006494 A JP29006494 A JP 29006494A JP 29006494 A JP29006494 A JP 29006494A JP 3784085 B2 JP3784085 B2 JP 3784085B2
Authority
JP
Japan
Prior art keywords
magnetic
coercive force
magnetic material
atomic
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29006494A
Other languages
Japanese (ja)
Other versions
JPH08144024A (en
Inventor
岡本  敦
伸嘉 今岡
恭彦 入山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP29006494A priority Critical patent/JP3784085B2/en
Publication of JPH08144024A publication Critical patent/JPH08144024A/en
Application granted granted Critical
Publication of JP3784085B2 publication Critical patent/JP3784085B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2

Description

【0001】
【産業上の利用分野】
本発明は、特に小型モーター、アクチュエーターなどの用途に最適な、磁気特性、中でも保磁力に優れた磁性材料に関するものである。
【0002】
【従来の技術】
磁性材料は家庭電化製品、音響製品、自動車部品やコンピューターの周辺端末機まで、幅広い分野で使用されており、エレクトロニクス材料としての重要性は年々増大しつつある。特に最近、各種電気・電子機器の小型化、高効率化が要求されてきたため、より高性能の磁性材料が求められている。
【0003】
この時代の要請に応え、Sm−Co系、Nd−Fe−B系などの希土類磁性材料の需要が急激に増大している。
しかし、Sm−Co系は原料供給が不安定で原料コストが高く、Nd−Fe−B系は耐熱性、耐食性に劣る問題点がある。
一方、新しい希土類系磁性材料として、希土類−鉄−窒素系磁性材料が提案されている(例えば特開平2−57663号公報)。この材料は、磁化、異方性磁界、キュリー点が高く、Sm−Co系、Nd−Fe−B系の欠点を補う磁性材料として期待されている。
【0004】
しかしながら、前述の公報に開示された希土類−鉄−窒素系材料は10μm以下に細かく粉砕して使用しなければ、実用的な高い保磁力が達成されない。10μm以下に粉砕すると、表面が酸化され易く保磁力が低下したり、磁粉の凝集が激しくなって圧縮成形の際、密度が上昇しなかったりするため、この材料が本来有している高磁気特性を充分発揮することができない。
【0005】
【発明が解決しようとする課題】
本発明は、R−TM−N系材料において、微構造を限定することにより、10μm以上の大粒径においても高い保磁力と磁化を有し、前述の問題点を解決したR−TM−N組成の磁性材料とその製造法とを提供することを目的とする。
【0006】
【課題を解決するための手段】
高い保磁力を有するR−TM−N系磁性材料を得るために、TMの組み合わせや、Nの量と分布を制御することで、微構造を変化させた系について鋭意検討した結果、保磁力と共に磁化が高くなる微構造および組成を有した希土類(R)−遷移金属(TM)−窒素(N)系磁性材料とその製造法を見いだし、本発明を成すに至った。
【0007】
即ち、本発明は
(1)RとTMとN(RはYを含む希土類元素のうちの少なくとも一種、TMはFeを25原子%以上含むか、または、Feの0.01〜50原子%をCoに置き換え、Fe、Coの合計量が25原子%以上であり、さらに、Mn、Ni、Cr、Zr、Ti、Hf、V、Nbのうち少なくとも一種を含む遷移金属、Nは窒素)を含む磁性材料であって、組成式が実質的にRTM100−a−b(a、bは原子百分率、5≦a≦20、12≦b<15)で表され、主相の結晶構造が菱面体晶または六方晶であり、副相として介在物相が微細分散しており、介在物相の大きさrが1nm≦r≦20nm、該介在物相の重心間平均距離r’が1nm≦r’≦200nmであることを特徴とする磁性材料。
(2)微細分散している介在物相間の重心間平均距離r’と微細分散している介在物相の大きさrとの比r’/rが、2≦r’/r≦100であることを特徴とする(1)に記載の磁性材料。
(3)R−TM合金にNを気相から導入し、実質的にRTM100−a−b(a、bは原子百分率、5≦a≦20、15≦b<30)で表される合金とした後、水素を含む雰囲気下で加熱処理して得られることを特徴とする(1)または(2)のいずれかに記載の磁性材料の製造方法である。
【0008】
以下本発明について詳細に説明する。
希土類元素(R)としては、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、YbおよびLuのうち少なくとも一種を含めば良く、従って、ミッシュメタルやジジム等の二種以上の希土類元素の混合物を用いても良いが、好ましい希土類としては、Y、Ce、Pr、Nd、Sm、Gd、Dy、Erである。さらに好ましくは、Y、Ce、Pr、Nd、Smである。特に、SmをR成分全体の50原子%以上含むと、保磁力が際立って高い材料が得られる。
【0009】
また、ここで用いる希土類元素は工業的生産により入手可能な純度でよく、製造上混入が避けられない不純物、例えばO、H、Al、F、Na、Mg、Ca、Liなどが存在しているものであっても差し支えない。
遷移金属(TM)としては、Ti,V,Cr,Mn,Fe,Co,Ni,Cu,Zn,Ga,Zr,Nb,Mo,Pd,Ag,Cd,In,Hf,Ta,W,Pt,Pbのうち少なくとも一種を含めば良いが、強磁性を担う鉄(Fe)を25原子%以上含むのが望ましい。また、このFeの0.01〜50原子%を、Coで置き換え、Fe,Coの合計量が25原子%以上であっても良い。Coの導入により、キュリー点と磁化とが上昇するとともに、耐酸化性も向上できる。以下においては、遷移金属と表記した場合、Feを25原子%以上含み、さらに、Feの0.01〜50原子%をCoで置換したものを含むものとする。
【0010】
Fe、Co以外で、粗粉の保磁力を高める効果があるTMとして、Mn、Ni、Cr、Zr、Ti、Hf、V、Nbなどが挙げられ、これらのうち少なくとも1種を0.1原子%〜10原子%の範囲で含むのが好ましい。
本発明におけるR−TM−N系磁性材料の各組成は、希土類成分が5〜20原子%、遷移金属成分が30〜83原子%、Nが12〜15原子%の範囲とし、これらを同時に満たすものである。
【0011】
R成分が5原子%未満のとき、鉄成分を多く含む軟磁性相が母合金鋳造・焼鈍後も許容量を越えて分離し、このような種類の軟磁性相は窒素導入後の保磁力に悪影響を及ぼすので実用的な永久磁石材料として好ましくない。またR成分が20原子%を越えると、残留磁束密度が低下して好ましくない。R成分比として、好ましくは5原子%以上15原子%以下、さらに好ましくは8原子%以上12原子%以下である。
【0012】
主相の組成としては、 RaTM100-a-bbにおいて、原子百分率で5≦a≦20及び12≦b<15である必要がある。ここで、a<5では異方性が十分でないため好ましくなく、a>20では磁化が低すぎて好ましくない。また、b≧15では磁化や異方性を低下させて望ましくない。また、構造としては、菱面体晶または六方晶であることが必要である。
【0013】
ここで主相とは、組成の主成分となる相のことであり、結晶性が高く磁化が大きい相であり、この相を有することにより高い磁気特性を有する。しかし、主相単独では保磁力の発現機構がニュークリエイション型であるため、大きな保磁力を得るためには、結晶表面や粒界の平滑化や非磁性相化により、逆磁区の生成を抑えるか、実用温度範囲で単磁区状態が安定な粒径付近まで微粉砕することで、磁壁の移動をしにくくする必要があった。このため、数μm以下の粒径で高保磁力を発揮する磁性材料においては、微粉砕中または後に、磁粉表面の酸化が避けられない。そこで、本発明は、酸化による劣化を避けるために、粗粉体でも高保磁力が発現するようにしたものである。すなわち、介在物相の存在により、磁壁の移動が抑えられ、高保磁力が発現する。ピンニングサイトとして効果を増すためには、介在物相は、主相の内部に分散することが望ましい。
【0014】
介在物相の磁気異方性は、主相と大きく異なるのが望ましく、主相と介在物相の異方性エネルギーの比が2分の1以下または2以上であるのが好ましい。介在物相の結晶構造としては、主相と異なるものとしては、bcc相、アモルファス相、fcc相、などが挙げられる。主相と同じ菱面体晶、六方晶であっても窒素組成やTM組成が大きく異なる相であればよい。
【0015】
また、主相中に分散した介在物相のサイズrは、主相の磁壁幅と同じくらいか、より小さいのが望ましく、1nm≦r≦20nmの範囲であるのが望ましい。ここでr<1nmでは、磁壁幅より小さすぎるため、磁壁をトラップできず、磁壁が移動し易くなり、保磁力が低下して好ましくなく、r>20nmでは、主相の磁壁幅より大きくなり、また介在物相の体積分率が大きくなって磁化が低下し、好ましくない。
【0016】
また、微細分散している介在物相間の距離も磁気特性に大きく影響を及ぼす。微細分散している介在物相間の平均距離として、各介在物相と最近接の介在物相の重心間距離をr’とすると、r’は、1nm≦r’≦1000nmであることが好ましく、さらに好ましくは、1nm≦r’≦200nmである。r’<1nmでは、主相の格子の大きさに近すぎ、主相の結晶子サイズが小さくなって好ましくなく、また、r’>200nmでは磁壁をピン止めしがたく、r’>1000nmでは、磁壁をピン止めすることができない。また、介在物相のサイズとの比r’/rは、2<r’/r<100であることが望ましく、さらに好ましくは3<r’/r<20であるのが望ましい。ここで、r’/r>100では、介在物相間の距離が離れすぎ、磁壁をピン止めするのに十分でない。また、r’/r<2では、介在物相間の距離が近すぎ、介在物相の占める体積分率が大きくなりすぎるため、磁気特性を低下させて好ましくない。
【0017】
ここに、粗粉体とは平均粒径10μm以上の粉体のことをいい、微粉体とは平均粒径10μm未満の粉体のことをいう。平均粒径は、様々な原理・装置で測定することができ、それぞれ値が異なる。特に断らない限り、平均粒径とは、通常用いられる粒子径分布測定装置で得られた体積相当径分布曲線をもとにして求めたメジアン径のことをいう。
【0018】
ところでR−TM母合金にNを気相から導入すると、R−TMの結晶格子が膨張する。結晶格子の膨張に伴い、耐酸化性または磁気特性の各項目のうち一項目以上が向上し、実用上好適な磁性材料となる。
ここにいう磁気特性とは、材料の飽和磁化(4πIs)、残留磁束密度(Br)、磁気異方性磁界(Ha)、磁気異方性エネルギー(Ea)、磁気異方性比、キュリー点(Tc)、固有保磁力(iHc)、角形比(Br/4πIs)、最大エネルギー積[(BH)max]、熱減磁率(α、磁化の可逆温度係数と同義)、保磁力の温度変化率(β、保磁力の可逆温度係数と同義)のうち少なくとも一つを言う。但し、磁気異方性比とは、外部磁場を15kOe印加した時の困難磁化方向の磁化(a)と容易磁化方向の磁化(b)の比(a/b)であり、磁気異方性比が小さいもの程、磁気異方性エネルギーが高いと評価される。
【0019】
例えば、R−TM母合金の主原料相として、菱面体構造を有するSm10.5Fe85.0Hf4.5 を選んだ場合、Nを導入することによって、結晶磁気異方性が面内異方性から硬磁性材料として好適な一軸異方性に変化し、磁気異方性エネルギーを初めとする磁気特性と耐酸化性が向上する。
本磁性材料全体に導入されるNの量は、12〜15原子%にしなければならない。15原子%を越えると磁化が低く、磁石材料用途としては実用性が小さい。12原子%未満では保磁力をあまり向上させることができず、好ましくない。
【0020】
また、目的とするR−TM−N系磁性材料のR−TM組成比や副相の量比さらに結晶構造などによって、最適なN量は異なり、例えば菱面体構造を有するSm10.9(Fe0.89Co0.1184.5Mn4.7 を原料合金として選ぶと、最適なN量は14原子%付近となる。
このときの最適なN量とは、目的に応じて異なるが材料の耐酸化性及び磁気特性のうち少なくとも一項目が最適となるN量であり、磁気特性が最適とは磁気異方性比、減磁率及び保磁力の温度変化率の絶対値は極小、その他は極大となることである。
【0021】
本発明により得られたR−TM−N系磁性材料には、水素(H)が15原子%以下、さらに酸素(O)が15原子%以下含まれていてもよい。好ましくは水素量及び酸素量は、10原子%以下及び10原子%以下に制御されている。
従って、特に好ましい本発明のR−TM−N系材料の全体組成(主相と介在物相を含む)は、一般式RαTM(100-α-β-γ-δ) NβHγOδで表わしたとき、α、β、γ、δは原子%で、
2.4≦α≦20
0.8≦β≦30
0≦γ≦10
0≦δ≦10
の範囲である。
【0022】
本発明の材料のうち、菱面体晶を有するSm2 (Fe,Co,Cr)17又は(Sm2 (Fe,Co,Mn)17母合金に窒素成分を導入し、本発明の材料とする方法について、以下に具体的に例示して述べる。ただし、例示したものであり、この組成に限定されるものではない。
磁気異方性エネルギー、磁化、キュリー温度など多くの磁気特性が最適となるSm2 Fe173 材料(例えば、IEEE Trans. Magn.,28,2326(1992))より、Sm2 Fe17あたり窒素が多く導入されて、粗粉体の状態での保磁力が最大となる。
【0023】
NがSm2 Fe17あたり3個を越えて増加していくと、Nは格子間に侵入するため結晶格子が広がり、不安定な状態となる。さらNが増加して4個を超過すると、ついに、結晶格子の崩れた或いは崩れかけた部分が生じる。この部分が介在物相として働く。このとき、TMとして、Fe,Coの他に、共存すると高窒化領域での保磁力が特に大きく増加する元素がある。例えば、30μm程度の粗粉体Sm−Fe−N3元系では、保磁力の最大値が2kOe程度であるのに対して、Crが共存すると、保磁力は6〜11kOeまで増加するし、Mnが共存すると、保磁力は6〜12kOeまで増加する。
【0024】
CrやMnなどの役割については不明であるが、結晶格子の崩れた或いは崩れかけた部分にCrやMnが存在することにより、磁化反転をくい止める効果が生じるものと考える。以上のように、この組成の材料は粗粉でも高い保磁力を有するが、磁化が低く、実用面で適用範囲が限られる。
Nを一旦Sm2 Fe17あたり4個を越えるまで導入し、上記の微構造を有する粗粉体としてから、水素を含む雰囲気下で熱処理するなどの方法を用いて、NをSm2 Fe17あたり3〜4個までとすると、粗粉であってもの保磁力のみならず、磁化も高い実用上極めて好ましい磁性材料となる。
【0025】
また、CrやMnの組成比にもよるが、Sm2 (Fe,Co,Cr)17又はSm2 (Fe,Co,Mn)17あたりのNの数が3個を超えた辺りから4個あたりまでの本発明の材料について、磁気曲線の立ち上がりや保磁力の着磁磁場依存性などを調べた結果、磁化反転機構はピンニング型であることが明らかとなった。この傾向はCoを含まない材料に対しても同様に見られる。
【0026】
磁粉体の表面付近が酸化されて、逆磁区の芽となりうる軟磁性な部分が生じた場合を考える。ニュークリエーション型の材料は磁壁の移動が容易に起こるため、逆磁区が発生すると容易に成長して、保磁力が低下する。このタイプの材料として、前述のSm2 Fe173 材料が挙げられる。一方ピンニング型の材料は、表面付近に逆磁区が生じても磁壁の移動が起こりづらく、高い保磁力を維持する。さらに、保磁力の温度変化率βも磁化反転の機構が異なることにより、大きく改善される可能性がある。
【0027】
本発明の材料は、10μm以上の粒径を有していても保磁力が高いだけでなく、組成域によっては磁化反転機構がピンニング型となり、上記のような理由で酸化による保磁力の低下や保磁力の温度変化率βも改善される。
ただしM成分の種類と含有量によっては母合金鋳造法を選ぶとピニングサイトとして介在物相が主相に分散することがあり、これを窒化することによって本発明の磁性材料を作製することができる。M成分の種類として例示すれば、Mn,Cr,Hf,Ti,Zr,V,Nb,Cu,Inが挙げられ、含有量としては1原子%〜10原子%の範囲が望ましい。
【0028】
以下、本発明の製造法について例示する。
(1)母合金の調製
本発明の磁性材料は、過剰のNを導入することにより、R−TM主原料相中にピンニング点が微分散する微構造、例示すればセル型構造の境界にピンニング点が存在する微構造、をとったとき、ピンニング点にTMが共存すると保磁力の値が極めて大きくなる。従って、TMの添加は母合金調整の段階で行う。
【0029】
R−TM合金の製造法としては、イ)R、TM金属を高周波により溶解し、鋳型などに鋳込む高周波溶解法、ロ)銅などのボートに金属成分を仕込み、アーク放電により溶かし込むアーク溶解法、ハ)高周波溶解した溶湯を、回転させた銅ロール上に落しリボン状の合金を得る超急冷法、ニ)高周波溶解した溶湯をガスで噴霧して合金粉体を得るガスアトマイズ法、ホ)TM合金粉体、R及びまたはTMの酸化物粉体、及び還元剤を高温下で反応させ、RまたはR及びTMを還元しながら、RまたはR及びTMを、TM合金粉末中に拡散させるR/D法、ヘ)各金属成分単体及びまたは合金をボールミルなどで微粉砕しながら反応させるメカニカルアロイング法、ト)上記何れかの方法で得た合金を水素雰囲気下で加熱し、一旦R及びまたはTMの水素化物と、TM合金に分解し、この後高温下で低圧として水素を追い出しながら再結合させ合金化するHDDR法のいずれを用いてもよい。
【0030】
高周波溶解法、アーク溶解法を用いた場合、溶融状態から、合金が凝固する際にFe主体の軟磁性成分が析出しやすく、特に窒化工程を経た後も保磁力の低下を引き起こす。そこで、この軟磁性成分を消失させたり、微構造を調製する目的で、アルゴン、ヘリウムなどの不活性ガス中もしくは真空中、600℃〜1300℃の温度範囲で焼鈍を行うことが有効である。この方法で作製した合金は、超急冷法などを用いた場合に比べ、結晶粒径が大きく結晶性が良好であり、高い残留磁束密度を有している。
【0031】
また超急冷法を用いた場合は、微細な結晶粒が得られ、条件によってはサブミクロンの粒子も調製できる。但し、冷却速度が大きい場合には、合金の非晶質化が起こり、窒化後においても磁化などの磁気特性が低下する。この場合も合金調製後の焼鈍は有効である。なお、焼鈍は後述の窒化工程時に、窒化雰囲気下で行うこともできる。
【0032】
ガスアトマイズ法で得た合金は、球状の形態を取ることが多く、微粉体から粗粉体まで調製することが可能である。この場合も条件によっては焼鈍を行い、結晶性を良好にすることが必要となる。超急冷法、ガスアトマイズ法に加えてR/D法、メカニカルアロイング法、HDDR法により調製した合金は、0.01〜3μmの微細な結晶粒を調整することが可能であるため、本発明の効果をより顕著にすることが可能である。
【0033】
以上の方法で調製した母合金を焼鈍する条件は、組成や目的に応じて、不活性ガス、水素ガスのうち少なくとも一種を含むガス中、真空中の何れかの雰囲気下、及び600〜1300℃の範囲の温度との組合せのなかから選ばれる。
なお、六方晶高温相を作製する場合など、所定温度で焼鈍(溶体化)したのち急冷する過程が必要となる場合は、この過程の制御も(1)の工程に含まれる。急冷溶体化装置としては、水、氷水、空気、油などの冷媒中でクエンチするよう工夫された熱炉、ガスクエンチ炉などが挙げられる。
【0034】
TM成分としてCuやInなどを含む場合、母合金を焼鈍(溶体化)したあと急冷する過程、時効処理をする過程を経て、2相分離構造を作る方法によって、より広い組成範囲でピンニング型の材料が得られ、保磁力の酸化劣化や温度変化がさらに改善される。
(2)粗粉砕及び分級
上記方法で作製した合金インゴットを直接窒化することも可能であるが、結晶粒径が500μmより大きいと窒化処理時間が長くなり、粗粉砕を行ってから窒化する方が効率的である。
【0035】
粗粉砕はジョ−クラッシャー、ハンマー、スタンプミル、ローターミル、ピンミル、コーヒーミルなどを用いて行う。また、ボールミルやジェットミルなどのような粉砕機を用いても、条件次第では窒化に適当な、合金粉末の調製が可能である。母合金に水素を吸蔵させたのち上記粉砕機で粉砕する方法、水素の吸蔵・放出を繰り返し粉化する方法を用いても良い。
【0036】
さらに、粗粉砕の後、ふるい、振動式あるいは音波式分級機、サイクロンなどを用いて粒度調整を行うことも、より均質な窒化を行うために有効である。
粗粉砕、分級の後、不活性ガスや水素中で焼鈍を行うと構造の欠陥を除去することができ、場合によっては効果がある。
以上で、本発明の製造法における希土類−鉄合金の粉体原料またはインゴット原料の調製法を例示したが、これらの原料の結晶粒径、粉砕粒径、微構造、表面状態などにより、以下に示す窒化の最適条件に違いが見られる。
(3)N成分の導入・焼鈍
N成分は、気相よりR−TM合金内に導入する方法が最も好ましい。R−TM合金の結晶構造を基本的に変化させないで膨張させることにより、前述のように磁化、磁気異方性、キュリー点が上昇するからである。雰囲気ガス中に水素を共存させると、N成分の導入効率が高い上に結晶構造内にNを導入させる点で好ましい。
【0037】
窒素成分の導入はアンモニアガス、窒素ガスなどの窒素源を含むガスを、上記(1)または、(1)及び(2)で得たR−TM合金粉体またはインゴットに接触させて、結晶構造内に窒素を導入する工程である。
このとき、窒化雰囲気ガス中に水素を共存させると、窒化効率が高い上に、結晶構造が安定なまま窒化できる点で好ましい。また反応を制御するために、アルゴン、ヘリウム、ネオンなどの不活性ガスなどを共存させる場合もある。
【0038】
最も好ましい窒化雰囲気としては、アンモニアと水素の混合ガスであり、特にアンモニア分圧を0.1〜0.7の範囲に制御すれば、窒化効率が高い上に本発明の窒素量範囲全域の磁性材料を作製することができる。
窒化反応は、ガス組成、加熱温度、加熱処理時間、加圧力で制御し得る。
このうち加熱温度は、母合金組成、窒化雰囲気によって異なるが、200〜650℃の範囲で選ばれるのが望ましい。さらに好ましくは250〜600℃である。
【0039】
また窒化を行った後、不活性ガス及び又は水素ガス中で焼鈍することは磁化を向上させるために必須である。特に水素ガスを含む雰囲気中で焼鈍すると、窒素量を最適にし、磁化を向上させるので、特に好ましい。これは、一度窒素を過剰に加えることで介在物分散型の構造を作り、その後の焼鈍で窒素を抜くことで、磁化を向上させているためである。
【0040】
窒化・焼鈍装置としては、横型、縦型の管状炉、回転式反応炉、密閉式反応炉などが挙げられる。何れの装置においても、本発明の磁性材料を調整することが可能であるが、特に窒素組成分布の揃った粉体を得るためには回転式反応炉を用いるのが好ましい。
反応に用いるガスは、ガス組成を一定に保ちながら1気圧以上の気流を反応炉の送り込む気流方式、ガスを容器に加圧力0.01〜70気圧の領域で封入する封入方式、或いはそれらの組合せなどで供給する。
【0041】
なお、窒化・焼鈍工程を経てから、(2)粗粉砕・分級に例示した方法で、粒子径を調製することも有効である。
本磁性材料の製造方法としては、(1)又は、(1)及び(2)に例示した方法でR−TM組成の母合金を調製してから、(3)で示した方法でN成分を導入する工程を用いるのが最も好ましい。特に(1)又は(2)の工程で本発明の請求項第5項の範囲に含まれる焼鈍処理を行ったのち窒化すると、酸化による保磁力の劣化が極めて小さい磁性材料を得ることができる。
【0042】
以上が本発明のR−TM−N系磁性材料の製造法に関する説明であるが、特に実用的な硬磁性材料として本発明の磁性材料を応用する際には、(4)微粉砕、(5)磁場成形、(6)着磁を行う場合がある。以下、その例を簡単に示す。
(4)微粉砕
微粉砕の方法としては、(2)粗粉砕で用いた方法に加え、回転ボールミル、振動ボールミル、遊星ボールミル、ウエットミル、ジェットミル、カッターミル、ピンミル、自動乳鉢及びそれらの組合せなどが用いられる。
【0043】
本発明の磁性材料は、粉砕粒径によって、ほとんど保磁力が変化せず、また磁化の低下も著しくない。従って、10μm以上の本発明の粗粉体と上記の方法で粉砕した微粉体を1〜50重量%までの範囲で混合して成形すると、充填率が高まるので、磁化や最大エネルギー積の高い成形体が作製でき、実用上好ましい磁石材料となる。但し、粗粉体と微粉体の配合比、即ち粒子径分布によって、角形比が低下する場合があるので注意を要する。
【0044】
(3)又は、(3)及び(4)で得た磁性粉体にZnなどのTM成分をさらに添加し、(5)の工程前或は後に熱処理を行って各種磁石材料とする方法は、角形比を高めたり、耐酸化性をさらに向上させる点で有効な方法である。
(5)磁場成形
例えば、(3)又は、(3)及び(4)で得た磁性粉体を異方性ボンド磁石に応用する場合、熱硬化性樹脂や金属バインダーと混合したのち磁場中で圧縮成形したり、熱可塑性樹脂と共に混練したのち磁場中で射出成形を行ったりして、磁場成形する。
【0045】
磁場成形は、R−TM−N系磁性材料を充分に磁場配向せしめるため、好ましくは10kOe以上、さらに好ましくは15kOe以上の磁場中で行う。
本発明のTM成分は金属バインダーや表面処理剤としても用いられる。
(6)着磁
(5)で得た異方性ボンド磁石や焼結磁石、(3)または、(3)及び(4)で得た粉体を樹脂や金属バインダーとともに無磁場で成形した等方性ボンド磁石や焼結磁石については、磁石性能を高めるために、通常着磁が行われる。
【0046】
着磁は、例えば静磁場を発生する電磁石、パルス磁場を発生するコンデンサー着磁器などによって行う。充分着磁を行わしめるための、磁場強度は、好ましくは15kOe以上、さらに好ましくは30kOe以上である。
【0047】
【実施例】
以下、実施例により本発明を具体的に説明する。
評価方法は以下の通りである。
(1)磁気特性
平均粒径約30μm(比較例1、実施例2においては、約30μmと約2μmの2種)のR−TM−N系磁性材料に銅粉を混ぜ、外部磁場15kOe中、2ton/cm2 で成形し、室温中80kOeの磁場でパルス着磁した後、振動試料型磁力計(VSM)を用いて、室温の固有保磁力(iHc/kOe)及び磁化(emu/g)を測定した。
(2)窒素量
窒素量はSi3 4 (SiO2 を定量含む)を標準試料として、不活性ガス融解法により定量した。
(3)平均粒径
レーザー回折式粒度分布計を用いて、体積相当径分布を測定し、その分布曲線より求めたメジアン径にて評価した。
(4)耐酸化性能
平均粒径約30μmの粉体を、110℃の恒温槽に入れ、200時間後の固有保磁力を(1)と同様にして測定し、(1)の結果と比較して固有保磁力の保持率(%)を求めた。保持率の高いものほど、耐酸化性能が高い。特に、本試験では各種バインダーを添加せず評価しているため、保持率90%を越えるものは、例えばボンド磁石とした時の実用物性として優れた材料と判定できる。
(5)温度特性試験
VSMを用い、室温〜150℃までの温度範囲にて、(1)で調製した試料の固有保磁力を測定した。室温と150℃の固有保磁力の値から、1℃あたりの保磁力の低下率を計算し、保磁力の温度変化率β(%/℃)を求めた。保磁力の温度変化率の小さいものほど実用的に優れた材料である。このような材料はパーミアンスの小さな永久磁石材料に応用する際、室温での保磁力がさほど高くなくても、一般に不可逆温度係数が小さくなり、より高温用途、偏平材料用途に好ましく用いられる。
【0048】
【実施例1】
純度99.9%のSm、純度99.9%のFe、純度99.9%のCo、及び純度99.9%のMnを用いてアルゴンガス雰囲気下高周波溶解炉で溶解混合し、さらにアルゴン雰囲気中、1150℃で20時間焼鈍することにより、Sm10.9(Fe0.89Co0.1184.5Mn4.6 組成の合金を調製した。
【0049】
この合金をジョークラッシャーにより粉砕し、次いで窒素雰囲気中ローターミルでさらに粉砕した後、ふるいで粒度を調整して、平均粒径約50μmの粉体を得た。
このSm−Fe−Co−Mn合金粉体を横型管状炉に仕込み、450℃において、アンモニア分圧0.35atm、水素ガス0.65atmの混合気流中で2.5時間加熱処理し、続いて同温度、水素気流中で1時間焼鈍した後、平均粒径約30μmに調整した。
【0050】
得られたSm−(Fe,Co,Mn)−N系粉体の組成、磁気特性、耐酸化性能、温度特性試験結果を表1に示した。このように高磁気特性を示す原因を探るため、得られた粉体の断面を、透過型電子顕微鏡により観察した(図3)。介在物相(図中の黒い部分)が微細に分散している構造を有している。介在物相のサイズは、1nm〜20nmであり、この微細な構造が、磁壁の移動を妨げる効果を有すると考えられる。
【0051】
なお、X線回折法により解析した結果、菱面体晶を示す回折線、及び44゜(Cu、Kα線)付近に比較的大きな回折線が認められた。また、強度は低くなっており、主相の一部が非晶質になっていると考えられる。
【0052】
【実施例2】
母合金の組成を、表1に示す組成に変更する以外は実施例1と同様な操作によって、平均粒径約30μm、及び2μmのR−TM−N系粉体を得た。その結果を表1に示す。また、得られた粉体の断面を、透過型電子顕微鏡により観察した結果、実施例1と同様の介在物が微分散する構造を有していることがわかった。高磁気特性を示すのはこの構造に起因するものであることは、明らかである。
【0053】
なお、X線回折法により解析した結果、菱面体晶を示す回折線、及び44°(Cu、Kα線)付近に比較的大きな回折線が認められた。
また、得られた粉体を無磁場下で等方性に成型し、保磁力の初磁化曲線を調べた。その結果を図1に示す。この曲線は12kOe辺りに変曲点(磁化Mを磁場Hで2次微分したd2M/dH2の極大点[図1中上向き矢印])を有することは、本材料の保磁力発現機構がピンニング型であることを示唆している。
【0054】
また、得られた粉体を等方性に成型し、着磁磁場を変化させたときの保磁力の変化を調べた。その結果を図2に示す。着磁磁場を上げていくにつれて、保磁力は急激に増加して飽和に到るが、この様子も、本材料の保磁力発現機構がピンニング型であることを示唆している。
【0055】
【実施例3】
実施例2の粉体を、ボールミルにより平均粒径約3μmまで粉砕した。この材料の保磁力は9.1kOeであった。この結果は、実施例2の粉体において、保磁力の粒径依存性がないことを示している。
【0056】
【実施例4、5】
TMの組成を表1に示すとおりとする以外は実施例1と同様な操作により、Sm−TM−N系粉体を得た。その評価結果を表1に示す。また、これらの粉体断面をTEM観察することにより、微構造は実施例1と同様であることがわかった。さらに初磁化曲線の測定により、磁化反転機構はピンニング型であると考えられる。
【0057】
【比較例1】
TMをFeとCoのみとする以外は実施例1と同様にして、Sm10.5(Fe0.9 Co0.1 89.5合金を作製した。
この合金粉末を横型管状炉に仕込み465℃においてNH3 分圧0.35atm、水素ガス0.65atmの混合気流中で2.5時間加熱処理し、続いてアルゴン気流中で1時間焼鈍した後、平均粒径約30μmに調整した。この粗粉体をボールミルで4時間微粉砕し、平均粒径約2μmの微粉体を得た。
【0058】
これらの評価結果を表1に示す。
また、得られた粉体の断面を、透過型電子顕微鏡により観察した結果、実施例において見られたような微細な構造を有していないことがわかった。
【0059】
【表1】

Figure 0003784085
【0060】
【参考例1】
実施例1で得た粒径約30μmのSm−Fe−Mn−N系粉体を、2ton/cm2、15kOeの条件で磁場成形したあと、アルゴン雰囲気下、1100℃、1時間の条件で熱処理を行った。これを急冷したときの成形体の固有保磁力は0.1kOe以下であった。この成形体を再び約30μmに粉砕した粉体の固有保磁力は0.1kOe以下であった。なおこの材料の結晶構造をX線回折により解析した結果、α−鉄、窒化鉄に対応する回折線が主に検出された。
【0061】
【発明の効果】
以上説明した様に、本発明によれば、10μm以上の粗粉体でも保磁力が高く、しかも磁化も高い優れた耐酸化性と温度特性を有した希土類−遷移金属−窒素系磁性材料を提供することができる。
【図面の簡単な説明】
【図1】本発明実施例1で作製したSm9.0 (Fe0.89Co0.1169.9Mn7.8 13.3組成を有する磁性材料の無磁場下成形体の初磁化曲線である。
【図2】本発明実施例2で作製したSm9.0 (Fe0.89Co0.1169.9Mn7.8 13.3組成を有する磁性材料の無磁場下成形体を、着磁磁場を変化させたときの保磁力の変化である。
【図3】本発明実施例1で作製したSm9.3 (Fe0.89Co0.1172.4Mn4.0 14.3組成を有する磁性材料の断面を透過型電子顕微鏡で観察した写真である。[0001]
[Industrial application fields]
The present invention relates to a magnetic material excellent in magnetic characteristics, particularly coercive force, which is most suitable for applications such as small motors and actuators.
[0002]
[Prior art]
Magnetic materials are used in a wide range of fields from home appliances, acoustic products, automobile parts and computer peripheral terminals, and their importance as electronic materials is increasing year by year. In recent years, there has been a demand for miniaturization and high efficiency of various electric / electronic devices, and therefore higher performance magnetic materials are required.
[0003]
In response to the demands of this era, the demand for rare earth magnetic materials such as Sm—Co and Nd—Fe—B is increasing rapidly.
However, the Sm—Co system has a problem that the material supply is unstable and the material cost is high, and the Nd—Fe—B system has inferior heat resistance and corrosion resistance.
On the other hand, a rare earth-iron-nitrogen based magnetic material has been proposed as a new rare earth based magnetic material (for example, JP-A-2-57663). This material has high magnetization, anisotropic magnetic field, and Curie point, and is expected as a magnetic material that compensates for the shortcomings of Sm—Co and Nd—Fe—B systems.
[0004]
However, practically high coercive force cannot be achieved unless the rare earth-iron-nitrogen-based material disclosed in the aforementioned publication is finely pulverized to 10 μm or less. When pulverized to 10 μm or less, the surface tends to be oxidized, the coercive force is lowered, or the aggregation of magnetic powder becomes intense, and the density does not increase at the time of compression molding. Cannot be fully demonstrated.
[0005]
[Problems to be solved by the invention]
In the R-TM-N material, the R-TM-N material has a high coercive force and magnetization even in a large particle size of 10 μm or more by limiting the microstructure, and has solved the above-mentioned problems. An object of the present invention is to provide a magnetic material having a composition and a method for producing the magnetic material.
[0006]
[Means for Solving the Problems]
In order to obtain an R-TM-N magnetic material having a high coercive force, as a result of earnestly examining a system in which the microstructure is changed by controlling the combination of TM and the amount and distribution of N, together with the coercive force The present inventors have found a rare earth (R) -transition metal (TM) -nitrogen (N) magnetic material having a microstructure and composition with high magnetization and a method for producing the same, and have achieved the present invention.
[0007]
That is, the present invention
(1) R, TM and N (R is at least one of rare earth elements including Y, TM contains Fe of 25 atomic% or more, or 0.01 to 50 atomic% of Fe is replaced with Co, the total amount of Fe and Co is 25 atomic% or more, and Mn, Ni, Cr, Zr , Ti, Hf, V, Nb At least one of Containing transition metals , N is nitrogen), and the composition formula is substantially R a TM 100-ab N b (A and b are expressed in atomic percentages, 5 ≦ a ≦ 20, 12 ≦ b <15), the crystal structure of the main phase is rhombohedral or hexagonal, and the inclusion phase is finely dispersed as a subphase. A magnetic material, wherein the size r of the inclusion phase is 1 nm ≦ r ≦ 20 nm, and the average distance r ′ between the centers of gravity of the inclusion phases is 1 nm ≦ r ′ ≦ 200 nm.
(2) The ratio r ′ / r between the average distance r ′ between the centers of gravity between the finely dispersed inclusion phases and the size r of the finely dispersed inclusion phases is 2 ≦ r ′ / r ≦ 100. The magnetic material according to (1), characterized in that:
(3) N is introduced into the R-TM alloy from the gas phase, and substantially R a TM 100-ab N b (A and b are atomic percentages, 5 ≦ a ≦ 20, 15 ≦ b <30), and then heat-treated in an atmosphere containing hydrogen (1) or (2) A method for producing a magnetic material according to any one of (2).
[0008]
The present invention will be described in detail below.
The rare earth element (R) may include at least one of Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu. A mixture of two or more rare earth elements such as misch metal and didymium may be used, but preferred rare earths are Y, Ce, Pr, Nd, Sm, Gd, Dy, and Er. More preferred are Y, Ce, Pr, Nd, and Sm. In particular, when Sm is contained in an amount of 50 atomic% or more of the entire R component, a material having a remarkably high coercive force can be obtained.
[0009]
Further, the rare earth element used here may be of a purity that can be obtained by industrial production, and impurities such as O, H, Al, F, Na, Mg, Ca, Li, etc. that cannot be mixed in production exist. It can be a thing.
Transition metals (TM) include Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Zr, Nb, Mo, Pd, Ag, Cd, In, Hf, Ta, W, Pt, At least one kind of Pb may be included, but it is desirable to include 25 atomic% or more of iron (Fe) that bears ferromagnetism. Further, 0.01 to 50 atomic% of this Fe may be replaced with Co, and the total amount of Fe and Co may be 25 atomic% or more. By introducing Co, the Curie point and the magnetization increase, and the oxidation resistance can be improved. In the following, when expressed as a transition metal, it contains 25 atomic% or more of Fe, and further includes that in which 0.01 to 50 atomic% of Fe is substituted with Co.
[0010]
Other than Fe and Co, Mn, Ni, Cr, Zr, Ti, Hf, V, Nb, etc. may be mentioned as TM having an effect of increasing the coercive force of the coarse powder, and at least one of these is 0.1 atom. It is preferable to contain in the range of% -10 atomic%.
Each composition of the R-TM-N magnetic material in the present invention is such that the rare earth component is in the range of 5 to 20 atomic%, the transition metal component is in the range of 30 to 83 atomic%, and N is in the range of 12 to 15 atomic%, and these are satisfied simultaneously. Is.
[0011]
When the R component is less than 5 atomic%, the soft magnetic phase containing a large amount of iron component is separated beyond the allowable amount even after casting and annealing of the master alloy, and this kind of soft magnetic phase has a coercive force after nitrogen introduction. Since it has a bad influence, it is not preferable as a practical permanent magnet material. On the other hand, if the R component exceeds 20 atomic%, the residual magnetic flux density decreases, which is not preferable. The R component ratio is preferably 5 atom% or more and 15 atom% or less, more preferably 8 atom% or more and 12 atom% or less.
[0012]
The composition of the main phase is R a TM 100-ab N b In addition, it is necessary that 5 ≦ a ≦ 20 and 12 ≦ b <15 in terms of atomic percentage. Here, a <5 is not preferable because the anisotropy is not sufficient, and a> 20 is not preferable because the magnetization is too low. Further, when b ≧ 15, magnetization and anisotropy are lowered, which is not desirable. The structure must be rhombohedral or hexagonal.
[0013]
Here, the main phase is a phase that is a main component of the composition, and is a phase having high crystallinity and large magnetization, and having this phase has high magnetic properties. However, since the main phase alone has a nucleation type coercivity mechanism, in order to obtain a large coercivity, is it necessary to suppress the formation of reverse magnetic domains by smoothing the crystal surface and grain boundaries or making it nonmagnetic? In addition, it is necessary to make it difficult for the domain wall to move by finely pulverizing to the vicinity of the particle size where the single domain state is stable within the practical temperature range. For this reason, in a magnetic material that exhibits a high coercive force with a particle size of several μm or less, oxidation of the surface of the magnetic powder is inevitable during or after fine pulverization. Therefore, in the present invention, in order to avoid deterioration due to oxidation, a high coercive force is developed even in a coarse powder. That is, the presence of the inclusion phase suppresses the movement of the domain wall and develops a high coercive force. In order to increase the effect as a pinning site, the inclusion phase is desirably dispersed inside the main phase.
[0014]
The magnetic anisotropy of the inclusion phase is desirably greatly different from that of the main phase, and the ratio of the anisotropy energy of the main phase to the inclusion phase is preferably ½ or less or 2 or more. Examples of the crystal structure of the inclusion phase include a bcc phase, an amorphous phase, and an fcc phase as different from the main phase. Even if it is the same rhombohedral and hexagonal crystals as the main phase, it may be a phase having a greatly different nitrogen composition and TM composition.
[0015]
Further, the size r of the inclusion phase dispersed in the main phase is preferably about the same as or smaller than the domain wall width of the main phase, 1nm ≦ r ≦ 20nm It is desirable to be in the range. here r <1nm Then, because it is too smaller than the domain wall width, the domain wall cannot be trapped, the domain wall is easy to move, and the coercive force is lowered, which is not preferable. r> 20 nm Is larger than the domain wall width of the main phase. Again Large volume fraction of inclusion phase Become Magnetization decreases And It is not preferable.
[0016]
Further, the distance between the finely dispersed inclusion phases greatly affects the magnetic properties. As the average distance between the finely dispersed inclusion phases, when the distance between the center of gravity of each inclusion phase and the closest inclusion phase is r ′, r ′ is preferably 1 nm ≦ r ′ ≦ 1000 nm, More preferably, 1 nm ≦ r ′ ≦ 200 nm. When r ′ <1 nm, it is too close to the lattice size of the main phase and the crystallite size of the main phase becomes small, which is not preferable. When r ′> 200 nm, it is difficult to pin the domain wall, and when r ′> 1000 nm, Can not pin the domain wall. Further, the ratio r ′ / r to the size of the inclusion phase is preferably 2 <r ′ / r <100, more preferably 3 <r ′ / r <20. Here, when r ′ / r> 100, the distance between the inclusion phases is too large to pin the domain wall. Further, when r ′ / r <2, the distance between the inclusion phases is too close, and the volume fraction occupied by the inclusion phases becomes too large, which is not preferable because the magnetic properties are deteriorated.
[0017]
Here, the coarse powder means a powder having an average particle diameter of 10 μm or more, and the fine powder means a powder having an average particle diameter of less than 10 μm. The average particle diameter can be measured by various principles / apparatuses, each having a different value. Unless otherwise specified, the average particle diameter means a median diameter obtained based on a volume equivalent diameter distribution curve obtained by a commonly used particle diameter distribution measuring apparatus.
[0018]
By the way, when N is introduced into the R-TM master alloy from the gas phase, the R-TM crystal lattice expands. As the crystal lattice expands, one or more of the items of oxidation resistance or magnetic properties are improved, and a magnetic material suitable for practical use is obtained.
The magnetic properties referred to here are the saturation magnetization (4πIs), residual magnetic flux density (Br), magnetic anisotropy magnetic field (Ha), magnetic anisotropy energy (Ea), magnetic anisotropy ratio, Curie point ( Tc), intrinsic coercivity (iHc), squareness ratio (Br / 4πIs), maximum energy product [(BH) max], thermal demagnetization factor (α, synonymous with reversible temperature coefficient of magnetization), temperature change rate of coercivity ( β, which is synonymous with the reversible temperature coefficient of coercive force). However, the magnetic anisotropy ratio is the ratio (a / b) of the magnetization (a) in the difficult magnetization direction and the magnetization (b) in the easy magnetization direction when an external magnetic field of 15 kOe is applied. The smaller is, the higher the magnetic anisotropy energy is evaluated.
[0019]
For example, Sm having a rhombohedral structure as a main raw material phase of an R-TM master alloy 10.5 Fe 85.0 Hf 4.5 When N is selected, by introducing N, the magnetocrystalline anisotropy changes from in-plane anisotropy to uniaxial anisotropy suitable as a hard magnetic material, and magnetic characteristics including magnetic anisotropy energy and Improves oxidation resistance.
The amount of N introduced into the entire magnetic material must be 12-15 atomic%. If it exceeds 15 atomic%, the magnetization is low, and the practicality as a magnet material application is small. If it is less than 12 atomic%, the coercive force cannot be improved so much, which is not preferable.
[0020]
Further, the optimum N amount varies depending on the R-TM composition ratio of the target R-TM-N-based magnetic material, the amount ratio of subphases, and the crystal structure, for example, Sm having a rhombohedral structure. 10.9 (Fe 0.89 Co 0.11 ) 84.5 Mn 4.7 When N is selected as a raw material alloy, the optimum N amount is around 14 atomic%.
The optimum amount of N at this time is an amount of N at which at least one of the oxidation resistance and magnetic properties of the material is optimum, although it differs depending on the purpose. The optimum magnetic property is the magnetic anisotropy ratio, The absolute value of the temperature change rate of the demagnetization factor and the coercive force is minimum, and the others are maximum.
[0021]
The R-TM-N based magnetic material obtained by the present invention may contain 15 atomic% or less of hydrogen (H) and 15 atomic% or less of oxygen (O). Preferably, the amount of hydrogen and the amount of oxygen are controlled to 10 atom% or less and 10 atom% or less.
Therefore, the overall composition (including the main phase and inclusion phase) of the particularly preferred R-TM-N material of the present invention is represented by the general formula RαTM. (100- α - β - γ - δ ) When expressed by NβHγOδ, α, β, γ, and δ are atomic%,
2.4 ≦ α ≦ 20
0.8 ≦ β ≦ 30
0 ≦ γ ≦ 10
0 ≦ δ ≦ 10
Range.
[0022]
Among the materials of the present invention, Sm having rhombohedral crystals 2 (Fe, Co, Cr) 17 Or (Sm 2 (Fe, Co, Mn) 17 A method of introducing a nitrogen component into the mother alloy to make the material of the present invention will be specifically described below. However, it is illustrated and is not limited to this composition.
Sm that optimizes many magnetic properties such as magnetic anisotropy energy, magnetization, and Curie temperature 2 Fe 17 N Three From materials (for example, IEEE Trans. Magn., 28, 2326 (1992)), Sm 2 Fe 17 A lot of nitrogen is introduced, and the coercive force in the state of coarse powder is maximized.
[0023]
N is Sm 2 Fe 17 When the number of holes increases beyond three, N penetrates between the lattices, so that the crystal lattice spreads and becomes unstable. Further, when N increases and exceeds four, finally a portion where the crystal lattice is broken or broken is generated. This part works as an inclusion phase. At this time, in addition to Fe and Co, as TM, there is an element in which the coercive force in the high nitridation region increases greatly when coexisting. For example, in the coarse powder Sm—Fe—N ternary system of about 30 μm, the maximum coercive force is about 2 kOe, but when Cr coexists, the coercive force increases to 6 to 11 kOe, and Mn is When coexisting, the coercive force increases to 6 to 12 kOe.
[0024]
Although the role of Cr, Mn, etc. is unknown, it is considered that the presence of Cr or Mn in the part where the crystal lattice is broken or about to break down has the effect of preventing magnetization reversal. As described above, the material having this composition has a high coercive force even with a coarse powder, but has a low magnetization and has a limited application range in practical use.
N once for Sm 2 Fe 17 N is added to the Sm by using a method such as heat treatment in an atmosphere containing hydrogen after the coarse powder having the above microstructure is introduced. 2 Fe 17 If it is 3 to 4 per sheet, it becomes a practically extremely preferable magnetic material having not only a coercive force even in the case of coarse powder but also high magnetization.
[0025]
Although it depends on the composition ratio of Cr and Mn, Sm 2 (Fe, Co, Cr) 17 Or Sm 2 (Fe, Co, Mn) 17 As a result of investigating the rise of the magnetic curve and the dependence of the coercive force on the magnetization field, the magnetization reversal mechanism is a pinning type. It became clear that there was. This tendency is similarly seen for materials not containing Co.
[0026]
Consider the case where the vicinity of the surface of the magnetic powder is oxidized to produce a soft magnetic part that can be a bud of a reverse magnetic domain. Since the magnetic domain wall easily moves in the nucleation type material, when a reverse magnetic domain occurs, it easily grows and the coercive force decreases. As this type of material, the aforementioned Sm 2 Fe 17 N Three Materials. On the other hand, the pinning-type material maintains high coercive force because it is difficult for the domain wall to move even if a reverse magnetic domain occurs near the surface. Furthermore, the temperature change rate β of the coercive force may be greatly improved due to the different magnetization reversal mechanism.
[0027]
The material of the present invention not only has a high coercive force even if it has a particle size of 10 μm or more, but depending on the composition range, the magnetization reversal mechanism becomes a pinning type, The temperature change rate β of the coercive force is also improved.
However, depending on the type and content of the M component, when the master alloy casting method is selected, the inclusion phase may be dispersed in the main phase as a pinning site, and the magnetic material of the present invention can be produced by nitriding this. . Examples of the M component include Mn, Cr, Hf, Ti, Zr, V, Nb, Cu, and In, and the content is preferably in the range of 1 atomic% to 10 atomic%.
[0028]
Hereinafter, the production method of the present invention will be exemplified.
(1) Preparation of master alloy
The magnetic material of the present invention has a microstructure in which pinning points are finely dispersed in the R-TM main raw material phase by introducing excess N, for example, a microstructure in which pinning points exist at the boundaries of the cell structure, When TM is taken, if TM coexists at the pinning point, the value of the coercive force becomes extremely large. Therefore, TM is added at the stage of adjusting the mother alloy.
[0029]
The production methods for R-TM alloys are as follows: a) high-frequency melting method in which R and TM metals are melted by high frequency and cast into a mold, and b) arc melting in which metal components are charged in a boat such as copper and melted by arc discharge. Method c) Ultra-rapid cooling method in which molten metal melted at high frequency is dropped on a rotating copper roll to obtain a ribbon-like alloy; d) Gas atomization method to obtain alloy powder by spraying molten metal melted at high frequency with gas; TM alloy powder, R and / or TM oxide powder, and a reducing agent are reacted at high temperature to reduce R or R and TM, and R or R and TM are diffused into the TM alloy powder. / D method, f) mechanical alloying method in which each metal component and / or alloy is reacted while being pulverized with a ball mill or the like, and g) the alloy obtained by any of the above methods is heated in a hydrogen atmosphere, once R and Or And M hydrides decompose TM alloy, both the may be used in the HDDR method alloying are recombined while removing hydrogen as low at a high temperature after this.
[0030]
When the high frequency melting method or the arc melting method is used, a soft magnetic component mainly composed of Fe is likely to precipitate when the alloy is solidified from a molten state, and the coercive force is lowered particularly after the nitriding step. Therefore, it is effective to perform annealing in a temperature range of 600 ° C. to 1300 ° C. in an inert gas such as argon or helium or in vacuum for the purpose of eliminating this soft magnetic component or preparing a microstructure. The alloy produced by this method has a large crystal grain size, good crystallinity, and a high residual magnetic flux density as compared with the case of using an ultra-quenching method or the like.
[0031]
In addition, when the rapid quenching method is used, fine crystal grains can be obtained, and submicron particles can be prepared depending on conditions. However, when the cooling rate is high, the alloy becomes amorphous, and magnetic characteristics such as magnetization are deteriorated even after nitriding. Also in this case, annealing after the alloy preparation is effective. In addition, annealing can also be performed in a nitriding atmosphere at the time of the below-mentioned nitriding process.
[0032]
An alloy obtained by the gas atomization method often takes a spherical form and can be prepared from a fine powder to a coarse powder. Also in this case, it is necessary to perform annealing to improve the crystallinity depending on the conditions. Alloys prepared by the R / D method, mechanical alloying method, HDDR method in addition to the ultra-quenching method and gas atomizing method can adjust fine crystal grains of 0.01 to 3 μm. It is possible to make the effect more remarkable.
[0033]
Conditions for annealing the mother alloy prepared by the above method are as follows: in an atmosphere containing at least one of an inert gas and a hydrogen gas, in an atmosphere in a vacuum, and at 600 to 1300 ° C., depending on the composition and purpose. Selected from combinations with temperatures in the range of
If a process of rapid cooling after annealing (solution) at a predetermined temperature is required, such as when producing a hexagonal high-temperature phase, the control of this process is also included in the process (1). Examples of the rapid solution treatment apparatus include a heat furnace and a gas quench furnace designed to quench in a refrigerant such as water, ice water, air, and oil.
[0034]
When Cu or In is included as a TM component, a pinning type is obtained in a wider composition range by a method of forming a two-phase separation structure through a process of annealing (solution) the master alloy and then rapidly cooling and aging treatment. A material is obtained, and oxidation deterioration of coercive force and temperature change are further improved.
(2) Coarse grinding and classification
Although it is possible to directly nitride the alloy ingot produced by the above method, if the crystal grain size is larger than 500 μm, the nitriding time becomes longer, and it is more efficient to perform nitriding after coarse pulverization.
[0035]
The coarse pulverization is performed using a jaw crusher, a hammer, a stamp mill, a rotor mill, a pin mill, a coffee mill or the like. Even if a pulverizer such as a ball mill or a jet mill is used, an alloy powder suitable for nitriding can be prepared depending on conditions. A method in which hydrogen is occluded in the mother alloy and then pulverized by the pulverizer, or a method in which hydrogen is occluded and released repeatedly may be used.
[0036]
Further, after coarse pulverization, adjusting the particle size using a sieve, a vibration or sonic classifier, a cyclone, etc. is also effective for more uniform nitriding.
After rough pulverization and classification, annealing in an inert gas or hydrogen can remove structural defects and is effective in some cases.
In the above, the preparation method of the powder raw material or the ingot raw material of the rare earth-iron alloy in the production method of the present invention has been exemplified, but depending on the crystal grain size, pulverized particle size, microstructure, surface state, etc. of these raw materials, There is a difference in the optimum nitriding conditions shown.
(3) Introduction and annealing of N component
The method of introducing the N component into the R-TM alloy from the gas phase is most preferable. This is because, as described above, magnetization, magnetic anisotropy, and Curie point are increased by expanding the crystal structure of the R-TM alloy without fundamentally changing the crystal structure. Coexistence of hydrogen in the atmospheric gas is preferable in terms of high N component introduction efficiency and introduction of N into the crystal structure.
[0037]
The nitrogen component is introduced by bringing a gas containing a nitrogen source such as ammonia gas or nitrogen gas into contact with the R-TM alloy powder or ingot obtained in the above (1) or (1) and (2) to obtain a crystal structure. This is a step of introducing nitrogen into the inside.
At this time, it is preferable to coexist hydrogen in the nitriding atmosphere gas because the nitriding efficiency is high and nitriding can be performed while the crystal structure is stable. In order to control the reaction, an inert gas such as argon, helium, or neon may coexist.
[0038]
The most preferable nitriding atmosphere is a mixed gas of ammonia and hydrogen. In particular, if the ammonia partial pressure is controlled in the range of 0.1 to 0.7, the nitriding efficiency is high and the entire nitrogen content range of the present invention is magnetized. A material can be made.
The nitriding reaction can be controlled by gas composition, heating temperature, heat treatment time, and applied pressure.
Of these, the heating temperature varies depending on the mother alloy composition and the nitriding atmosphere, but is preferably selected in the range of 200 to 650 ° C. More preferably, it is 250-600 degreeC.
[0039]
Further, after nitriding, annealing in an inert gas and / or hydrogen gas is essential for improving the magnetization. In particular, annealing in an atmosphere containing hydrogen gas is particularly preferable because it optimizes the amount of nitrogen and improves magnetization. This is because the inclusion dispersion type structure is formed by adding excessive nitrogen once, and the magnetization is improved by removing nitrogen by the subsequent annealing.
[0040]
Examples of the nitriding / annealing apparatus include horizontal and vertical tubular furnaces, rotary reactors, and sealed reactors. In any apparatus, it is possible to adjust the magnetic material of the present invention, but it is particularly preferable to use a rotary reactor to obtain a powder having a uniform nitrogen composition distribution.
The gas used for the reaction is an air flow system in which an air flow of 1 atm or more is sent to the reactor while keeping the gas composition constant, an encapsulating system in which the gas is sealed in a region of a pressure of 0.01 to 70 atm, or a combination thereof. Etc.
[0041]
It is also effective to prepare the particle diameter by the method exemplified in (2) Coarse grinding / classification after passing through the nitriding / annealing step.
As a manufacturing method of this magnetic material, after preparing the mother alloy of R-TM composition by the method illustrated in (1) or (1) and (2), the N component is added by the method shown in (3). Most preferably, the step of introducing is used. In particular, when the annealing treatment included in the range of claim 5 of the present invention is performed in the step (1) or (2) and then nitriding, it is possible to obtain a magnetic material in which the coercive force deterioration due to oxidation is extremely small.
[0042]
The above is an explanation of the method for producing the R-TM-N magnetic material of the present invention. When the magnetic material of the present invention is applied as a practical hard magnetic material, (4) fine pulverization, (5 ) Magnetic field shaping and (6) Magnetization may be performed. An example is briefly shown below.
(4) Fine grinding
As the fine pulverization method, (2) in addition to the method used in coarse pulverization, a rotating ball mill, a vibrating ball mill, a planetary ball mill, a wet mill, a jet mill, a cutter mill, a pin mill, an automatic mortar, and combinations thereof are used.
[0043]
In the magnetic material of the present invention, the coercive force hardly changes depending on the pulverized particle diameter, and the magnetization is not significantly reduced. Therefore, when the coarse powder of the present invention having a size of 10 μm or more and the fine powder pulverized by the above method are mixed and molded in the range of 1 to 50% by weight, the filling rate is increased, so molding with a high magnetization and maximum energy product. The body can be produced and becomes a practically preferable magnet material. However, it should be noted that the squareness ratio may be lowered depending on the mixing ratio of the coarse powder and the fine powder, that is, the particle size distribution.
[0044]
(3) or a method in which a TM component such as Zn is further added to the magnetic powder obtained in (3) and (4), and heat treatment is performed before or after the step (5) to obtain various magnetic materials. This is an effective method in terms of increasing the squareness ratio and further improving the oxidation resistance.
(5) Magnetic field shaping
For example, when the magnetic powder obtained in (3) or (3) and (4) is applied to an anisotropic bonded magnet, it is compression molded in a magnetic field after being mixed with a thermosetting resin or a metal binder, After kneading with a thermoplastic resin, injection molding is performed in a magnetic field, and magnetic field molding is performed.
[0045]
The magnetic field shaping is preferably performed in a magnetic field of 10 kOe or more, more preferably 15 kOe or more in order to sufficiently align the R-TM-N magnetic material.
The TM component of the present invention is also used as a metal binder or a surface treatment agent.
(6) Magnetization
An isotropic bonded magnet or sintered magnet obtained in (5), an isotropic bonded magnet obtained by molding the powder obtained in (3) or (3) and (4) in the absence of a magnetic field together with a resin or a metal binder, The sintered magnet is usually magnetized in order to enhance the magnet performance.
[0046]
Magnetization is performed by, for example, an electromagnet that generates a static magnetic field, a condenser magnetizer that generates a pulsed magnetic field, or the like. The magnetic field strength for sufficiently magnetizing is preferably 15 kOe or more, more preferably 30 kOe or more.
[0047]
【Example】
Hereinafter, the present invention will be described specifically by way of examples.
The evaluation method is as follows.
(1) Magnetic properties
Copper powder is mixed with an R-TM-N magnetic material having an average particle size of about 30 μm (in Comparative Example 1 and Example 2, about 30 μm and about 2 μm), and 2 ton / cm in an external magnetic field of 15 kOe. 2 After molding with a magnetic field of 80 kOe at room temperature, the intrinsic coercivity (iHc / kOe) and magnetization (emu / g) at room temperature were measured using a vibrating sample magnetometer (VSM).
(2) Nitrogen content
Nitrogen content is Si Three N Four (SiO 2 Was determined by an inert gas melting method.
(3) Average particle size
The volume equivalent diameter distribution was measured using a laser diffraction particle size distribution analyzer, and the median diameter obtained from the distribution curve was evaluated.
(4) Oxidation resistance
A powder having an average particle size of about 30 μm is placed in a thermostatic chamber at 110 ° C., and the intrinsic coercive force after 200 hours is measured in the same manner as in (1). The rate (%) was determined. The higher the retention rate, the higher the oxidation resistance. In particular, in this test, since evaluation was made without adding various binders, materials having a retention rate exceeding 90% can be determined as materials having excellent practical properties when, for example, bonded magnets are used.
(5) Temperature characteristic test
Using the VSM, the intrinsic coercivity of the sample prepared in (1) was measured in the temperature range from room temperature to 150 ° C. The rate of decrease in coercive force per 1 ° C. was calculated from the values of room temperature and the intrinsic coercive force at 150 ° C., and the temperature change rate β (% / ° C.) of the coercive force was obtained. The smaller the coercive force temperature change rate, the better the material. When such a material is applied to a permanent magnet material having a small permeance, the irreversible temperature coefficient is generally small even if the coercive force at room temperature is not so high, and is preferably used for higher temperature applications and flat material applications.
[0048]
[Example 1]
Using Sm with a purity of 99.9%, Fe with a purity of 99.9%, Co with a purity of 99.9%, and Mn with a purity of 99.9%, the mixture was dissolved and mixed in a high-frequency melting furnace in an argon gas atmosphere, and further an argon atmosphere By annealing at 1150 ° C for 20 hours, Sm 10.9 (Fe 0.89 Co 0.11 ) 84.5 Mn 4.6 An alloy of composition was prepared.
[0049]
This alloy was pulverized with a jaw crusher, then further pulverized with a rotor mill in a nitrogen atmosphere, and the particle size was adjusted with a sieve to obtain a powder having an average particle size of about 50 μm.
This Sm—Fe—Co—Mn alloy powder was charged into a horizontal tube furnace and heated at 450 ° C. in a mixed gas stream of ammonia partial pressure 0.35 atm and hydrogen gas 0.65 atm for 2.5 hours. After annealing in a hydrogen gas stream for 1 hour, the average particle size was adjusted to about 30 μm.
[0050]
Table 1 shows the composition, magnetic characteristics, oxidation resistance, and temperature characteristics test results of the obtained Sm- (Fe, Co, Mn) -N-based powder. In order to find the cause of the high magnetic properties in this way, the cross section of the obtained powder was observed with a transmission electron microscope (FIG. 3). The inclusion phase (black portion in the figure) has a finely dispersed structure. The size of the inclusion phase is 1 nm to 20 nm, and this fine structure is considered to have an effect of preventing the domain wall movement.
[0051]
As a result of analysis by the X-ray diffraction method, a diffraction line showing rhombohedral crystals and a relatively large diffraction line in the vicinity of 44 ° (Cu, Kα line) were recognized. Further, the strength is low, and it is considered that a part of the main phase is amorphous.
[0052]
[Example 2]
R-TM-N-based powders having an average particle size of about 30 μm and 2 μm were obtained by the same operation as in Example 1 except that the composition of the mother alloy was changed to the composition shown in Table 1. The results are shown in Table 1. Moreover, as a result of observing a cross section of the obtained powder with a transmission electron microscope, it was found that the same inclusions as in Example 1 had a finely dispersed structure. It is clear that the high magnetic properties are due to this structure.
[0053]
As a result of analysis by the X-ray diffraction method, a diffraction line showing rhombohedral crystals and a relatively large diffraction line in the vicinity of 44 ° (Cu, Kα line) were recognized.
The obtained powder was molded isotropically in the absence of a magnetic field, and the initial magnetization curve of coercive force was examined. The result is shown in FIG. This curve is an inflection point (magnetization M is second-order differentiated by magnetic field H around 12 kOe. 2 M / dH 2 Maximum point [in Fig. 1 Upward Having an arrow]) suggests that the coercive force expression mechanism of this material is a pinning type.
[0054]
Further, the obtained powder was molded isotropically, and the change in coercive force when the magnetization magnetic field was changed was examined. The result is shown in FIG. As the magnetizing magnetic field is increased, the coercive force suddenly increases and reaches saturation, which also suggests that the coercive force generation mechanism of this material is a pinning type.
[0055]
[Example 3]
The powder of Example 2 was pulverized with a ball mill to an average particle size of about 3 μm. The coercivity of this material was 9.1 kOe. This result indicates that the coercive force has no particle size dependency in the powder of Example 2.
[0056]
[Examples 4 and 5]
A Sm-TM-N powder was obtained in the same manner as in Example 1 except that the composition of TM was as shown in Table 1. The evaluation results are shown in Table 1. Further, by TEM observation of these powder cross sections, it was found that the microstructure was the same as in Example 1. Furthermore, the magnetization reversal mechanism is considered to be a pinning type by measuring the initial magnetization curve.
[0057]
[Comparative Example 1]
Sm is the same as in Example 1 except that TM is only Fe and Co. 10.5 (Fe 0.9 Co 0.1 ) 89.5 An alloy was made.
This alloy powder was charged into a horizontal tube furnace and heated at 465 ° C. Three Heat treatment was performed for 2.5 hours in a mixed gas stream having a partial pressure of 0.35 atm and hydrogen gas of 0.65 atm, followed by annealing in an argon stream for 1 hour, and then the average particle size was adjusted to about 30 μm. This coarse powder was finely pulverized with a ball mill for 4 hours to obtain a fine powder having an average particle diameter of about 2 μm.
[0058]
These evaluation results are shown in Table 1.
Moreover, as a result of observing the cross section of the obtained powder with a transmission electron microscope, it was found that it did not have a fine structure as seen in the examples.
[0059]
[Table 1]
Figure 0003784085
[0060]
[Reference Example 1]
The Sm—Fe—Mn—N-based powder having a particle size of about 30 μm obtained in Example 1 was 2 ton / cm. 2 After magnetic field shaping under the condition of 15 kOe, heat treatment was performed under conditions of 1100 ° C. and 1 hour in an argon atmosphere. The intrinsic coercive force of the compact when rapidly cooled was 0.1 kOe or less. The intrinsic coercive force of the powder obtained by pulverizing this compact again to about 30 μm was 0.1 kOe or less. As a result of analyzing the crystal structure of this material by X-ray diffraction, diffraction lines corresponding to α-iron and iron nitride were mainly detected.
[0061]
【The invention's effect】
As described above, according to the present invention, a rare earth-transition metal-nitrogen based magnetic material having excellent oxidation resistance and temperature characteristics with high coercive force and high magnetization even with a coarse powder of 10 μm or more is provided. can do.
[Brief description of the drawings]
FIG. 1 shows Sm produced in Example 1 of the present invention. 9.0 (Fe 0.89 Co 0.11 ) 69.9 Mn 7.8 N 13.3 It is an initial magnetization curve of a molded body of a magnetic material having a composition under a magnetic field.
FIG. 2 shows Sm produced in Example 2 of the present invention. 9.0 (Fe 0.89 Co 0.11 ) 69.9 Mn 7.8 N 13.3 This is a change in coercive force when a magnetized magnetic field of a molded body of a magnetic material having a composition without a magnetic field is changed.
FIG. 3 shows Sm produced in Example 1 of the present invention. 9.3 (Fe 0.89 Co 0.11 ) 72.4 Mn 4.0 N 14.3 It is the photograph which observed the cross section of the magnetic material which has a composition with the transmission electron microscope.

Claims (3)

RとTMとN(RはYを含む希土類元素のうちの少なくとも一種、TMはFeを25原子%以上含むか、または、Feの0.01〜50原子%をCoに置き換え、Fe、Coの合計量が25原子%以上であり、さらに、Mn、Ni、Cr、Zr、Ti、Hf、V、Nbのうち少なくとも一種を含む遷移金属、Nは窒素)を含む磁性材料であって、組成式が実質的にRTM100−a−b(a、bは原子百分率、5≦a≦20、12≦b<15)で表され、主相の結晶構造が菱面体晶または六方晶であり、副相として介在物相が微細分散しており、介在物相の大きさrが1nm≦r≦20nm、該介在物相の重心間平均距離r’が1nm≦r’≦200nmであることを特徴とする磁性材料。R, TM, and N (R is at least one of rare earth elements including Y, TM contains Fe in an amount of 25 atomic% or more, or 0.01 to 50 atomic% of Fe is replaced with Co. A total amount of 25 atomic% or more, and a magnetic material containing a transition metal containing at least one of Mn, Ni, Cr, Zr, Ti, Hf, V, and Nb , and N is nitrogen). Is substantially represented by R a TM 100-ab- N b (a and b are atomic percentages, 5 ≦ a ≦ 20, 12 ≦ b <15), and the crystal structure of the main phase is rhombohedral or hexagonal The inclusion phase is finely dispersed as a subphase, the inclusion phase size r is 1 nm ≦ r ≦ 20 nm, and the average distance r ′ between the centers of gravity of the inclusion phases is 1 nm ≦ r ′ ≦ 200 nm. Magnetic material characterized by that. 微細分散している介在物相間の重心間平均距離r’と微細分散している介在物相の大きさrとの比r’/rが、2≦r’/r≦100であることを特徴とする請求項1に記載の磁性材料。  The ratio r ′ / r between the average distance r ′ between the centers of gravity between the finely dispersed inclusion phases and the size r of the finely dispersed inclusion phases is 2 ≦ r ′ / r ≦ 100. The magnetic material according to claim 1. R−TM合金にNを気相から導入し、実質的にRTM100−a−b(a、bは原子百分率、5≦a≦20、15≦b<30)で表される合金とした後、水素を含む雰囲気下で加熱処理して得られることを特徴とする請求項1または2のいずれかに記載の磁性材料の製造方法。N is introduced into the R-TM alloy from the gas phase, and is substantially represented by R a TM 100-ab N b (a and b are atomic percentages, 5 ≦ a ≦ 20, 15 ≦ b <30). 3. The method for producing a magnetic material according to claim 1, wherein the magnetic material is obtained by heat treatment in an atmosphere containing hydrogen after forming an alloy.
JP29006494A 1994-11-24 1994-11-24 Magnetic material having stable coercive force and method for producing the same Expired - Lifetime JP3784085B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29006494A JP3784085B2 (en) 1994-11-24 1994-11-24 Magnetic material having stable coercive force and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29006494A JP3784085B2 (en) 1994-11-24 1994-11-24 Magnetic material having stable coercive force and method for producing the same

Publications (2)

Publication Number Publication Date
JPH08144024A JPH08144024A (en) 1996-06-04
JP3784085B2 true JP3784085B2 (en) 2006-06-07

Family

ID=17751328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29006494A Expired - Lifetime JP3784085B2 (en) 1994-11-24 1994-11-24 Magnetic material having stable coercive force and method for producing the same

Country Status (1)

Country Link
JP (1) JP3784085B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008136391A1 (en) 2007-04-27 2008-11-13 Asahi Kasei Kabushiki Kaisha Magnetic material for high frequency wave, and method for production thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100261038A1 (en) * 2007-11-02 2010-10-14 Nobuyoshi Imaoka Composite magnetic material for magnet and method for manufacturing such material
JP6331982B2 (en) * 2014-11-11 2018-05-30 住友電気工業株式会社 Magnet molded body, magnetic member, method for manufacturing magnet molded body, and method for manufacturing magnetic member
CN113161096B (en) * 2021-03-22 2022-05-17 东莞市弘名电子科技有限公司 Co-based alloy TM-M/ML amorphous rare earth composite magnetic material and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008136391A1 (en) 2007-04-27 2008-11-13 Asahi Kasei Kabushiki Kaisha Magnetic material for high frequency wave, and method for production thereof

Also Published As

Publication number Publication date
JPH08144024A (en) 1996-06-04

Similar Documents

Publication Publication Date Title
EP0101552B2 (en) Magnetic materials, permanent magnets and methods of making those
JP2751109B2 (en) Sintered permanent magnet with good thermal stability
JP3267133B2 (en) Alloy for rare earth magnet, method for producing the same, and method for producing permanent magnet
JP3715573B2 (en) Magnet material and manufacturing method thereof
JP3560387B2 (en) Magnetic material and its manufacturing method
JP3488358B2 (en) Method for producing microcrystalline permanent magnet alloy and permanent magnet powder
JP2008192903A (en) Iron-based rare- earth alloy magnet
Liu et al. Compositional optimization and new processes for nanocrystalline NdFeB-based permanent magnets
JP2898229B2 (en) Magnet, manufacturing method thereof, and bonded magnet
JPH06207203A (en) Production of rare earth permanent magnet
JP3784085B2 (en) Magnetic material having stable coercive force and method for producing the same
JP3645312B2 (en) Magnetic materials and manufacturing methods
US5230749A (en) Permanent magnets
JP2853839B2 (en) Manufacturing method of rare earth permanent magnet
JP3264664B1 (en) Permanent magnet having a plurality of ferromagnetic phases and manufacturing method thereof
JPH07263210A (en) Permanent magnet, alloy powder for permanent magnet and their production
JPH06124812A (en) Nitride magnet powder and its synthesizing method
JPH10312918A (en) Magnet and bonded magnet
JP3209291B2 (en) Magnetic material and its manufacturing method
JP2966169B2 (en) Rare earth magnet, alloy powder for rare earth magnet and method for producing the same
JP2739860B2 (en) MAGNETIC MATERIAL, MAGNET COMPRISING THE SAME, AND PROCESS FOR PRODUCING THEM
JP3294645B2 (en) Nitride magnetic powder and its production method
JPH06112019A (en) Nitride magnetic material
JPH10130796A (en) Production of fine crystal permanent magnet alloy and isotropic permanent magnet powder
JP3209292B2 (en) Magnetic material and its manufacturing method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 19941125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20011015

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20011015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20030725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060314

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090324

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 4

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120324

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120324

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130324

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140324

Year of fee payment: 8

EXPY Cancellation because of completion of term