JP3267133B2 - Alloy for rare earth magnet, method for producing the same, and method for producing permanent magnet - Google Patents

Alloy for rare earth magnet, method for producing the same, and method for producing permanent magnet

Info

Publication number
JP3267133B2
JP3267133B2 JP34884495A JP34884495A JP3267133B2 JP 3267133 B2 JP3267133 B2 JP 3267133B2 JP 34884495 A JP34884495 A JP 34884495A JP 34884495 A JP34884495 A JP 34884495A JP 3267133 B2 JP3267133 B2 JP 3267133B2
Authority
JP
Japan
Prior art keywords
phase
alloy
rare earth
rich
crystal grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP34884495A
Other languages
Japanese (ja)
Other versions
JPH09170055A (en
Inventor
史郎 佐々木
寛 長谷川
洋一 広瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP34884495A priority Critical patent/JP3267133B2/en
Publication of JPH09170055A publication Critical patent/JPH09170055A/en
Application granted granted Critical
Publication of JP3267133B2 publication Critical patent/JP3267133B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0273Imparting anisotropy

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Continuous Casting (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は希土類元素を含む永久磁
石の原料用合金と原料合金の製造方法及びその合金を用
いた永久磁石の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a raw material alloy for a permanent magnet containing a rare earth element, a method for producing a raw material alloy, and a method for producing a permanent magnet using the alloy.

【0002】[0002]

【従来の技術】希土類磁石は電子機器の小型高性能化に
伴い、生産量は増加の一途をたどっている。特にNdF
eB系材料はSmCoを凌ぐ高特性と原料面での優位性
から、生産量は増加し続けており、その中でも磁気特性
をさらに向上させた磁石へのニーズが高まりつつある。
R−T−B系磁石では磁性を担う強磁性相R214B相
の他に、非磁性でNd等の希土類元素の濃度の高い相
(Rリッチ相と呼ぶ)が存在し、次の様な重要な役割を
果たしている。 融点が低く、磁石化工程の焼結時に液相となり、磁石
の高密度化、したがって磁化の向上に寄与する。 粒界の凹凸をなくし、逆磁区のニュークリエーション
サイトを減少させ保磁力を高める。 Rリッチ相は非磁性であり主相を磁気的に絶縁するこ
とから、保磁力を高める。 したがって、Rリッチ相の分散状態が悪いためにRリッ
チ相に覆われていない界面が存在すれば、その部分では
局所的な保磁力低下によって角型性が悪化するととも
に、焼結不良によって磁化も低下するため最大磁気エネ
ルギー積の低下をもたらすことが知られている。
2. Description of the Related Art The production of rare earth magnets has been increasing steadily with the miniaturization and high performance of electronic devices. Especially NdF
The production of eB-based materials continues to increase due to their superior properties over SmCo and superior raw materials, and among them, the need for magnets with further improved magnetic properties is increasing.
In the RTB-based magnet, in addition to the ferromagnetic phase R 2 T 14 B which is responsible for magnetism, there is a non-magnetic phase having a high concentration of rare earth elements such as Nd (referred to as an R-rich phase). Plays an important role. It has a low melting point and becomes a liquid phase at the time of sintering in the magnetizing step, which contributes to increasing the density of the magnet and thus improving the magnetization. Eliminates irregularities at grain boundaries, reduces nucleation sites in reverse magnetic domains, and increases coercive force. The R-rich phase is non-magnetic and magnetically insulates the main phase, thereby increasing the coercive force. Therefore, if there is an interface that is not covered by the R-rich phase due to the poor dispersion state of the R-rich phase, the rectangularity is deteriorated due to a local decrease in coercive force, and the magnetization is also reduced due to poor sintering. It is known that lowering results in lowering of the maximum magnetic energy product.

【0003】ところが、高特性磁石になるほど強磁性相
であるR214B相の体積率を高める必要があるため、
必然的にRリッチ相の体積率が減少し、部分的なRリッ
チ相不足を生じ、十分な特性が得られない場合が多い。
そこで高特性材においてRリッチ相不足による特性低下
の防止方法に関する多くの研究が報告されており、それ
らは大きく2つのグループに分けられる。
However, the volume ratio of the R 2 T 14 B phase, which is a ferromagnetic phase, needs to be increased as the performance of the magnet becomes higher.
Inevitably, the volume ratio of the R-rich phase is inevitably reduced, resulting in a partial R-rich phase shortage, often failing to obtain sufficient characteristics.
Therefore, many studies have been reported on methods for preventing deterioration of properties due to lack of R-rich phase in high-performance materials, and they are roughly divided into two groups.

【0004】1つは主相R214B相とRリッチ相を別
々の合金から供給するものであり、一般に2合金法と呼
ばれている。2合金法は最終的な磁石組成は似通ったも
のでも、2つの合金の組成の選択幅が広いこと、Rリッ
チ相を供給する合金の組成、製法にも自由度が高いこと
から幾つか興味深い結果が報告されている。
One is to supply the main phase R 2 T 14 B phase and the R-rich phase from different alloys, which is generally called a two-alloy method. Although the two-alloy method is similar to the final magnet composition, there are some interesting results because the choice of the composition of the two alloys is wide, the composition of the alloy that supplies the R-rich phase, and the manufacturing method is high. Have been reported.

【0005】例えば、粒界相合金として焼結温度におい
て液相となる組成の非晶質合金を使用すれば、非平衡状
態がもたらされているため通常のRリッチ相組成よりも
Feの含有量が多いため、同じ組成の磁石を作製するの
に従来のRリッチ相合金を混合するよりも主相を生成す
る合金との混合比率を高くでき、結果として焼結時に生
成するRリッチ相の分散性が良好となり、磁気特性向上
に成功している。また、非晶質合金の使用による粉末酸
化の抑制も非常に有効に機能している(E.Otsuki,T.Ots
uka and T.Imai,11th International Workshop on Rare
Earth magnetsand their Applications,vol.1,p328(19
90))。その他、Rリッチ相を供給する合金を高Co 組
成として粉末酸化の抑制に成功した研究も報告されてい
る(M.Honshima and K.Ohashi,Journal of Materials E
ngineering and Performance P218-222 vol3(2) April
1994)。
For example, when an amorphous alloy having a composition that becomes a liquid phase at a sintering temperature is used as a grain boundary phase alloy, a non-equilibrium state is brought about, so that the Fe content is lower than that of a normal R-rich phase composition. Since the amount is large, the mixing ratio with the alloy that generates the main phase can be increased as compared with the case of mixing the conventional R-rich phase alloy to produce a magnet having the same composition. The dispersibility was improved, and the magnetic properties were successfully improved. In addition, suppression of powder oxidation by using an amorphous alloy also functions very effectively (E.Otsuki, T.Ots
uka and T. Imai, 11th International Workshop on Rare
Earth magnetsand their Applications, vol.1, p328 (19
90)). In addition, a study has been reported that succeeded in suppressing powder oxidation by making the alloy supplying the R-rich phase a high Co composition (M. Honshima and K. Ohashi, Journal of Materials E
ngineering and Performance P218-222 vol3 (2) April
1994).

【0006】もう一つはストリップキャスティング法に
より、従来の金型鋳造法よりも早い冷却速度で凝固させ
ることで組織を微細化し、Rリッチ相が微細に分散した
組織を有する合金を生成させるものである。合金内のR
リッチ相が微細に分散しているため、粉砕、焼結後のR
リッチ相の分散性も良好となり、磁気特性向上に成功し
ている(特開平5-222488、特開平5-295490)。また、高
特性材の組成はR214B相の体積率を高めるため、R
214Bの化学量論組成に近づく。R214B相は初晶
α−Feと液相との包晶反応で生成するため、R含有量
が低下するとα−Feが生成しやすくなる。α−Feは
磁石製造時の粉砕効率の悪化を招き、焼結後の磁石に残
存すれば特性の低下をもたらす。そこで、通常の金型鋳
造法で溶製したインゴットの場合、高温で長時間にわた
る均質化熱処理によるα−Feの消去が必要となる。し
かし、ストリップキャスティング法により凝固速度を増
加させ、包晶反応温度以下に過冷却できれば、α−Fe
析出の抑制が可能となる。
The other is to form an alloy having a structure in which the structure is refined by solidifying at a higher cooling rate than the conventional die casting method by a strip casting method, and an R-rich phase is finely dispersed. is there. R in the alloy
Since the rich phase is finely dispersed, the R
The dispersibility of the rich phase was also improved, and the magnetic properties were successfully improved (Japanese Patent Application Laid-Open Nos. 5-222488 and 5-295490). Further, since the composition of the high-performance material increases the volume ratio of the R 2 T 14 B phase,
It approaches the stoichiometric composition of 2 T 14 B. Since the R 2 T 14 B phase is generated by the peritectic reaction between the primary crystal α-Fe and the liquid phase, α-Fe is likely to be generated as the R content decreases. α-Fe causes deterioration of the pulverization efficiency during the production of the magnet, and if it remains on the magnet after sintering, the properties are reduced. Therefore, in the case of an ingot produced by a normal die casting method, it is necessary to eliminate α-Fe by a homogenizing heat treatment at a high temperature for a long time. However, if the solidification rate can be increased by the strip casting method and supercooled below the peritectic reaction temperature, α-Fe
Precipitation can be suppressed.

【0007】最近、2合金法に用いるR214B化学量
論組成に近い合金、すなわち主相系合金をストリップキ
ャスティング法で作製し、磁石製造時の粉砕性向上、磁
気特性の向上に成功した研究が報告されている。例え
ば、ストリップキャスティング法で溶製された主相系合
金ではα−Fe生成の抑制と共に、平均結晶粒径が3〜
50μmと細かく、Rリッチ相の分散が良好となり、焼
結後の磁石内での分散も良好となって高保磁力を達成
し、磁石作製時の粉砕性、粒度分布も改善されている。
粒界相合金に於ても、粉砕性の向上に有効と報告されて
いる(特開平7-176414)。また、粒界相合金のR含有量
を比較的少なくして、主にR217相からなる組織を生
成する場合でも、α−Fe生成抑制、粉砕性向上が認め
られている。この際、主相系合金は前例よりもR含有量
が増加するため、従来の鋳造法でもα−Feの生成量は
少ないものと考えられるが、ストリップキャスティング
法によりRリッチ相の分散性が非常に良好な組織を生成
し、粉砕性、粒度分布の向上がもたらされている(特開
平7-45413 )。
[0007] Recently, an alloy close to the stoichiometric composition of R 2 T 14 B used in the two-alloy method, that is, a main phase alloy, has been manufactured by a strip casting method, and the pulverizability at the time of magnet production and the magnetic properties have been successfully improved. Studies have been reported. For example, in a main phase alloy melted by a strip casting method, α-Fe generation is suppressed and the average crystal grain size is 3 to
As fine as 50 μm, the dispersion of the R-rich phase is good, the dispersion in the magnet after sintering is also good, a high coercive force is achieved, and the pulverizability and particle size distribution during magnet production are improved.
It has been reported that a grain boundary phase alloy is also effective in improving the pulverizability (Japanese Patent Application Laid-Open No. 7-176414). In addition, even when the R content of the grain boundary phase alloy is relatively small to form a structure mainly composed of the R 2 T 17 phase, suppression of α-Fe generation and improvement in pulverizability have been recognized. At this time, since the R content of the main phase alloy is larger than that of the previous example, it is considered that the amount of α-Fe generated is small even in the conventional casting method, but the dispersibility of the R rich phase is extremely low by the strip casting method. In addition, a good structure is formed, and the pulverizability and the particle size distribution are improved (Japanese Patent Application Laid-Open No. 7-45413).

【0008】[0008]

【発明が解決しようとする課題】以上のように2合金法
とストリップキャスティング法、又はこれらの併用によ
って焼結後のRリッチ相の良好な分散がもたらされ、磁
気特性の向上がなされたが、まだ充分に要求特性が満た
されていない。本発明では、それら従来法にさらに改良
を加える事で、残留磁化(Br)が高い高磁気特性を安
定して発現することを目的とする。
As described above, although the two-alloy method and the strip casting method, or a combination thereof, provided an excellent dispersion of the R-rich phase after sintering and improved the magnetic properties. However, the required characteristics have not yet been sufficiently satisfied. It is an object of the present invention to stably express high magnetic characteristics with high residual magnetization (Br) by further improving these conventional methods.

【0009】本発明者は2合金法での主相系合金の組織
と磁気特性の関連について検討した結果、R214B相
の体積率と残留磁化の関係に注目した。2合金法の主相
系合金は主相であるR214B相を供給するために、一
般的にR214B化学量論組成に近く、組成的にはR2
14B相の体積比が多くなりうる合金組成となってい
る。しかし、そのような合金は凝固冷却時にα−Feが
生成しやすく、それを避けるためストリップキャスティ
ング法で製造すると、平衡状態図における高温での平衡
状態に近い組織が室温まで持ち越されており、Rリッチ
相が増え、主相の体積比が減少している。
As a result of studying the relationship between the structure of the main phase alloy and the magnetic properties in the two-alloy method, the present inventors paid attention to the relationship between the volume ratio of the R 2 T 14 B phase and the remanent magnetization. For the main phase alloy of the two alloy method to supply the R 2 T 14 B phase as a main phase, generally close to the R 2 T 14 B stoichiometry, the compositionally R 2
The alloy composition is such that the volume ratio of the T 14 B phase can be increased. However, in such an alloy, α-Fe is liable to be generated during solidification cooling, and if it is manufactured by a strip casting method in order to avoid this, a structure close to the equilibrium state at a high temperature in the equilibrium diagram is carried over to room temperature. The rich phase increases and the volume ratio of the main phase decreases.

【0010】[0010]

【課題を解決するための手段】本発明者は、ストリップ
キャスティング時の冷却条件を制御することにより、R
リッチ相の体積率を減少させR214B相の体積率が大
きくなるようにすることによって、残留磁化が大きくな
ることを見出した。あるいはまた、同一条件で生成した
インゴットを用いる場合には、鋳造後の熱処理にR2
14B相の体積率が大きくなるようにすることによって、
磁石化して評価した際に、残留磁化が大きくなる事実を
見出した。さらに、希土類磁石用合金としてNd系磁石
合金のインゴットの組織を詳細に調べ、組織が磁気特性
に及ぼす影響を調べた結果、従来の解析結果と大きく異
なる事実を見出した。すなわち、従来ストリップキャス
ト材も含めて、Nd系磁石合金インゴットの粒界にはN
dリッチ相が存在し、Ndリッチ相の均一微細分布のた
めには結晶粒径を小さく、すなわちNdリッチ相の間隔
を小さくすることが重要であるとされてきた。しかし、
Ndリッチ相と結晶粒界とは必ずしも対応していないこ
と。また、良好な磁気特性を得るためには結晶粒径は大
きく、かつNdリッチ相の間隔は細かいことが必要であ
ることを見出した。そして、鋳造時のインゴットの冷却
条件を制御することによって、Ndリッチ相の間隔を細
かくする一方で結晶粒径を大きめにすることが可能であ
ることを見出した。このことはNdに限らず、他の希土
類磁石においても同様である。
The inventor of the present invention controlled the cooling conditions during strip casting to reduce the R value.
It has been found that by reducing the volume fraction of the rich phase and increasing the volume fraction of the R 2 T 14 B phase, the residual magnetization is increased. Alternatively, when ingots produced under the same conditions are used, R 2 T
14 By increasing the volume fraction of phase B,
When magnetized and evaluated, it was found that the residual magnetization increased. Further, the structure of an ingot of a Nd-based magnet alloy as a rare earth magnet alloy was examined in detail, and as a result of examining the effect of the structure on magnetic properties, a fact was found that was significantly different from conventional analysis results. In other words, Nd-based magnet alloy ingots including the conventional strip cast material
It has been considered that a d-rich phase exists and it is important to reduce the crystal grain size, that is, to reduce the interval between the Nd-rich phases, for uniform fine distribution of the Nd-rich phase. But,
The Nd-rich phase does not necessarily correspond to the crystal grain boundary. Further, they have found that in order to obtain good magnetic properties, it is necessary that the crystal grain size is large and the interval between Nd-rich phases is small. By controlling the cooling conditions of the ingot during casting, it has been found that it is possible to increase the crystal grain size while reducing the interval between Nd-rich phases. This applies not only to Nd but also to other rare earth magnets.

【0011】すなわち本発明は2合金法による、R(Y
を含む希土類元素のうち少なくとも1種)、T(Feを
必須とする遷移金属)及びBを基本成分とする永久磁石
の原料用合金と原料用合金の製造方法に於て、R214
B相を供給する主相系合金中のR214B相の体積率を
凝固速度の制御により、あるいは凝固後の熱処理によっ
て増加させること、さらにR214B相結晶粒径とRリ
ッチ相の間隔を制御することによって、残留磁化の増加
をもたらすものである。また、粒界相系合金については
合金中のR214B相の体積率より減少させることによ
り、磁石化後の残留磁化の増加をもたらすようにしたも
のである。
That is, the present invention provides a method of forming R (Y
In a method for producing a raw material alloy for a permanent magnet and a method for manufacturing a raw material alloy containing at least one of the rare earth elements containing T), T (transition metal having Fe as an essential component) and B as a basic component, R 2 T 14
Increasing the volume fraction of the R 2 T 14 B phase in the main phase alloy supplying the B phase by controlling the solidification rate or by heat treatment after the solidification, and further increasing the R 2 T 14 B phase crystal grain size and R richness By controlling the phase spacing, remnant magnetization is increased. Further, the grain boundary phase alloy is designed to reduce the volume fraction of the R 2 T 14 B phase in the alloy, thereby increasing the residual magnetization after magnetization.

【0012】ここで、本発明の構成を詳細に記す前にR
214B化学量論組成よりも若干Rリッチである一般的
な主相系合金の凝固、熱処理による組織変化に関してN
d−Fe−B3元系を例に説明する。通常の鋳型を使用
した凝固の場合、特に冷却速度が遅くなるインゴットの
厚さ方向の中央部近傍では、まず初晶α−Feが生成
し、液相との2相共存状態となる。次に1155℃の包晶反
応によって、α−Feと液相からNd2 Fe14B相を生
成するが、反応速度が冷却速度と比較して遅いため、α
−FeはNd2 Fe14B相内部に残存する。その後、温
度低下に従い液相からNd2 Fe14B相が排出され、液
相は体積率が減少すると共に、組成もNdリッチ側に変
化し、最終的に液相は665 ℃の3元共晶反応でNd2
14B相、Ndリッチ相、Bリッチ相の3相に凝固す
る。
Before describing the configuration of the present invention in detail, R
Regarding the solidification of a general main phase alloy that is slightly R-rich than the 2 T 14 B stoichiometric composition,
A description will be given of a d-Fe-B ternary system as an example. In the case of solidification using an ordinary mold, especially near the center in the thickness direction of the ingot where the cooling rate is slow, firstly, primary crystal α-Fe is generated, and the two phases coexist with the liquid phase. Next, an Nd 2 Fe 14 B phase is formed from α-Fe and the liquid phase by the peritectic reaction at 1155 ° C., but since the reaction rate is slower than the cooling rate, α
-Fe is left inside Nd 2 Fe 14 B phase. Thereafter, as the temperature decreases, the Nd 2 Fe 14 B phase is discharged from the liquid phase, the volume ratio of the liquid phase decreases, the composition also changes to the Nd-rich side, and finally the liquid phase becomes ternary eutectic at 665 ° C. Nd 2 F
e 14 B phase, Nd rich phase solidifies to three phases B-rich phase.

【0013】しかし、ストリップキャスティング法等に
より凝固速度を増加した際には、先に触れたように合金
溶湯を包晶反応温度以下まで過冷却可能となるため、α
−Feの生成を抑制し、液相からNd2 Fe14B相を直
接生成可能となる。また、その後の冷却も速く、液相か
らNd2 Fe14B相が十分生成される以前に凝固するた
め、平衡状態図で予想されるよりもNd2 Fe14B相の
体積率は少なく、高温域での液相に相当するNd リッチ
相のNdの濃度は低く、Ndリッチ相の体積率は増加す
る。以上、Nd−Fe−B3元系を例に説明したが、一
般のR−T−B系に拡張しても反応温度等の多少の相違
は存在するものの同様に変化することが知られている。
However, when the solidification rate is increased by a strip casting method or the like, the molten alloy can be supercooled to a temperature below the peritectic reaction temperature, as mentioned above.
-Fe generation is suppressed, and the Nd 2 Fe 14 B phase can be directly generated from the liquid phase. In addition, since the subsequent cooling is fast and solidifies before the Nd 2 Fe 14 B phase is sufficiently generated from the liquid phase, the volume ratio of the Nd 2 Fe 14 B phase is smaller than expected in the equilibrium diagram, and the The concentration of Nd in the Nd-rich phase corresponding to the liquid phase in the region is low, and the volume fraction of the Nd-rich phase increases. The Nd-Fe-B ternary system has been described above as an example. However, it is known that even if the reaction system is expanded to a general RTB system, the reaction temperature and the like are slightly changed, although they are slightly different. .

【0014】次に本発明の構成を以下に詳細に記す。な
お、特に断らない限り以下の説明は全て主相系合金に関
する内容である。 (1) 主相の体積率 主相、R214B相の体積率が93%以上であることを
特徴とする。2合金法の主相系合金は主相であるR2
14B相を供給するために、一般的にR214B化学量論
組成に近く、組成的にはR214B相の体積比が多くな
りうる合金組成となっている。しかし、そのような合金
は凝固冷却時にα−Feが生成しやすく、従来急冷法に
よって製造されているため、非平衡状態の組織となって
おり、そのためRリッチ相が増え、主相の体積比が減少
している。本発明の合金ではストリップキャスティング
法を採用しさらに鍛造後の冷却条件を最適化することに
より、α−Feの生成を防止し、かつRリッチ相等の非
磁性相の体積比を減少させ、主相の体積比を増加させる
と同時に、微細なRリッチ相が分布した組織としている
ことを特徴とする。
Next, the configuration of the present invention will be described in detail below. Unless otherwise specified, the following description is all about the main phase alloy. (1) Volume Ratio of Main Phase The volume ratio of the main phase and the R 2 T 14 B phase is 93% or more. The main phase-based alloy of the two-alloy method is the main phase R 2 T
In order to supply the 14 B phase, the alloy composition is generally close to the R 2 T 14 B stoichiometric composition, and the composition is such that the volume ratio of the R 2 T 14 B phase can be increased. However, such alloys tend to form α-Fe during solidification and cooling, and since they are conventionally manufactured by a quenching method, they have a non-equilibrium structure, so that the R-rich phase increases and the volume ratio of the main phase increases. Is decreasing. The alloy of the present invention employs a strip casting method and further optimizes cooling conditions after forging to prevent the formation of α-Fe and to reduce the volume ratio of non-magnetic phases such as the R-rich phase to reduce the main phase. Is characterized by having a structure in which a fine R-rich phase is distributed at the same time as increasing the volume ratio.

【0015】また、主相系の合金の別の製造法として、
通常の鋳造法で製造したインゴットで生成したα−Fe
を消去するため、熱処理を行う方法を挙げることができ
る。しかし、通常のインゴットの場合、α−Feを消去
するためには高温長時間の熱処理が必要となり、主相の
体積比は増加するものの、Rリッチ相は粗大化してしま
い、焼結性が劣化する欠点がある。また磁石にした後の
保磁力も低下してしまう欠点がある。
Another method for producing a main phase alloy is as follows.
Α-Fe produced by ingot manufactured by ordinary casting method
A method of performing a heat treatment in order to erase the data can be given. However, in the case of a normal ingot, heat treatment at a high temperature for a long time is required to eliminate α-Fe, and the volume ratio of the main phase increases, but the R-rich phase becomes coarse and the sinterability deteriorates. There are drawbacks. There is also a disadvantage that the coercive force after the magnet is formed is reduced.

【0016】本発明は原料合金のR214B相の体積率
が磁石の残留磁化向上に寄与する点に着目した。主相系
合金についてはR214B相の体積率が大きいほど、磁
石の残留磁化は増加する。その長所を活かすためには、
214B相の体積率は93%以上であることが好まし
い。より好ましくは95%以上である。先に従来の技術
で取り上げた特開平7-176414では主相系合金のRリッチ
相の減少は、焼結性の低下や残留磁化の低下をもたらす
としているため、R214B相の体積率増加には限界が
あるとしているが、本発明者らによる実験結果では次項
に記すように、Rリッチ相の分散状態が異なるためかそ
のような現象は認められていない。
The present invention has focused on the point that the volume fraction of the R 2 T 14 B phase of the raw material alloy contributes to the improvement of the residual magnetization of the magnet. As for the main phase alloy, as the volume fraction of the R 2 T 14 B phase increases, the residual magnetization of the magnet increases. To take advantage of its strengths,
The volume ratio of the R 2 T 14 B phase is preferably 93% or more. It is more preferably at least 95%. Because earlier reduction of R-rich phase Hei 7-176414 In the main phase alloy covered in the prior art is directed to result in reduced sinterability and a decrease in residual magnetization, the volume of the R 2 T 14 B phase Although the rate increase is limited, there is no such phenomenon observed in the experimental results by the present inventors probably because the dispersion state of the R-rich phase is different as described in the next section.

【0017】(2) R214B相の平均結晶粒径 R214B相の短軸方向の平均結晶粒径が20〜100
μmであり、Rリッチ相の間隔が15μm以下であるこ
とを特徴とする。主相の結晶粒径が20μm以下である
と、磁場成形用の粉末粒径3〜5μmに微粉砕したとき
粉砕粒径の中に結晶粒界が存在する粉末粒子の割合が多
くなる。したがって、そのような粉末粒子には方位の異
なる2つ以上の主相が存在することになり、配向性を低
下させ残留磁化の低下を招く。そのため、平均結晶粒径
は大きい方が都合が良い。一方、100μm以上ではス
トリップキャスティング法の高冷却速度の効果が薄れ、
α−Fe析出等の弊害を招く。
[0017] (2) Average crystal grain diameter in the short axis direction of the R 2 T 14 B phase with an average grain size R 2 T 14 B phase is 20 to 100
μm, and the interval between R-rich phases is 15 μm or less. When the crystal grain size of the main phase is 20 μm or less, the ratio of powder particles having crystal grain boundaries in the milled particle size when the powder for magnetic field molding is finely pulverized to 3 to 5 μm increases. Therefore, such powder particles have two or more main phases having different orientations, which lowers the orientation and lowers the residual magnetization. Therefore, the larger the average crystal grain size, the better. On the other hand, above 100 μm, the effect of the high cooling rate of the strip casting method diminishes,
It causes adverse effects such as α-Fe precipitation.

【0018】主相の各結晶粒は合金をエメリー紙で研磨
した後、アルミナ、ダイヤモンド等を使用してバフ研磨
した面を偏光顕微鏡で観察することにより容易に識別可
能である。偏光顕微鏡では磁気Kerr効果により、入
射した偏光が強磁性体表面の磁化方向に応じた偏光面の
回転を生じて反射するため、各結晶粒から反射する偏光
面の相違が明暗として観察される。
Each crystal grain of the main phase can be easily identified by polishing the alloy with emery paper and then observing the surface buffed with alumina, diamond or the like with a polarizing microscope. In a polarization microscope, the polarization of the incident light is reflected by the rotation of the polarization plane corresponding to the magnetization direction of the surface of the ferromagnetic material due to the magnetic Kerr effect, so that the difference in the polarization plane reflected from each crystal grain is observed as light and dark.

【0019】(3) 主相系合金の製造方法 第1は、ストリップキャスト法で作製したことを特徴と
する。特に、ストリップキャスト後、800〜600℃
での冷却速度を10℃/秒以下、好ましくは5℃/秒以
下とすることを特徴とする。ストリップキャスティング
法によれば、α−Feの存在しない薄片状合金の作製が
可能であり、最近、装置の改良も進み生産性も向上して
きた。ストリップキャスティング法では冷却速度が数百
〜数千℃/ 秒と速いため、先に説明したように結晶粒径
が細かく、Rリッチ相の体積率が平衡状態図で予想され
るよりも高い組織が得られ、従来はそのような組織は好
ましいものとして受入れられてきた。しかし、本発明で
は主相の体積率を高めるため、800〜600℃の冷却
速度を10℃/秒以下、好ましくは5℃/秒以下として
液相からのR214B相の生成を促進することとした。
(3) Manufacturing method of main phase alloy Firstly, it is characterized by being manufactured by a strip casting method. Especially after strip casting, 800-600 ° C
The cooling rate at 10 ° C./sec or less, preferably 5 ° C./sec or less. According to the strip casting method, a flaky alloy free of α-Fe can be produced, and recently, the apparatus has been improved and the productivity has been improved. In the strip casting method, since the cooling rate is as fast as several hundreds to several thousand degrees Celsius / second, as described above, a structure having a fine crystal grain size and a higher volume fraction of the R-rich phase than expected in the equilibrium diagram is obtained. As a result, such tissues have heretofore been accepted as preferred. However, in the present invention, in order to increase the volume fraction of the main phase, the cooling rate at 800 to 600 ° C. is set to 10 ° C./sec or less, preferably 5 ° C./sec or less to promote the generation of the R 2 T 14 B phase from the liquid phase. It was decided to.

【0020】結晶粒径とα−Feの生成有無に影響する
のは、凝固速度や包晶温度近傍までの高温域での冷却速
度と考えられる。結晶粒径を大きくするためにはこれら
の冷却速度が遅い方が望ましく、一方α−Feの生成を
防止するためには速い方が望ましい。また、Rリッチ相
の間隔はこれら高温域での冷却速度とさらに共晶温度域
に近いより低温域までの冷却速度に依存し、これらの冷
却速度が速いほどより小さく、微細に分布することにな
る。以上から最適な組織を得るためには、最適な冷却条
件が存在することになる。広範囲の実験を行った結果、
融点から800℃までの平均冷却速度は300〜100
0℃/秒すれば良いことが知られた。300℃/秒以下
ではα−Feが生成し、またRリッチ相の間隔も広く、
微細な組織とならない。一方、1000℃/秒以上では
結晶粒径が20μm以下となり、またロール上での冷却
が強まり、落下時に600℃以下となってしまい、その
後の冷却の制御が不可能となる。ロ−ルから離脱する前
のストリップの冷却速度に最も大きく影響する要因とし
てストリップ厚さが挙げられる。融点から800℃まで
の平均冷却速度を300℃/秒〜1000℃/秒とし、
かつ最適な結晶粒径とRリッチ相の間隔を有した組織と
するためには、ストリップ厚さは0. 2〜0. 6mmと
するのが良い。より好ましくは0. 25〜0. 4mmで
ある。
The influence of the crystal grain size and the presence or absence of α-Fe is considered to be the solidification rate or the cooling rate in a high temperature range near the peritectic temperature. In order to increase the crystal grain size, it is desirable that the cooling rate be low, while it is desirable that the cooling rate be high in order to prevent the formation of α-Fe. Further, the interval between the R-rich phases depends on the cooling rate in these high-temperature areas and the cooling rate in a lower temperature area closer to the eutectic temperature area, and the higher the cooling rate, the smaller and finer the distribution. Become. As described above, in order to obtain an optimal structure, there are optimal cooling conditions. After conducting extensive experiments,
Average cooling rate from melting point to 800 ° C is 300-100
It was known that 0 ° C./sec should be used. At 300 ° C./second or less, α-Fe is generated, and the interval between R-rich phases is wide.
Does not have a fine structure. On the other hand, at a temperature of 1000 ° C./sec or more, the crystal grain size becomes 20 μm or less, and cooling on the rolls becomes strong, and the temperature drops to 600 ° C. or less at the time of falling. The factor that has the greatest effect on the cooling rate of the strip before leaving the roll is the strip thickness. The average cooling rate from the melting point to 800 ° C. is 300 ° C./sec to 1000 ° C./sec,
In order to obtain a structure having an optimum crystal grain size and an interval between R-rich phases, the strip thickness is preferably set to 0.2 to 0.6 mm. More preferably, it is 0.225 to 0.4 mm.

【0021】本発明ではロ−ルから落下する際の温度を
700℃以上として、その後に適度に保温可能な工程を
有することで800〜600℃での冷却速度の制御が可
能となる。
In the present invention, the temperature at the time of dropping from the roll is set to 700 ° C. or more, and a process capable of appropriately keeping the temperature after that makes it possible to control the cooling rate at 800 to 600 ° C.

【0022】本発明では主相の体積率を高めるため、8
00〜600℃の冷却速度を10℃/秒以下、好ましく
は5℃/秒以下として液相からのR214B相の生成を
促進する工程、又は鋳造冷却後に800〜600℃で熱
処理する工程を有する。800〜600℃の冷却速度が
10℃/秒を越えると、液相のRリッチ相からR214
B相が十分に生成しきらない内に凝固してしまい、結果
としてRリッチ相等の非磁性相の体積比が多く、R2
14B相の体積比が小さくなるため、本発明の主旨から外
れる。
In the present invention, in order to increase the volume fraction of the main phase, 8
A step of setting the cooling rate at 00 to 600 ° C. to 10 ° C./sec or less, preferably 5 ° C./sec or less to promote the formation of the R 2 T 14 B phase from the liquid phase, or heat-treating at 800 to 600 ° C. after casting cooling. Having a process. When the cooling rate at 800 to 600 ° C. exceeds 10 ° C./sec, the R 2 T 14
The B phase solidifies before it is not sufficiently formed, and as a result, the volume ratio of the non-magnetic phase such as the R-rich phase is large, and the R 2 T
Since the volume ratio of the 14 B phase is small, it falls outside the gist of the present invention.

【0023】また、本発明の主相用合金を得る第2の方
法として、ストリップキャスティング法により鋳造冷却
した後に、800〜600℃で熱処理することによって
も同様の効果が得られる。この熱処理はα−Fe消去を
目的とした均質化熱処理よりも低温短時間であるため、
装置的、生産効率面での弊害は少ない。鋳造片が薄いた
め熱処理時間は通常1時間以上あれば良く、3時間を超
える必要はない。熱処理雰囲気は酸化を防止するため、
真空又は不活性雰囲気とする必要がある。熱処理後の冷
却は600℃程度までを徐冷とするのが好ましい。
As a second method for obtaining the alloy for the main phase of the present invention, the same effect can be obtained by heat-treating at 800 to 600 ° C. after casting and cooling by a strip casting method. Since this heat treatment is performed at a lower temperature and a shorter time than the homogenization heat treatment for the purpose of eliminating α-Fe,
There are few adverse effects in terms of equipment and production efficiency. Since the cast piece is thin, the heat treatment time usually needs to be 1 hour or more, and need not exceed 3 hours. Heat treatment atmosphere to prevent oxidation,
It is necessary to use a vacuum or an inert atmosphere. It is preferable that the cooling after the heat treatment is gradually cooled to about 600 ° C.

【0024】(4)粒界相系合金の組織 R214B相の体積率が30%以下であることを特徴と
する。本発明が採用される2合金法では、主相系合金は
その体積率の93%以上がR214B相であるため、磁
石のRリッチ相のほとんどは粒界相系合金から供給する
こととなる。この際、磁石の組成を固定すれば、粒界相
系合金の組成、若しくは組織中に含まれるR214B相
の量によって、主相系合金との混合比率の調整が可能と
なる。本発明者によれば、ここで粒界相系合金中のR2
14B相体積率が少ない程、磁石の残留磁化が高くなる
傾向が得られた。したがって、R214B相体積率は少
ない程好ましく、30%以下であることが好ましい。よ
り好ましくは20%以下、さらに好ましくは10%以下
である。このような組織を得るための好ましい合金組成
の一例を挙げればR:46%、B:0.5%、Co:2
0%、Cu:0.7%、Al:0.3%、Fe:残部の
近傍である。
(4) Structure of Grain Boundary Phase Alloy The volume ratio of the R 2 T 14 B phase is 30% or less. In the two-alloy method in which the present invention is employed, since the main phase alloy has an R 2 T 14 B phase of 93% or more by volume, most of the R-rich phase of the magnet is supplied from the grain boundary phase alloy. It will be. At this time, if the composition of the magnet is fixed, the mixing ratio with the main phase alloy can be adjusted by the composition of the grain boundary phase alloy or the amount of the R 2 T 14 B phase contained in the structure. According to the present inventor, here, R 2 in the grain boundary phase alloy is
It was found that the smaller the volume fraction of the T 14 B phase, the higher the residual magnetization of the magnet. Therefore, the smaller the volume fraction of the R 2 T 14 B phase, the better, and preferably 30% or less. It is more preferably at most 20%, further preferably at most 10%. As an example of a preferable alloy composition for obtaining such a structure, R: 46%, B: 0.5%, Co: 2
0%, Cu: 0.7%, Al: 0.3%, Fe: near the balance.

【0025】[0025]

【作用】本発明は2合金法による、R(Yを含む希土類
元素のうち少なくとも1種)、T(Feを必須とする遷
移金属)及びBを基本成分とする永久磁石用の原料用合
金と原料用合金の製造方法に於て、R214B相を供給
する主相系合金中のR214B相の体積率を凝固速度、
または凝固後の熱処理によって増加すること、またR2
14B相結晶粒径の制御によって、さらに粒界相系合金
中のR214B相の体積率を減少することにより、焼結
磁石化後の残留磁化の増加をもたらしたものである。こ
こで各合金中のR214B相の体積率が、磁石の残留磁
化に影響を及ぼす原因について考察する。上記した本発
明者による実験結果より、主相合金については微粉砕後
にR214B相からなる微粉中に他の相が共存する割合
が、磁石の配向度に影響するものと推定した。つまり、
214B相を含む微粉への非磁性相の量が増加する
と、微粉全体としての磁化が低下するため、磁場配向の
トルクが減少する。しかし、粒径自体に変化はなく、プ
レスによって受ける配向方向からずらそうとするトルク
に変化がないため、結果として配向方向からずれた粉の
割合が増加して、磁石化後の配向率が低下したものと推
定できる。一方粒界相合金についてはR214B相の体
積比が大きくなると、個々の微粉中にR214B相が含
まれる確率が増え、また微粉中に含まれるR214B相
の体積比も増加する。そのような粉末は配向度が悪い上
に、中途半端にR214B相が大きいため、それが焼結
時に消失せず、かえって成長核となり粗大化する可能性
が高まり、磁石全体の配向度を乱す原因となる。
According to the present invention, a raw material alloy for a permanent magnet containing R (at least one of rare earth elements including Y), T (transition metal having Fe as an essential component) and B as basic components by a two-alloy method. In the method for producing an alloy for a raw material, the volume fraction of the R 2 T 14 B phase in the main phase alloy supplying the R 2 T 14 B phase is determined by the solidification rate,
Or increased by heat treatment after solidification, and R 2
By controlling the crystal grain size of the T 14 B phase, and further reducing the volume fraction of the R 2 T 14 B phase in the grain boundary phase alloy, the remanent magnetization after the formation of the sintered magnet was increased. . Here, the reason why the volume fraction of the R 2 T 14 B phase in each alloy affects the residual magnetization of the magnet will be considered. From the above experimental results by the present inventors, it was estimated that the ratio of other phases coexisting in the fine powder composed of the R 2 T 14 B phase after the pulverization of the main phase alloy affects the degree of orientation of the magnet. That is,
When the amount of the non-magnetic phase in the fine powder containing the R 2 T 14 B phase increases, the magnetization of the fine powder as a whole decreases, and the torque of the magnetic field orientation decreases. However, there is no change in the particle size itself, and there is no change in the torque to be shifted from the orientation direction received by the press. As a result, the ratio of powder shifted from the orientation direction increases, and the orientation ratio after magnetization decreases. It can be assumed that Meanwhile The grain boundary phase alloy the volume ratio of the R 2 T 14 B phase increases, increasing the probability that during individual fines include R 2 T 14 B phase, also R 2 T 14 B phase included in the fines Also increases. Such a powder has a poor degree of orientation and a large R 2 T 14 B phase in the middle, so that it does not disappear during sintering, but rather increases as a growth nucleus and may become coarse. It may cause disturbance.

【0026】[0026]

【実施例】以下、実施例により本発明を更に詳細に説明
する。 (実施例1)主相系合金は組成が、Nd:28.0重量
%、B:1. 09重量%、Al:0. 3重量%、残部鉄
になるように、鉄ネオジム合金、フェロボロン、アルミ
ニウム、鉄を配合し、アルゴンガス雰囲気中で、アルミ
ナるつぼを使用して高周波溶解炉で溶解し、ストリップ
キャスティング法により、厚さ約0.35mmのストリ
ップを生成した。この際、キャスティングロールから離
脱した高温のストリップを保温効果の大きい、断熱材で
作製した箱の中に1時間保持した後、水冷構造を有する
箱の中に入れて常温まで急冷した。断熱箱中でのストリ
ップの温度変化を箱に設置した熱電対で測定した結果、
断熱箱に落下した時の温度は750℃であった。その
後、600℃に到達するまでに10分が経過した。した
がって、800℃から750℃までの冷却に要する時間
を無視しても、800〜600℃の平均冷却速度は毎秒
0.33℃であり、実際にはこれより低くなる。一方、
融点から800℃までの冷却速度は、断熱箱に落下する
までに要する時間より、毎秒400℃以上であった。得
られたストリップの断面組織を偏光顕微鏡で観察した結
果を図1に示す。図中多角形に析出しているのが一つの
主相結晶粒である。主相Nd2 Fe14B相の平均結晶粒
径は約35μmであった。また、反射電子顕微鏡で観察
した結果を図2に示す。Rリッチ相は結晶粒界と主相粒
内に粒状となって線状に点在し、その間隔は約8μmと
微細に分散していた。その他、結晶粒界にBリッチ相が
若干量確認できた。主相Nd2 Fe14B相の体積率を画
像処理装置を用いて測定した結果、94%であった。
The present invention will be described in more detail with reference to the following examples. (Example 1) An iron neodymium alloy, ferroboron, and a main phase alloy were composed so that the composition was 28.0% by weight of Nd, 1.0% by weight of B, 0.3% by weight of Al, and the balance of iron. Aluminum and iron were mixed and melted in an argon crucible using an alumina crucible in a high-frequency melting furnace, and a strip having a thickness of about 0.35 mm was produced by a strip casting method. At this time, the high-temperature strip detached from the casting roll was kept in a box made of a heat insulating material having a large heat retaining effect for 1 hour, and then placed in a box having a water-cooled structure and rapidly cooled to room temperature. As a result of measuring the temperature change of the strip in the insulated box with a thermocouple installed in the box,
The temperature when dropped into the heat insulating box was 750 ° C. Then, 10 minutes passed until the temperature reached 600 ° C. Therefore, even if the time required for cooling from 800 ° C. to 750 ° C. is ignored, the average cooling rate from 800 to 600 ° C. is 0.33 ° C. per second, which is actually lower than this. on the other hand,
The cooling rate from the melting point to 800 ° C. was 400 ° C. or more per second, based on the time required to drop to the heat insulating box. The result of observing the cross-sectional structure of the obtained strip with a polarizing microscope is shown in FIG. In the figure, one main phase crystal grain is precipitated in a polygonal shape. The average crystal grain size of the main phase Nd 2 Fe 14 B phase was about 35 μm. FIG. 2 shows the result of observation with a reflection electron microscope. The R-rich phase was granular and scattered linearly in the crystal grain boundaries and the main phase grains, and the spacing was finely dispersed at about 8 μm. In addition, a slight amount of the B-rich phase was confirmed at the crystal grain boundaries. As a result of measuring the volume ratio of the main phase Nd 2 Fe 14 B phase using an image processing apparatus, it was found to be 94%.

【0027】一方、粒界相系合金は組成が、Nd:3
8.0重量%、Dy:8.0重量%、B:0.5重量
%、Co:20重量%、Cu:0.67重量%、Al:
0.3重量%、残部鉄になるように、鉄ネオジム合金、
金属ディスプロシウム、フェロボロン、コバルト、銅、
アルミニウム、鉄を配合し、アルゴンガス雰囲気中で、
アルミナるつぼを使用して高周波溶解炉で溶解し、遠心
鋳造法により、厚さ約10mmのインゴットを生成し
た。なお、その断面の組織の反射電子顕微鏡の観察とX
RD測定より、Nd2 Fe14B相が若干量確認された
が、その体積率は10%以下であった。次に主相系合金
85重量%と粒界相系合金15重量%を混合し、室温に
て水素を吸蔵させ、600℃にて水素を放出させた。こ
の混合粉をブラウンミルで粗粉砕し、粒径0.5mm以
下の合金粉末を得、次にジェットミルで微粉砕し、3.
5μmの平均粒径からなる磁石粉を得た。得られた微粉
末を15kOeの磁場中にて1.5ton/cm2 の圧
力で成形した。得られた成形体を真空中1060℃で4
時間焼結した後、1段目の熱処理を850℃で1時間、
2段目の熱処理を520℃で1時間行なった。得られた
磁石の磁気特性を表1に示す。表1より残留磁気(B
r)は5%程度向上し、これに伴い45MGOe級の最
大磁力積・(BH)MAX が達成される。
On the other hand, the grain boundary phase alloy has a composition of Nd: 3
8.0% by weight, Dy: 8.0% by weight, B: 0.5% by weight, Co: 20% by weight, Cu: 0.67% by weight, Al:
0.3% by weight, iron neodymium alloy so that the balance is iron,
Metal dysprosium, ferroboron, cobalt, copper,
Mixing aluminum and iron, in argon gas atmosphere,
Using an alumina crucible, melting was performed in a high-frequency melting furnace, and an ingot having a thickness of about 10 mm was produced by centrifugal casting. The cross section of the tissue was observed with a reflection electron microscope and X
From the RD measurement, a slight amount of the Nd 2 Fe 14 B phase was confirmed, but the volume ratio was 10% or less. Next, 85% by weight of the main phase alloy and 15% by weight of the grain boundary phase alloy were mixed, hydrogen was absorbed at room temperature, and hydrogen was released at 600 ° C. This mixed powder was roughly pulverized with a brown mill to obtain an alloy powder having a particle size of 0.5 mm or less, and then finely pulverized with a jet mill.
A magnet powder having an average particle size of 5 μm was obtained. The obtained fine powder was molded at a pressure of 1.5 ton / cm 2 in a magnetic field of 15 kOe. The obtained molded body is heated at 1060 ° C. in vacuum for 4 hours.
After sintering for 1 hour, the first stage heat treatment is performed at 850 ° C. for 1 hour,
The second heat treatment was performed at 520 ° C. for 1 hour. Table 1 shows the magnetic properties of the obtained magnet. Table 1 shows that the residual magnetism (B
r) is improved by about 5%, and accordingly, a maximum magnetic impulse · (BH) MAX of 45MGOe class is achieved.

【0028】[0028]

【表1】 [Table 1]

【0029】(比較例1)実施例1と同じ組成となるよ
うに、実施例1と同様にストリップキャスティング法に
より、厚さ約0.35mmの主相系合金のストリップを
生成した。この際、キャスティングロールから離脱した
高温のストリップを直接、水冷構造を有する箱の中に入
れて常温まで急冷した。箱中でのストリップの温度変化
を箱に設置した熱電対で測定した結果、箱に落下した時
の温度は750℃であった。その後、600℃に到達す
るまでに要した時間は15秒であった。一方、800℃
から750℃の冷却に要した時間は、ストリップが箱に
落下するまでに要した時間よりも短くなるため、最大で
も2秒程度である。したがって、それを加えても800
〜600℃の平均冷却速度は毎秒12℃であり、実際に
はこれよりも大きくなる。一方、融点から800℃まで
の冷却速度は、実施例1と相違ない。その断面の組織を
偏光顕微鏡で観察した結果、主相Nd2 Fe14B相の平
均結晶粒径は約35μmであった。また、反射電子顕微
鏡で観察した結果を図3に示す。図3のとおりRリッチ
相は結晶粒界と主相粒内に筋状となって存在し、その間
隔は約3μmであり、分散が不充分であった。その他、
結晶粒界にBリッチ相が黒点となって若干量確認でき
た。主相Nd2 Fe14B相の体積率を画像処理装置を用
いて測定した結果、82%であった。次にこの主相系合
金と実施例1で作製した粒界相系合金を用いて、実施例
1と同様の方法で焼結磁石を作製し、その磁気特性を表
1に示す。
Comparative Example 1 A strip of a main phase alloy having a thickness of about 0.35 mm was produced by the strip casting method in the same manner as in Example 1 so as to have the same composition as in Example 1. At this time, the high-temperature strip detached from the casting roll was directly placed in a box having a water-cooled structure and rapidly cooled to room temperature. As a result of measuring the temperature change of the strip in the box with a thermocouple installed in the box, the temperature when dropped into the box was 750 ° C. Thereafter, the time required to reach 600 ° C. was 15 seconds. On the other hand, 800 ° C
Since the time required for cooling from to 750 ° C. is shorter than the time required for the strip to fall into the box, it is at most about 2 seconds. Therefore, even if it is added, 800
The average cooling rate of ~ 600 ° C is 12 ° C per second, which is actually higher. On the other hand, the cooling rate from the melting point to 800 ° C. is the same as that in Example 1. As a result of observing the structure of the cross section with a polarizing microscope, the average crystal grain size of the main phase Nd 2 Fe 14 B phase was about 35 μm. FIG. 3 shows the results of observation with a reflection electron microscope. As shown in FIG. 3, the R-rich phase was present in the form of streaks in the crystal grain boundaries and the main phase grains, and the interval between them was about 3 μm, and the dispersion was insufficient. Others
The B-rich phase became black spots at the crystal grain boundaries, and the amount was slightly confirmed. As a result of measuring the volume ratio of the main phase Nd 2 Fe 14 B phase using an image processing apparatus, it was found to be 82%. Next, using this main phase alloy and the grain boundary phase alloy produced in Example 1, a sintered magnet was produced in the same manner as in Example 1, and the magnetic properties are shown in Table 1.

【0030】(比較例2)実施例1と同じ組成となるよ
うに、実施例1と同様にストリップキャスティング法に
より、主相系合金のストリップを生成した。この際、注
湯速度を減少させたため、ストリップの厚さは約0.2
2mmであった。ロールから離脱したストリップは実施
例1と同様に断熱材で作製した箱の中に1時間保持した
後、水冷構造を有する箱の中に入れて常温まで急冷し
た。断熱箱中でのストリップの温度変化を箱に設置した
熱電対で測定した結果、断熱箱に落下した時の温度は6
80℃であった。その後、600℃に到達するまでに要
した時間は7分であった。したがって、800〜600
℃の平均冷却速度は毎秒0.48℃以下である。一方、
融点から800℃までの冷却速度は、毎秒500℃以上
であった。その断面の組織を偏光顕微鏡で観察した結果
を図4に示す。主相Nd2 Fe14B相の平均結晶粒径は
約18μmと実施例1に比較して小さかった。また、反
射電子顕微鏡で観察した結果、Rリッチ相は結晶粒界と
主相粒内に数μm程度の粒状となって点在し、その間隔
は約6μmであった。その他、結晶粒界にBリッチ相が
若干量確認できた。主相Nd2 Fe14B相の体積率を画
像処理装置を用いて測定した結果90%であった。次に
この主相系合金と実施例1で作製した粒界相系合金を用
いて、実施例1と同様の方法で焼結磁石を作製し、その
磁気特性を表1に示す。
(Comparative Example 2) Strips of the main phase alloy were produced by strip casting in the same manner as in Example 1 so as to have the same composition as in Example 1. At this time, since the pouring speed was reduced, the thickness of the strip was about 0.2.
2 mm. The strip separated from the roll was kept in a box made of a heat insulating material for one hour as in Example 1, and then placed in a box having a water-cooled structure and rapidly cooled to room temperature. As a result of measuring the temperature change of the strip in the insulated box with the thermocouple installed in the box, the temperature when dropped into the insulated box was 6
80 ° C. Thereafter, the time required to reach 600 ° C. was 7 minutes. Therefore, 800 to 600
The average cooling rate in ° C. is below 0.48 ° C. per second. on the other hand,
The cooling rate from the melting point to 800 ° C. was 500 ° C. or more per second. FIG. 4 shows the result of observing the structure of the cross section with a polarizing microscope. The average crystal grain size of the main phase Nd 2 Fe 14 B phase was about 18 μm, which was smaller than that of Example 1. Further, as a result of observation with a reflection electron microscope, the R-rich phase was scattered in the form of grains of about several μm in the crystal grain boundaries and the main phase grains, and the interval between them was about 6 μm. In addition, a slight amount of the B-rich phase was confirmed at the crystal grain boundaries. The volume ratio of the main phase Nd 2 Fe 14 B phase was measured using an image processing apparatus, and was found to be 90%. Next, using this main phase alloy and the grain boundary phase alloy produced in Example 1, a sintered magnet was produced in the same manner as in Example 1, and the magnetic properties are shown in Table 1.

【0031】(比較例3)実施例1と同じ組成となるよ
うに、水冷機構を有する鉄製鋳型を用いて、厚さ25m
mの主相系のインゴットを作製した。その断面の組織を
偏光顕微鏡で観察した結果、主相Nd2 Fe14B相の平
均結晶粒径は約150μmであった。しかし、反射電子
顕微鏡で観察した結果、インゴット全体に多量のα−F
eが存在していたため、磁石は作製しなかった。
(Comparative Example 3) A 25 m-thick steel mold having a water cooling mechanism was used to obtain the same composition as in Example 1.
m of main phase ingots were prepared. As a result of observing the structure of the cross section with a polarizing microscope, the average crystal grain size of the main phase Nd 2 Fe 14 B phase was about 150 μm. However, as a result of observation with a reflection electron microscope, a large amount of α-F
No magnet was made because e was present.

【0032】(実施例2)比較例1で作製した主相系合
金のストリップをアルゴン雰囲気中、700℃で2時間
熱処理し、常温までガス急冷した。その断面の組織を偏
光顕微鏡で観察した結果、主相Nd2 Fe14B相の平均
結晶粒径は約35μmであった。また、反射電子顕微鏡
で観察した結果、Rリッチ相は結晶粒界と主相粒内に粒
状となって点在し、その間隔は約10μmであった。そ
の他、結晶粒界にBリッチ相が若干量確認できた。主相
Nd2 Fe14B相の体積率を画像処理装置を用いて測定
した結果、95%であった。次にこの主相系合金と実施
例1で作製した粒界相系合金を用いて、実施例1と同様
の方法で焼結磁石を作製し、その磁気特性を表1に示
す。
Example 2 A strip of the main phase alloy prepared in Comparative Example 1 was heat-treated at 700 ° C. for 2 hours in an argon atmosphere, and gas was rapidly cooled to room temperature. As a result of observing the structure of the cross section with a polarizing microscope, the average crystal grain size of the main phase Nd 2 Fe 14 B phase was about 35 μm. Further, as a result of observation with a reflection electron microscope, the R-rich phase was scattered in the form of grains in the crystal grain boundaries and the main phase grains, and the interval between them was about 10 μm. In addition, a slight amount of the B-rich phase was confirmed at the crystal grain boundaries. As a result of measuring the volume ratio of the main phase Nd 2 Fe 14 B phase using an image processing apparatus, it was found to be 95%. Next, using this main phase alloy and the grain boundary phase alloy produced in Example 1, a sintered magnet was produced in the same manner as in Example 1, and the magnetic properties are shown in Table 1.

【0033】(比較例4)比較例1で作製した主相系合
金のストリップをアルゴン雰囲気中、900℃で2時間
熱処理し、常温までガス急冷した。その断面の組織を偏
光顕微鏡で観察した結果、主相Nd2 Fe14B相の平均
結晶粒径は約35μmであった。また、反射電子顕微鏡
で観察した結果、Rリッチ相は結晶粒界と主相粒内に粒
状となって点在し、その間隔は約16μmであった。そ
の他、結晶粒界にBリッチ相が若干量確認できた。主相
Nd2 Fe14B相の体積率を画像処理装置を用いて測定
した結果、89%であった。次にこの主相系合金と実施
例1で作製した粒界相系合金を用いて、実施例1と同様
の方法で焼結磁石を作製し、その磁気特性を表1に示
す。
Comparative Example 4 The main phase alloy strip prepared in Comparative Example 1 was heat-treated at 900 ° C. for 2 hours in an argon atmosphere, and gas was rapidly cooled to room temperature. As a result of observing the structure of the cross section with a polarizing microscope, the average crystal grain size of the main phase Nd 2 Fe 14 B phase was about 35 μm. As a result of observation with a reflection electron microscope, it was found that the R-rich phase was scattered in the form of grains in the crystal grain boundaries and the main phase grains, and the interval between them was about 16 μm. In addition, a slight amount of the B-rich phase was confirmed at the crystal grain boundaries. As a result of measuring the volume ratio of the main phase Nd 2 Fe 14 B phase using an image processing apparatus, it was found to be 89%. Next, using this main phase alloy and the grain boundary phase alloy produced in Example 1, a sintered magnet was produced in the same manner as in Example 1, and the magnetic properties are shown in Table 1.

【0034】(比較例5)主相系合金は組成が、Nd:
28.0重量%、B:1. 0重量%、Al:0.3重量
%、残部鉄になるように、鉄ネオジム合金、フェロボロ
ン、アルミニウム、鉄を配合し、実施例1と同様にスト
リップキャスティング法により、厚さ約0.35mmの
ストリップを生成した。ロールから離脱したストリップ
は実施例1と同様に断熱材で作製した箱の中に1時間保
持した後、水冷構造を有する箱の中に入れて常温まで急
冷した。断熱箱中でのストリップの温度変化を箱に設置
した熱電対で測定した結果、断熱箱に落下した時の温度
は740℃であった。その後、600℃に到達するまで
に要した時間は10分であった。したがって、800〜
600℃の平均冷却速度は毎秒0.33℃以下である。
一方、融点から800℃までの冷却速度は、断熱箱に落
下するまでに要する時間より、毎秒400℃以上であっ
た。得られたストリップの断面組織を偏光顕微鏡で観察
した結果、主相Nd2 Fe14B相の平均結晶粒径は約3
7μmであった。また、反射電子顕微鏡で観察した結
果、Rリッチ相は結晶粒界と主相粒内に粒状となって点
在し、その間隔は約8μmであった。その他、Bリッチ
相が結晶粒界に若干量確認できた。主相Nd2 Fe14
相の体積率を画像処理装置を用いて測定した結果、93
%であった。
Comparative Example 5 The main phase alloy had the composition of Nd:
28.0% by weight, B: 1.0% by weight, Al: 0.3% by weight, iron-neodymium alloy, ferroboron, aluminum, and iron are blended so that the balance is iron, and strip casting is performed in the same manner as in Example 1. The method produced a strip having a thickness of about 0.35 mm. The strip separated from the roll was kept in a box made of a heat insulating material for one hour as in Example 1, and then placed in a box having a water-cooled structure and rapidly cooled to room temperature. As a result of measuring the temperature change of the strip in the insulated box with a thermocouple installed in the box, the temperature when dropped into the insulated box was 740 ° C. Thereafter, the time required to reach 600 ° C. was 10 minutes. Therefore, 800-
The average cooling rate at 600 ° C. is below 0.33 ° C. per second.
On the other hand, the cooling rate from the melting point to 800 ° C. was 400 ° C. or more per second due to the time required to fall into the heat insulating box. As a result of observing the cross-sectional structure of the obtained strip with a polarizing microscope, the average crystal grain size of the main phase Nd 2 Fe 14 B phase was about 3
It was 7 μm. Further, as a result of observation with a reflection electron microscope, the R-rich phase was scattered in the form of grains in the crystal grain boundaries and the main phase grains, and the interval between them was about 8 μm. In addition, a slight amount of the B-rich phase was confirmed at the crystal grain boundaries. Main phase Nd 2 Fe 14 B
As a result of measuring the volume ratio of the phase using an image processing apparatus, 93
%Met.

【0035】一方、粒界相系合金は組成が、Nd:3
8.0重量%、Dy:8.0重量%、B:1.0重量
%、Co:20重量%、Cu:0.67重量%、Al:
0.3重量%、残部鉄になるように、実施例1と同様に
遠心鋳造法により、厚さ約10mmのインゴットを生成
した。その断面を 反射電子顕微鏡観察とXRD測定よ
りR214B相が確認され、その体積率を画像処理装置
を用いて測定した結果、35%であった。次にここで作
製した主相系合金85重量%と粒界相系合金15重量%
を用いて、実施例1と同様の方法で焼結磁石を作製し、
その磁気特性を表1に示す。なお、本比較例での磁石化
後の組成は、他の実施例及び比較例と同一である。本比
較例では主相系合金は本発明に合致しているものの、粒
界相系合金が不適当であったため、所望の磁石特性を得
ることができなかった。
On the other hand, the grain boundary phase alloy has a composition of Nd: 3
8.0% by weight, Dy: 8.0% by weight, B: 1.0% by weight, Co: 20% by weight, Cu: 0.67% by weight, Al:
An ingot having a thickness of about 10 mm was produced by a centrifugal casting method in the same manner as in Example 1 so that 0.3% by weight and the balance were iron. An R 2 T 14 B phase was confirmed in the cross section by reflection electron microscopy and XRD measurement, and the volume ratio was measured using an image processing apparatus. As a result, it was 35%. Next, 85% by weight of the main phase-based alloy and 15% by weight of the grain boundary phase-based alloy produced here
To produce a sintered magnet in the same manner as in Example 1,
Table 1 shows the magnetic properties. The composition after magnetization in this comparative example is the same as the other examples and comparative examples. In this comparative example, although the main phase alloy was in accordance with the present invention, the desired magnetic properties could not be obtained because the grain boundary phase alloy was inappropriate.

【0036】(比較例6)主相系合金は組成が、Nd:
26.0重量%、B:1. 09重量%、Al:0. 3重
量%、残部鉄になるように、鉄ネオジム合金、フェロボ
ロン、アルミニウム、鉄を配合し、実施例1と同様にス
トリップキャスティング法により、厚さ約0.35mm
のストリップを生成した。ロールから離脱したストリッ
プは実施例1と同様に断熱材で作製した箱の中に1時間
保持した後、水冷構造を有する箱の中に入れて常温まで
急冷した。断熱箱中でのストリップの温度変化を箱に設
置した熱電対で測定した結果、断熱箱に落下した時の温
度は780℃であった。その後、600℃に到達するま
でに要した時間は11分であった。したがって、800
〜600℃の平均冷却速度は毎秒0.3℃以下である。
一方、融点から800℃までの冷却速度は、断熱箱に落
下するまでに要する時間より、毎秒400℃以上であっ
た。得られたストリップの断面組織を偏光顕微鏡で観察
した結果、主相Nd2 Fe14B相の平均結晶粒径は約2
3μmであった。また、反射電子顕微鏡で観察した結
果、主相粒内にα−Feが存在しており、Rリッチ相は
結晶粒界と主相粒内に粒状となって点在し、その間隔は
約5μmであった。その他、Bリッチ相が結晶粒界に若
干量確認できた。なお、この合金は他の実施例、及び比
較例で磁石を作製した主相系合金と比較して、粉砕性が
明らかに劣っていたため、磁石は作製していない。
Comparative Example 6 The composition of the main phase alloy was Nd:
26.0% by weight, B: 1.09% by weight, Al: 0.3% by weight, iron-neodymium alloy, ferroboron, aluminum and iron are blended so that the balance is iron, and strip casting is performed in the same manner as in Example 1. By method, thickness about 0.35mm
Produced strips. The strip separated from the roll was kept in a box made of a heat insulating material for one hour as in Example 1, and then placed in a box having a water-cooled structure and rapidly cooled to room temperature. As a result of measuring the temperature change of the strip in the heat insulating box with a thermocouple installed in the box, the temperature when dropped into the heat insulating box was 780 ° C. Thereafter, the time required to reach 600 ° C. was 11 minutes. Therefore, 800
The average cooling rate of ~ 600 ° C is below 0.3 ° C per second.
On the other hand, the cooling rate from the melting point to 800 ° C. was 400 ° C. or more per second due to the time required to fall into the heat insulating box. As a result of observing the cross-sectional structure of the obtained strip with a polarizing microscope, the average crystal grain size of the main phase Nd 2 Fe 14 B phase was about 2 μm.
It was 3 μm. As a result of observation with a reflection electron microscope, α-Fe was present in the main phase grains, and the R-rich phase was scattered in the form of grains in the crystal grain boundaries and the main phase grains, with an interval of about 5 μm. Met. In addition, a slight amount of the B-rich phase was confirmed at the crystal grain boundaries. Since this alloy was clearly inferior in pulverizability as compared with the main phase alloy in which the magnet was manufactured in the other Examples and Comparative Examples, no magnet was manufactured.

【0037】(比較例7)主相系合金は組成が、Nd:
31.0重量%、B:1. 09重量%、Al:0. 3重
量%、残部鉄になるように、鉄ネオジム合金、フェロボ
ロン、アルミニウム、鉄を配合し、実施例1と同様にス
トリップキャスティング法により、厚さ約0.37mm
のストリップを生成した。ロールから離脱したストリッ
プは実施例1と同様に断熱材で作製した箱の中に1時間
保持した後、水冷構造を有する箱の中に入れて常温まで
急冷した。断熱箱中でのストリップの温度変化を箱に設
置した熱電対で測定した結果、断熱箱に落下した時の温
度は750℃であった。その後、600℃に到達するま
でに要した時間は10分であった。したがって、800
〜600℃の平均冷却速度は毎秒0.33℃以下であ
る。一方、融点から800℃までの冷却速度は、断熱箱
に落下するまでに要する時間より、毎秒400℃以上で
あった。得られたストリップの断面組織を偏光顕微鏡で
観察した結果、主相Nd2 Fe14B相の平均結晶粒径は
約35μmであった。また、反射電子顕微鏡で観察した
結果、Rリッチ相は結晶粒界と主相粒内に粒状となって
点在し、その間隔は約9μmであった。その他、Bリッ
チ相が結晶粒界に若干量確認できた。主相Nd2 Fe14
B相の体積率を画像処理装置を用いて測定した結果、9
0%であった。
(Comparative Example 7) The composition of the main phase alloy was Nd:
31.0 wt%, B: 1.09 wt%, Al: 0.3 wt%, iron-neodymium alloy, ferroboron, aluminum, and iron are blended so that the balance is iron, and strip casting is performed in the same manner as in Example 1. By method, thickness about 0.37mm
Produced strips. The strip separated from the roll was kept in a box made of a heat insulating material for one hour as in Example 1, and then placed in a box having a water-cooled structure and rapidly cooled to room temperature. As a result of measuring the temperature change of the strip in the insulated box with a thermocouple installed in the box, the temperature when dropped into the insulated box was 750 ° C. Thereafter, the time required to reach 600 ° C. was 10 minutes. Therefore, 800
The average cooling rate of ~ 600 ° C is below 0.33 ° C per second. On the other hand, the cooling rate from the melting point to 800 ° C. was 400 ° C. or more per second due to the time required to fall into the heat insulating box. As a result of observing the cross-sectional structure of the obtained strip with a polarizing microscope, the average crystal grain size of the main phase Nd 2 Fe 14 B phase was about 35 μm. Further, as a result of observation with a reflection electron microscope, the R-rich phase was scattered in the form of grains in the crystal grain boundaries and the main phase grains, and the interval between them was about 9 μm. In addition, a slight amount of the B-rich phase was confirmed at the crystal grain boundaries. Main phase Nd 2 Fe 14
As a result of measuring the volume ratio of the B phase using an image processing apparatus, 9
It was 0%.

【0038】一方、粒界相系合金は組成が、Nd:2
1.0重量%、Dy:8.0重量%、B:0.5重量
%、Co:20重量%、Cu:0.67重量%、Al:
0.3重量%、残部鉄になるように、実施例1と同様に
遠心鋳造法により、厚さ約10mmのインゴットを生成
した。その断面を 反射電子顕微鏡観察とXRD測定よ
りR214B相が確認され、その体積率を画像処理装置
を用いて測定した結果、45%であった。次にここで作
製した主相系合金85重量%と粒界相系合金15重量%
を用いて、実施例1と同様の方法で焼結磁石を作製し、
その磁気特性を表1に示す。なお、本比較例での磁石化
後の組成は、他の実施例及び比較例と同一である。
On the other hand, the grain boundary phase alloy has a composition of Nd: 2
1.0% by weight, Dy: 8.0% by weight, B: 0.5% by weight, Co: 20% by weight, Cu: 0.67% by weight, Al:
An ingot having a thickness of about 10 mm was produced by a centrifugal casting method in the same manner as in Example 1 so that 0.3% by weight and the balance were iron. An R 2 T 14 B phase of the cross section was confirmed by reflection electron microscope observation and XRD measurement, and the volume ratio was measured by an image processing apparatus to be 45%. Next, 85% by weight of the main phase-based alloy and 15% by weight of the grain boundary phase-based alloy produced here
To produce a sintered magnet in the same manner as in Example 1,
Table 1 shows the magnetic properties. The composition after magnetization in this comparative example is the same as the other examples and comparative examples.

【0039】[0039]

【発明の効果】本発明によれば、最大磁力積・(BH)
MAX が45MGOe級の強力な永久磁石を容易に得るこ
とが可能となる。
According to the present invention, the maximum magnetic impulse · (BH)
It is possible to easily obtain a strong permanent magnet having a MAX of 45MGOe class.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1の主相用合金の結晶粒径を示す偏光顕
微鏡組織写真である(倍率200倍)。
FIG. 1 is a polarizing microscope structure photograph showing a crystal grain size of a main phase alloy of Example 1 (magnification: 200 times).

【図2】実施例1の主相用合金のRリッチ相の分散状態
を示す反射電子顕微鏡組織写真である(倍率250
倍)。
FIG. 2 is a reflection electron microscopic structure photograph showing a dispersion state of an R-rich phase in the alloy for a main phase of Example 1 (250 magnification).
Times).

【図3】比較例1の主相用合金のRリッチ相の分散状態
を示す反射電子顕微鏡組織写真である(倍率250
倍)。
FIG. 3 is a micrograph of the structure of the alloy for a main phase of Comparative Example 1 showing a dispersion state of an R-rich phase by a reflection electron microscope (250 magnification).
Times).

【図4】比較例2の主相用合金の結晶粒径を示す偏光顕
微鏡組織写真である(倍率200倍)。
FIG. 4 is a polarizing microscopic structure photograph showing a crystal grain size of a main phase alloy of Comparative Example 2 (magnification: 200 times).

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI H01F 1/053 H01F 41/02 G 41/02 1/04 H (56)参考文献 特開 平7−18366(JP,A) 特開 平2−149650(JP,A) 特開 平5−222488(JP,A) 特開 平5−295490(JP,A) 特開 平7−45413(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 303 B22D 11/06 360 B22F 1/00 C22C 33/02 H01F 1/053 H01F 41/02 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI H01F 1/053 H01F 41/02 G 41/02 1/04 H (56) References JP-A-7-18366 (JP, A) JP-A-2-149650 (JP, A) JP-A-5-222488 (JP, A) JP-A-5-295490 (JP, A) JP-A-7-45413 (JP, A) (58) (Int.Cl. 7 , DB name) C22C 38/00 303 B22D 11/06 360 B22F 1/00 C22C 33/02 H01F 1/053 H01F 41/02

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 R(Yを含む希土類元素のうち少なくと
も1種)を27〜30wt%、Bを1.0〜1.3wt
%含み、残部がT(Feを必須とする遷移金属)からな
る組成を有し、R214B相の体積率が93%以上で平
均結晶粒径が20〜100μm、Rリッチ相の間隔が1
5μm以下であり、Rリッチ相は結晶粒界と主相粒内に
点在することを特徴とする2合金法に使用するための希
土類磁石用合金。
1. R (at least one of rare earth elements including Y) is 27 to 30 wt%, and B is 1.0 to 1.3 wt%.
%, And the balance is composed of T (transition metal having Fe as an essential component), the volume fraction of the R 2 T 14 B phase is 93% or more, the average crystal grain size is 20 to 100 μm, and the interval between the R-rich phases. Is 1
An alloy for a rare-earth magnet for use in a two-alloy method, wherein the R-rich phase is 5 μm or less, and the R-rich phase is scattered in a crystal grain boundary and a main phase grain.
【請求項2】R(Yを含む希土類元素のうち少なくとも
1種)を27〜30wt%、Bを1.0〜1.3wt%
含み、残部がT(Feを必須とする遷移金属)からなる
組成を有する合金溶湯をストリップキャスト法で鋳造
し、該合金の融点から800℃迄の平均冷却速度を30
0℃/秒以上とし、800〜600℃間の平均冷却速度
を10℃/秒以下とすることを特徴とする2合金法に使
用するための請求項1記載の希土類磁石用合金の製造方
法。
2. R (at least one of the rare earth elements including Y) is 27 to 30 wt% and B is 1.0 to 1.3 wt%.
An alloy melt having a composition consisting of T (transition metal containing Fe as essential) is cast by strip casting, and the average cooling rate from the melting point of the alloy to 800 ° C. is 30%.
The method for producing an alloy for a rare earth magnet according to claim 1, wherein the alloy is used for a two-alloy method, wherein the temperature is set to 0 ° C / sec or more and the average cooling rate between 800 to 600 ° C is set to 10 ° C / sec or less.
【請求項3】R(Yを含む希土類元素のうち少なくとも
1種)を27〜30wt%、Bを1.0〜1.3wt%
含み、残部がT(Feを必須とする遷移金属)からなる
組成を有する合金溶湯をストリップキャスト法で鋳造し
た後、800〜600℃間の温度で真空又は不活性雰囲
気中で1時間以上3時間以下加熱することを特徴とする
2合金法に使用するための請求項1記載の希土類磁石用
合金の製造方法。
3. R (at least one of the rare earth elements including Y) is 27 to 30 wt%, and B is 1.0 to 1.3 wt%.
After casting a molten alloy having a composition consisting of T (transition metal essentially including Fe) by a strip casting method, a vacuum or an inert atmosphere at a temperature of 800 to 600 ° C.
2. The method for producing an alloy for a rare earth magnet according to claim 1, wherein the alloy is heated in air for 1 hour to 3 hours .
【請求項4】 請求項1に記載の希土類磁石用合金70
〜95重量部と、R(Yを含む希土類元素のうち少なく
とも1種)、B及びT(Feを必須成分とする遷移金
属)からなる組成を有し、R214B相の体積率が30
%以下である希土類磁石用合金5〜30重量部とを、組
成がR:28〜32wt%、B:0.9〜1wt%、残
部がT(Feを必須成分とする遷移金属)となるように
混合し、不活性雰囲気中で微粉砕した後、磁場成形する
ことを特徴とする永久磁石の製造方法。
4. The alloy 70 for a rare earth magnet according to claim 1,
And R (at least one of rare earth elements including Y), B and T (transition metal having Fe as an essential component), and the volume fraction of R 2 T 14 B phase is 30
% Or less of 5 to 30 parts by weight of the rare earth alloy, so that the composition is R: 28 to 32 wt%, B: 0.9 to 1 wt%, and the balance is T (transition metal containing Fe as an essential component). And pulverizing in an inert atmosphere, followed by magnetic field shaping.
JP34884495A 1995-12-18 1995-12-18 Alloy for rare earth magnet, method for producing the same, and method for producing permanent magnet Expired - Lifetime JP3267133B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34884495A JP3267133B2 (en) 1995-12-18 1995-12-18 Alloy for rare earth magnet, method for producing the same, and method for producing permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34884495A JP3267133B2 (en) 1995-12-18 1995-12-18 Alloy for rare earth magnet, method for producing the same, and method for producing permanent magnet

Publications (2)

Publication Number Publication Date
JPH09170055A JPH09170055A (en) 1997-06-30
JP3267133B2 true JP3267133B2 (en) 2002-03-18

Family

ID=18399767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34884495A Expired - Lifetime JP3267133B2 (en) 1995-12-18 1995-12-18 Alloy for rare earth magnet, method for producing the same, and method for producing permanent magnet

Country Status (1)

Country Link
JP (1) JP3267133B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011210838A (en) * 2010-03-29 2011-10-20 Tdk Corp Rare-earth sintered magnet, method of manufacturing the same, and rotary machine

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6403024B1 (en) 1999-02-19 2002-06-11 Sumitomo Special Metals Co., Ltd. Hydrogen pulverizer for rare-earth alloy magnetic material powder using the pulverizer, and method for producing magnet using the pulverizer
US6797081B2 (en) 2000-08-31 2004-09-28 Showa Denko K.K. Centrifugal casting method, centrifugal casting apparatus, and cast alloy produced by same
JP4648586B2 (en) * 2001-07-16 2011-03-09 昭和電工株式会社 Rare earth sintered magnet manufacturing method and rare earth sintered magnet
JP4547840B2 (en) * 2001-07-27 2010-09-22 Tdk株式会社 Permanent magnet and method for manufacturing the same
JP4754739B2 (en) * 2001-09-03 2011-08-24 昭和電工株式会社 Alloy ingot for rare earth magnet, method for producing the same, and sintered magnet
US7014718B2 (en) * 2001-09-03 2006-03-21 Showa Denko K.K. Rare earth magnet alloy ingot, manufacturing method for the same, R-T-B type magnet alloy ingot, R-T-B type magnet, R-T-B type bonded magnet, R-T-B type exchange spring magnet alloy ingot, R-T-B type exchange spring magnet, and R-T-B type exchange spring bonded magnet
AU2002358316A1 (en) 2001-12-18 2003-06-30 Showa Denko K.K. Alloy flake for rare earth magnet, production method thereof, alloy powder for rare earth sintered magnet, rare earth sintered magnet, alloy powder for bonded magnet and bonded magnet
JP5091079B2 (en) * 2002-09-30 2012-12-05 株式会社三徳 Alloy powder for rare earth sintered magnet
US7722726B2 (en) 2004-03-31 2010-05-25 Santoku Corporation Process for producing alloy slab for rare-earth sintered magnet, alloy slab for rare-earth sintered magnet and rare-earth sintered magnet
CN100400199C (en) * 2004-03-31 2008-07-09 株式会社三德 Process for producing alloy slab for rare-earth sintered magnet, alloy slab for rare-earth sintered magnet and rare-earth sintered magnet
EP1749599B1 (en) * 2004-04-30 2015-09-09 Hitachi Metals, Ltd. Methods for producing raw material alloy for rare earth magnet, powder and sintered magnet
JP4874853B2 (en) * 2007-04-09 2012-02-15 Dowaホールディングス株式会社 Cutting method of sintered rare earth magnet alloy
CN101256859B (en) * 2007-04-16 2011-01-26 有研稀土新材料股份有限公司 Rare-earth alloy casting slice and method of producing the same
CN107424694A (en) 2009-12-09 2017-12-01 爱知制钢株式会社 Rare-earth anisotropic magnetic iron powder and its manufacture method and binding magnet
CN102640238B (en) * 2009-12-09 2015-01-21 爱知制钢株式会社 Rare earth anisotropic magnet and process for production thereof
JP2011199069A (en) * 2010-03-19 2011-10-06 Tdk Corp Method for manufacturing rare earth sintered magnet, and material for the rare earth sintered magnet
JP5753481B2 (en) * 2011-11-28 2015-07-22 中央電気工業株式会社 Rare earth alloy and method for producing the same
KR102215818B1 (en) * 2013-09-24 2021-02-17 엘지전자 주식회사 Hot-deformed magnet comprising nonmagnetic alloys and fabricating method thereof
CN107077935A (en) 2014-12-08 2017-08-18 Lg电子株式会社 The magnet and its manufacture method of hot compression deformation comprising nonmagnetic alloy
JP6881338B2 (en) * 2017-04-19 2021-06-02 トヨタ自動車株式会社 Rare earth magnet manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011210838A (en) * 2010-03-29 2011-10-20 Tdk Corp Rare-earth sintered magnet, method of manufacturing the same, and rotary machine

Also Published As

Publication number Publication date
JPH09170055A (en) 1997-06-30

Similar Documents

Publication Publication Date Title
JP3267133B2 (en) Alloy for rare earth magnet, method for producing the same, and method for producing permanent magnet
EP0886284B1 (en) Cast alloy used for production of rare earth magnet and method for producing cast alloy and magnet
JP4832856B2 (en) Method for producing RTB-based alloy and RTB-based alloy flakes, fine powder for RTB-based rare earth permanent magnet, RTB-based rare earth permanent magnet
JPWO2009075351A1 (en) R-T-B type alloy and method for producing R-T-B type alloy, fine powder for R-T-B type rare earth permanent magnet, R-T-B type rare earth permanent magnet
JP4389427B2 (en) Sintered magnet using alloy powder for rare earth-iron-boron magnet
JP3449166B2 (en) Alloy for rare earth magnet and method for producing the same
JP4329318B2 (en) Rare earth sintered magnet and manufacturing method thereof
JP4879503B2 (en) Alloy block for RTB-based sintered magnet, manufacturing method thereof and magnet
JP4479944B2 (en) Alloy flake for rare earth magnet and method for producing the same
JP3505261B2 (en) Sm-Co permanent magnet material, permanent magnet and method for producing the same
US7390369B2 (en) Method for producing rare earth based alloy powder and method for producing rare earth based sintered magnet
JP4366360B2 (en) Raw material alloy for RTB-based permanent magnet and RTB-based permanent magnet
JP3264664B1 (en) Permanent magnet having a plurality of ferromagnetic phases and manufacturing method thereof
JP3721831B2 (en) Rare earth magnet alloy and method for producing the same
JP2003183787A (en) Principal phase-based alloy for rare earth magnet, manufacturing method therefor, mixed powder for sintered rare earth magnet, and rare earth magnet
JP3773484B2 (en) Nano composite magnet
WO2009125671A1 (en) R-t-b-base alloy, process for producing r-t-b-base alloy, fines for r-t-b-base rare earth permanent magnet, r-t-b-base rare earth permanent magnet, and process for producing r-t-b-base rare earth permanent magnet
JP2002208509A (en) Rare earth magnet and its manufacturing method
JP2004330279A (en) Manufacturing method for alloy thin strip containing rare earth, alloy thin strip for rare earth magnet, alloy powder for rare earth sintered magnet, rare earth sintered magnet, alloy powder for bonded magnet, and bonded magnet
JP3763774B2 (en) Quenched alloy for iron-based rare earth alloy magnet and method for producing iron-based rare earth alloy magnet
JP3536943B2 (en) Alloy for rare earth magnet and method for producing the same
JP4680357B2 (en) Rare earth permanent magnet manufacturing method
JP3953768B2 (en) R-Fe-B-C magnet alloy slab with excellent corrosion resistance
JPH0920954A (en) Slab for r-fe-b-c magnet alloy excellent in corrosion resistance and its production
JP3583116B2 (en) Iron-based rare earth alloy magnet and method of manufacturing the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080111

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140111

Year of fee payment: 12

EXPY Cancellation because of completion of term