JP4874853B2 - Cutting method of sintered rare earth magnet alloy - Google Patents

Cutting method of sintered rare earth magnet alloy Download PDF

Info

Publication number
JP4874853B2
JP4874853B2 JP2007101716A JP2007101716A JP4874853B2 JP 4874853 B2 JP4874853 B2 JP 4874853B2 JP 2007101716 A JP2007101716 A JP 2007101716A JP 2007101716 A JP2007101716 A JP 2007101716A JP 4874853 B2 JP4874853 B2 JP 4874853B2
Authority
JP
Japan
Prior art keywords
wire
rare earth
cutting
earth magnet
magnet alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007101716A
Other languages
Japanese (ja)
Other versions
JP2007245340A (en
Inventor
潔 山田
逸人 佐々木
雅美 鎌田
慎一 紺野
啓之 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Holdings Co Ltd
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd, Dowa Mining Co Ltd filed Critical Dowa Holdings Co Ltd
Priority to JP2007101716A priority Critical patent/JP4874853B2/en
Publication of JP2007245340A publication Critical patent/JP2007245340A/en
Application granted granted Critical
Publication of JP4874853B2 publication Critical patent/JP4874853B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Processing Of Stones Or Stones Resemblance Materials (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Description

本発明は硬質の強磁性相の周囲に粒界相を有する焼結希土類磁石合金の切断方法および装置に関する。   The present invention relates to a method and apparatus for cutting a sintered rare earth magnet alloy having a grain boundary phase around a hard ferromagnetic phase.

Nd−Fe−Bを主体とする焼結希土類磁石合金は,Fe14Nd2Bを主相とする強磁性相とその周囲にNdリッチの粒界相(軟磁性相)とからなる金属組織を有するとされており,エネルギー積(BHmax)が35(MGOe)以上の高性能磁石となり得るものであり,この磁石の問題とされていた耐食性や耐酸化性が劣りキュリー点が低く磁気特性の温度依存性が大きい等の諸性質についても種々の改良が重ねられ,組成的にも,希土類としてのNdの一部を他の軽希土類や重希土類で置換したもの,Coを合金元素としたもの,C(炭素)を含有させたもの,その他の合金成分を含有させたもの等,様々な提案がなされ,今日に至っている。 A sintered rare earth magnet alloy mainly composed of Nd-Fe-B has a metallic structure composed of a ferromagnetic phase mainly composed of Fe 14 Nd 2 B and an Nd-rich grain boundary phase (soft magnetic phase) around the ferromagnetic phase. It can be used as a high-performance magnet with an energy product (BHmax) of 35 (MGOe) or higher, and the magnet has a low corrosion resistance and oxidation resistance and has a low Curie point. Various improvements have been made to various properties such as high dependence, and in terms of composition, a part of Nd as a rare earth is replaced with another light rare earth or heavy rare earth, Co is an alloy element, Various proposals have been made to date, including those containing C (carbon) and those containing other alloy components.

また,その製造法についても多くの改良がなされ,品質のよい焼結希土類磁石合金を経済的に製造する技術が蓄積されつつあり,最近の精密電気製品等の心臓部を構成する機器類に焼結希土類磁石合金が多用されるようになってきた。   In addition, many improvements have been made to the manufacturing method, and technology for economically producing high-quality sintered rare earth magnet alloys is accumulating. Rare earth magnet alloys have been widely used.

本発明はこのような焼結希土類磁石合金を対象とするものであるが,本明細書で言う「焼結希土類磁石合金」とは,Nd−Fe−Bを主体とする焼結希土類磁石合金はもとより,組成的には,Ndの一部を他の希土類元素で置換したもの,さらにCoを合金元素とするもの,さらにC(炭素)を含有させたもの,その他の合金元素を含有させたもの等の希土類磁石の焼結体の全体を指す。それらを総称して本明細書ではNd系焼結希土類磁石合金と呼ぶこともあるが,これを略して焼結希土類磁石合金と呼ぶ。代表的には(Nd,R)−(Fe,Co)−(B,C)系の焼結磁石合金である。RはNd以外の希土類元素である。いずれにしても,この焼結希土類磁石合金は,金属間化合物からなる磁性結晶粒を有しており,この磁性結晶粒の周囲に(Nd,R)リッチの粒界相,さらにはBリッチ,Coリッチ或いはCリッチの相を含む粒界相を有しており,これらの粒界相は,前記の金属間化合物からなる磁性結晶粒よりも一般に軟質である。磁性結晶粒を形成している金属間化合物は,厳密には含有する合金成分によって相違するが,通説ではほぼFe(Co)14Nd(R)2(B,C)の組成比をもつとされている。 The present invention is directed to such a sintered rare earth magnet alloy, but the term “sintered rare earth magnet alloy” as used herein refers to a sintered rare earth magnet alloy mainly composed of Nd—Fe—B. Of course, in terms of composition, Nd is partially substituted with other rare earth elements, Co is used as an alloy element, C (carbon) is included, and other alloy elements are included. It refers to the entire sintered body of rare earth magnets. These are collectively called Nd-based sintered rare earth magnet alloys in this specification, but they are abbreviated as sintered rare earth magnet alloys. Typically, it is a sintered magnet alloy of (Nd, R)-(Fe, Co)-(B, C) system. R is a rare earth element other than Nd. In any case, this sintered rare earth magnet alloy has magnetic crystal grains made of an intermetallic compound, (Nd, R) rich grain boundary phase around the magnetic crystal grains, and further B rich, It has a grain boundary phase including a Co-rich or C-rich phase, and these grain boundary phases are generally softer than magnetic crystal grains made of the intermetallic compound. Strictly speaking, the intermetallic compounds forming magnetic crystal grains differ depending on the alloy components contained, but it is generally assumed that the composition ratio of Fe (Co) 14 Nd (R) 2 (B, C) is present. ing.

このような焼結希土類磁石は,代表的には図1のような製造工程を経て製造される。焼結に先立つ合金粉末のプレス成形工程では,最終磁石形状に成形されることもあるが,生産性の関係から,ロッド状や円筒状に成形し,その焼結品を切断加工することが通常行われている。   Such a sintered rare earth magnet is typically manufactured through a manufacturing process as shown in FIG. In the press forming process of alloy powder prior to sintering, it may be formed into the final magnet shape, but for productivity reasons, it is usually formed into a rod or cylinder and the sintered product is cut. Has been done.

例えば厚みが数2mm程度で直径10mm程度の円盤状の焼結希土類磁石を製造する場合の例を挙げると,まず,粒径10μm以下に粉砕された当該合金の微粉末を直径10mm程度で長さが10数cm程度の丸棒状にプレス成形する。この成形は磁場中で行い,粉末合金粒子を配向させる。その配向方向は丸棒の軸方向とする場合と軸に直交する方向とする場合があり,また半径方向とする場合もある。この配向処理は異方性磁石を得る場合に行われるが,焼結希土類磁石は異方性磁石として高性能を発揮することが多いので,この配向処理は殆んどの場合に実施される。等方性磁石を得る場合には配向は行わず,結晶方位はランダムとなる。得られたロッド状の焼成品は,熱処理するかまたは熱処理せずに,厚みが2mm程度に輪切り状に切断することにより,前記の円盤状の形状となり,さらに必要に応じて,中央部に穴ぐり加工が施されたあと,着磁して所望形状の磁石を得る。   For example, in the case of manufacturing a disc-shaped sintered rare earth magnet having a thickness of about several millimeters and a diameter of about 10 mm, first, the alloy fine powder pulverized to a particle size of 10 μm or less is about 10 mm in diameter and long. Is formed into a round bar shape of about several tens of centimeters. This forming is performed in a magnetic field to orient the powder alloy particles. The orientation direction may be the axial direction of the round bar, the direction perpendicular to the axis, or the radial direction. This orientation treatment is performed when an anisotropic magnet is obtained. Since sintered rare earth magnets often exhibit high performance as an anisotropic magnet, this orientation treatment is performed in most cases. When obtaining an isotropic magnet, no orientation is performed and the crystal orientation is random. The obtained rod-shaped fired product is heat-treated or not heat-treated, and is cut into a circular shape having a thickness of about 2 mm, and the above-mentioned disk-like shape is formed. After boring, the magnet is magnetized to obtain a magnet with a desired shape.

前記の切断加工はロッドから薄片を輪切りにするスライス加工であるが,従来より焼結希土類磁石合金のスライス加工には,金属円板の外周面に砥粒を固着させた外周刃,または金属円板の中央穴の内周縁部に砥粒を固着させた内周刃が使用されてきたが,外周刃によるものが最も普通に行われている。焼結希土類磁石合金は硬さがHvで500以上,通常は600〜1000Hvといった非常に硬質であり,このために,ウエハスライス等において最も技術開発が進んでいる外周刃(ソーブレード)による切断加工を焼結希土類磁石合金の切断に採用することが普通に行われてきた。
特開平9−248821号公報 特開平10−324889号公報 特開平10−278040号公報 特開平11−77663号公報 特開平3−10760号公報 特開2000−108010号公報
The above-mentioned cutting process is a slicing process in which a thin piece is sliced from a rod. Conventionally, a slicing process of a sintered rare earth magnet alloy is performed by using an outer peripheral blade having abrasive grains fixed to the outer peripheral surface of a metal disk, or a metal circle. An inner peripheral blade having abrasive grains fixed to the inner peripheral edge of the central hole of the plate has been used, but the outer peripheral blade is most commonly used. Sintered rare earth magnet alloys have a hardness of 500 or more in Hv, and are usually very hard, 600 to 1000 Hv. For this reason, cutting with an outer peripheral blade (saw blade), the most advanced technology development in wafer slicing, etc. Has been commonly employed for cutting sintered rare earth magnet alloys.
Japanese Patent Laid-Open No. 9-248821 Japanese Patent Laid-Open No. 10-324889 JP-A-10-278040 JP-A-11-77663 JP-A-3-10760 JP 2000-108010 A

焼結希土類磁石合金は,その硬さが前記のようにHv500〜1000程度と非常に硬質であり,しかも硬質の磁性結晶粒が粒界相中に分散した状態の組織を有しているために磁性結晶粒が切り欠けやすく,いわゆる硬脆な性質を有している。したがって,切断効率を挙げながら良好な切断面が得られるように切断することは,ウエハのような単結晶を切断する場合とは別の問題があり,刃の材質はもとより切断条件についてもそれなりの工夫が必要である。   As described above, the sintered rare earth magnet alloy has an extremely hard hardness of about Hv 500 to 1000, and has a structure in which hard magnetic crystal grains are dispersed in the grain boundary phase. Magnetic crystal grains are easy to cut and have so-called hard and brittle properties. Therefore, cutting so as to obtain a good cutting surface while increasing the cutting efficiency is a problem different from the case of cutting a single crystal such as a wafer, and the cutting conditions as well as the blade material are appropriate. Ingenuity is necessary.

これまで焼結希土類磁石合金に対して採用されてきた外周刃による切断法においても様々な改善がなされ,それなりの成果が得られているが,外周刃の厚みを薄くするには限界がある。このために,切削屑の発生量が多くなって,高価な焼結希土類磁石の製造歩留りが低下するという基本的な問題がある。   Various improvements have been made in the cutting method using a peripheral blade that has been adopted for sintered rare earth magnet alloys so far, and some results have been obtained, but there is a limit to reducing the thickness of the peripheral blade. For this reason, there is a basic problem that the amount of generated cutting waste increases and the production yield of expensive sintered rare earth magnets decreases.

また,前記のようにロッド状や筒状の焼結品を外周刃で輪切り状にスライスする場合に,切断効率を上げるために,通常は一つの回転軸に複数の外周刃を所定の間隔をあけて配置したマルチ刃方式で一度に多数の輪切りを行うことが行われているが,この外周刃の数が多くなるに従って不良切断品が多くなるという問題があり,一本のロッドから同時に輪切り出来る数にも制限があると共に,外周刃同士の間隔(輪切りの厚みに相当)を狭くするにも限界がある。   In addition, when slicing a rod-shaped or cylindrical sintered product into a ring shape with an outer peripheral blade as described above, a plurality of outer peripheral blades are usually arranged at a predetermined interval on one rotating shaft in order to increase cutting efficiency. Many blades are cut at once with the multi-blade method that is open and arranged. However, there is a problem that the number of defective cuts increases as the number of peripheral blades increases. There is a limit to the number that can be made, and there is also a limit to narrowing the distance between the outer peripheral blades (corresponding to the thickness of the ring cutting).

さらに,外周刃は摩耗すると取替えを必要としてその作業管理が怠れず,またマルチ外周刃では摩耗の程度が相互に異なると切断面が不均一となったり,切断面で磁性結晶粒の欠落した組織となったりして,不良品の発生が顕著となるので切断作業工程は熟練を要するものとなっている。   Furthermore, if the outer peripheral edge wears out, it must be replaced and the work management cannot be neglected. In the case of the multi-outer peripheral edge, when the degree of wear differs, the cut surface becomes uneven or the structure where the magnetic crystal grains are missing on the cut surface. Since the occurrence of defective products becomes remarkable, the cutting work process requires skill.

このようなことから,多数の工程からなる焼結希土類磁石合金の製造においては,焼結品から小部品に切断する工程が最も負荷のかかる工程となっているのが実状である。したがって,この切断工程での合理化と歩留り向上を図ることが焼結希土類磁石合金の製造にとって大きな課題となっていたが,前記のように,外周刃を用いる方法では,多くの改善がなされてきているものの,その改善には前記のような理由から限界があり,特に,薄物を歩留りよく同時に多数切断することが困難であった。本発明の課題とするところは,このような問題を解決し,合理的且つ歩留りよく焼結希土類磁石合金を切断する方法および装置を提供しようとするものである。   For this reason, in the production of sintered rare earth magnet alloys composed of a number of processes, the process of cutting a sintered product into small parts is the most burdensome process. Therefore, streamlining and improving the yield in this cutting process have been a major issue for the production of sintered rare earth magnet alloys. However, as described above, many improvements have been made in the method using an outer peripheral blade. However, the improvement is limited for the reasons described above, and in particular, it is difficult to cut a large number of thin objects at a high yield. An object of the present invention is to solve such problems and to provide a method and apparatus for cutting a sintered rare earth magnet alloy with reasonable and high yield.

本発明者らは,前記の課題を解決すべく種々の試験研究を重ねてきたが,適切な可撓性線材と砥液を用いると焼結希土類磁石合金を良好に切断できること,つまり,前記のように非常に硬質な焼結希土類磁石合金に比べると軟質な可撓性線材であっても,その線材が破断することなく焼結希土類磁石合金側が切断されることがわかった。軟質な線材側が切断され難く,硬質な焼結希土類磁石合金側が切断される要因の一つとして,焼結希土類磁石合金特有の金属組織が関与しているものと考えられる。本発明は,この知見事実に基づいてなされたものであり,硬質の強磁性結晶粒の周囲にそれより易被削性の粒界相を有する焼結希土類磁石合金に対して線径1.2mm以下の可撓性線材を押し付け,砥粒を分散媒に分散させてなる砥液を該合金と線材との間に介在させつつ,該線材をその軸方向に移動させることを特徴とする焼結希土類磁石合金(Nd系焼結希土類磁石合金)の切断法を提供するものである。   The inventors of the present invention have made various tests and researches to solve the above-mentioned problems. However, when an appropriate flexible wire and an abrasive liquid are used, the sintered rare earth magnet alloy can be cut well. Thus, it was found that the sintered rare earth magnet alloy side was cut without breaking the wire even if it was a soft flexible wire compared to a very hard sintered rare earth magnet alloy. It is considered that the metal structure peculiar to the sintered rare earth magnet alloy is involved as one of the factors that cause the hard sintered rare earth magnet alloy side to be cut because the soft wire side is difficult to cut. The present invention has been made on the basis of this finding and has a wire diameter of 1.2 mm with respect to a sintered rare earth magnet alloy having a hard-to-machine grain boundary phase around hard ferromagnetic crystal grains. Sintering characterized by pressing the following flexible wire and moving the wire in the axial direction while interposing an abrasive liquid in which abrasive grains are dispersed in a dispersion medium between the alloy and the wire A method of cutting a rare earth magnet alloy (Nd sintered rare earth magnet alloy) is provided.

また,本発明は,硬質の強磁性結晶粒の周囲にそれより易被削性の粒界相を有し且つ該強磁性結晶の方位が所定の方向に配向している磁気異方性の焼結希土類磁石合金に対して,線径1.2mm以下の可撓性線材を,該結晶の配向方法とほぼクロスする方向またはほぼ沿う方向に押し付け,砥粒を分散媒に分散させてなる砥液を該合金と線材との間に介在させつつ,該線材をその軸方向に移動させることを特徴とする焼結希土類磁石合金の切断法を提供する。   In addition, the present invention provides a magnetic anisotropy that has a hard-bounded grain boundary phase around hard ferromagnetic crystal grains and the orientation of the ferromagnetic crystals is oriented in a predetermined direction. A polishing liquid in which a flexible wire having a wire diameter of 1.2 mm or less is pressed against a rare earth magnet alloy in a direction substantially crossing or substantially along the crystal orientation method, and abrasive grains are dispersed in a dispersion medium. There is provided a method for cutting a sintered rare earth magnet alloy, characterized in that the wire is moved in the axial direction while being interposed between the alloy and the wire.

さらに本発明によれば,硬質の強磁性結晶粒の周囲にそれより易被削性の粒界相を有する焼結希土類磁石合金からなるロッド状焼結品の複数本を軸を平行にして束ね,この焼結品の束に対し,線径1.2mm以下の可撓性線材を,各ロッドの軸方向とは直交する方向に押し付け,砥粒を分散媒に分散させてなる砥液を該焼結品と線材との間に介在させつつ,該線材をその軸方向に移動させることを特徴とする焼結希土類磁石合金の切断法を提供する。   Furthermore, according to the present invention, a plurality of rod-like sintered products made of sintered rare earth magnet alloy having hard-cutting grain boundary phases around hard ferromagnetic crystal grains are bundled with their axes parallel. Then, a flexible wire having a wire diameter of 1.2 mm or less is pressed against the bundle of sintered products in a direction orthogonal to the axial direction of each rod, and an abrasive liquid in which abrasive grains are dispersed in a dispersion medium is Provided is a method of cutting a sintered rare earth magnet alloy, wherein the wire is moved in the axial direction while being interposed between a sintered product and a wire.

ここで,可撓性線材は線径0.06〜1.2mmの金属線を使用することができ,砥液としては,オイル中に炭化ケイ素,アルミナ,ダイヤモンドの一種または二種以上の砥粒を分散させたものが好適である。また,切断中においては焼結希土類磁石合金の切断面と金属線とが実質的に非接触状態に維持できるに十分な砥粒が該金属線と切断面との間に介在しているように切断するのが肝要である。この場合,砥液の粘度は10〜1000mPa・sであるのが好ましい。   Here, a metal wire having a wire diameter of 0.06 to 1.2 mm can be used as the flexible wire, and the abrasive liquid is one or more kinds of abrasive grains of silicon carbide, alumina and diamond in the oil. Those in which is dispersed are preferred. Also, during cutting, sufficient abrasive grains are interposed between the metal wire and the cut surface to maintain the cut surface of the sintered rare earth magnet alloy and the metal wire in a substantially non-contact state. It is important to cut. In this case, the viscosity of the abrasive liquid is preferably 10 to 1000 mPa · s.

この切断法によれば,ロッド状の焼結希土類磁石合金に対して,一本の連続した線材の軸方向への移動で複数箇所の切断を同時に行うことができる。また,線材の軸方向の移動は,往路移動とそれより短距離の復路移動とを繰り返し,往路移動および復路移動とも磁石に接する前の線材表面にその都度砥液を供給する方式が望ましい。   According to this cutting method, a rod-like sintered rare earth magnet alloy can be simultaneously cut at a plurality of locations by moving one continuous wire in the axial direction. The axial movement of the wire is preferably a method in which the forward movement and the backward movement of a shorter distance are repeated, and the abrasive liquid is supplied to the surface of the wire before contacting the magnet for each of the forward movement and the backward movement.

このような切断法を実施する装置として,本発明によれば,可撓性の線材を軸方向に走行させる線材走行手段と,焼結希土類磁石合金からなる被切断材と走行中の線材とを互いに押し付けるための切断深さ調整手段と,切断中の該被切断材の切削面と線材外周面との間に砥粒を供給する手段と,からなる焼結希土類磁石合金の切断装置を提供するものである。   As an apparatus for carrying out such a cutting method, according to the present invention, a wire running means for running a flexible wire in the axial direction, a material to be cut made of a sintered rare earth magnet alloy, and a running wire are provided. There is provided a cutting device for sintered rare earth magnet alloy comprising cutting depth adjusting means for pressing each other and means for supplying abrasive grains between the cutting surface of the material being cut and the outer peripheral surface of the wire. Is.

本発明によれば,非常に硬質な金属間化合物の結晶を磁性相とする焼結希土類磁石合金を,その金属組織の特徴を利用することによって簡易且つ精密な切断加工ができるようになり,当該磁石の生産性の向上に大きく貢献することができる。   According to the present invention, a sintered rare earth magnet alloy having a very hard intermetallic compound crystal as a magnetic phase can be easily and precisely cut using the characteristics of the metal structure. This can greatly contribute to the improvement of magnet productivity.

焼結希土類磁石合金のうち,Nd−Fe−Bを主体とした焼結磁石合金の組織は,図2(A)に図解的に示したように,直径が10μm前後のFe14Nd2Bの強磁性結晶粒(マトリックス)の周囲に,Ndリッチ相(bccのFe−Nd相:軟磁性相)とボロンリッチ相(Nd1+eFe44, Nd2Fe76などの非磁性相) が粒界相として存在した金属組織を有するとされている。そして,例えば焼結後の熱処理によって, Fe14Nd2B相の周囲にNdリッチ相が一様な界面をもって安定した状態で形成されると,逆磁場を与えた場合に,Ndリッチ相内でまず逆磁区の核が発生し,この逆磁区の核が粒界を超えてFe14Nd2B相に侵入成長することが防止される結果,高い保磁力が維持されると説明されている。 Among the sintered rare earth magnet alloys, the structure of the sintered magnet alloy mainly composed of Nd—Fe—B is Fe 14 Nd 2 B having a diameter of about 10 μm as schematically shown in FIG. Around the ferromagnetic crystal grains (matrix), non-magnetic such as Nd rich phase (bcc Fe—Nd phase: soft magnetic phase) and boron rich phase (Nd 1 + e Fe 4 B 4 , Nd 2 Fe 7 B 6) Phase) is said to have a metallographic structure present as a grain boundary phase. For example, when the Nd-rich phase is formed in a stable state with a uniform interface around the Fe 14 Nd 2 B phase by heat treatment after sintering, when a reverse magnetic field is applied, First, it is described that the reverse magnetic domain nuclei are generated, and the reverse magnetic domain nuclei are prevented from penetrating and growing into the Fe 14 Nd 2 B phase beyond the grain boundary, so that a high coercive force is maintained.

同様に,図2の(B)には,Ndの一部をDyで置換し且つCoとCを含有した(Nd,Dy)−(Fe,Co)−(B,C)系の焼結磁石合金の組織を図解的に示したが,このものも,直径が10μm前後のFe(Co)・Nd(Dy)・B・Cの磁性結晶粒(化合物相)の周囲に,Nd,Dy,Fe,Co,B,Cを含有した粒界相(合金相)が存在し,前記と同様に,この粒界相の存在が磁性結晶粒に高い保磁力を付与する上で重要な役割を果たすと共に,C(炭素)の存在が耐食性・耐酸化性の向上に寄与するとされている。   Similarly, FIG. 2B shows a (Nd, Dy)-(Fe, Co)-(B, C) -based sintered magnet in which a part of Nd is replaced with Dy and Co and C are contained. The structure of the alloy is shown schematically, but this also has Nd, Dy, Fe around the magnetic crystal grains (compound phase) of Fe (Co) · Nd (Dy) · B · C having a diameter of about 10 μm. , Co, B, and C contain grain boundary phases (alloy phases), and the presence of the grain boundary phases plays an important role in giving high coercive force to the magnetic crystal grains as described above. , C (carbon) is considered to contribute to the improvement of corrosion resistance and oxidation resistance.

このような特徴的な金属組織によって高いエネルギー積を有することができるNd系焼結磁石は,非常に硬質な金属間化合物からなる大きな磁性結晶粒が,各成分を含むより粒界相(合金相)中に分散した硬脆な性質を有するので,加工の面からみると,滑らかな切断面をもって切断することが非常に困難な金属組織を有すると言い得る。事実,従来から採用されている外周刃による切断においても切断速度を速くすれば切欠が発生して不良切断面が生じ,また薄物に切断することにも困難を伴っていた。すなわち,硬質の磁性結晶粒を切断するには刃先の損耗はさけられず,また結晶粒の剥がれ落ちも発生するので亀裂の発生を誘発する。このため,切断面に刃先を介して高応力を与える外周刃による切断では,不良品が必然的に発生しやすく,滑らかな破断面をもつ薄物を高い歩留りで得ることには困難を伴っていた。   Nd-based sintered magnets that can have a high energy product due to such a characteristic metal structure are such that large magnetic crystal grains made of extremely hard intermetallic compounds have a grain boundary phase (alloy phase) containing each component. ) It has a hard and brittle nature dispersed in it. From the viewpoint of processing, it can be said that it has a metal structure that is very difficult to cut with a smooth cut surface. In fact, even when cutting with an outer peripheral blade that has been conventionally employed, if the cutting speed is increased, a notch is generated, resulting in a defective cut surface, and it is difficult to cut into a thin object. That is, when cutting hard magnetic crystal grains, the wear of the cutting edge is not avoided, and the crystal grains are also peeled off, which induces the generation of cracks. For this reason, when cutting with an outer peripheral blade that applies high stress to the cutting surface through the cutting edge, defective products are apt to occur inevitably, and it has been difficult to obtain thin objects with a smooth fracture surface at a high yield. .

前記の問題は,Fe14Nd2Bの金属間化合物をもつとされているNd−Fe−B系の焼結磁石合金のみならず,Ndの一部を他の軽希土類および/または重希土類で置換したもの,Coを含有させてそのキューリー点を高めたもの,Cを含有させて耐食性および耐熱性を高めたもの,その他の合金成分を含有させて諸特性の改善を図ったもの等であっても,その金属組織状態が,硬質の強磁性結晶粒の周囲にそれより軟質の粒界相を有するものである以上,同様の加工上の問題を有している。ここで「それより軟質」とは,実際にはその硬さを図ることは困難であるが,強磁性結晶粒に比べると結合が緩やかでもろい性質を意味し,したがって磁性結晶粒に比べると摩耗や衝撃によって除去されやすい性質を意味しており,このような粒界相の性質を本明細書では『易被削性』と呼ぶ。 The above problem is not only due to the Nd—Fe—B based sintered magnet alloy that is supposed to have an intermetallic compound of Fe 14 Nd 2 B, but also part of Nd with other light rare earths and / or heavy rare earths. Substituted ones, those containing Co to increase their Curie point, those containing C to improve corrosion resistance and heat resistance, those containing other alloy components to improve various properties, etc. However, since the metallographic state has a softer grain boundary phase around hard ferromagnetic crystal grains, it has similar processing problems. Here, “softer than that” means that the hardness is actually difficult to achieve, but it means that the bond is loose and fragile compared to the ferromagnetic crystal grains, and therefore wear compared to the magnetic crystal grains. This means the property of being easily removed by impact, and such a property of the grain boundary phase is referred to as “easy machinability” in this specification.

したがって本発明が切断対象とする焼結希土類磁石合金は,Nd−Fe−B系はもとより,これと実質的に同様の金属組織状態,すなわち硬質の強磁性結晶粒の周囲にそれより易被削性の粒界相を有した金属組織状態をもつ前記のような各種成分組成の焼結希土類磁石合金の全てを含むものである。   Therefore, the sintered rare earth magnet alloy to be cut by the present invention is not only Nd-Fe-B type, but also has substantially the same metal structure, that is, it is easier to cut around hard ferromagnetic crystal grains. All of the sintered rare earth magnet alloys having various component compositions as described above having a metallographic state having a grain boundary phase.

本発明者らは,この焼結希土類磁石合金の切断加工上の問題は,この磁石合金に対して可撓性線材を押し付け,砥粒を分散媒に分散させてなる砥液を該合金と線材との間に介在させつつ,該線材をその軸方向に,切断面に直接的に接触させずに移動させることによって解決できることを見い出した。該線材が焼結希土類磁石合金よりも硬くはない可撓性であっても,線材は切断されないで硬質な合金側が切断されるのである。   The inventors of the present invention have a problem in cutting the sintered rare earth magnet alloy by pressing a flexible wire against the magnet alloy and supplying an abrasive liquid in which abrasive grains are dispersed in a dispersion medium. It was found that this problem can be solved by moving the wire in the axial direction without directly contacting the cut surface. Even if the wire is not harder than the sintered rare earth magnet alloy, the wire is not cut and the hard alloy side is cut.

例えば図3に示すように,前記したような金属組織を有する焼結希土類磁石合金1に対し,可撓性線材2を押し付け,図4に図解的に示したように,分散媒3に砥粒4を分散させてなる砥液を,該磁石合金1と線材2との間に介在させつつ,線材2を軸方向に移動させる。図3の例では,線材長手方向をほぼ水平とし且つその軸方向に移動する可撓性線材2に対して,その上から焼結希土類磁石合金1を押し当てることによって,焼結希土類磁石合金1を下から上に向かう方向に切断する(切断の進行方向を下から上に向かう方向とする)ようにした例を示している。   For example, as shown in FIG. 3, the flexible wire 2 is pressed against the sintered rare earth magnet alloy 1 having the metal structure as described above, and the abrasive grains are applied to the dispersion medium 3 as schematically shown in FIG. The wire 2 is moved in the axial direction while an abrasive liquid in which 4 is dispersed is interposed between the magnet alloy 1 and the wire 2. In the example of FIG. 3, the sintered rare earth magnet alloy 1 is pressed by pressing the sintered rare earth magnet alloy 1 from above the flexible wire 2 having the longitudinal direction of the wire substantially horizontal and moving in the axial direction. Is cut in the direction from the bottom to the top (the cutting direction is the direction from the bottom to the top).

図4は,図3の切断途中の切断箇所を線材2と直交する面で模式的に描いたものであるが,図4に示すように,線材2と磁石合金側の切断面5とは直接的な接触が生じないように,その間に砥液を介在させた状態で,線材2を軸方向(図4において紙面の表裏方向)に移動させる。もちろん,線材2が,焼結希土類磁石合金1の切羽部分6(図4においては,切断面5のうちの上面部分)に対して押圧が作用するようにして,その軸方向に移動させるのであるが,その軸方向の移動の間も砥液が切羽部分6と線材2との間に存在する状態が維持されることが肝要である。砥液が存在しなくなると線材2が摩耗して破断に至るからである。このためには,砥液が適正な粘性を有すると共に砥粒が適正な濃度と粒度分布を有することが望ましい。   FIG. 4 is a schematic drawing of the cutting part in the middle of cutting in FIG. 3 with a plane orthogonal to the wire 2, but as shown in FIG. 4, the wire 2 and the cut surface 5 on the magnet alloy side are directly The wire 2 is moved in the axial direction (the front and back direction of the paper surface in FIG. 4) with the abrasive liquid interposed between them so that no direct contact occurs. Of course, the wire 2 is moved in the axial direction so that a pressure acts on the face portion 6 of the sintered rare earth magnet alloy 1 (upper surface portion of the cut surface 5 in FIG. 4). However, it is important that the state where the abrasive liquid exists between the face portion 6 and the wire 2 is maintained during the movement in the axial direction. This is because, when the abrasive liquid is not present, the wire 2 is worn and breaks. For this purpose, it is desirable that the abrasive liquid has an appropriate viscosity and the abrasive grains have an appropriate concentration and particle size distribution.

この焼結希土類磁石合金1の切断において,線材2は線径が1.2mm以下,好ましくは1.0mm以下で0.1mm以上,さらに好ましくは0.6mm以下で0.1mm以上の可撓性の金属線を使用する。ここで,可撓性とは巻取リールに自由に巻取でき且つプーリ間や溝付きガイドローラ間を任意の角度変化をもって方向転換しながら自由に移動させることができるような性質を言う。所定の張力下で且つ焼結希土類磁石合金1に対して所定の押圧を与えながら所定速度で線材2を軸方向に移動させる装置を実際に構成するには,このような可撓性の性質を線材2が有することが必要であるからである。このために,線材2は必然的に焼結希土類磁石合金1よりも軟質な材料となる。前述した金属組織をもつ焼結希土類磁石合金1は通常その硬さが500Hv以上,場合によっては1000Hvを示すが,それと同等若しくはそれ以上の硬さをもつ線材では前記のような可撓性を具備することは実質的に不可能である。実際の線材2の例としては,スチール線,ピアノ線,ステンレス鋼線等を使用することができ,これらにブラスメッキや銅メッキ等の表面処理を施したものも使用できる。   In the cutting of the sintered rare earth magnet alloy 1, the wire 2 has a wire diameter of 1.2 mm or less, preferably 1.0 mm or less and 0.1 mm or more, more preferably 0.6 mm or less and 0.1 mm or more. Use metal wires. Here, the flexibility means a property that can be freely wound on the take-up reel and can be freely moved while changing the direction between pulleys or grooved guide rollers with an arbitrary angle change. In order to actually construct an apparatus for moving the wire 2 in the axial direction at a predetermined speed while applying a predetermined pressure to the sintered rare earth magnet alloy 1 under a predetermined tension, such a flexible property is required. This is because the wire 2 needs to have. For this reason, the wire 2 is necessarily a softer material than the sintered rare earth magnet alloy 1. The sintered rare earth magnet alloy 1 having the above-described metal structure usually has a hardness of 500 Hv or more, and in some cases 1000 Hv. However, a wire having a hardness equal to or higher than that has flexibility as described above. It is virtually impossible to do. As an example of the actual wire 2, a steel wire, a piano wire, a stainless steel wire or the like can be used, and those subjected to surface treatment such as brass plating or copper plating can also be used.

図4に図解的に示すように,軟質側の線材2と硬質側の切羽面6との間で両者を紙面の表裏方向に相対移動させると,線材2の表面と切羽面6に砥粒が作用する力は作用・反作用の法則によりほぼ同等となって同一の応力が両者に作用する場合には,軟質側の表面が研削される筈である。ところが,本発明法によると,実際には,軟質側の線材2の表面は切削されることが少なく,硬質側の焼結希土類磁石合金1の切羽面6が研削されて切断が進行する。その理由は必ずしも明確ではないが,砥粒4のうち,粒径の小さいものが焼結希土類磁石合金1の金属組織のうちの粒界相(より易被削性の軟質相)を削り取り(剥ぎ落とし),この粒界相の研削がおきると,硬質の磁性結晶粒が浮き出してきて,やがて壁面から離脱する結果,研削が進行するのではないかと考えられる。すなわち,粒界の切断または除去が優先的に起きる結果,磁性結晶粒は粒界から分離される。他方,砥粒4のうち,粒径の大きなものは,線材2の表面と切羽面6との間隔を維持するためのスペーサの機能を果たして両者の表面が接触するのを妨げる。他方,線材2の表面に砥粒4が作用するとしても,線材2は円形表面を有するうえ,水平方向に移動している図4の線材2ではその下方は開放空間となっているので砥液が下方に回り込むと共に,砥液の粘性が適正であると砥粒も線材の移動方向に移動するので砥粒と線材間に作用する応力は砥粒と切羽面6に作用するものよりも低くなって,線材の単位面積当りに砥粒が作用する応力が緩和される結果,線材2の切削は殆んど生じないのではないかと考えられる。   As schematically shown in FIG. 4, when both of the soft wire 2 and the hard face 6 are moved relative to each other in the front and back direction of the paper, abrasive grains are formed on the surface of the wire 2 and the face 6. The acting force is almost equal according to the law of action and reaction, and when the same stress acts on both, the surface on the soft side should be ground. However, according to the method of the present invention, in practice, the surface of the soft-side wire 2 is rarely cut, and the face 6 of the hard-side sintered rare earth magnet alloy 1 is ground and cutting proceeds. The reason for this is not necessarily clear, but among the abrasive grains 4, those having a small grain size scrape off (peel the grain boundary phase (more easily machinable soft phase) in the metal structure of the sintered rare earth magnet alloy 1. If this grain boundary phase is ground, hard magnetic crystal grains will come out and will eventually be detached from the wall surface. In other words, the grain boundary is cut or removed preferentially, so that the magnetic crystal grains are separated from the grain boundary. On the other hand, the abrasive grains 4 having a large grain size serve as a spacer for maintaining the distance between the surface of the wire 2 and the face surface 6 and prevent the surfaces of both from coming into contact with each other. On the other hand, even if the abrasive grains 4 act on the surface of the wire 2, the wire 2 has a circular surface, and the wire 2 of FIG. 4 moving in the horizontal direction has an open space below the abrasive 2. Since the abrasive grains move in the moving direction of the wire when the viscosity of the abrasive liquid is appropriate, the stress acting between the abrasive grains and the wire becomes lower than that acting on the abrasive grains and the face surface 6. As a result, the stress acting on the abrasive grains per unit area of the wire is alleviated, so that it is considered that the cutting of the wire 2 hardly occurs.

このような現象で切削が進行すると,当然のことながら砥液中には焼結希土類磁石合金1の粉粒状の切削屑が同伴するようになる。前記のような現象で切削が進行すると,この切削屑は粒界相の削り屑(微粉状)と,粒界から剥離した磁性結晶粒の粒子とからなる。後者の磁性結晶粒の粒子の表面には粒界相が被覆してこともあり得る。いずれにしても,焼結希土類磁石合金の切削が起きるとその切削屑は砥液中に移行し,この砥液中の切削屑も次の切削面では砥粒として作用すると考えられる。しかし,この場合も,切削屑とりわけ粒界から剥離した硬質の磁性結晶粒が線材2の表面を研削するような現象は殆んど起きないことが確認された。その理由としては,粒界から剥離した磁性結晶粒は比較的粒径が大きいこと,および,線材2の下方の開放空間に重力によってすぐに排出されることなどが考えられる。   When cutting progresses by such a phenomenon, it is natural that powdered cutting scraps of the sintered rare earth magnet alloy 1 are accompanied in the abrasive liquid. When cutting proceeds as described above, the cutting scraps are composed of grain boundary phase cuttings (fine powder) and magnetic crystal grains separated from the grain boundaries. The grain boundary phase may be coated on the surface of the latter magnetic crystal grain. In any case, it is considered that when the sintered rare earth magnet alloy is cut, the cutting waste moves into the abrasive fluid, and the cutting waste in the abrasive fluid also acts as abrasive grains on the next cutting surface. However, in this case as well, it was confirmed that almost no phenomenon occurred in which the surface of the wire 2 was ground by the hard magnetic grains separated from the cutting chips, particularly from the grain boundaries. The reason may be that the magnetic crystal grains separated from the grain boundaries have a relatively large particle size and are immediately discharged by gravity into the open space below the wire 2.

本発明で使用する砥液は,砥粒を線材の移動に伴って移動させながら切削面に作用させて切削を進行させるものであるから,その特性は非常に重要であり,切断対象とする焼結希土類磁石合金の種類や寸法,使用する線材の材質や線径,切削速度などの様々な要因に応じて適切なものを選定する必要がある。分散媒としてオイル例えば鉱物系オイルや炭化水素系オイルが使用でき,砥粒としては例えば炭化ケイ素,アルミナ,窒化ほう素(C・BN),ダイヤモンドなどが使用できる。   Since the abrasive liquid used in the present invention causes the abrasive grains to move on the cutting surface while moving the wire as the wire moves, the characteristics of the abrasive liquid are very important. It is necessary to select an appropriate one according to various factors such as the type and size of the rare earth magnet alloy, the material and diameter of the wire used, and the cutting speed. Oils such as mineral oils and hydrocarbon oils can be used as the dispersion medium, and silicon carbide, alumina, boron nitride (C · BN), diamond, etc. can be used as the abrasive grains.

この場合,砥液の粘度はE型粘度計で測定して30〜1000mPa・sの範囲であるのが良い。砥粒は平均粒径が1〜100μmの範囲であるのがよく,分散媒中の砥粒の濃度は10〜90wt%の範囲,好ましくは30〜80wt%の範囲として,前記の粘性を確保するのがよい。また,この粘性を維持するために,増粘剤を添加したり,切削中の砥液温度が一定となるように砥液の温度管理を行うのが望ましい。また,必要に応じて分散剤や流動化剤を砥液に添加することも望ましい。使用中の砥液は温度管理を行うことが望ましく,固化しない程度の温度以上,例えば20℃以上で,且つ出来るだけ低い温度例えば50℃以下に維持するのがよい。   In this case, the viscosity of the abrasive liquid is preferably in the range of 30 to 1000 mPa · s as measured with an E-type viscometer. The average grain size of the abrasive grains should be in the range of 1 to 100 μm, and the concentration of the abrasive grains in the dispersion medium should be in the range of 10 to 90 wt%, preferably in the range of 30 to 80 wt% to ensure the above viscosity. It is good. In order to maintain this viscosity, it is desirable to add a thickener or to control the temperature of the abrasive liquid so that the temperature of the abrasive liquid during cutting is constant. It is also desirable to add a dispersant or a fluidizing agent to the abrasive liquid as necessary. It is desirable to control the temperature of the abrasive liquid in use, and it should be maintained at a temperature that does not solidify, for example, 20 ° C. or higher and as low as possible, for example 50 ° C.

このような砥液を使用し,線材の移動に伴って砥液中の砥粒を移動させながら切削面に作用させて焼結希土類磁石合金の切削を進行させる場合,線材の移動速度は,最高速度が100〜2000m/minの範囲となるように制御するのがよい。また,そのさい,切断面を平滑にするためには,線材に対して可能な限り高い張力を維持するのが好ましい。しかし,線材の材質によって付与する張力にも自ずと限界がある。本発明者らの実験では巻取ローラ側付近で線材に付与した張力は25±10Nであった。   When using such an abrasive fluid and moving the abrasive grains in the abrasive fluid along with the movement of the wire and acting on the cutting surface to advance the cutting of the sintered rare earth magnet alloy, the moving speed of the wire is the highest. It is good to control so that speed may be in the range of 100-2000 m / min. At that time, in order to make the cut surface smooth, it is preferable to maintain the highest possible tension on the wire. However, there is a limit to the tension applied by the wire material. In our experiments, the tension applied to the wire near the winding roller side was 25 ± 10N.

本発明の実施にさいし,強磁性結晶の方位を所定の方向に配向させた磁気異方性の焼結希土類磁石合金を切断する場合には,その結晶の配向方向とほぼクロスする方向もしくはその配向方向にほぼ沿う方向に該線材を押し付け,前記と同様に砥液を該合金と線材との間に介在させつつ,該線材をその軸方向に移動させて切断するのがよい。磁気異方性の焼結希土類磁石合金は,図1で説明したように,合金粉末のプレス成形時に強力な磁界中で成形すると,磁性結晶粒の磁化容易軸が磁束の方向に揃った状態で圧粉成形品が得られ,これを焼結すると,磁性結晶粒の方位が一定の方向をもつ磁気異方性の焼結希土類磁石合金が得られる。ロッド状の焼結希土類磁石合金に焼結する場合には,ロッドの軸方向が配向方向となるようにするのが一般であり,これを軸に直交する方向に薄く輪切り切断(配向方向を横切るように切断)すれば,表裏方向に配向した板状磁石が得られる。また,配向方向に沿う方向に切断すれば,切断面に沿う方向に配向した磁石を得ることができる。   In the practice of the present invention, when cutting a magnetically anisotropic sintered rare earth magnet alloy in which the orientation of a ferromagnetic crystal is oriented in a predetermined direction, the direction substantially crossing the orientation direction of the crystal or the orientation It is preferable that the wire is pressed in a direction substantially along the direction, and the wire is moved in the axial direction and cut while the abrasive liquid is interposed between the alloy and the wire in the same manner as described above. As explained with reference to FIG. 1, when a magnetic rare-earth sintered rare earth magnet alloy is molded in a strong magnetic field during press molding of the alloy powder, the easy magnetization axis of the magnetic crystal grains is aligned with the direction of the magnetic flux. When a green compact is obtained and sintered, a magnetically anisotropic sintered rare earth magnet alloy having a fixed orientation of magnetic crystal grains is obtained. When sintering to a rod-like sintered rare earth magnet alloy, it is common for the axial direction of the rod to be the orientation direction, and this is thinly cut in a direction perpendicular to the axis (crossing the orientation direction) In this way, a plate magnet oriented in the front and back direction can be obtained. Moreover, if it cut | disconnects in the direction along an orientation direction, the magnet orientated in the direction along a cut surface can be obtained.

そして,磁気異方性の焼結希土類磁石合金に対して,その配向方向を横切る方向または配向方向に沿う方向に切断することは,結晶粒の各々に方向の規則性をもった切断面を得ることを意味しており,このような切断の態様は,良好な表面品質をもつ磁気異方性磁石製品を得ることができる点で,好都合である。   Cutting a magnetically anisotropic sintered rare earth magnet alloy in a direction transverse to the orientation direction or in a direction along the orientation direction results in a cut surface having regularity in the direction of each crystal grain. Such a cutting mode is advantageous in that a magnetic anisotropic magnet product having a good surface quality can be obtained.

図5は,焼結希土類磁石合金1からなるロッド状焼結品の複数本を軸を平行にして束ね,この焼結品の束に対し,前記同様の可撓性線材2を,各ロッドの軸方向とは直交する方向に押し付け,砥粒を分散媒に分散させてなる砥液を該焼結品と線材との間に介在させつつ,該線材をその軸方向に移動させることによって,同時に多数本のロッドを切断する本発明の態様を示している。   FIG. 5 shows that a plurality of rod-like sintered products made of sintered rare earth magnet alloy 1 are bundled with their axes parallel to each other, and the same flexible wire 2 is attached to each bundle of the sintered products. By moving the wire in the axial direction while pressing the abrasive in a direction perpendicular to the axial direction and interposing an abrasive liquid in which the abrasive grains are dispersed in the dispersion medium between the sintered product and the wire, Fig. 3 shows an embodiment of the invention for cutting multiple rods.

各ロッドを束ねる場合,図6に示したように,台座7に第1段目のロッド群aを平行に敷き詰め,その上に第二段目のロッド群bを平行に敷き詰め,さらにその上に第3段目のロッド群cを敷き詰めるといった方法(但し,図面では逆さにした状態にある)で積み上げるのが好ましく,台座7と第1断面のロッド群aとの接合点,並びにロッド群a〜cの各ロッド間の接合点には接着剤を介在させて互いに固定するか,ロッド間に接着テープを巻き込むことによって互いに接着固定するのが好ましい。接着テープを用いてロッドを接着固定しながら束ねた場合には,切断品も互いにその接着固定状態が維持されるので,切断途中や切断終了後も切断品が互いに離れることなく,切り込みが入っているだけで,ロッド束の原形をそのまま維持することができる。切断終了後に接着剤や接着テープを除去するには,剥離剤溶液に切り込みが入っている原形品を台座ごと浸漬すればよい。台座7としてはステンレス鋼材やカーボン材等が使用でき,台座7の厚みの一部にまで切り込みが入るまで切断操作を行うと,第1段目のロッド群aの輪切り切断を完全に行うことができる。   When bundling the rods, as shown in FIG. 6, the first stage rod group a is laid in parallel on the pedestal 7, the second stage rod group b is laid in parallel thereon, and further on It is preferable to pile up the rod group c in the third stage (however, it is in an inverted state in the drawing), the junction point between the base 7 and the rod group a of the first section, and the rod groups a to It is preferable that the bonding points between the rods c are fixed to each other with an adhesive interposed therebetween, or are bonded to each other by winding an adhesive tape between the rods. If the rods are bundled with adhesive tape while being bonded and fixed, the cut products will remain in their fixed state, so that the cut products will not be separated from each other even during or after cutting. The original shape of the rod bundle can be maintained as it is. In order to remove the adhesive and the adhesive tape after the cutting is completed, it is only necessary to immerse the original product in which the cut is included in the release agent solution together with the base. Stainless steel material or carbon material can be used as the pedestal 7, and if the cutting operation is performed until a part of the thickness of the pedestal 7 is incised, the first stage rod group a can be cut into a ring. it can.

また,本発明の実施にあたり,切断の生産性を上げるために,図5に示すように,焼結希土類磁石合金1のロッドに対し,同時に複数箇所の切断を行うのが好ましい。図5では,6か所で線材2を互いに平行にしてロッドに押し当てながら切断する状態を示しているが,実際には,一定間隔でロッドの全長に対して多数箇所で線材2を押し当てながら同時に切断するのがよい。その場合,線材2は一本の連続したものであることができる。すなわち,図5には示されていないが,一本の長い線材を,平行に対向配置した一対の溝付きガイドローラ間に,一本の線材を互いに一定の間隔を開けながら巻付けることよって,図5のように互いに平行な線材2の列を作り,この線材2の列を同時に同方向に移動させるようにすればよい。   In implementing the present invention, in order to increase the productivity of cutting, it is preferable to simultaneously cut a plurality of locations on the rod of the sintered rare earth magnet alloy 1 as shown in FIG. FIG. 5 shows a state in which the wire 2 is cut while being pressed against the rod in parallel with each other at six locations. In practice, however, the wire 2 is pressed at many locations with respect to the entire length of the rod at regular intervals. It is better to cut at the same time. In that case, the wire 2 can be one continuous piece. That is, although not shown in FIG. 5, by winding a long wire between a pair of grooved guide rollers arranged in parallel and facing each other with a certain distance from each other, As shown in FIG. 5, a row of wire rods 2 parallel to each other may be formed, and the row of wire rods 2 may be simultaneously moved in the same direction.

より具体的には,図6に示すように,所定の間隔を開けて平行に対向配置した一対の溝付きガイドローラ8aと8bに対して,一本の線材1を,例えば紙面の表側から裏側に向けて順々その溝に嵌まるように巻付けてゆき,例えばガイドローラ8aでは紙面表の側に線材2の送り出し端9が,ガイドローラ8bでは紙面裏の側に巻取端10が位置するようにすればよい。このようにしてガイドローラ8aと8bの間で一本の線材2によって多数の平行な列が形成されるが,この列の上に,焼結希土類磁石合金1のロッド束を,矢印11の方向に所定圧力で押し当てながら,線材2を軸方向に移動させると,一本の連続した線材の軸方向への移動で複数箇所の切断を同時に行うことができる。   More specifically, as shown in FIG. 6, with respect to a pair of grooved guide rollers 8a and 8b arranged in parallel with a predetermined interval, a single wire 1 is placed, for example, from the front side to the back side of the paper surface. For example, in the guide roller 8a, the feed end 9 of the wire 2 is positioned on the front side of the paper surface, and in the guide roller 8b, the winding end 10 is positioned on the back side of the paper surface. You just have to do it. Thus, a number of parallel rows are formed by the single wire 2 between the guide rollers 8a and 8b. On this row, a rod bundle of the sintered rare earth magnet alloy 1 is placed in the direction of the arrow 11. When the wire 2 is moved in the axial direction while being pressed at a predetermined pressure, a plurality of locations can be cut simultaneously by moving the single continuous wire in the axial direction.

そのさい,線材2の軸方向の移動を,往路移動とそれより短距離の復路移動とを繰り返すことによって行うのが望ましく,往路移動および復路移動とも焼結希土類磁石合金2に接する前の線材表面に砥液供給ヘッダー12aと12bとからその都度砥液を供給するのが望ましい。例えば,図6では,左側のガイドローラ8aから右側のガイドローラ8bに向けて線材2を距離Xだけ移動させたら,次に反対方向に,Xよりαだけ短い距離Y(=X−α)だけ移動させるという往復動を繰り返し,一回の往復動について長さαだけ巻取リール(図示しないが,線材2の巻取端10に接続している)に巻取るようにする。このステップ移動により,砥液は両側の砥液供給ヘッダー12aと12bから切断面に交互に供給されることになるで,線材2と焼結希土類磁石合金1の切羽面6との間に砥粒と切削屑が良好な状態で存在し得ることになる。   At that time, it is desirable to repeat the movement of the wire 2 in the axial direction by repeating the forward movement and the backward movement over a short distance. The surface of the wire before contacting the sintered rare earth magnet alloy 2 in both the forward movement and the backward movement. It is desirable to supply the abrasive liquid from the abrasive liquid supply headers 12a and 12b each time. For example, in FIG. 6, if the wire 2 is moved from the left guide roller 8a toward the right guide roller 8b by a distance X, then in the opposite direction, only a distance Y (= X−α) shorter than X by X. The reciprocation of moving is repeated, and one reciprocation is wound on a take-up reel (not shown, but connected to the take-up end 10 of the wire 2) for a length α. By this step movement, the abrasive liquid is alternately supplied to the cut surface from the abrasive liquid supply headers 12a and 12b on both sides, so that the abrasive grains are between the wire 2 and the face 6 of the sintered rare earth magnet alloy 1. And cutting waste can exist in good condition.

以上のような本発明法は,可撓性の線材を軸方向に走行させる線材走行手段と,焼結希土類磁石からなる被切断材と走行中の線材とを互いに押し付けるための切断深さ調整手段と,切断中の該被切断材の切削面と線材外周面との間に砥粒を供給する手段と,からなる焼結希土類磁石の切断装置を用いて実施することができる。ここで,前記の線材走行手段は,例えば図6に示したように,所定の間隔を開けて平行に対向配置した一対のガイドローラ8aと8bに懸け渡した線材2を軸方向に移動させることができるものであればよく,図示しないけれども線材の巻取りリール,巻戻しリールおよび線材のドライブローラ等から構成することができる。前記の切断深さ調整手段は,焼結希土類磁石合金1を固定する台座7を線材2の方向に所定の圧力で押しつけるプレス機構を採用すればよい。また,砥粒を供給する手段としては,分散媒に砥粒を分散させた砥液が所定量づつ吐出する砥液供給器12を使用し,これを切断部近傍に設置して切断部に送り込まれる直前の線材表面に対して砥液を供給するようにするのがよい。   The method of the present invention as described above includes a wire rod traveling means for causing a flexible wire rod to travel in the axial direction, and a cutting depth adjusting means for pressing a workpiece to be cut made of a sintered rare earth magnet and a running wire rod against each other. And means for supplying abrasive grains between the cutting surface of the material being cut and the outer peripheral surface of the wire, and using a cutting device for sintered rare earth magnets. Here, for example, as shown in FIG. 6, the wire travel means moves the wire 2 suspended between a pair of guide rollers 8 a and 8 b arranged parallel to each other at a predetermined interval in the axial direction. Although not shown in the drawing, it can be constituted by a wire take-up reel, a rewind reel, and a wire drive roller. The cutting depth adjusting means may employ a press mechanism that presses the base 7 that fixes the sintered rare earth magnet alloy 1 in the direction of the wire 2 with a predetermined pressure. Also, as means for supplying the abrasive grains, an abrasive liquid supply device 12 is used which discharges a predetermined amount of abrasive liquid in which abrasive grains are dispersed in a dispersion medium, which is installed in the vicinity of the cutting section and fed into the cutting section. It is preferable to supply the abrasive liquid to the surface of the wire immediately before being applied.

〔実施例1〕
同一出願人に係る特許第2779654号の実施例8に記載した製法に従って該実施例8と同等の組成すなわち18Nd−61Fe−15Co−1B−5Cを有し,同特許公報の第2図に示したものと同等の金属組織すなわちほぼ10μmの磁性結晶粒の周囲にNdリッチの粒界相を有する金属組織を有する焼結希土類磁石合金からなる30mm×25mm×厚み8mmの板状焼結体(板厚方向に配向させたもの)を供試材とし,この供試体に対して,線径0.2mmのスチール線(表面にブラスメッキが施されている)と,炭化ケイ素系の砥粒を鉱物油に分散させた砥液を用いて切断試験を行った。試験条件は次のとおりである。
[Example 1]
According to the manufacturing method described in Example 8 of Patent No. 2777654 to the same applicant, it has the same composition as that of Example 8, that is, 18Nd-61Fe-15Co-1B-5C, and is shown in FIG. A plate-like sintered body (plate thickness 30 mm × 25 mm × thickness 8 mm) made of a sintered rare earth magnet alloy having a metal structure equivalent to that of a magnetic crystal grain having an Nd-rich grain boundary around a magnetic crystal grain of about 10 μm. The test specimen is a steel wire (with a brass plating on the surface) and silicon carbide-based abrasive grains made of mineral oil. A cutting test was carried out using the abrasive liquid dispersed in. The test conditions are as follows.

〔試験条件〕
被切断材:前記の焼結希土類磁石合金(硬さ650Hv)。
線材:ブラスメッキした線径0.2mmのスチール線(引張強度=3000N/mm2 ,切断荷重=80N)。
砥液:平均粒径17μmの炭化ケイ系砥粒(#700)を鉱物油(商品名リカラッピングオイルFB−10)に65wt%の濃度で分散させてなる粘度が110mPa・sの粘稠液。
切断方向:被切断材の板裏面に対し,線材を25mmの辺に平行に押し当てて線材を軸方向に移動させる。
線材移動速度:
線材の往路速度:加速度3.0m/sec2で初速を与え,速度が700m/minとなった時点でその速度を10秒間維持し,その速度から4秒間で停止させる。
線材の復路速度:前記の往路が停止したら引き続いて反対方向に加速度3.0m/sec2で初速を与え速度が700m/minとなった時点でその速度を5秒間維持し,その速度から4秒間で停止させる。
砥液の供給:線材の往路および復路とも,切断部から100mm離れた位置で線材表面に砥液を供給し,線材表面が完全に砥液で覆われた状態で切断部に進行するようにする。
被切断材のスライス厚み:1.0mm
〔Test conditions〕
Material to be cut: Sintered rare earth magnet alloy (hardness: 650 Hv).
Wire material: Brass-plated steel wire having a diameter of 0.2 mm (tensile strength = 3000 N / mm 2 , cutting load = 80 N).
Abrasive liquid: A viscous liquid having a viscosity of 110 mPa · s obtained by dispersing silica carbide-based abrasive grains (# 700) having an average particle diameter of 17 μm in mineral oil (trade name Re-Coloring Oil FB-10) at a concentration of 65 wt%.
Cutting direction: The wire is pressed in parallel with a side of 25 mm against the plate back surface of the material to be cut, and the wire is moved in the axial direction.
Wire travel speed:
Forward speed of wire: An initial speed is given at an acceleration of 3.0 m / sec 2 , the speed is maintained for 10 seconds when the speed reaches 700 m / min, and the speed is stopped for 4 seconds from that speed.
Return speed of the wire: When the forward path stops, the initial speed is continuously applied in the opposite direction at an acceleration of 3.0 m / sec 2 , and when the speed reaches 700 m / min, the speed is maintained for 5 seconds, and from that speed for 4 seconds Stop at.
Abrasive fluid supply: Abrasive fluid is supplied to the surface of the wire rod at a position 100 mm away from the cutting portion in both the forward and return paths of the wire, and the wire rod surface is completely covered with the abrasive fluid so that it proceeds to the cutting portion. .
Slice thickness of material to be cut: 1.0 mm

前記の試験条件で長さ25mm×幅8mmで厚み1.0mmの短冊状の切断片をほぼ35分間で切り出した。その間,線材に供給する砥液の温度は25℃の一定となるように管理した。得られた切断片の切断面は非常に滑らかであり,ソーマークも切欠も見られなかった。切断面を電子顕微鏡観察したところ,粒界で切断されていることがわかった。   Under the above test conditions, a strip-shaped cut piece having a length of 25 mm × width of 8 mm and a thickness of 1.0 mm was cut out in about 35 minutes. Meanwhile, the temperature of the abrasive liquid supplied to the wire was controlled to be a constant 25 ° C. The cut surface of the obtained cut piece was very smooth, and saw marks and notches were not seen. When the cut surface was observed with an electron microscope, it was found that the cut surface was cut at the grain boundary.

〔実施例2〕
供試材として,組成が18Nd−76Fe−6Bからなり,平均粒径5.0μmの磁性結晶粒がNdリッチの粒界相に囲まれた金属組織を有する焼結希土類磁石合金を使用した以外は,実施例1を繰り返した。その結果,ほぼ35分間で25mm×幅8mmで厚み1.0mmの短冊状の切断片が切り出され,その切断面は非常に滑らかでソーマークも切欠も見られなかった。
[Example 2]
As a test material, a sintered rare earth magnet alloy having a metal structure composed of 18Nd-76Fe-6B and having an average grain size of 5.0 μm surrounded by an Nd-rich grain boundary phase was used. Example 1 was repeated. As a result, a strip-shaped cut piece of 25 mm × width 8 mm and thickness 1.0 mm was cut out in about 35 minutes, the cut surface was very smooth, and saw marks and notches were not seen.

〔実施例3〕
砥液として,SiC系の砥粒(平均粒径=17.0μm,700)を鉱物油に65wt%の濃度で分散させた粘度が280mPa・sのものを使用した以外は,実施例1を繰り返した。その結果,ほぼ40分間で25mm×幅8mmで厚みが1.0mmの短冊状の切断片が切り出され,その切断面は非常に滑らかでソーマークも切欠も見られなかった。
Example 3
Example 1 was repeated except that SiC-based abrasive grains (average particle size = 17.0 μm, 700) having a viscosity of 280 mPa · s dispersed in mineral oil at a concentration of 65 wt% were used as the abrasive liquid. It was. As a result, a strip-shaped cut piece of 25 mm × width 8 mm and thickness 1.0 mm was cut out in about 40 minutes, the cut surface was very smooth, and neither saw marks nor notches were seen.

〔実施例4〕
供試材の配向方向が板幅方向である以外は,実施例1を繰り返した。その結果,ほぼ35分間で25mm×幅8mmで厚み1.0mmの短冊状の切断片が切り出され,その切断面は非常に滑らかでソーマークも切欠も見られなかった。
Example 4
Example 1 was repeated except that the orientation direction of the test material was the plate width direction. As a result, a strip-shaped cut piece of 25 mm × width 8 mm and thickness 1.0 mm was cut out in about 35 minutes, the cut surface was very smooth, and saw marks and notches were not seen.

〔比較例〕
砥液の砥粒濃度が10wt%で粘度が28mPa・sのものを使用した以外は,実施例1を繰り返した。その結果,切断途中で線材が破断した。
[Comparative Example]
Example 1 was repeated except that the abrasive concentration was 10 wt% and the viscosity was 28 mPa · s. As a result, the wire broke during cutting.

焼結希土類磁石合金の一般的な製造法の例を示す工程図である。It is process drawing which shows the example of the general manufacturing method of a sintered rare earth magnet alloy. (A)および(B)とも,焼結希土類磁石合金の一般的な金属組織状態を図解して示した組織説明図である。(A) And (B) is the structure explanatory drawing which illustrated and showed the general metal structure state of the sintered rare earth magnet alloy. 本発明に従う焼結希土類磁石合金の切断法の例を示す斜視図である。It is a perspective view which shows the example of the cutting method of the sintered rare earth magnet alloy according to this invention. 本発明に従って焼結希土類磁石合金を切断するさいの切断部の状態を模式的に示した略断面図である。It is the schematic sectional drawing which showed typically the state of the cutting part at the time of cut | disconnecting a sintered rare earth magnet alloy according to this invention. 本発明に従う焼結希土類磁石合金の切断法の態様例を示す斜視図である。It is a perspective view which shows the example of the aspect of the cutting method of the sintered rare earth magnet alloy according to this invention. 本発明に従う焼結希土類磁石合金の切断法の態様例を示す略断面図である。It is a schematic sectional drawing which shows the example of the aspect of the cutting method of the sintered rare earth magnet alloy according to this invention.

符号の説明Explanation of symbols

1 焼結希土類磁石合金
2 可撓性線材
3 砥液
4 砥粒
5 切断面
6 切羽
7 台座
8 ガイドローラ
9 線材の送り出し端
10 線材の巻取端
11 押圧方向
12 砥液供給ヘッダー
DESCRIPTION OF SYMBOLS 1 Sintered rare earth magnet alloy 2 Flexible wire 3 Abrasive fluid 4 Abrasive grain 5 Cutting surface 6 Face 7 Seat 8 Guide roller 9 Wire feed end 10 Wire take-up end 11 Pressing direction 12 Abrasive feed header

Claims (4)

Nd−Fe−Bを主体としCoを含有しさらに原子百分比5%のCを含有する組成を有し強磁性結晶粒の周囲にそれより易被削性の粒界相を有し且つ該強磁性結晶の方位が板幅方向に配向している磁気異方性の焼結希土類磁石合金板状体に、線径1.2mm以下の可撓性線材を、該結晶の配向方向とほぼクロスする方向に該板面に押し付け、砥粒を分散媒に分散させてなる砥液を該合金板状体と線材との間に介在させつつ、該線材をその軸方向に移動させ前記合金板状体を前記粒界相で切断する方法であって、前記可撓性線材は線径0.06〜1.2mmの金属線からなり、前記砥液はオイル中に炭化ケイ素、アルミナ、窒化ほう素(C・BN)、ダイヤモンドの一種または二種以上の砥粒を分散させてなり、前記切断中において該磁石合金の切断面と該金属線とが実質上非接触状態に維持できるに十分な砥粒が該金属線と該切断面との間に介在しており、該砥液の粘度が30〜1000mPa・sであることを特徴とする焼結希土類磁石合金の切断法。 Nd-Fe-B as a main component, containing Co and further containing 5% C by atomic percentage , having a grain boundary phase more easily machinable around the ferromagnetic crystal grains, and the ferromagnetic A direction in which a flexible wire having a wire diameter of 1.2 mm or less is substantially crossed with the crystal orientation direction on a magnetically anisotropic sintered rare earth magnet alloy plate having a crystal orientation in the plate width direction. The alloy plate is moved by moving the wire in the axial direction while interposing an abrasive liquid formed by dispersing abrasive grains in a dispersion medium between the alloy plate and the wire. A method of cutting at the grain boundary phase, wherein the flexible wire is made of a metal wire having a wire diameter of 0.06 to 1.2 mm, and the abrasive liquid is silicon carbide, alumina, boron nitride (C BN), one or more abrasive grains of diamond dispersed therein, and the magnet alloy during the cutting Abrasive grains sufficient to maintain the cut surface and the metal wire in a substantially non-contact state are interposed between the metal wire and the cut surface, and the viscosity of the abrasive liquid is 30 to 1000 mPa · s. A method for cutting a sintered rare earth magnet alloy, comprising: 一本の連続した線材の軸方向への移動で複数箇所の切断を同時に行う請求項1に記載の焼結希土類磁石合金の切断法。   The method for cutting a sintered rare earth magnet alloy according to claim 1, wherein a plurality of locations are simultaneously cut by moving one continuous wire in the axial direction. 線材の軸方向の移動は、往路移動とそれより短距離の復路移動との繰り返しからなり、往路移動および復路移動とも磁石に接する前の線材表面にその都度砥液が供給される請求項1または2に記載の焼結希土類磁石合金の切断法。   The movement of the wire in the axial direction is composed of repetition of forward movement and backward movement of a shorter distance, and the abrasive liquid is supplied to the surface of the wire before contacting the magnet in each of the forward movement and the backward movement. 2. A method for cutting a sintered rare earth magnet alloy according to 2. 線材の長手方向がほぼ水平となるように配置された可撓性線材に対してその上から焼結希土類磁石合金板状体を押し当て、該合金板状体に対する切断の進行方向を下から上に向かう方向とする請求項1〜3のいずれかに記載の焼結希土類磁石合金の切断法。   A sintered rare earth magnet alloy plate is pressed from above against a flexible wire arranged so that the longitudinal direction of the wire is substantially horizontal, and the cutting progress direction of the alloy plate from the top to the bottom The method for cutting a sintered rare earth magnet alloy according to any one of claims 1 to 3, wherein the cutting direction is a direction toward the surface.
JP2007101716A 2007-04-09 2007-04-09 Cutting method of sintered rare earth magnet alloy Expired - Fee Related JP4874853B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007101716A JP4874853B2 (en) 2007-04-09 2007-04-09 Cutting method of sintered rare earth magnet alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007101716A JP4874853B2 (en) 2007-04-09 2007-04-09 Cutting method of sintered rare earth magnet alloy

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000117764A Division JP2001300842A (en) 2000-04-19 2000-04-19 Cutting method and device for sintered rare earth magnet alloy

Publications (2)

Publication Number Publication Date
JP2007245340A JP2007245340A (en) 2007-09-27
JP4874853B2 true JP4874853B2 (en) 2012-02-15

Family

ID=38590142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007101716A Expired - Fee Related JP4874853B2 (en) 2007-04-09 2007-04-09 Cutting method of sintered rare earth magnet alloy

Country Status (1)

Country Link
JP (1) JP4874853B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5420498B2 (en) * 2010-08-03 2014-02-19 ユシロ化学工業株式会社 Water-soluble machining fluid for fixed abrasive wire saws
JP7243698B2 (en) * 2020-09-28 2023-03-22 株式会社プロテリアル Method for producing RTB based sintered magnet
JP7243908B1 (en) 2022-09-29 2023-03-22 株式会社プロテリアル Method for producing RTB based sintered magnet
JP7243909B1 (en) 2022-09-29 2023-03-22 株式会社プロテリアル Method for producing RTB based sintered magnet
JP7243910B1 (en) 2022-09-29 2023-03-22 株式会社プロテリアル Method for producing RTB based sintered magnet

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0310760A (en) * 1989-06-09 1991-01-18 Nippon Spindle Mfg Co Ltd Wire saw for cutting crystalline brittle material
JP3267133B2 (en) * 1995-12-18 2002-03-18 昭和電工株式会社 Alloy for rare earth magnet, method for producing the same, and method for producing permanent magnet
JPH09248821A (en) * 1996-03-14 1997-09-22 S I I Quartz Techno:Kk Method for working thickness-finish of fragile material
JPH10278040A (en) * 1997-04-01 1998-10-20 Tokyo Seimitsu Co Ltd Crystal material working device, and setting method for crystal material
JP3933748B2 (en) * 1997-05-27 2007-06-20 株式会社ネオス Water-soluble cutting fluid for wire saw
JPH10337648A (en) * 1997-06-04 1998-12-22 Tokyo Seimitsu Co Ltd Wire saw
JP3137600B2 (en) * 1997-09-12 2001-02-26 株式会社日平トヤマ Workpiece crystal orientation adjustment method
JP2000108010A (en) * 1998-08-07 2000-04-18 Tokyo Seimitsu Co Ltd Cutting method for wire saw

Also Published As

Publication number Publication date
JP2007245340A (en) 2007-09-27

Similar Documents

Publication Publication Date Title
US7481698B2 (en) Sintered rare earth magnetic alloy wafer surface grinding machine
TW200524707A (en) Superabrasive wire saw-wound structure, cutting device with superabrasive wire saw and method of winding superabrasive wire saw
JP4874853B2 (en) Cutting method of sintered rare earth magnet alloy
TWI520827B (en) Magnetic fixture fixture, rare earth magnet cutting processing device and cutting method
TW201032973A (en) Method and apparatus for multiple cutoff machining of rare earth magnet block, cutting fluid feed nozzle, and magnet block securing jig
TW201144014A (en) Rare earth magnet holding jig and cutting machine
JP2006123055A (en) Method of cutting work material with super-abrasive grain wire saw, and work material cut with super-abrasive grain wire saw
JP4605237B2 (en) Cutting method of high hardness material using fixed abrasive wire saw
JP2006007387A (en) Super-abrasive grain wire saw
JP4072512B2 (en) Calculation method of superabrasive ratio of superabrasive wire saw
CN114334413A (en) Method for producing R-T-B sintered magnet
CN114284053A (en) Method for producing R-T-B sintered magnet
JP4912714B2 (en) Fixed abrasive wire saw machining fluid
JP2015009325A (en) Fixed abrasive grain wire and wire processing method
JP2001300842A (en) Cutting method and device for sintered rare earth magnet alloy
JP2008006584A (en) Cutting method using super-abrasive grain wire saw
JP4262922B2 (en) Method for cutting high-hardness material using fixed abrasive wire saw and method for manufacturing ceramic substrate for magnetic head
JP2012152830A (en) Fixed abrasive grain wire and method for manufacturing the same
JP4910457B2 (en) Wire saw device and cutting method using the same
JP2013043268A (en) Fixed abrasive grain wire and method of manufacturing semiconductor substrate
JP2005193332A (en) Saw wire
JP4457770B2 (en) Manufacturing method of sintered magnet
JP2006165300A (en) Method of manufacturing rare earth sintered magnet
JP2014181125A (en) Reel for winding superabrasive wire saw
JP2004314214A (en) Wire saw apparatus and method for cutting-off rare earth alloy

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100723

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101213

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110207

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111007

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111124

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees