JP3536943B2 - Alloy for rare earth magnet and method for producing the same - Google Patents

Alloy for rare earth magnet and method for producing the same

Info

Publication number
JP3536943B2
JP3536943B2 JP33582594A JP33582594A JP3536943B2 JP 3536943 B2 JP3536943 B2 JP 3536943B2 JP 33582594 A JP33582594 A JP 33582594A JP 33582594 A JP33582594 A JP 33582594A JP 3536943 B2 JP3536943 B2 JP 3536943B2
Authority
JP
Japan
Prior art keywords
phase
alloy
eutectic
region
axis direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP33582594A
Other languages
Japanese (ja)
Other versions
JPH08176755A (en
Inventor
洋一 広瀬
史郎 佐々木
寛 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP33582594A priority Critical patent/JP3536943B2/en
Publication of JPH08176755A publication Critical patent/JPH08176755A/en
Application granted granted Critical
Publication of JP3536943B2 publication Critical patent/JP3536943B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は希土類元素を含む磁石の
原料となる原料合金およびこの原料合金の製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a raw material alloy used as a raw material for a magnet containing a rare earth element and a method for producing the raw material alloy.

【0002】[0002]

【従来の技術】最近、希土類合金系の優れた磁気特性を
活かした希土類焼結磁石あるいは希土類ボンド磁石が注
目されてきており、特にR−Fe−B系磁石において、
磁気特性をさらに向上させた磁石の開発が行われてい
る。R−Fe−B系磁石では磁性を担う強磁性相R2
14B相の他に、非磁性でNd等の希土類元素の濃度の
高い相(Rリッチ相と呼ぶ)が存在し、次の様な重要な
役割を果たしている。 融点が低く、磁石化工程の焼結時に液相となり、磁石
の高密度化、したがって磁化の向上に寄与する。 粒界の凹凸をなくし、逆磁区のニュークリエーション
サイトを減少させ保磁力を高める。 Rリッチ相は非磁性であり主相を磁気的に絶縁するこ
とから、保磁力を高める。 したがって、Rリッチ相の体積率が低いか、分散状態が
悪いためにRリッチ相に覆われていない界面が存在すれ
ば、その部分では局所的な保磁力低下によって角型性が
悪化すると共に、焼結不良によって磁化も低下するため
最大磁気エネルギー積の低下をもたらすことが知られて
いる。
2. Description of the Related Art Recently, a rare-earth sintered magnet or a rare-earth bonded magnet utilizing the excellent magnetic properties of a rare-earth alloy has been attracting attention.
Magnets with further improved magnetic properties are being developed. In the R-Fe-B-based magnet, a ferromagnetic phase R 2 F which is responsible for magnetism
In addition to the e 14 B phase, there is a nonmagnetic phase having a high concentration of rare earth elements such as Nd (referred to as an R-rich phase), and plays an important role as follows. It has a low melting point and becomes a liquid phase at the time of sintering in the magnetizing step, which contributes to increasing the density of the magnet and thus improving the magnetization. Eliminates irregularities at grain boundaries, reduces nucleation sites in reverse magnetic domains, and increases coercive force. The R-rich phase is non-magnetic and magnetically insulates the main phase, thereby increasing the coercive force. Therefore, if there is an interface that is not covered by the R-rich phase due to a low volume ratio of the R-rich phase or a poor dispersion state, the squareness deteriorates due to a local decrease in coercive force at that portion, It is known that the magnetization is also reduced due to poor sintering, resulting in a reduction in the maximum magnetic energy product.

【0003】ところが、高特性磁石になるほど強磁性相
であるR2 Fe14B相の体積率を高める必要があるた
め、必然的にRリッチ相の体積率が減少し、部分的なR
リッチ相不足を生じ、十分な特性が得られない場合が多
い。そこで高特性材のRリッチ相不足による特性低下防
止に関した多くの研究が報告されており、それらは大き
く2つのグル−プに分けられる。
However, the volume ratio of the R 2 Fe 14 B phase, which is a ferromagnetic phase, needs to be increased as the magnet becomes higher in performance.
In many cases, a lack of a rich phase occurs, and sufficient characteristics cannot be obtained. In view of this, many studies have been reported on the prevention of property deterioration due to the lack of the R-rich phase in high-performance materials, and they are roughly divided into two groups.

【0004】1つは主相R2 Fe14B相とRリッチ相を
別々の合金から供給するものであり、一般に2合金法と
呼ばれている。殆どR2 Fe14B相単相からなる合金と
Rリッチ相を生成する合金の2種類をそれぞれ微粉砕し
た後、適当な比率で混合、成形焼結する方法で、Rリッ
チ相の分散性を改善するためにRリッチ相を生成する合
金に多くの工夫が見られる。例えば、焼結温度での液相
組成の非晶質合金を使用すれば、Rリッチ相よりもFe
の含有量が多いため、同じ組成の磁石を作製するのにR
リッチ相を混合するよりも主相を生成する合金との混合
比率を高くでき、結果として焼結時に生成するRリッチ
相の分散性が良好となり、磁気特性向上に成功している
(E.Otsuki,T.Otsuka and T.Imai,11th Internatinal W
orkshopon Rare Earth magnets and their Application
s,vol.1,p328(1990) )。
One is to supply the main phase R 2 Fe 14 B phase and the R rich phase from different alloys, which is generally called a two-alloy method. After dispersing the R-rich phase by a method of finely pulverizing two kinds of alloys, each consisting essentially of a single phase of R 2 Fe 14 B phase and an alloy producing an R-rich phase, and mixing and molding and sintering at an appropriate ratio. Many improvements have been made to alloys that produce R-rich phases to improve. For example, when an amorphous alloy having a liquid phase composition at a sintering temperature is used, Fe is more effective than an R-rich phase.
Is high, so that a magnet having the same composition is
The mixing ratio with the alloy that forms the main phase can be made higher than when the rich phase is mixed, and as a result, the dispersibility of the R-rich phase generated during sintering becomes better, and the magnetic properties have been improved (E. Otsuki) , T.Otsuka and T.Imai, 11th Internatinal W
orkshopon Rare Earth magnets and their Application
s, vol.1, p328 (1990)).

【0005】もう一つはストリップキャスティング法に
より、従来の金型鋳造法よりも高い冷却速度で凝固する
ことで組織を微細化し、Rリッチ相が微細に分散した組
織を有する合金を生成するものである。合金内のRリッ
チ相が微細に分散しているため、粉砕、焼結後のRリッ
チ相の分散性も良好となり、磁気特性向上に成功してい
る(特開平5-222488、特開平5-295490)。
[0005] The other is to form an alloy having a structure in which an R-rich phase is finely dispersed by solidifying at a higher cooling rate than a conventional die casting method by a strip casting method to make the structure finer. is there. Since the R-rich phase in the alloy is finely dispersed, the dispersibility of the R-rich phase after pulverization and sintering is also improved, and the magnetic properties have been successfully improved (Japanese Patent Application Laid-Open Nos. 5-222488 and 5-205). 295490).

【0006】[0006]

【発明が解決しようとする課題】以上のように2合金法
とストリップキャスティング法によってRリッチ相の良
好な分散がもたらされ、磁気特性の向上がなされたが、
これらの方法は以下のような問題を抱えている。
As described above, the two-alloy method and the strip casting method provided good dispersion of the R-rich phase and improved the magnetic properties.
These methods have the following problems.

【0007】まず、前者の2合金法では、極めて高い特
性が報告されているが、Rリッチ相を生成する非晶質合
金の作製に液体超急冷を使用しなければならないが、液
体超急冷は生産性が悪くコストアップをもたらす。液体
超急冷を利用せず、Rリッチ相生成合金にCo 系金属間
化合物を使用して45MGOe以上の特性を発現した報告も存
在する(楠、美濃輪、本島、電気学会論文誌A、113 巻12
号、P849-853、1993)。しかし、R2 Fe14B相はα−
Feと液相から包晶反応によって生成するため、ほぼR
2 Fe14B化学量論組成での鋳造を要する主相を生成す
る合金では、α−Feの残存量が極めて多い。そして、
α−Feは粉砕性を著しく害し、粉砕時の組成変動の原
因となり、磁気特性の低下、バラツキの増加を引き起こ
す。そのため、主相を生成する合金は、初晶であるα−
Feを消滅し、ほぼR2 Fe14B相単相とする必要から
長時間の均質化処理を必要とする。さらに2合金法では
2種類の合金粉を別々に粉砕し、均一に混合しなければ
ならないため、従来のas cast の1合金を粉砕する方法
と比較すると生産性が格段に悪く、コストの増加が避け
られないため、45MGOe程度以上の付加価値が高い極めて
高特性な材料にしか使用できない。
First, the former two-alloy method has been reported to have extremely high characteristics. However, liquid super-quenching must be used to produce an amorphous alloy that generates an R-rich phase. Poor productivity leads to increased costs. There is also a report that uses a Co-based intermetallic compound in an R-rich phase-forming alloy to exhibit characteristics of 45MGOe or more without using liquid rapid quenching (Kusu, Minowa, Honjima, IEEJ Transactions A, 113, 12
No., P849-853, 1993). However, the R 2 Fe 14 B phase is α-
Since it is produced by peritectic reaction from Fe and the liquid phase, almost R
In an alloy that produces a main phase that requires casting with a 2 Fe 14 B stoichiometric composition, the residual amount of α-Fe is extremely large. And
α-Fe significantly impairs the pulverizability, causes the composition to change during pulverization, and causes a decrease in magnetic properties and an increase in variation. Therefore, the alloy that generates the main phase is α-
Long-term homogenization treatment is required since Fe is extinguished and the R 2 Fe 14 B phase is required to be a single phase. Further, in the two-alloy method, two kinds of alloy powders must be separately ground and uniformly mixed, so that the productivity is remarkably worse and the cost increases compared to the conventional method of grinding one alloy of as cast. Because it cannot be avoided, it can be used only for extremely high-performance materials with high added value of about 45MGOe or more.

【0008】一方、ストリップキャスティング法も鋳造
に時間がかかり、高活性の希土類元素を含む溶湯を長時
間保持し、少量ずつ供給するため、ルツボ、保持炉ある
いはタンディッシュと溶湯の反応により、成分が変動し
やすい。また、温度を一定に保ち、定常状態で安定した
鋳造を持続させるのが極めて難しく、収率が低いといっ
た問題がある。さらに、特殊で高価な鋳造設備を必要と
する等の問題もあり、コストアップは避けられない。
On the other hand, the strip casting method also takes a long time for casting, and a molten metal containing a highly active rare earth element is held for a long time and supplied in small amounts. Therefore, the components are formed by the reaction of the molten metal with a crucible, a holding furnace or a tundish. Easy to fluctuate. Further, there is a problem that it is extremely difficult to maintain a constant temperature and maintain stable casting in a steady state, resulting in a low yield. In addition, there is a problem that a special and expensive casting facility is required, and an increase in cost is inevitable.

【0009】[0009]

【課題を解決するための手段】本発明者は特殊で高価な
鋳造設備を使用せずに、従来の金型鋳造法によってRリ
ッチ相の不足、偏在による特性劣化が生じにくい合金を
作製する方法について検討した結果、従来単に粒界相又
はRリッチ相と呼ばれていた、鋳造時に最後まで液相と
して存在するRに富んだ部分が凝固した領域(共晶領域
と呼ぶ)に注目した。その結果、その共晶部分が凝固す
る600 〜800 ℃辺りでの冷却速度によって組織形態が変
化し、さらに磁石の保磁力、角型性とも関連する事実を
見いだした。さらに、共晶領域の分散状態や主相の結晶
粒径の大きさの制御によってさらに効果が高まる事実も
見いだした。本発明はこれらの知見に基づいてなされた
ものである。
SUMMARY OF THE INVENTION The present inventor has developed a method of producing an alloy which is less likely to cause deterioration in properties due to lack of R-rich phase and uneven distribution by a conventional die casting method without using special and expensive casting equipment. As a result, the inventors focused on a region (hereinafter referred to as a eutectic region) in which an R-rich portion existing as a liquid phase at the time of casting was solidified, which was conventionally simply referred to as a grain boundary phase or an R-rich phase. As a result, it was found that the morphology changes depending on the cooling rate at around 600-800 ° C at which the eutectic portion solidifies, and that the coercive force and the squareness of the magnet are related. Further, the inventors have found that the effect is further enhanced by controlling the dispersion state of the eutectic region and the crystal grain size of the main phase. The present invention has been made based on these findings.

【0010】すなわち本発明はR(Yを含む希土類元素
のうち少なくとも1種)、T(Feを必須とする遷移金
属)及びB(硼素)を基本成分とする永久磁石の原料合
金に於て、従来単に粒界相又はRリッチ相と呼ばれてい
た、鋳造時に最後まで液相として存在するRに富んだ部
分が凝固した領域、すなわち共晶領域の分散状態を制御
することにより、実質的に利用できるRリッチ相の体積
率を増加すること、さらに共晶領域の組織や主相の結晶
粒径の制御により上記課題を解決したものである。
That is, the present invention relates to a raw material alloy for a permanent magnet containing R (at least one of rare earth elements including Y), T (transition metal having Fe as an essential component) and B (boron) as basic components. Conventionally simply called a grain boundary phase or an R-rich phase, a region in which the R-rich portion present as a liquid phase to the end at the time of casting solidified, that is, by controlling the dispersion state of the eutectic region, substantially The object of the present invention is to solve the above problem by increasing the volume ratio of the usable R-rich phase and controlling the structure of the eutectic region and the crystal grain size of the main phase.

【0011】次に本発明の構成を以下に詳細に記す。図
1、図2に本発明と従来の合金の代表的な顕微鏡組織の
模式図を示す。図2の従来の合金では主相1が柱状に晶
出し、その周囲を最後に凝固する共晶領域2がとり囲ん
だ組織を呈する。また図1に示す本発明の合金ではほと
んどの主相1の結晶粒の内部にも共晶領域2が存在す
る。図2の方がやや拡大してあり、主相1の大きさは図
1の本発明合金の方が大きい。
Next, the configuration of the present invention will be described in detail below. FIG. 1 and FIG. 2 are schematic diagrams of typical microstructures of the present invention and a conventional alloy. In the conventional alloy shown in FIG. 2, the main phase 1 is crystallized in a columnar shape, and a structure surrounded by a eutectic region 2 that solidifies last around the main phase 1 is exhibited. In addition, in the alloy of the present invention shown in FIG. 2 is slightly enlarged, and the size of the main phase 1 is larger in the alloy of the present invention in FIG.

【0012】(1) 共晶領域の分布 共晶領域2が主相R2 Fe14B1の結晶粒界の他に、主
相1の結晶粒内にも存在することを特徴とする。最後ま
で液相として存在するR(希土類)に富んだ部分は、6
00〜800℃の間に最終的には共晶反応によって幾つ
かの固相に変態、凝固する。例えばNd−Fe−B三元
系では665℃で共晶反応によって、液相がNdメタル
相、Nd2 Fe14B相、NdFe44 相の3相に変
態、凝固することが知られている。他の成分元素を含む
場合には反応温度、生成相が変化すると思われる。本
来、Ndリッチ相とはNd−Fe−B三元系ではNdメ
タル相を指すものであるが、共晶反応で生成したNd2
Fe14B相、NdFe44 相も合わせた総称として扱
っている場合も存在し、特に原料合金の組織を議論する
際に多く見られる。他の成分元素を含む場合も同様であ
る。そこで本発明では従来広くRリッチ相、又は粒界相
とも呼ばれていた、鋳造時に最後まで液相として存在す
るRに富んだ部分が凝固した領域を共晶領域2と呼び、
Rの一次固溶体であるRリッチ相と区別して表現する。
本発明の合金では、共晶領域2が柱状晶組織部分では主
相R2 Fe14B1の結晶粒界と結晶粒内にも主としてそ
の長軸方向に平行に伸長して存在し、等軸晶組織部分で
は球状に存在しているものがある。
(1) Distribution of eutectic region The eutectic region 2 is characterized in that it exists in the crystal grains of the main phase 1 in addition to the grain boundaries of the main phase R 2 Fe 14 B1. The portion rich in R (rare earth) existing as a liquid phase to the end is 6
Between 00 and 800 ° C., it finally transforms and solidifies into several solid phases by a eutectic reaction. For example, it is known that a liquid phase is transformed and solidified into three phases of a Nd metal phase, a Nd 2 Fe 14 B phase and a NdFe 4 B 4 phase by a eutectic reaction at 665 ° C. in a ternary system of Nd—Fe—B. I have. When other component elements are included, it is considered that the reaction temperature and the generated phase change. Originally, the Nd-rich phase refers to the Nd metal phase in the ternary system of Nd—Fe—B, but Nd 2 formed by the eutectic reaction.
In some cases, the Fe 14 B phase and the NdFe 4 B 4 phase are also treated as a collective term, and are often seen particularly when discussing the structure of the raw material alloy. The same applies when other component elements are included. Therefore, in the present invention, a region in which an R-rich portion which has been widely known as an R-rich phase or a grain boundary phase and which remains as a liquid phase at the time of casting and solidified is referred to as a eutectic region 2,
Expressed separately from the R-rich phase, which is the primary solid solution of R.
In the alloy of the present invention, the eutectic region 2 is present in the columnar crystal structure portion at the grain boundaries of the main phase R 2 Fe 14 B1 and also in the crystal grains mainly extending parallel to the major axis direction, and is equiaxed. Some tissue parts exist spherically.

【0013】一方、従来の鋳造法で得られる合金は、結
晶粒を構成する主相R2 Fe14B1を結晶粒界を構成す
るRの含有量が多い相3が被覆している組織構造(特開
平5-295490)であり、本発明による主相R2 Fe14B1
の結晶粒内の複数のRの含有量が多い相3を含む共晶領
域2の存在に関する記述はなく、全く別の組織と言え
る。
On the other hand, the alloy obtained by the conventional casting method has a structure structure in which the main phase R 2 Fe 14 B1 constituting the crystal grains is covered with the phase 3 having a high R content constituting the crystal grain boundary ( JP-A-5-295490), and the main phase R 2 Fe 14 B1 according to the present invention.
There is no description regarding the existence of the eutectic region 2 including the phase 3 having a large content of a plurality of Rs in the crystal grains of the above, and it can be said that the structure is completely different.

【0014】本発明の合金では共晶領域2同士の間隔
(D)が主相R2 Fe14B結晶粒1の短軸方向の大きさ
(W)の2分の1以下である領域の体積率が70%以上
であることを特徴とする。ここで共晶領域2同士の間隔
(D)とは、結晶粒界の共晶領域同士であっても結晶粒
内の共晶領域同士であっても良い。あるいは、また結晶
粒界と結晶粒内の共晶領域の間隔であっても良い。つま
り近接する共晶領域同士の間隔が主相の短軸方向の大き
さの2分の1以下であれば良い。共晶領域2は微細分散
した方が都合が良く、具体的には共晶領域2同士の間隔
(D)が主相のR2 Fe14B結晶粒1の短軸方向の大き
さ(W)の2分の1以下である領域の体積率が70%以
上であることが好ましい。
In the alloy of the present invention, the volume (D) of the region where the distance (D) between the eutectic regions 2 is less than half the size (W) in the minor axis direction of the main phase R 2 Fe 14 B crystal grains 1 The rate is 70% or more. Here, the interval (D) between the eutectic regions 2 may be either the eutectic regions at the crystal grain boundaries or the eutectic regions within the crystal grains. Alternatively, the distance may be between a crystal grain boundary and a eutectic region in the crystal grain. In other words, the distance between adjacent eutectic regions may be equal to or less than half the size of the main phase in the minor axis direction. It is more convenient that the eutectic region 2 is finely dispersed. Specifically, the distance (D) between the eutectic regions 2 is the size (W) of the main phase R 2 Fe 14 B crystal grains 1 in the minor axis direction. It is preferable that the volume ratio of a region which is equal to or less than half of the volume ratio is equal to or greater than 70%.

【0015】(2) 共晶領域の組織 共晶領域中のRの含有量がより少ない相の短軸方向の大
きさは3μm以下にするのが好ましい。図3に本発明に
よる合金の共晶領域内の組織を拡大した模式図を示す。
共晶領域2の内部には周囲よりもRの含有量がより少な
い相4が細い棒状に析出した組織を呈している。共晶領
域2の内部のRの含有量がより少ない相4とは、先に示
したR2 Fe14B相、RFe44 相であり、他の成分
元素を含む場合には異なった相が存在する場合もある
が、周囲のR含有量の多い相3以外の相とも言える。こ
のRの含有量がより少ない相4の短軸方向の大きさが、
磁石化工程で磁場成形用の粉末を得る微粉砕粒径程度、
つまり3〜5μm以下であれば、これらの相4を含む粉
砕粉は常にRの含有量が多い相3と共存することにな
る。そのためRの含有量が多い相3を含む粉末の比率が
増加し、Rの含有量が多い相3の分散性の改善、焼結時
の高密度化を促進、さらに焼結後の熱処理時の保磁力の
温度依存性を改善し、優れた磁気特性の磁石の製造が可
能となる。
(2) Structure of Eutectic Region The phase in the minor axis direction of the phase having a smaller R content in the eutectic region is preferably 3 μm or less. FIG. 3 is a schematic diagram showing an enlarged structure in the eutectic region of the alloy according to the present invention.
The inside of the eutectic region 2 has a structure in which the phase 4 having a smaller R content than the surroundings is precipitated in a thin rod shape. The phase 4 having a smaller R content in the eutectic region 2 is the R 2 Fe 14 B phase and the RFe 4 B 4 phase described above, and different phases when other component elements are contained. May be present, but it can also be said to be a phase other than the surrounding phase 3 having a high R content. The minor axis size of phase 4 having a smaller R content is
Finely pulverized particle size to obtain powder for magnetic field molding in magnetizing process,
In other words, when the particle size is 3 to 5 μm or less, the pulverized powder containing the phase 4 always coexists with the phase 3 having a high R content. Therefore, the ratio of the powder containing the phase 3 having a high R content is increased, the dispersibility of the phase 3 having a high R content is improved, the densification at the time of sintering is promoted, and the heat treatment after the sintering is performed. The temperature dependency of the coercive force is improved, and a magnet having excellent magnetic properties can be manufactured.

【0016】この合金を微粉砕した場合に共晶領域2内
部の組織微細化によって、Rの含有量が多い相3を含む
粉末の比率が増加し、Rの含有量が多い相3の分散性の
改善により、焼結性並びに磁気特性の向上が可能とな
る。そして、Rの含有量が多い相3の分散性はRの含有
量が多い相3を含む共晶領域2が、合金内で微細分散す
ることでさらに良好となる。つまり共晶領域2と主相1
との界面の拡大に応じて、微粉砕時のRの含有量が多い
相3を含む粉砕粉の量が増加するため、Rの含有量が多
い相3の分散性向上をもたらす。したがって、共晶領域
2と主相1との界面を拡大し、Rの含有量が多い相3の
分散性を高めるには、共晶領域2が薄く長く伸長する柱
状晶組織の方が好ましい。
When this alloy is finely pulverized, the ratio of the powder containing the phase 3 containing a large amount of R increases due to the refinement of the structure inside the eutectic region 2, and the dispersibility of the phase 3 containing a large amount of R is increased. Sinterability and magnetic properties can be improved. And, the dispersibility of the phase 3 having a large R content is further improved because the eutectic region 2 including the phase 3 having a large R content is finely dispersed in the alloy. That is, the eutectic region 2 and the main phase 1
The amount of the pulverized powder containing the phase 3 having a high R content at the time of fine pulverization increases in accordance with the expansion of the interface with Pb, so that the dispersibility of the phase 3 having a high R content is improved. Therefore, in order to enlarge the interface between the eutectic region 2 and the main phase 1 and enhance the dispersibility of the phase 3 having a high R content, a columnar crystal structure in which the eutectic region 2 is thin and long is preferable.

【0017】図4に従来法による合金の共晶領域内の組
織を拡大した模式図を示す。従来合金ではR含有量のよ
り少ない相4の大きさが、本発明の場合よりも太く、あ
るものは片状を呈している。本発明による合金に比較し
て、共晶領域2内部のRの含有量がより少ない相4の短
軸方向の大きさが微粉砕粒径程度より大きく、Rの含有
量が多い相3を含まない粉末の比率が増加するため、R
の含有量が多い相3の分散性は低下し、磁気特性は低下
する。Rの含有量がより少ない相4の微細化にはこれら
の相を生成する共晶反応時の冷却速度を増加し、核生成
頻度を高めつつ各生成相の粗大化を防止する方法が有効
である。また、ある種の添加元素によって微細化が促進
される可能性も存在する。
FIG. 4 is an enlarged schematic diagram showing the structure in the eutectic region of the alloy according to the conventional method. In the conventional alloy, the size of the phase 4 having a lower R content is larger than in the case of the present invention, and some have a flaky shape. Compared with the alloy according to the present invention, the minor axis direction of the phase 4 having a lower R content in the eutectic region 2 is larger than the finely pulverized particle size and includes the phase 3 having a higher R content. Due to the increase in the proportion of non-
, The dispersibility of the phase 3 having a large content of Ni and the magnetic properties are lowered. In order to refine the phase 4 having a smaller R content, it is effective to increase the cooling rate during the eutectic reaction for generating these phases, increase the nucleation frequency, and prevent coarsening of each generated phase. is there. Further, there is a possibility that miniaturization is promoted by a certain kind of additive element.

【0018】(3)主相の結晶粒径 主相であるR2 Fe14B結晶粒の長軸方向の大きさが5
0μm以上、短軸方向の大きさが10μm以上である領
域の体積率が70%以上であることを特徴とする。凝固
方向に沿って切断した図1に示す顕微鏡組織において、
主相1の結晶粒径が磁場成形用の粉末を得る微粉砕粒径
程度、つまり3〜5μm程度以下であると1つの粉砕粉
中に方位の異なる2つ以上の主相が存在することにな
り、配向性が低下する。したがって主相1の結晶粒径は
大きい方が都合が良く、長軸方向の大きさ(L)が50
μm以上、短軸方向の大きさ(W)が10μm以上であ
る結晶粒の体積率が70%以上であることが好ましい。
より好ましくは、長軸方向の大きさ(L)が100μm
以上、短軸方向の大きさ(W)が20μm以上が良い。
主相の各結晶粒は合金をエメリー紙で研磨した後、アル
ミナ、ダイアモンド等を使用してバフ研磨した面を偏光
顕微鏡で観察することにより容易に識別可能である。偏
光顕微鏡では磁気Kerr効果により、入射した偏光が
強磁性体表面の磁化方向に応じた偏光面の回転を生じて
反射するため、各結晶粒から反射する偏光面の相違が明
暗として観察される。図5は本発明の合金の偏光顕微鏡
写真であって、主相R2 Fe14Bの結晶粒界を示す。各
結晶粒の結晶方向の相違が明暗となって明瞭に識別可能
である。また、黒い筋状となって観察される共晶領域が
主相結晶粒界だけでなく、主相R2 Fe14B結晶粒内に
もその長軸方向にほぼ平行に存在している。なお、主相
結晶粒内の細かい縞模様は磁区に対応している。
(3) Grain Size of Main Phase The size of R 2 Fe 14 B crystal grains as the main phase in the major axis direction is 5
The volume ratio of a region having a size of 0 μm or more and a size of 10 μm or more in the minor axis direction is 70% or more. In the microstructure shown in FIG. 1 cut along the solidification direction,
When the crystal grain size of the main phase 1 is about the size of finely pulverized particles for obtaining a magnetic field forming powder, that is, about 3 to 5 μm or less, two or more main phases having different orientations exist in one pulverized powder. And the orientation decreases. Therefore, the larger the crystal grain size of the main phase 1 is, the better, and the size (L) in the long axis direction is 50.
It is preferable that the volume ratio of crystal grains having a size (W) of at least 10 μm in the minor axis direction is 70% or more.
More preferably, the size (L) in the long axis direction is 100 μm
As described above, the size (W) in the short axis direction is preferably 20 μm or more.
Each crystal grain of the main phase can be easily identified by polishing the alloy with emery paper and then observing the surface buffed with alumina, diamond or the like with a polarizing microscope. In the polarization microscope, the incident polarized light is reflected by the rotation of the polarization plane corresponding to the magnetization direction of the surface of the ferromagnetic material due to the magnetic Kerr effect, so that the difference in the polarization plane reflected from each crystal grain is observed as light and dark. FIG. 5 is a polarization micrograph of the alloy of the present invention, showing the grain boundaries of the main phase R 2 Fe 14 B. The difference in the crystal direction of each crystal grain becomes light and dark, and can be clearly identified. Further, a eutectic region observed as a black streak exists not only in the main phase crystal grain boundaries but also in the main phase R 2 Fe 14 B crystal grains substantially parallel to the major axis direction. The fine stripes in the main phase crystal grains correspond to the magnetic domains.

【0019】(4)製造方法 本発明の合金の製造方法について説明すると、鋳造時に
800℃から600℃の温度域を5℃/秒以上の冷却速
度で冷却することを特徴とする。共晶領域2を生成する
温度域、つまり最後まで液相として存在するR(希土
類)に富んだ部分が凝固する温度域での冷却速度を増加
し、核生成頻度を高めつつ各生成相の粗大化を防止する
ことで、共晶領域2内のRの含有量がより少ない相4が
微細化する。組成によって凝固温度は多少上下するが、
具体的には800℃から600℃の温度域を5℃/秒以
上の冷却速度で冷却することが好ましく、より好ましい
冷却速度は10℃/秒以上である。このような条件は、
ストリップキャスティング法等の特殊な鋳造法を用いな
くても、例えば、従来の鋳造法でもモールド比(鋳型
比)を十分大きくすることによっても達成可能である。
(4) Manufacturing Method The method of manufacturing the alloy according to the present invention is characterized in that a temperature range from 800 ° C. to 600 ° C. is cooled at a cooling rate of 5 ° C./sec or more during casting. The cooling rate is increased in the temperature range in which the eutectic region 2 is generated, that is, in the temperature range in which the R (rare earth) -rich portion existing as a liquid phase to the end solidifies, and the nucleation frequency is increased while the coarseness of each generated phase is increased. Prevention of the formation makes the phase 4 having a smaller R content in the eutectic region 2 finer. Depending on the composition, the solidification temperature fluctuates somewhat,
Specifically, it is preferable to cool the temperature range from 800 ° C. to 600 ° C. at a cooling rate of 5 ° C./sec or more, and a more preferable cooling rate is 10 ° C./sec or more. Such conditions are:
Without using a special casting method such as a strip casting method, for example, a conventional casting method can also be achieved by sufficiently increasing the mold ratio (mold ratio).

【0020】モールド比は鋳型の熱容量を鋳造する合金
の熱容量で除した値であり、簡単にはそれぞれの重量
比、より簡単にはそれぞれの側板の厚さの比でも十分比
較可能である。例えば、代表的な鋳型材である鉄と銅は
単位体積当りの熱容量がほぼ等しいことから、側板厚さ
の比で議論すれば材質の相違も含めて比較することが可
能である。モールド比の増加により、鋳型の温度上昇が
抑制されるため、従来鋳型の温度上昇でインゴットの冷
却効率が特に低下していた800℃以下での冷却速度の
増加が可能となる。モールド比の増加は側板の厚肉化か
インゴットの簿肉化により可能である。さらに効率的な
水冷機構を有することで溶湯から移動した熱を速やかに
除去し、鋳型の温度上昇を防止する方法も有効であり、
両者を組合わせることでより効率的な冷却が可能とな
る。その他、遠心鋳造法等によるインゴットの簿肉化も
有効である。
The mold ratio is a value obtained by dividing the heat capacity of the mold by the heat capacity of the alloy to be cast, and the weight ratio can be easily compared, and more simply, the ratio of the thickness of each side plate can be sufficiently compared. For example, since iron and copper, which are typical mold materials, have almost the same heat capacity per unit volume, it is possible to make a comparison including the difference in the material when discussing the ratio of the side plate thickness. An increase in the mold ratio suppresses a rise in the temperature of the mold. Therefore, it is possible to increase the cooling rate at 800 ° C. or lower, where the cooling efficiency of the ingot has been particularly reduced due to the rise in the temperature of the mold. The mold ratio can be increased by increasing the thickness of the side plate or increasing the thickness of the ingot. It is also effective to have a more efficient water cooling mechanism to quickly remove the heat transferred from the molten metal and prevent the mold temperature from rising,
Combining both enables more efficient cooling. In addition, it is effective to reduce the thickness of the ingot by centrifugal casting or the like.

【0021】本発明では800℃以上、600℃以下の
冷却速度は特に規定しないが、800℃以上については
主相R2 Fe14B相1の結晶粒径、共晶領域2の分散性
に影響することは良く知られている。一般的なR−Fe
−B系磁石組成では液相から初晶α−Feが生成して、
これと液相から包晶反応によってR2 Fe14B相1を生
成するか、或は凝固速度が早い場合には包晶反応温度以
下まで過冷却されて液相からR2 Fe14B相1を直接生
成する。したがって、この包晶反応が終了するまでの冷
却速度のマクロ的な合金組織への影響は特に大きく、冷
却速度が大きい程マクロ組織の微細化をもたらす。スト
リップキャスティング法はこの効果により、α−Fe生
成を抑制し、良好なRの含有量が多い相3の分散に成功
している。しかし、R2 Fe14B相結晶粒1の微細化に
よって、微粉砕後の粉砕粉中に方位の異なる2つ以上の
2 Fe14B相1が存在する確率が高まり、配向性の低
下をもたらすため、冷却速度を適度に制御することが必
要となる。本発明の合金に於ても800℃以上、特に包
晶反応終了までの冷却速度を主相の短軸方向の大きさ
(W)が、10μm未満にならない範囲内で適度に増加
させることは、共晶領域2の分散性向上によるRの含有
量が多い相3の分散性の向上をもたらし有効である。
In the present invention, the cooling rate at 800 ° C. or more and 600 ° C. or less is not particularly specified, but at 800 ° C. or more, the crystal size of the main phase R 2 Fe 14 B phase 1 and the dispersibility of the eutectic region 2 are affected. It is well known to do. General R-Fe
In the -B-based magnet composition, primary α-Fe is generated from the liquid phase,
Or generating a R 2 Fe 14 B phase 1 by the peritectic reaction from which the liquid phase, or if the solidification speed is high is subcooled to below peritectic reaction temperature liquid phase from the R 2 Fe 14 B phase 1 Generate directly. Therefore, the cooling rate until the peritectic reaction is completed has a particularly large effect on the macroscopic alloy structure, and the higher the cooling rate, the finer the macrostructure. Due to this effect, the strip casting method suppresses the production of α-Fe, and successfully disperses the phase 3 having a good R content. However, due to the refinement of the R 2 Fe 14 B phase crystal grains 1, the probability that two or more R 2 Fe 14 B phases 1 having different orientations are present in the pulverized powder after pulverization is increased, and the decrease in orientation is reduced. Therefore, it is necessary to appropriately control the cooling rate. In the alloy of the present invention, it is necessary to appropriately increase the cooling rate at 800 ° C. or higher, particularly until the peritectic reaction is completed, so that the size (W) in the minor axis direction of the main phase does not become less than 10 μm. It is effective to improve the dispersibility of the phase 3 having a high R content by improving the dispersibility of the eutectic region 2.

【0022】[0022]

【作用】本発明はR(希土類元素)を含む永久磁石の原
料合金に於て、従来単に粒界相又はRリッチ相と呼ばれ
ていた、鋳造時に最後まで液相として存在するRに富ん
だ部分が凝固した領域(共晶領域)の分布を制御するこ
とにより、実質的に利用できるRに富んだ相の体積率を
増加すること、さらに主相の結晶粒径、共晶領域の分散
状態の制御により、高特性R−Fe−B系焼結磁石用の
原料として適した合金を提供するものである。特に従来
注目されていなかった包晶反応によって主相R2 Fe14
B相が生成した後の、800℃から600℃での凝固冷
却速度に注目し、複雑な工程、装置を用いることなく優
れた焼結磁石用合金を提供するものである。
The present invention relates to a raw material alloy for a permanent magnet containing R (rare earth element), which has been conventionally called simply a grain boundary phase or an R-rich phase. By controlling the distribution of the solidified region (eutectic region), the volume fraction of the R-rich phase that can be substantially used is increased, and the crystal grain size of the main phase and the dispersion state of the eutectic region Is to provide an alloy suitable as a raw material for a high-performance R—Fe—B based sintered magnet. In particular, the main phase R 2 Fe 14 has been
The present invention focuses on the solidification cooling rate from 800 ° C. to 600 ° C. after the formation of the B phase, and provides an excellent alloy for sintered magnets without using complicated processes and equipment.

【0023】[0023]

【実施例】以下、実施例により本発明を更に詳細に説明
する。 (実施例1)表1に示すように、合金インゴットの組成
が、Nd:29.0重量%、Dy:3.4重量%、B:
1. 0重量%、Al:0. 35重量%、残部鉄になるよ
うに、鉄ネオジム合金、金属ディスプロシウム、フェロ
ボロン、アルミニウム、鉄を配合し、アルゴンガス雰囲
気中で、アルミナるつぼを使用して高周波溶解炉で溶解
し、銅製箱型鋳型に鋳造した。この際、鋳型に設置した
熱電対で合金の凝固時の温度変化を測定し、800℃〜
600℃での冷却速度は表1に示すように平均17℃/
秒であった。なお、モールド比は20であり、得られた
インゴットの厚さは5mmであった。その断面のマクロ
組織は鋳型近傍のチル晶部を除いて柱状晶であり、さら
に研磨した後、その断面の組織を偏光顕微鏡で観察した
結果、柱状晶部の主相Nd2 Fe14B相の粒径は長軸方
向200〜1000μm程度、短軸方向20〜100μ
m程度であり、柱状晶部分のインゴット全体に対する体
積率は85%であった。また、反射電子顕微鏡で観察し
た結果、共晶領域は主相Nd2 Fe14B相の長軸方向に
細長く伸長し、その間隔は10〜30μm程度であり、
共晶領域内に析出するRの含有量がより少ない相の短径
は1μm程度であった。
The present invention will be described in more detail with reference to the following examples. (Example 1) As shown in Table 1, the composition of the alloy ingot was as follows: Nd: 29.0% by weight, Dy: 3.4% by weight, B:
1.0% by weight, Al: 0.35% by weight, the balance being iron neodymium alloy, metal dysprosium, ferroboron, aluminum and iron, and using an alumina crucible in an argon gas atmosphere. And melted in a high-frequency melting furnace and cast into a copper box mold. At this time, the temperature change during solidification of the alloy was measured with a thermocouple installed in the mold,
As shown in Table 1, the cooling rate at 600 ° C. was an average of 17 ° C. /
Seconds. The mold ratio was 20, and the thickness of the obtained ingot was 5 mm. The macrostructure of the cross section is columnar except for the chill crystal part near the mold, and after further polishing, the structure of the cross section was observed with a polarizing microscope. As a result, the main phase Nd 2 Fe 14 B phase of the columnar crystal was obtained. The particle size is about 200 to 1000 μm in the major axis direction and 20 to 100 μm in the minor axis direction.
m, and the volume ratio of the columnar crystal portion to the entire ingot was 85%. Further, as a result of observation with a reflection electron microscope, the eutectic region is elongated in the major axis direction of the main phase Nd 2 Fe 14 B phase, the interval is about 10 to 30 μm,
The minor axis of the phase having a smaller R content precipitated in the eutectic region was about 1 μm.

【0024】次に得られた合金インゴットを、窒素ガス
中においてブラウンミルで35メッシュ以下まで粉砕し
た後、さらに窒素ガス中においてジェットミルで4μm
まで微粉砕した。次いで得られた微粉末を10KOe、
1tonf/cm2 の条件で磁場成形し、10×10×
10mmの成形体を得た後、真空中1060℃にて2時
間焼結し、さらに真空中620℃にて1時間の時効処理
した。得られた焼結磁石の磁気特性を表1に合せて示
す。最大磁気エネルギー積は39.8MGOe、保磁力
は20.0kOeであった。
Next, the obtained alloy ingot was pulverized in a nitrogen gas to a size of 35 mesh or less by a brown mill, and further pulverized to 4 μm in a nitrogen gas by a jet mill.
Until finely ground. Next, the obtained fine powder was 10 KOe,
Magnetic field molding under the condition of 1 tonf / cm 2 and 10 × 10 ×
After obtaining a molded body of 10 mm, it was sintered at 1060 ° C. for 2 hours in vacuum, and further subjected to aging treatment at 620 ° C. for 1 hour in vacuum. Table 1 shows the magnetic properties of the obtained sintered magnet. The maximum magnetic energy product was 39.8 MGOe, and the coercive force was 20.0 kOe.

【0025】(実施例2)実施例1と同じ組成となるよ
うに、実施例1と同じ方法で溶解し、銅製水冷箱型鋳型
に鋳造した。この際、実施例1と同様に凝固時の温度変
化を測定し、800℃〜600℃での冷却速度は平均1
2℃/秒であった。鋳型の水冷は鋳型外周部にろう付け
した銅管内に水を流した。なお、モールド比は10であ
り、得られたインゴットの厚さは5mmであった。その
断面のマクロ組織は鋳型近傍のチル晶部を除いて柱状晶
であり、さらに研磨した後、実施例1と同様の方法で組
織観察した結果、柱状晶部の主相Nd2 Fe14B相の平
均粒径は長軸方向200〜1000μm程度、短軸方向
20〜100μm程度であった。柱状晶部分のインゴッ
ト全体に対する体積率は83%であった。また、共晶領
域は実施例1で作製したインゴットと同様に主相Nd2
Fe14B相の長軸方向に細長く伸長し、その間隔は10
〜40μm程度であり、共晶領域内に析出するRの含有
量がより少ない相の短径は2μm程度であった。次に得
られたインゴットより、実施例1と同様の方法で焼結磁
石を作製し、その最大エネルギー積は38.8MGO
e、保磁力は19.3kOeであった。
Example 2 The same composition as in Example 1 was melted in the same manner as in Example 1 and cast into a water-cooled copper box mold. At this time, the temperature change during solidification was measured in the same manner as in Example 1, and the cooling rate at 800 ° C. to 600 ° C. was 1 on average.
2 ° C./sec. Water cooling of the mold was conducted by flowing water into a copper tube brazed to the outer periphery of the mold. The mold ratio was 10, and the thickness of the obtained ingot was 5 mm. The macrostructure of the cross section was columnar except for the chill crystal part near the mold. After further polishing, the structure was observed in the same manner as in Example 1. As a result, the main phase Nd 2 Fe 14 B phase of the columnar crystal part was observed. Has an average particle size of about 200 to 1000 μm in the major axis direction and about 20 to 100 μm in the minor axis direction. The volume ratio of the columnar crystal portion to the entire ingot was 83%. The eutectic region is the same as that of the ingot produced in Example 1 but the main phase Nd 2
The Fe 14 B phase is elongated in the major axis direction, and its interval is 10
4040 μm, and the minor axis of the phase having a lower R content precipitated in the eutectic region was about 2 μm. Next, a sintered magnet was manufactured from the obtained ingot in the same manner as in Example 1, and the maximum energy product was 38.8 MGO.
e, the coercive force was 19.3 kOe.

【0026】(実施例3)実施例1と同じ組成となるよ
うに、実施例1と同じ方法で溶解し、鉄製水冷箱型鋳型
に鋳造した。この際、実施例1と同様に凝固時の温度変
化を測定し、800℃〜600℃での冷却速度は平均8
℃/秒であった。鋳型の水冷は鋳型側板の厚み方向中央
部に設けた直径20mmの穴に水を流した。なお、モー
ルド比は20であり、得られたインゴットの厚さは10
mmでった。その断面のマクロ組織は鋳型近傍のチル晶
部を除いて柱状晶であり、さらに研磨した後、実施例1
と同様の方法で組織観察した結果、柱状晶部の主相Nd
2 Fe14B相の平均粒径は長軸方向300〜1500μ
m、短軸方向30〜150μmであった。柱状晶部分の
インゴット全体に対する体積率は92%であった。ま
た、共晶領域は実施例1で作製したインゴットと同様に
主相Nd2 Fe14B相の長軸方向に細長く伸長し、その
間隔は10〜50μm程度であり、共晶領域内に析出す
るRの含有量がより少ない相の短径は2μm程度であっ
た。次に得られたインゴットより、実施例1と同様の方
法で焼結磁石を作製し、その最大エネルギー積は38.
5MGOe、保磁力は19.1kOeであった。
Example 3 The same composition as in Example 1 was melted in the same manner as in Example 1 and cast into a water-cooled iron box mold. At this time, the temperature change during solidification was measured in the same manner as in Example 1, and the cooling rate at 800 ° C. to 600 ° C. was 8 on average.
° C / sec. Water cooling of the mold was performed by flowing water through a hole having a diameter of 20 mm provided at the center in the thickness direction of the mold side plate. The mold ratio was 20, and the thickness of the obtained ingot was 10
mm. The macrostructure of the cross section was columnar except for the chill crystal part near the mold.
As a result of observing the structure in the same manner as in the above, the main phase Nd
The average particle size of the 2 Fe 14 B phase is 300 to 1500 μm in the major axis direction.
m, 30 to 150 μm in the minor axis direction. The volume ratio of the columnar crystal portion to the entire ingot was 92%. Further, the eutectic region is elongated in the major axis direction of the main phase Nd 2 Fe 14 B phase similarly to the ingot produced in Example 1, and its interval is about 10 to 50 μm, which precipitates in the eutectic region. The minor axis of the phase having a lower R content was about 2 μm. Next, a sintered magnet was manufactured from the obtained ingot in the same manner as in Example 1, and the maximum energy product was 38.
5MGOe, coercive force was 19.1 kOe.

【0027】(実施例4)実施例1と同じ組成となるよ
うに、実施例1と同じ方法で溶解し、鋳型内径500m
m長さ1000mmの遠心鋳造装置にて鋳造した。この
時の鋳型の回転数は、遠心力が10Gとなるように、1
89rpmに設定し、溶湯供給終了後に鋳型内部にアル
ゴンガスを供給してインゴットを冷却した。なお、ここ
では凝固時の温度測定は実施していない。得られた合金
インゴットの厚さは2〜3mmであり、その断面のマク
ロ組織は鋳型近傍のチル晶部を除いて柱状晶であった。
その後、実施例1と同様の方法で組織観察した結果、柱
状晶部の主相Nd2 Fe14B相の平均粒径は長軸方向3
00〜1000μm、短軸方向30〜100μmであっ
た。柱状晶部分のインゴット全体に対する体積率は98
%であった。また、共晶領域は実施例1で作製したイン
ゴットと同様に主相Nd2 Fe14B相の長軸方向に細長
く伸長し、その間隔は10〜30μm程度であり、共晶
領域内に析出するRの含有量がより少ない相の短径は1
μm程度であった。次に得られたインゴットより、実施
例1と同様の方法で焼結磁石を作製し、その最大エネル
ギー積は39.5MGOe、保磁力は19.5kOeで
あった。
Example 4 The same composition as in Example 1 was melted by the same method as in Example 1, and the inner diameter of the mold was 500 m.
Casting was performed using a centrifugal casting machine with a length of 1000 mm. At this time, the rotation speed of the mold was set to 1 so that the centrifugal force was 10 G.
At 89 rpm, an argon gas was supplied into the mold after the completion of the supply of the molten metal to cool the ingot. Here, temperature measurement during solidification was not performed. The thickness of the obtained alloy ingot was 2-3 mm, and the macrostructure of the cross section was columnar except for the chill crystal part near the mold.
Then, as a result of observing the structure in the same manner as in Example 1, the average grain size of the main phase Nd 2 Fe 14 B phase in the columnar crystal part was 3 in the major axis direction.
It was 00 to 1000 μm and 30 to 100 μm in the minor axis direction. The volume ratio of the columnar crystals to the entire ingot is 98.
%Met. Further, the eutectic region is elongated in the major axis direction of the main phase Nd 2 Fe 14 B phase similarly to the ingot produced in Example 1, and its interval is about 10 to 30 μm, which precipitates in the eutectic region. The minor axis of the phase having a lower R content is 1
It was about μm. Next, a sintered magnet was prepared from the obtained ingot in the same manner as in Example 1, and the maximum energy product was 39.5 MGOe and the coercive force was 19.5 kOe.

【0028】(比較例) 実施例1と同じ組成となるように、実施例1と同じ方法
で溶解し、鉄製水冷箱型鋳型に鋳造した。この際、実施
例1と同様に凝固時の温度変化を測定し、800℃〜6
00℃での冷却速度は平均1℃/秒であった。なお、鋳
型の水冷は実施例2と同様の機構とし、モールド比は5
であり、得られたインゴットの厚さは20mmであっ
た。その断面のマクロ組織は殆ど柱状晶であるが、鋳型
近傍にチル晶組織、インゴット中央部には等軸晶組織が
存在していた。さらに研磨した後、実施例1と同様の方
法で組織観察した結果、柱状晶部の主相Nd2 Fe14
相の平均粒径は長軸方向300〜1500μm程度、短
軸方向30〜200μm程度であった。柱状晶部分のイ
ンゴット全体に対する体積率は80%であった。また、
共晶領域は主相Nd2 Fe14B相の主に粒界部に存在
し、特に等軸晶領域では粒界三重点で50μm程度まで
粗大化していた。また、共晶領域内に析出するRの含有
量がより少ない相の短径は5μm以上であった。次に得
られたインゴットより、実施例1と同様の方法で焼結磁
石を作製し、その最大エネルギー積は35.2MGO
e、保磁力は15.5kOeであった。
(Comparative Example) The same composition as in Example 1 was melted in the same manner as in Example 1 and cast into a water-cooled iron box mold. At this time, the temperature change during solidification was measured in the same manner as in Example 1, and the temperature was changed from 800 ° C. to 6 ° C.
The cooling rate at 00 ° C. averaged 1 ° C./sec. The water cooling of the mold was performed in the same manner as in Example 2, and the mold ratio was 5%.
And the thickness of the obtained ingot was 20 mm. The macrostructure of the cross section was almost columnar, but a chill crystal structure was present near the mold, and an equiaxed crystal structure was present in the center of the ingot. After further polishing, the structure was observed in the same manner as in Example 1. As a result, the main phase Nd 2 Fe 14 B in the columnar crystal part was observed.
The average particle size of the phase was about 300 to 1500 μm in the major axis direction and about 30 to 200 μm in the minor axis direction. The volume ratio of the columnar crystal portion to the entire ingot was 80%. Also,
The eutectic region exists mainly in the grain boundary part of the main phase Nd 2 Fe 14 B phase, and particularly in the equiaxed crystal region, the eutectic region is coarsened to about 50 μm at the grain boundary triple point. Further, the minor axis of the phase having a smaller R content precipitated in the eutectic region was 5 μm or more. Next, a sintered magnet was manufactured from the obtained ingot in the same manner as in Example 1, and the maximum energy product was 35.2 MGO.
e, the coercive force was 15.5 kOe.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【発明の効果】本発明によれば、高性能希土類磁石用原
料として最適な原料合金を複雑な工程、装置を用いるこ
となく製造することが可能となり、極めて有用である。
According to the present invention, it is possible to manufacture a raw material alloy that is optimal as a raw material for a high-performance rare earth magnet without using complicated processes and equipment, which is extremely useful.

【0031】(実施例5)比較例2で作製したインゴッ
トを直径5mm以下に割り、アルゴン雰囲気中で900
℃、1時間の熱処理を実施した後、アルゴンガスを直接
吹き付け冷却した。その際の試料表面の温度変化を測定
したところ、800℃〜600℃での冷却速度は平均1
0℃/秒であった。該合金のマクロ組織、主相の粒径、
共晶領域の分散状態に変化はなかったが、共晶領域内に
析出するRの含有量がより少ない相の短径は3μm程度
であった。次に得られた試料より、実施例1と同様の方
法で焼結磁石を作製し、その最大エネルギー積は37.
5MGOe、保磁力は18.0kOeであった。
Example 5 The ingot produced in Comparative Example 2 was divided into pieces having a diameter of 5 mm or less,
After heat treatment at 1 ° C. for 1 hour, argon gas was directly blown and cooled. When the temperature change of the sample surface at that time was measured, the cooling rate at 800 ° C. to 600 ° C. was 1 on average.
It was 0 ° C./sec. Macrostructure of the alloy, particle size of the main phase,
Although the dispersion state of the eutectic region did not change, the minor axis of the phase having a smaller R content precipitated in the eutectic region was about 3 μm. Next, a sintered magnet was manufactured from the obtained sample in the same manner as in Example 1, and the maximum energy product was 37.
5MGOe, coercive force was 18.0 kOe.

【0032】(比較例4)比較例2で作製したインゴッ
トを厚さ20mmのままアルゴン雰囲気中で900℃、
1時間の熱処理を実施した後、アルゴンガスを直接吹き
付け冷却した。その際の試料の温度変化を測定したとこ
ろ、800℃〜600℃での冷却速度は平均3℃/秒で
あった。該インゴットのマクロ組織、主相の粒径、共晶
領域の分散状態に変化はなく、共晶領域内に析出するR
の含有量がより少ない相の粒径も熱処理前同様に5μm
以上であった。次に得られた試料より、実施例1と同様
の方法で焼結磁石を作製し、その最大エネルギー積は3
4.9MGOe、保磁力は15.1kOeであった。
Comparative Example 4 The ingot produced in Comparative Example 2 was kept at 900 ° C. in an argon atmosphere while maintaining a thickness of 20 mm.
After the heat treatment for 1 hour, argon gas was directly blown and cooled. When the temperature change of the sample at that time was measured, the cooling rate at 800 ° C. to 600 ° C. was 3 ° C./sec on average. There is no change in the macrostructure of the ingot, the grain size of the main phase, and the dispersion state of the eutectic region.
The particle size of the phase having a lower content of 5 μm is the same as before the heat treatment.
That was all. Next, a sintered magnet was prepared from the obtained sample in the same manner as in Example 1, and the maximum energy product was 3
4.9 MGOe, coercive force was 15.1 kOe.

【0033】(比較例5)比較例2で作製したインゴッ
トを厚さ20mmのままアルゴン雰囲気中で600℃、
1時間の熱処理を実施した後、アルゴンガスを直接吹き
付け冷却した。該インゴットのマクロ組織、主相の粒
径、共晶領域の分散状態に変化はなく、共晶領域内に析
出するRの含有量がより少ない相の粒径も熱処理前同様
に5μm以上であった。次に得られた試料より、実施例
1と同様の方法で焼結磁石を作製し、その最大エネルギ
ー積は35.1MGOe、保磁力は15.3kOeであ
った。
Comparative Example 5 The ingot produced in Comparative Example 2 was kept at 600 ° C. in an argon atmosphere at a thickness of 20 mm.
After the heat treatment for 1 hour, argon gas was directly blown and cooled. The macrostructure of the ingot, the particle size of the main phase, and the dispersion state of the eutectic region were not changed, and the particle size of the phase containing less R precipitated in the eutectic region was 5 μm or more as before the heat treatment. Was. Next, a sintered magnet was produced from the obtained sample in the same manner as in Example 1, and the maximum energy product was 35.1 MGOe and the coercive force was 15.3 kOe.

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【発明の効果】本発明によれば、高性能希土類磁石用原
料として最適な原料合金を複雑な工程、装置を用いるこ
となく製造することが可能となり、極めて有用である。
According to the present invention, it is possible to manufacture a raw material alloy that is optimal as a raw material for a high-performance rare earth magnet without using complicated processes and equipment, which is extremely useful.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による合金の顕微鏡組織を模式的に示す
図である。
FIG. 1 is a diagram schematically showing a microstructure of an alloy according to the present invention.

【図2】従来の合金の顕微鏡組織を模式的に示す図であ
る。
FIG. 2 is a diagram schematically showing a microstructure of a conventional alloy.

【図3】本発明による合金の共晶領域の組織を拡大して
示した模式図である。
FIG. 3 is an enlarged schematic view showing the structure of the eutectic region of the alloy according to the present invention.

【図4】従来の合金の共晶領域の組織を拡大して示した
模式図である。
FIG. 4 is an enlarged schematic diagram showing the structure of a eutectic region of a conventional alloy.

【図5】本発明の合金の主相及び共晶領域の晶出状態を
示す偏光顕微鏡写真である。
FIG. 5 is a polarizing microscope photograph showing a crystallization state of a main phase and a eutectic region of the alloy of the present invention.

【符号の説明】[Explanation of symbols]

1 R2 Fe14B柱状晶 2 共晶領域 3 Rの含有量がより多い相 4 Rの含有量がより少ない相1 R 2 Fe 14 B columnar crystal 2 Eutectic region 3 Phase with higher R content 4 Phase with lower R content

フロントページの続き (72)発明者 長谷川 寛 埼玉県秩父市大字下影森1505番地 昭和 電工株式会社 秩父研究所内 (56)参考文献 特開 平5−295490(JP,A) 特開 平5−222488(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 Continuation of the front page (72) Inventor Hiroshi Hasegawa 1505 Shimokagemori, Chichibu City, Saitama Prefecture Showa Denko KK Chichibu Laboratory (56) References JP-A-5-295490 (JP, A) JP-A-5-222488 ( JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C22C 38/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】R(Yを含む希土類元素のうち少なくとも
1種)、T(Feを必須とする遷移金属)及びBを基本
成分とし、主相であるR2 Fe14B柱状晶とR2Fe14
BよりもRの含有率が多い共晶領域とを有し、該共晶領
域がR2 Fe14B柱状晶内とR2 Fe14B柱状晶粒界と
に晶出し、R2 Fe14B柱状晶の長軸方向の大きさが1
00μm以上、短軸方向の大きさが20μm以上であ
り、共晶領域は柱状晶の長軸方向に細長く伸長し、その
共晶領域の間隔がR2 Fe14B柱状晶の短軸方向の大き
さの2分の1以下である晶出領域の体積率が70%以上
であることを特徴とする希土類磁石用合金。
1. A method according to claim 1, wherein R (at least one of the rare earth elements including Y), T (transition metal having Fe as an essential element) and B are basic components, and R 2 Fe 14 B columnar crystals as main phases and R 2 Fe 14
A eutectic region having a higher R content than B, and the eutectic region is crystallized in the R 2 Fe 14 B columnar crystal and in the R 2 Fe 14 B columnar crystal grain boundary, and R 2 Fe 14 B The size of the columnar crystal in the long axis direction is 1
The eutectic region is elongated in the major axis direction of the columnar crystal, and the interval between the eutectic regions is the size of the R 2 Fe 14 B columnar crystal in the minor axis direction. An alloy for a rare earth magnet, wherein a volume ratio of a crystallization region which is equal to or less than half of the thickness is 70% or more.
JP33582594A 1994-12-21 1994-12-21 Alloy for rare earth magnet and method for producing the same Expired - Lifetime JP3536943B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33582594A JP3536943B2 (en) 1994-12-21 1994-12-21 Alloy for rare earth magnet and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33582594A JP3536943B2 (en) 1994-12-21 1994-12-21 Alloy for rare earth magnet and method for producing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP06463799A Division JP3721831B2 (en) 1999-03-11 1999-03-11 Rare earth magnet alloy and method for producing the same

Publications (2)

Publication Number Publication Date
JPH08176755A JPH08176755A (en) 1996-07-09
JP3536943B2 true JP3536943B2 (en) 2004-06-14

Family

ID=18292830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33582594A Expired - Lifetime JP3536943B2 (en) 1994-12-21 1994-12-21 Alloy for rare earth magnet and method for producing the same

Country Status (1)

Country Link
JP (1) JP3536943B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100366363C (en) * 2004-04-30 2008-02-06 株式会社新王磁材 Methods for producing raw material alloy for rare earth magnet, powder and sintered magnet
WO2014174795A1 (en) * 2013-04-24 2014-10-30 中央電気工業株式会社 Raw material alloy for r-t-b-based magnet

Also Published As

Publication number Publication date
JPH08176755A (en) 1996-07-09

Similar Documents

Publication Publication Date Title
JP4832856B2 (en) Method for producing RTB-based alloy and RTB-based alloy flakes, fine powder for RTB-based rare earth permanent magnet, RTB-based rare earth permanent magnet
EP0886284B1 (en) Cast alloy used for production of rare earth magnet and method for producing cast alloy and magnet
JP3267133B2 (en) Alloy for rare earth magnet, method for producing the same, and method for producing permanent magnet
JP4389427B2 (en) Sintered magnet using alloy powder for rare earth-iron-boron magnet
JP3449166B2 (en) Alloy for rare earth magnet and method for producing the same
JP4879503B2 (en) Alloy block for RTB-based sintered magnet, manufacturing method thereof and magnet
JP4479944B2 (en) Alloy flake for rare earth magnet and method for producing the same
JP3721831B2 (en) Rare earth magnet alloy and method for producing the same
JP4788300B2 (en) Iron-based rare earth alloy nanocomposite magnet and manufacturing method thereof
US7390369B2 (en) Method for producing rare earth based alloy powder and method for producing rare earth based sintered magnet
JP3536943B2 (en) Alloy for rare earth magnet and method for producing the same
JP3264664B1 (en) Permanent magnet having a plurality of ferromagnetic phases and manufacturing method thereof
JP4318204B2 (en) Rare earth-containing alloy flake manufacturing method, rare earth magnet alloy flake, rare earth sintered magnet alloy powder, rare earth sintered magnet, bonded magnet alloy powder, and bonded magnet
WO2009125671A1 (en) R-t-b-base alloy, process for producing r-t-b-base alloy, fines for r-t-b-base rare earth permanent magnet, r-t-b-base rare earth permanent magnet, and process for producing r-t-b-base rare earth permanent magnet
JP2006249456A (en) R-fe-b-based rare earth sintered magnet and method for manufacturing the same
JP3763774B2 (en) Quenched alloy for iron-based rare earth alloy magnet and method for producing iron-based rare earth alloy magnet
JP2013098319A (en) METHOD FOR MANUFACTURING Nd-Fe-B MAGNET
JP3953768B2 (en) R-Fe-B-C magnet alloy slab with excellent corrosion resistance
JP2007201102A (en) Iron group rare-earth permanent magnet and manufacturing method therefor
JP3755902B2 (en) Magnet powder for anisotropic bonded magnet and method for producing anisotropic bonded magnet
JP2003213383A (en) Rare earth alloy, production method therefor and permanent magnet
JP2003077717A (en) Rare-earth magnetic alloy agglomeration, its manufacturing method and sintered magnet
JP3256413B2 (en) Slab for R-Fe-BC magnet alloy having excellent corrosion resistance and method for producing the same
JP4645336B2 (en) Rare earth sintered magnet and manufacturing method thereof
JPH0533076A (en) Rare earth permanent magnet alloy and its production

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040310

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100326

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 10

EXPY Cancellation because of completion of term