JP4479944B2 - Alloy flake for rare earth magnet and method for producing the same - Google Patents

Alloy flake for rare earth magnet and method for producing the same Download PDF

Info

Publication number
JP4479944B2
JP4479944B2 JP2001383989A JP2001383989A JP4479944B2 JP 4479944 B2 JP4479944 B2 JP 4479944B2 JP 2001383989 A JP2001383989 A JP 2001383989A JP 2001383989 A JP2001383989 A JP 2001383989A JP 4479944 B2 JP4479944 B2 JP 4479944B2
Authority
JP
Japan
Prior art keywords
alloy
rare earth
rich phase
fine
earth magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001383989A
Other languages
Japanese (ja)
Other versions
JP2003188006A5 (en
JP2003188006A (en
Inventor
史郎 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2001383989A priority Critical patent/JP4479944B2/en
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to AU2002358316A priority patent/AU2002358316A1/en
Priority to PCT/JP2002/013231 priority patent/WO2003052778A1/en
Priority to US10/498,932 priority patent/US7442262B2/en
Priority to CNB028050975A priority patent/CN1306527C/en
Publication of JP2003188006A publication Critical patent/JP2003188006A/en
Publication of JP2003188006A5 publication Critical patent/JP2003188006A5/ja
Priority to US11/826,114 priority patent/US7571757B2/en
Application granted granted Critical
Publication of JP4479944B2 publication Critical patent/JP4479944B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はR−T−B系合金(但し、RはYを含む希土類元素のうち少なくとも1種、TはFeを必須とする遷移金属、Bは硼素である。)からなる希土類磁石用合金薄片、その製造方法、希土類焼結磁石用合金粉末、希土類焼結磁石、ボンド磁石用合金粉末およびボンド磁石に関する。
【0002】
【従来の技術】
近年、希土類磁石用合金としてNd−Fe−B系合金がその高特性から急激に生産量を伸ばしており、HD(ハードディスク)用、MRI(磁気共鳴映像法)用あるいは、各種モーター用等に使用されている。通常は、Ndの一部をPr、Dy等の他の希土類元素で置換したものや、Feの一部をCo、Ni等の他の遷移金属で置換したものが一般的であり、Nd−Fe−B系合金を含め、R−T−B系合金と総称されている。ここで、RはYを含む希土類元素のうち少なくとも1種である。また、TはFeを必須とする遷移金属であり、Feの一部をCoあるいはNiで置換することができ、添加元素としてCu、Al、Ti、V、Cr、Mn、Nb、Ta、Mo、W、Ca、Sn、Zr、Hfなどを1種または複数組み合わせて添加してもよい。Bは硼素であり、一部をCまたはNで置換できる。
【0003】
R−T−B系合金は、磁化作用に寄与する強磁性相であるR214B相からなる結晶を主相とし、非磁性で希土類元素の濃縮した低融点のR−リッチ相が共存する合金で、活性な金属であることから一般に真空又は不活性ガス中で溶解や鋳造が行われる。また、鋳造されたR−T−B系合金塊から粉末冶金法によって焼結磁石を作製するには、合金塊を3μm(FSSS:フィッシャーサブシーブサイザーでの測定)程度に粉砕して合金粉末にした後、磁場中でプレス成形し、焼結炉で約1000〜1100℃の高温にて焼結し、その後必要に応じ熱処理、機械加工し、さらに耐食性を向上するためにメッキを施し、焼結磁石とするのが普通である。
【0004】
R−T−B系合金からなる焼結磁石において、R−リッチ相は、以下のような重要な役割を担っている。
1)融点が低く、焼結時に液相となり、磁石の高密度化、従って磁化の向上に寄与する。
2)粒界の凹凸を無くし、逆磁区のニュークリエーションサイトを減少させ保磁力を高める。
3)主相を磁気的に絶縁し保磁力を増加する。
従って、成形した磁石中のR−リッチ相の分散状態が悪いと局部的な焼結不良、磁性の低下をまねくため、成形した磁石中にR−リッチ相が均一に分散していることが重要となる。ここでR―リッチ相の分布は、鋳造された際のR−T−B系合金塊の組織に大きく影響される。
【0005】
また、R−T−B系合金の鋳造において生じるもう一つの問題は、鋳造された合金塊中にα―Feが生成することである。α―Feは、合金塊を粉砕する際の粉砕効率の悪化をもたらし、また焼結後も磁石中に残存すれば、磁石の磁気特性の低下をもたらす。そこで従来の合金塊では、必要に応じ高温で長時間にわたる均質化処理を行い、α―Feの消去を行っていた。
【0006】
この鋳造されたR−T−B系合金塊中にα−Feが生成する問題を解決するため、より速い冷却速度で合金塊を鋳造する方法として、ストリップキャスト法(SC法と略す。)が開発され実際の工程に使用されている。
SC法は内部が水冷された銅ロール上に溶湯を流し、0.1〜1mm程度の薄片を鋳造することにより、合金を急冷凝固させるものであり、α‐Feの析出を抑制することができる。さらに合金塊の結晶組織が微細化するため、R−リッチ相が微細に分散した組織を有する合金を生成することが可能となる。このように、SC法で鋳造された合金は、内部のR−リッチ相が微細に分散しているため、粉砕、焼結後の磁石中のR−リッチ相の分散性も良好となり、磁石の磁気特性の向上に成功している。(特開平5−222488号公報、特開平5−295490号公報)
【0007】
またSC法により鋳造された合金塊は、組織の均質性も優れている。組織の均質性は、結晶粒径やRリッチ相の分散状態で比較することが出来る。SC法で作製した合金薄片では、合金薄片の鋳造用ロール側(以降、鋳型面側とする)にチル晶が発生することもあるが、全体として急冷凝固でもたらされる適度に微細で均質な組織を得ることが出来る。
【0008】
以上のように、SC法で鋳造したR−T−B系合金は、Rリッチ相が微細に分散し、α−Feの生成も抑制されているため、焼結磁石を作製する場合には、最終的な磁石中のRリッチ相の均質性が高まり、またα−Feに起因する粉砕、磁性への弊害を防止することができる。このように、SC法で鋳造したR−T−B系合金塊は、焼結磁石を作製するため優れた組織を有している。しかし、磁石の特性が向上するにつれて、ますます原料合金塊の組織に均質性の向上が求められるようになってきている。
【0009】
そのため、例えば特開平10−317110号公報には、鋳造されたR−T−B系合金の鋳型面側のチル晶の面積比率を5%以下にすることで、磁石特性の良好な焼結磁石を作製している技術が開示されている。チル晶部は粉砕工程で粒径1μm以下の微細粉末となるため、合金粉末の粒度分布を乱し、磁性を悪化させると考えられている。
【0010】
【発明が解決しようとする課題】
本発明者らは、鋳造されたR−T−B系合金塊の組織と、水素解砕や微粉砕の際の挙動との関係を研究した結果、焼結磁石用の合金粉末の粒度を均一に制御するためには、合金塊の結晶粒径よりもRリッチ相の分散状態を制御することが重要であることを見出した。そして、合金塊中のチル晶の体積率は現実には数%以下であり、チル晶による弊害よりも、合金塊中の鋳型面側に生成されるRリッチ相の分散状態が極端に細かな領域(微細Rリッチ相領域)の方が、磁石用粉末の粒度を制御するためには影響が大きいことを見出した。すなわち、合金塊の組成や製造条件によりR−T−B系合金塊中のチル晶を少なくした場合でも、微細Rリッチ相領域の体積率が50%を超える場合もあること、そしてこの微細Rリッチ相領域が磁石用合金粉末の粒度分布を乱すことを確認し、微細Rリッチ相領域を減少させることが磁石特性を向上させるために必要であることを確認した。
【0011】
そこで本発明は、鋳造されたR−T−B系合金塊中での微細Rリッチ相領域の生成を抑制し、均質性に優れた組織を有する合金塊を製造することにより、磁石中のRリッチ相の分布を均質とし、磁石特性の優れた希土類磁石を提供することを目的とする。
【0012】
【課題を解決するための手段】
本発明者らは、SC法における鋳造条件、特に鋳造用回転ロールの表面状態を変更し、R−T−B系合金薄片中の微細Rリッチ相領域が生成する体積率を比較した。すると合金薄片の鋳型面側表面の表面粗さと微細Rリッチ相領域が生成する体積率に関係があることを見出した。本発明は、本発明者らが上記の知見に基づき為したものである。
【0013】
すなわち本発明は、
(1)R−T−B系合金(但し、RはYを含む希土類元素のうち少なくとも1種、TはFeを必須とする遷移金属、Bは硼素である。)からなる希土類磁石用合金薄片において、厚さが0.1mm以上0.5mm以下であり、該合金薄片の少なくとも片面の表面粗さが十点平均粗さ(Rz)で10μm以上50μm以下であり、合金中の微細Rリッチ相領域の体積率が20%以下であり、Rリッチ相の間隙の平均値が3〜8μmである希土類磁石用合金薄片。
(2)該合金薄片の少なくとも片面の表面粗さが十点平均粗さ(Rz)で10μm以上25μm以下であることを特徴とする上記(1)に記載の希土類磁石用合金薄片。
(3)合金中の微細Rリッチ相領域の体積率が3%以下であることを特徴とする上記(1)又は(2)に記載の希土類磁石用合金薄片。
(4)R−T−B系合金が、Nd−Fe−B系合金であることを特徴とする上記(1)ないし(3)の何れか1項に記載の希土類磁石用合金薄片。
(5)R−T−B系合金が、Co,Al,Cu,Gaからなる群から選ばれた何れか1種以上の元素を含むことを特徴とする上記(1)ないし(4)の何れか1項に記載の希土類磁石用合金薄片。
(6)ストリップキャスト法によるR−T−B系合金からなる希土類磁石用合金薄片の製造方法において、鋳造用回転ロールの鋳造面の表面粗さを十点平均粗さ(Rz)で0μm以上100μm以下とすることを特徴とする上記(1)ないし(5)の何れか1項に記載の希土類磁石用合金薄片の製造方法。
(7)回転ロールの表面の細かな凸凹に溶湯が完全に入り込まないようにすることを特徴とする上記(6)に記載の希土類磁石用合金薄片の製造方法。
(8)R−T−B系合金が、Nd−Fe−B系合金であることを特徴とする上記(6)ないし(7) に 記載の希土類磁石用合金薄片の製造方法。
(9)R−T−B系合金が、Co,Al,Cu,Gaからなる群から選ばれた何れか1種以上の元素を含むことを特徴とする上記(6)ないし(8)の何れか1項に記載の希土類磁石用合金薄片の製造方法。
(10)鋳造用回転ロールの鋳造面の表面粗さを十点平均粗さ(Rz)で0μm以上50μm以下とすることを特徴とする上記(6)ないし(9)の何れか1項に記載の希土類磁石用合金薄片の製造方法。
(11)上記(1)ないし(5)の何れか1項に記載の希土類磁石用合金薄片に水素解砕工程を施した後にジェットミル粉砕することを特徴とする希土類磁石用合金粉末の製造方法。
である。
【0014】
【発明の実施の形態】
従来のSC法により鋳造されたNd−Fe−B系合金(Nd31.5質量%)の薄片の断面をSEM(走査電子顕微鏡)にて観察した時の反射電子像を図1に示す。図1で左側が鋳型面側、右側が自由面側である。なお、この合金薄片の鋳型面側表面の表面粗さは十点平均粗さ(Rz)で3.4μmである。
図1で白い部分が、Nd−リッチ相(RがNdになっているためR−リッチ相をNd−リッチ相と呼ぶ。)で、合金薄片の中央部から自由面側(鋳造面側と反対側の表面)では、厚さ方向にラメラー状に伸びるか、ラメラーが分断したような方向性を持った形の小さなプールを形成している。しかし、鋳型面側にはNd−リッチ相が他の部位よりも極端に微細な粒状で、かつランダムに存在する領域が生成しており、これを本発明者らは微細Rリッチ相領域(Rの主成分がNdの際は微細Ndリッチ相領域とも呼ぶ)と名づけ、特に区別することとした。この微細Rリッチ相領域は通常鋳型面側から始まり、中央方向へ広がっている。これに対し中央部から自由面側にかけての微細Rリッチ相領域が存在しない部分を、ここでは正常部と呼ぶこととする。
【0015】
焼結磁石作製時のR−T−B系合金薄片の水素解砕工程において、水素はRリッチ相から吸収され、膨張し脆い水素化物となる。したがって、水素解砕では、合金中にRリッチ相に沿った、或いはRリッチ相を起点とした微細なクラックが導入される。その後の微粉砕工程で、水素解砕で生成した多量の微細クラックをきっかけに合金が壊れるため、合金中のRリッチ相の分散が細かいほど微粉砕後の粒度は細かくなる傾向がある。したがって、微細Rリッチ相領域は、正常部よりも細かく割れる傾向が強く、例えば正常部から製造された合金粉末では、平均粒度がFSSS(フィッシャー サブ シーブ サイザー)での測定で3μm程度であるのに対して、微細Rリッチ相領域から製造された合金粉末では、1μm以下の微粉を含む割合が高いため、微粉砕後の粒度分布が広くなることになる。
【0016】
R−T−B系合金中のRリッチ相の分散状態は、鋳造時における溶湯が凝固した後の冷却速度の制御、或いは熱処理によって制御可能であることは特開平09−170055号公報、或いは特開平10−36949号公報に記載されている。しかし、凝固後の冷却速度、或いは熱処理による微細Rリッチ相領域内部のRリッチ相の変化の挙動は、正常部と異なり制御が困難であり、Rリッチ相の分散が粗くなりにくく、微細なままである。
【0017】
微細Rリッチ相領域の体積率は次のような方法で測定可能である。図3は図1と同じ視野の反射電子線像であるが、微細Rリッチ相領域と正常部の境界に線を引いたものである。両領域の境界は、Rリッチ相の分散状態から容易に判断できるため、画像解析装置を用いてその視野の微細Rリッチ相領域の面積率を計算することが出来る。断面での面積率は、合金中での体積率に対応する。なお、微細Rリッチ相領域の体積率の測定において、同時に鋳造された合金薄片であっても、微細Rリッチ相領域の量の変化は、薄片間同士、また同じ薄片内でも大きい。そのため、50〜100倍程度の低倍率で観察視野を広げた上で、5〜10枚程度の薄片を測定しその平均を取ることで、その合金全体の微細Rリッチ相領域の体積率を計算することが出来る。
【0018】
本発明のR−T−B系合金薄片(Nd31.5質量%)の断面の反射電子線像を図2に示す。図2で左側が鋳型面側、右側が自由面側である。本発明の合金薄片の特徴は、ストリップキャスト法で製造された薄片において、鋳型面側の表面粗さを制御することによって、微細Rリッチ相領域の生成が抑制されていることである。図2に示すように、本発明の合金薄片では、鋳型面側に微細Rリッチ相領域は存在せず、鋳型面から自由面に渡ってRリッチ相の分散状態が極めて均質である。
【0019】
ストリップキャスト法で製造された合金薄片の鋳型面側表面の表面粗さと微細Rリッチ相領域の関係は以下のように説明できる。
合金薄片の鋳型面側表面が平滑であるためには、鋳造用回転ロール表面が平滑で、合金溶湯との濡れ性が良好である必要がある。このような状態では、溶湯から鋳型への熱伝達が極めて良好(熱伝達係数が大きい)であり、合金の鋳型面側が過度に急冷される。微細Rリッチ相領域は、鋳型と溶湯の熱伝達係数が大きく合金の鋳型面側が過度に急冷される場合に生成される傾向が強いと考えられる。
【0020】
一方、鋳造用回転ロールの表面に細かな凸凹を形成すると、合金の溶湯の粘性のため、溶湯は鋳造用回転ロール表面の細かな凸凹に完全には入り込めず、未接触の部分を生じ、熱伝達係数が低下する。その結果、合金の鋳型面側が過度に急冷されることがなくなり、微細Rリッチ相領域の生成が抑制できると考えられる。ここで鋳造用回転ロール表面の表面粗さを大きくすると、合金薄片の鋳型面側に多少なりともその凸凹が転写されるため、合金薄片の鋳型面側表面の表面粗さも当然大きくなる。鋳型面側表面が適当な表面粗さを有する合金薄片で、Rリッチ相の生成が抑制される原因は、上記のように溶湯が凝固する時の過度の熱伝達が抑制されているためと推定される。
【0021】
しかし、鋳造用回転ロール表面の表面粗さが過度に大きくなると、溶湯が表面の凸凹に入り込めるようになり、熱伝達係数が再び大きくなると同時に、生成した合金薄片の鋳型面側の表面粗さがさらに大きくなる。この場合には、微細Rリッチ相領域の体積率も再び増加するようになる。
【0022】
従来のSC法でも図2に示すような均質な組織を有する合金薄片はある程度含まれていたが、図1に示すような微細Rリッチ相領域を多量に含んだ薄片も同時に生成されてしまうため、結果として合金全体での組織の均質性に問題を生じていた。このような従来のSC法で作製した合金組織のばらつきは、微妙な鋳造用回転ロールの表面状態、溶湯の供給状態、雰囲気など、ロール表面と溶湯との接触状態の違いに起因するものと考えられる。
これに対して本発明では、鋳造用回転ロールの表面に適当な大きさの凸凹を形成したため、溶湯が凝固する時の過度の熱伝達が無くなり、微細Rリッチ相領域の生成を再現良く抑制することができる。その結果、図2に示すような均質な組織を有する合金薄片を高い収率で製造することができるようになった。
【0023】
さらに本発明の詳細を説明する。
(1)ストリップキャスト法
本発明はストリップキャスト法で鋳造された希土類磁石用のR−T−B系合金薄片に関するものである。ここでは、R−T−B系合金のストリップキャスト法による鋳造について説明する。
図4にストリップキャスト法による鋳造のための装置の模式図を示す。通常、R−T−B系合金は、その活性な性質のため真空または不活性ガス雰囲気中で、耐火物ルツボ1を用いて溶解される。溶解された合金の溶湯は1350〜1500℃で所定の時間保持された後、必要に応じて整流機構、スラグ除去機構を設けたタンディッシュ2を介して、内部を水冷された鋳造用回転ロール3に供給される。溶湯の供給速度と回転ロールの回転数は、求める合金の厚さに応じて適当に制御させる。一般に回転ロールの回転数は、周速度にして1〜3m/s程度である。鋳造用回転ロールの材質は、熱伝導性がよく入手が容易である点から銅、或いは銅合金が適当である。回転ロールの材質やロールの表面状態によっては、鋳造用回転ロールの表面にメタルが付着しやすいため、必要に応じて清掃装置を設置すると、鋳造されるR−T−B系合金の品質が安定する。回転ロール上で凝固した合金4はタンディッシュの反対側でロールから離脱し、捕集コンテナ5で回収される。この捕集コンテナに加熱、冷却機構を設けることで正常部のRリッチ相の組織の状態を制御できる。
【0024】
本発明の合金薄片の厚さは、0.1mm以上0.5mm以下とするのが好ましい。合金薄片の厚さが0.1mmより薄いと凝固速度が過度に増加し、結晶粒径が細かくなりすぎ、磁石化工程での微粉砕粒度近くになるため、磁石の配向率、磁化の低下を招くという問題がある。また合金薄片の厚さが0.5mmより厚いと凝固速度低下によるNd−rich相の分散性の低下、α‐Feの析出などの問題を招く。
【0025】
(2)鋳造用回転ロールの鋳造面の表面粗さ
本発明においては、ストリップキャスト法でR−T−B系磁石合金を鋳造する場合、鋳造用回転ロールの鋳造面の表面粗さを、十点平均粗さ(Rz)で5μm以上100μm以下とする。
ここで表面粗さとは、JIS B 0601「表面粗さの定義と表示」に示される条件で測定したもので、十点平均粗さ(Rz)もその中に定義されている。具体的にはまず、測定面に直角な平面で切断したときの切り口(断面曲線)から、所定の波長より長い表面うねり成分を位相補償型高域フィルタ等で除去した曲線(粗さ曲線)を求める。その粗さ曲線から、その平均線の方向に基準長さだけ抜き取り、この抜き取り部分の平均線から、最も高い山頂から5番目までの山頂の標高(Yp)の絶対値の平均値と、最も低い谷底から5番目までの谷底の標高(Yv)の絶対値の平均値との和を十点平均粗さ(Rz)と呼ぶ。基準長さ等の測定パラメータは、表面粗さに対して標準値が上記JISで指定されている。
合金薄片の鋳型面側の表面粗さは、変動が大きい場合もあり、少なくとも5枚の薄片について測定し、その平均値を使用すべきである。
表面粗さが5μm以下では鋳造用回転ロール表面の凸凹の効果が得られず、溶湯との接触が良好なため熱伝達係数が大きい。その結果、合金中に微細Rリッチ相領域を生成しやすくなる。一方、鋳造用回転ロールの表面粗さが5μm以上であると、合金溶湯の粘性のため、溶湯は回転ロールの表面の細かな凸凹に完全には入り込めず、未接触の部分を生じ、熱伝達係数が低下する。その結果、合金中での微細Rリッチ相の生成を抑制することができる。表面粗さは、十点平均粗さ(Rz)で10μm以上であるとさらに好ましい。
【0026】
鋳造用回転ロールの表面粗さが100μmを超えると、回転ロール表面の凸凹の深さが増すと共に、一般に凸凹間の間隔も大きくなるため、溶湯が回転ロールの表面に沿って隙間無く入り込めるようになる。そのため、熱伝達係数が再び過度に大きくなり易く、合金中に微細Rリッチ相領域を生成し易くなる。そのため鋳造用回転ロールの表面粗さは、100μm以下、好ましくは50μm以下とする。
【0027】
R−T−B系合金薄片の表面粗さ
本発明においては、希土類磁石用のR−T−B系合金薄片の少なくとも片面の表面粗さが、十点平均粗さ(Rz)で5μm以上50μm以下であることを特徴とする。表面に上記の粗さの凸凹が形成される面は、ストリップキャスト法で鋳造する際に凝固が始まる鋳型面側表面であり、回転ロールの表面の凸凹が反映された表面となる。上記した通り、この表面の表面粗さが5μm以下或いは50μm以上では、微細Rリッチ相領域が生成する体積率が大きくなり、合金中のRリッチ相の分散状態の不均一をもたらす。その結果、焼結磁石の製造工程で微粉砕後の合金粉末の粒度分布を広くし、磁石の特性を悪化するため好ましくない。本発明において合金薄片の片面の表面粗さは、5μm以上50μm以下、さらに好ましくは7μm以上25μm以下とする。
【0028】
合金中の微細Rリッチ相領域の体積率
本発明では、R−T−B系合金中の微細Rリッチ相領域の体積率は20%以下となる。その結果、焼結磁石の工程で微粉砕後の合金粉末の粒度分布が狭く揃ったものになるため、特性にバラツキのない均質な焼結磁石を得ることができる。
【0029】
希土類焼結磁石用合金粉末、希土類焼結磁石の製造方法
本発明により鋳造したR−T−B系合金からなる希土類磁石用合金薄片からは、粉砕、成型、焼結の工程を経て、高特性の異方性焼結磁石を製造することができる。
【0030】
合金薄片の粉砕は、通常、水素解砕、微粉砕の順で行なわれ、3μm(FSSS)程度の合金粉末が作製される。
ここで、水素解砕は、前工程の水素吸蔵工程と後工程の脱水素工程に分けられる。水素吸蔵工程では、266hPa〜0.3MPa・Gの圧力の水素ガス雰囲気で、主に合金薄片のR−リッチ相に水素を吸蔵させ、この時に生成されるR−水素化物によりR−リッチ相が体積膨張することを利用して、合金薄片自体を微細に割るかあるいは無数の微細な割れ目を生じさせる。この水素吸蔵は常温〜600℃程度の範囲で実施されるが、R−リッチ相の体積膨張を大きくして効率良く割るためには、水素ガス雰囲気の圧力を高くすると共に、常温〜100℃程度の範囲で実施することが好ましい。好ましい処理時間は1時間以上である。この水素吸蔵工程により生成したR−水素化物は大気中では不安定であり酸化され易いため、水素吸蔵処理の後、200〜600℃程度で1.33hPa以下の真空中に合金薄片を保持する脱水素処理を行なうことが好ましい。この処理により、大気中で安定なR-水素化物に変化させることができる。脱水素処理の好ましい処理時間は30分以上である。水素吸蔵後から焼結までの各工程で酸化防止のための雰囲気管理がなされている場合は、脱水素処理を省くこともできる。
【0031】
本発明のストリップキャスト法により製造されたR−T−B系合金薄片は、Rリッチ相が均一分散していることが特徴である。好ましいRリッチ相の間隔の平均値は、磁石の製造工程での粉砕粒度に依存するが、一般に3μmから8μmである。水素解砕では、Rリッチ相に沿って、或いはRリッチ相を起点にしてクラックが導入される。したがって、水素解砕してから微粉砕することで、合金中に均一かつ微細に分散したRリッチ相の効果を最大限に引き出すことが可能であり、非常に粒度分布の狭い合金粉末を効率良く生産することが可能である。この水素解砕の工程を行わずに焼結磁石を作製した場合、作製された焼結磁石の特性は劣ったものとなる。(M.Sagawa et al. Proceeding of the 5th international conference on Advanced materials,Beijing China(1999))
【0032】
微粉砕とは、R−T−B系合金薄片を3μm(FSSS)程度まで粉砕することである。微粉砕のための粉砕装置としては、生産性が良く、狭い粒度分布を得られることから、ジェットミル装置が最適である。本発明の微細Rリッチ相領域の少ない合金薄片を利用すれば、粒度分布が狭い合金粉末を高効率で、安定性良く作製することができる。
微粉砕を行う際の雰囲気は、アルゴンガスや窒素ガスなどの不活性ガス雰囲気とする。これらの不活性ガス中に2質量%以下、好ましくは1質量%以下の酸素を混入させてもよい。このことにより粉砕効率が向上するとともに、粉砕後の合金粉末の酸素濃度を1000〜10000ppmとすることができ、合金粉末を適度に安定化させることができる。また同時に、磁石を燒結する際の結晶粒の異常成長を抑制することもできる。
【0033】
上記の合金粉末を磁場中で成型する場合、合金粉末と金型内壁との摩擦を低減し、また粉末どうしの摩擦も低減させて配向性を向上させるため、粉末にはステアリン酸亜鉛等の潤滑剤を添加することが好ましい。好ましい添加量は0.01〜1質量%である。潤滑材の添加は微粉砕前でも後でもよいが、磁場中成形前に、アルゴンガスや窒素ガスなどの不活性ガス雰囲気中でV型ブレンダー等を用いて十分に混合することが好ましい。
【0034】
3μm(FSSS)程度まで粉砕された合金粉末は、磁場中成型機でプレス成型される。金型は、キャビティ内の磁界方向を考慮して、磁性材と非磁性材を組み合わせて作製される。成型圧力は0.5〜2t/cm2が好ましい。成型時のキャビティ内の磁界は5〜20kOeが好ましい。また、成型時の雰囲気はアルゴンガスや窒素ガスなどの不活性ガス雰囲気が好ましいが、上述の耐酸化処理した粉体の場合、大気中でも可能である。
また成形は、冷間静水圧成形(CIP:Cold Isostatic Press)或いはゴム型を利用した擬似静水圧プレス(RIP:Rubber Isostatic Press)でも可能である。CIPやRIPでは、静水圧的に圧縮されるため、成形時の配向の乱れが少なく、金型成形よりも配向率の増加が可能であり、最大磁気エネルギー積を増加することができる。
【0035】
成型体の焼結は、1000〜1100℃で行なわれる。焼結の雰囲気としては、アルゴンガス雰囲気または1.33×10-2hPa以下の真空雰囲気が好ましい。焼結温度での保持時間は1時間以上が好ましい。また焼結の際には、焼結温度に到達する前に、成型体中の潤滑剤と合金粉末に含まれる水素はできるだけ除去しておく必要がある。潤滑剤の好ましい除去条件は、1.33×10-2hPa以下の真空中または減圧したArフロー雰囲気中で、300〜500℃で30分以上保持することである。また、水素の好ましい除去条件は、1.33×10-2hPa以下の真空中で、700〜900℃で30分以上保持することである。
【0036】
焼結が終了した後、焼結磁石の保磁力向上のため、必要に応じて500〜650℃で熱処理することができる。この場合の好ましい雰囲気は、アルゴンガス雰囲気または真空雰囲気であり、好ましい保持時間は30分以上である。
【0037】
また、本発明で作製した微細Rリッチ領域の生成を抑制した希土類磁石用R−T−B系合金薄片は、焼結磁石以外に、ボンド磁石の作製のためにも好適に用いることができる。以下に、本発明の希土類磁石用合金薄片からボンド磁石を作製する場合について説明する。
【0038】
本発明のR−T−B系合金薄片は、まず必要に応じて熱処理される。熱処理の目的は、合金中のα‐Feの除去と結晶粒の粗大化である。ボンド磁石作製のための合金粉末の作製には、HDDR(Hydrogenation Disproportionation Desorption Recombination)処理を行うが、合金中に存在するα‐FeはHDDR処理工程では消去させることができず、磁性を低下させる原因となる。そのため、α−FeはHDDR処理を行う前に消去しておく必要がある。
【0039】
また、ボンド磁石用の合金粉末の平均粒径は50〜300μmと焼結磁石用の合金粉末と比較すると非常に大きい。HDDR法では、元の合金の結晶方位と、再結合したサブミクロンの結晶粒の方位がある一定の分布を持って一致する。そのため、原料の合金薄片中にある二つ以上の結晶方位の異なる結晶粒が、一つのボンド磁石用合金粉末に含まれてしまうと、合金粉末中に結晶方位が大きく異なる領域を含むこととなり、磁石の配向率が低下し、最大磁気エネルギー積が低下する。これを避けるためには、合金薄片中の結晶粒径は、大きい方が都合が良い。ストリップキャスト法のような急冷凝固法で鋳造した合金では、結晶粒径が比較的小さくなる傾向があるため、熱処理による結晶粒の粗大化は磁石特性の向上に有効である。
【0040】
HDDR法によるボンド磁石用合金粉末の製造方法については、多くの報告がある(例えば、T.Takeshita et al,Proc.10th Int. Workshop on RE magnets and their application, Kyoto, Vol.1 p551(1989))。HDDR法による合金粉末の作製は、以下のように行われる。
【0041】
原料のR−T−B系合金薄片を水素雰囲気中で加熱すると、700℃から850℃程度で磁性相のR214B相がα‐Fe、RH2、Fe2Bの3相に分解する。次いで同程度の温度で、不活性ガス雰囲気、或いは真空雰囲気に切り替えて水素を除去すると、分解していた相がサブミクロン程度の結晶粒径を有するR214B相に再結合する。この際、合金の組成や処理条件を適当に制御すると、再結合した各R214B相の磁化容易軸(R214B相C軸)は、分解前の原料合金中のR214B相のC軸とほぼ平行となり、各微細結晶粒の磁化容易軸方向が揃った異方性磁石粉とすることができる。
【0042】
HDDR処理を施した合金は、50〜300μm程度に粉砕し合金粉末とした後、樹脂と混合して圧縮成形、射出成形などを施しボンド磁石とすることできる。
【0043】
微細Rリッチ相領域は上記した水素解砕処理同様に、HDDR処理の際にも微粉化する傾向が強い。HDDR法による磁粉の特性は、粒度が小さくなるとともに低下する。そのため、本発明の微細Rリッチ相の生成を抑制したR−T−B系合金は、HDDR処理でのボンド磁石用磁粉の作製に好適に用いることができる。
【0044】
【実施例】
(実施例1)
合金組成が、Nd:31.5質量%、B:1.00質量%、Co:1.0質量%、Al:0.30質量%、Cu:0.10質量%、残部鉄になるように、金属ネオジウム、フェロボロン、コバルト、アルミニウム、銅、鉄を配合した原料を、アルミナ坩堝を使用して、アルゴンガスで1気圧の雰囲気中で、高周波溶解炉で溶解し、溶湯をストリップキャスト法にて鋳造して、合金薄片を作製した。
鋳造用回転ロールの直径は300mm、材質は純銅で、内部は水冷されており、鋳造面の表面粗さは十点平均粗さ(Rz)で20μmに調整した。鋳造時のロールの周速度は0.9m/sで、平均厚さ0.30mmの合金薄片を生成した。
【0045】
得られた合金薄片の鋳型面側表面の表面粗さは、十点平均粗さ(Rz)で10μmであった。合金薄片を10枚埋め込み、研摩した後、走査型電子顕微鏡(SEM)で各合金薄片について反射電子線像(BEI)を倍率100倍で撮影した。撮影した写真を画像解析装置に取り込み測定したところ、微細Rリッチ相領域の体積率は、3%以下であった。
【0046】
(実施例2)
合金組成が、Nd28.5%、B:1.00質量%、Co:1.0質量%、Al:0.30質量%、Cu:0.10質量%、残部鉄になるように配合した原料を使用して、実施例1と同様の条件でSC法で鋳造を行い、合金薄片を作製した。
【0047】
得られた合金薄片を実施例1と同様に評価した結果、鋳型面側表面の表面粗さは十点平均粗さ(Rz)で9μmであり、微細Rリッチ相領域の体積率は、3%以下であった。
【0048】
(比較例1)
実施例1と同様の組成に原料を配合し、実施例1と同様にして溶解およびSC法による鋳造を実施した。但し、鋳造用回転ロール表面の表面粗さは十点平均粗さ(Rz)で3.0μmであった。
得られた合金薄片を実施例1と同様に評価した結果、鋳型面側表面の表面粗さは十点平均粗さ(Rz)で3.3μmであり、微細Rリッチ相領域の体積率は、41%であった。
【0049】
(比較例2)
実施例1と同様の組成に原料を配合し、実施例1と同様にして溶解およびSC法による鋳造を実施した。但し、鋳造用回転ロール表面の表面粗さは十点平均粗さ(Rz)で120μmであった。
得られた合金薄片を実施例1と同様に評価した結果、鋳型面側表面の表面粗さは十点平均粗さ(Rz)で86μmであり、微細Rリッチ相領域の体積率は、29%であった。
【0050】
次に焼結磁石を作製した実施例を説明する。
(実施例3)
実施例1で得られた合金薄片を水素解砕し、ジェットミルで微粉砕した。水素解砕工程の前工程である水素吸蔵工程の条件は、100%水素雰囲気、2気圧で1時間保持とした。水素吸蔵反応開始時の金属片の温度は25℃であった。また後工程である脱水素工程の条件は、0.133hPaの真空中で、500℃で1時間保持とした。この粉末に、ステアリン酸亜鉛粉末を0.07質量%添加し、100%窒素雰囲気中でV型ブレンダーで十分混合した後、ジェットミル装置で微粉砕した。粉砕時の雰囲気は、4000ppmの酸素を混合した窒素雰囲気中とした。その後、再度、100%窒素雰囲気中でV型ブレンダーで十分混合した。得られた粉体の酸素濃度は2500ppmで、粉体の炭素濃度の分析から、粉体に混合されているステアリン酸亜鉛粉末は0.05質量%であると計算された。また、レーザー回折式粒度分布測定機で測定した結果、平均粒度D50は5.10μm、D10は2.10μm、D90は8.62μmであった。
【0051】
次に、得られた粉体を100%窒素雰囲気中で横磁場中成型機でプレス成型した。成型圧は1.2t/cm2であり、金型のキャビティ内の磁界は15kOeとした。得られた成型体を、1.33×10-5hPaの真空中、500℃で1時間保持し、次いで1.33×10-5hPaの真空中、800℃で2時間保持した後、さらに1.33×10-5hPaの真空中、1050℃で2時間保持して焼結させた。焼結密度は7.5g/cm3以上であり十分な大きさの密度となった。さらに、この焼結体をアルゴン雰囲気中、560℃で1時間熱処理し、焼結磁石を作製した。
【0052】
直流BHカーブトレーサーでこの焼結磁石の磁気特性を測定した結果を表1に示す。また、焼結磁石の原料の微粉の酸素濃度と粒度も表1に示す。
【0053】
(比較例3、4)
比較例1および2で得られた合金薄片を、実施例3と同様の方法で粉砕して微粉を得た。さらに実施例3と同様の成型、焼結の工程を経て、焼結磁石を作製した。ただし、比較例1および2の合金薄片から得られた微粉は焼結しにくくなったため、焼結温度を20℃上昇させた。比較例1および2の合金薄片をそれぞれ用いた焼結磁石の結果を比較例3、4とする。
【0054】
直流BHカーブトレーサーでこれらの焼結磁石の磁気特性を測定した結果を表1に示す。また、それぞれの焼結磁石の原料の微粉の酸素濃度と粒度も表1に示す。
【0055】
【表1】

Figure 0004479944
【0056】
表1に示すように、比較例3、4では実施例3と比較してD10が小さいことから、1μm程度より小さい非常に細かい粉末の割合が大きい事がわかる。このような非常に細かい粒は酸化しやすく、比較例3、4では実施例3よりも微粉の酸素濃度が若干高くなっている。比較例3、4の磁石の磁気特性が実施例3と比較して低い原因は、酸素濃度増加によって焼結しにくくなり、焼結温度を20℃上昇させたことによる結晶粒の粗大化が主因と考えられる。
【0057】
次にボンド磁石を作製した実施例を説明する。
(実施例4)
合金組成が、Nd28.5%、B:1.00質量%、Co:10.0質量%、Ga:0.5質量%、残部鉄になるように原料を配合し、実施例1と同様の条件でSC法により合金薄片を鋳造した。
得られた合金薄片を実施例1と同様に評価した結果、鋳型面側表面の表面粗さは十点平均粗さ(Rz)で9μm、微細Rリッチ相領域の体積率は3%以下であり、α‐Feは含んでいなかった。
【0058】
上記の合金薄片を1気圧の水素中、820℃で1時間保持した後、同温度で真空で1時間保持するHDDR処理を実施した。得られた合金粉を150μm以下にブラウンミルで粉砕し、2.5質量%のエポキシ樹脂を加えて1.5Tの磁場を加えて圧縮成形してボンド磁石を得た。得られたボンド磁石の磁気特性を表1に示す。
【0059】
(比較例5)
実施例4と同様の組成に原料を配合し、比較例1と同様にして溶解およびSC法による鋳造を実施した。得られた合金薄片を実施例1と同様に評価した結果、鋳型面側表面の表面粗さは十点平均粗さ(Rz)で3.1μm、微細Rリッチ相領域の体積率は、40%であった。
【0060】
次いで、実施例4と同様の方法でボンド磁石を作製した。得られたボンド磁石の磁気特性を表1に示す。
【0061】
表1から本実施例4と比較例5のボンド磁石では、本実施例4の磁気特性が優れていることがわかる。比較例5では、微細Rリッチ領域の体積率が高く、HDDR処理、または粉砕後に50μm以下の比較的細かい粒の量が多いために、磁性が低いものと推定できる。
【0062】
【発明の効果】
本発明の合金薄片は、微細Rリッチ領域の体積率が少なく、合金中のRリッチ相の分散状態の均質性が、従来のSC材よりもさらに良好である。そのため、本合金薄片から製造した焼結磁石やHDDR法によるボンド磁石は、従来のものよりも優れた磁石特性を発現する。
【図面の簡単な説明】
【図1】従来のSC法で製造した微細Rリッチ相を含む希土類磁石用合金薄片の断面組織を示す図である。
【図2】本発明に係る希土類磁石用合金薄片の断面組織を示す図である。
【図3】図1の断面組織における微細Rリッチ領域と正常部との境界に線を引いた図である。
【図4】ストリップキャスト法の鋳造装置の模式図である。
【符号の説明】
1 耐火物ルツボ
2 タンディッシュ
3 鋳造用回転ロール
4 合金
5 捕集コンテナ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an alloy flake for a rare earth magnet comprising an R-T-B alloy (where R is at least one of rare earth elements including Y, T is a transition metal in which Fe is essential, and B is boron). , Its manufacturing method, rare earth sintered magnet alloy powder, rare earth sintered magnet, bonded magnet alloy powder, and bonded magnet.
[0002]
[Prior art]
In recent years, Nd-Fe-B alloys as rare earth magnet alloys have rapidly increased in production due to their high characteristics, and are used for HD (hard disk), MRI (magnetic resonance imaging), and various motors. Has been. In general, a part of Nd is substituted with another rare earth element such as Pr or Dy, or a part of Fe is substituted with another transition metal such as Co or Ni. It is generically called R-T-B alloy including -B alloy. Here, R is at least one of rare earth elements including Y. In addition, T is a transition metal in which Fe is essential, and a part of Fe can be substituted with Co or Ni, and additive elements such as Cu, Al, Ti, V, Cr, Mn, Nb, Ta, Mo, W, Ca, Sn, Zr, Hf, etc. may be added alone or in combination. B is boron, and a part thereof can be substituted with C or N.
[0003]
The R-T-B alloy is a ferromagnetic phase that contributes to the magnetization action. 2 T 14 It is a non-magnetic, rare-earth element-concentrated low melting point R-rich phase coexisting alloy with a B phase crystal as the main phase, and since it is an active metal, it is generally dissolved or cast in a vacuum or inert gas. Done. Moreover, in order to produce a sintered magnet from a cast R-T-B type alloy lump by powder metallurgy, the alloy lump is pulverized to about 3 μm (FSSS: measured with a Fischer sub-sieve sizer) to obtain alloy powder. After that, it is press-molded in a magnetic field, sintered at a high temperature of about 1000 to 1100 ° C. in a sintering furnace, then heat-treated and machined as necessary, and further plated to improve corrosion resistance and sintered. It is common to use a magnet.
[0004]
In a sintered magnet made of an R-T-B alloy, the R-rich phase plays an important role as follows.
1) The melting point is low and it becomes a liquid phase at the time of sintering, which contributes to increasing the density of the magnet and thus improving the magnetization.
2) Eliminate grain boundary irregularities, reduce reverse domain nucleation sites and increase coercivity.
3) The main phase is magnetically insulated to increase the coercive force.
Therefore, if the dispersion state of the R-rich phase in the molded magnet is poor, local sintering failure and decrease in magnetism may occur. Therefore, it is important that the R-rich phase is uniformly dispersed in the molded magnet. It becomes. Here, the distribution of the R-rich phase is greatly influenced by the structure of the R-T-B type alloy ingot at the time of casting.
[0005]
Another problem that arises in the casting of an R-T-B alloy is that α-Fe is generated in the cast alloy ingot. α-Fe degrades the grinding efficiency when grinding the alloy lump, and if it remains in the magnet after sintering, it causes a reduction in the magnetic properties of the magnet. Therefore, in the conventional alloy lump, the homogenization treatment is performed at a high temperature for a long time as necessary to eliminate α-Fe.
[0006]
In order to solve the problem that α-Fe is generated in the cast RTB-based alloy ingot, a strip casting method (abbreviated as SC method) is a method for casting the alloy ingot at a higher cooling rate. Developed and used in actual processes.
The SC method is to rapidly melt and solidify an alloy by casting a thin piece of about 0.1 to 1 mm by pouring a molten metal on a copper roll whose inside is water-cooled, and can suppress precipitation of α-Fe. . Furthermore, since the crystal structure of the alloy lump is refined, an alloy having a structure in which the R-rich phase is finely dispersed can be generated. In this way, the alloy cast by the SC method has a fine dispersion of the R-rich phase inside, so the dispersibility of the R-rich phase in the magnet after pulverization and sintering is improved, and the magnet It has succeeded in improving magnetic properties. (JP-A-5-222488, JP-A-5-295490)
[0007]
In addition, the alloy ingot cast by the SC method has excellent structure homogeneity. The homogeneity of the structure can be compared with the crystal grain size and the dispersion state of the R-rich phase. In alloy flakes produced by the SC method, chill crystals may occur on the casting roll side of the alloy flakes (hereinafter referred to as the mold surface side), but as a whole, a moderately fine and homogeneous structure brought about by rapid solidification Can be obtained.
[0008]
As described above, the RTB-based alloy cast by the SC method has an R-rich phase finely dispersed and the production of α-Fe is suppressed, so when producing a sintered magnet, The homogeneity of the R-rich phase in the final magnet is increased, and the adverse effects on pulverization and magnetism due to α-Fe can be prevented. Thus, the RTB-based alloy ingot cast by the SC method has an excellent structure for producing a sintered magnet. However, as the properties of magnets improve, the homogeneity of the structure of raw material alloy ingots is increasingly required.
[0009]
For this reason, for example, Japanese Patent Laid-Open No. 10-317110 discloses a sintered magnet having good magnet characteristics by setting the area ratio of chill crystals on the mold surface side of a cast R-T-B alloy to 5% or less. A technique for manufacturing the device is disclosed. Since the chill crystal part becomes a fine powder having a particle size of 1 μm or less in the pulverization step, it is considered that the particle size distribution of the alloy powder is disturbed and the magnetism is deteriorated.
[0010]
[Problems to be solved by the invention]
As a result of studying the relationship between the structure of the cast R-T-B system alloy lump and the behavior during hydrogen crushing and pulverization, the inventors of the present invention have made the alloy powder for sintered magnets uniform in particle size. In order to control this, it has been found that it is more important to control the dispersion state of the R-rich phase than the crystal grain size of the alloy lump. The volume ratio of the chill crystals in the alloy lump is actually several percent or less, and the dispersion state of the R-rich phase generated on the mold surface side in the alloy lump is extremely finer than the adverse effects of the chill crystals. It has been found that the region (fine R-rich phase region) has a greater influence for controlling the particle size of the magnet powder. That is, even when the amount of chill crystals in the RTB-based alloy ingot is reduced depending on the composition of the alloy ingot and the manufacturing conditions, the volume ratio of the fine R-rich phase region may exceed 50%. It was confirmed that the rich phase region disturbed the particle size distribution of the magnet alloy powder, and it was confirmed that it was necessary to reduce the fine R rich phase region in order to improve the magnet characteristics.
[0011]
Therefore, the present invention suppresses the formation of a fine R-rich phase region in the cast R-T-B type alloy ingot, and manufactures an alloy ingot having a structure excellent in homogeneity, thereby producing an R in the magnet. An object is to provide a rare earth magnet having a homogeneous rich phase distribution and excellent magnet characteristics.
[0012]
[Means for Solving the Problems]
The inventors changed the casting conditions in the SC method, particularly the surface state of the casting rotary roll, and compared the volume ratios at which the fine R-rich phase regions in the R-T-B type alloy flakes were generated. Then, it discovered that the surface roughness of the mold side surface of an alloy flake and the volume ratio which a fine R rich phase area | region produces | generates were related. The present invention has been made by the present inventors based on the above findings.
[0013]
That is, the present invention
(1) R-T-B alloy alloy, wherein R is at least one rare earth element including Y, T is a transition metal in which Fe is essential, and B is boron. In which the surface roughness of at least one surface of the alloy flake is 10 μm or more and 50 μm or less in terms of 10-point average roughness (Rz), and the fine R-rich phase in the alloy An alloy flake for a rare earth magnet having a volume ratio of the region of 20% or less and an average value of the gap of the R-rich phase of 3 to 8 μm.
(2) The alloy flakes for rare earth magnets according to (1) above, wherein the surface roughness of at least one surface of the alloy flakes is 10 μm or more and 25 μm or less in terms of 10-point average roughness (Rz).
(3) The alloy flakes for rare earth magnets according to (1) or (2) above, wherein the volume fraction of the fine R-rich phase region in the alloy is 3% or less.
(4) The alloy flake for a rare earth magnet according to any one of (1) to (3) above, wherein the RTB-based alloy is an Nd-Fe-B-based alloy.
(5) Any of (1) to (4) above, wherein the RTB-based alloy contains any one or more elements selected from the group consisting of Co, Al, Cu, and Ga. The alloy flake for a rare earth magnet according to claim 1.
(6) In the method for producing an alloy flake for a rare earth magnet made of an RTB-based alloy by strip casting, the surface roughness of the casting surface of the rotary roll for casting is expressed by a ten-point average roughness (Rz). 2 The method for producing an alloy flake for a rare earth magnet according to any one of (1) to (5) above, wherein the thickness is from 0 μm to 100 μm.
(7) The method for producing an alloy flake for a rare earth magnet according to (6) above, wherein the molten metal is prevented from completely entering the fine irregularities on the surface of the rotating roll.
(8) The method for producing an alloy flake for a rare earth magnet according to any one of (6) to (7) above, wherein the RTB-based alloy is an Nd-Fe-B-based alloy.
(9) Any of (6) to (8) above, wherein the RTB-based alloy contains any one or more elements selected from the group consisting of Co, Al, Cu, and Ga. A method for producing an alloy flake for a rare earth magnet according to claim 1.
(10) The surface roughness of the casting surface of the rotary roll for casting is 10-point average roughness (Rz). 2 The method for producing an alloy flake for a rare earth magnet according to any one of the above (6) to (9), wherein the thickness is from 0 μm to 50 μm.
(11) A method for producing a rare earth magnet alloy powder, characterized by subjecting a rare earth magnet alloy flake according to any one of (1) to (5) above to a hydrogen crushing step and then jet milling. .
It is.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a backscattered electron image when a cross section of a thin piece of Nd—Fe—B alloy (Nd31.5 mass%) cast by the conventional SC method is observed with a scanning electron microscope (SEM). In FIG. 1, the left side is the mold surface side, and the right side is the free surface side. In addition, the surface roughness of the mold side surface of this alloy flake is 3.4 μm in terms of 10-point average roughness (Rz).
The white portion in FIG. 1 is the Nd-rich phase (R-rich phase is called Nd-rich phase because R is Nd), from the center of the alloy flake to the free surface side (opposite to the casting surface side) (Surface on the side) forms a small pool with a lamellar shape in the thickness direction or a shape with a directionality that the lamellar is divided. However, a region in which the Nd-rich phase is extremely finer than other portions and randomly exists is formed on the mold surface side, and the present inventors have created a fine R-rich phase region (R When the main component of Nd is Nd, it is also called a fine Nd-rich phase region), and is particularly distinguished. This fine R-rich phase region usually starts from the mold surface side and extends toward the center. On the other hand, a portion where the fine R-rich phase region from the central portion to the free surface side does not exist is referred to herein as a normal portion.
[0015]
In the hydrogen crushing step of the RTB-based alloy flakes during the production of the sintered magnet, hydrogen is absorbed from the R-rich phase and expands into a brittle hydride. Therefore, in the hydrogen cracking, fine cracks along the R-rich phase or starting from the R-rich phase are introduced into the alloy. In the subsequent pulverization step, the alloy breaks due to a large amount of fine cracks generated by hydrogen cracking, so that the finer the dispersion of the R-rich phase in the alloy, the finer the particle size after pulverization tends to be. Therefore, the fine R-rich phase region has a tendency to break finer than the normal part. For example, in an alloy powder manufactured from the normal part, the average particle size is about 3 μm as measured by a FSSS (Fischer Sub-Seeb Sizer). On the other hand, the alloy powder manufactured from the fine R-rich phase region has a high ratio of containing fine powder of 1 μm or less, and therefore the particle size distribution after fine pulverization becomes wide.
[0016]
The dispersion state of the R-rich phase in the R-T-B alloy can be controlled by controlling the cooling rate after the molten metal solidifies during casting, or by heat treatment. It is described in Kaihei 10-36949. However, the cooling rate after solidification or the behavior of the change of the R-rich phase inside the fine R-rich phase region due to heat treatment is difficult to control unlike the normal part, and the dispersion of the R-rich phase is difficult to become coarse and remains fine. It is.
[0017]
The volume ratio of the fine R-rich phase region can be measured by the following method. FIG. 3 is a reflected electron beam image having the same field of view as FIG. 1, but a line is drawn at the boundary between the fine R-rich phase region and the normal part. Since the boundary between both regions can be easily determined from the dispersion state of the R-rich phase, the area ratio of the fine R-rich phase region in the field of view can be calculated using an image analyzer. The area ratio in the cross section corresponds to the volume ratio in the alloy. In the measurement of the volume fraction of the fine R-rich phase region, the change in the amount of the fine R-rich phase region is large even between the thin pieces and within the same flake, even if the alloy thin pieces are cast at the same time. Therefore, after expanding the observation field of view at a low magnification of about 50 to 100 times, the volume ratio of the fine R-rich phase region of the entire alloy is calculated by measuring about 5 to 10 slices and taking the average. I can do it.
[0018]
FIG. 2 shows a reflected electron beam image of a cross section of the RTB-based alloy flake (Nd 31.5 mass%) of the present invention. In FIG. 2, the left side is the mold surface side, and the right side is the free surface side. The feature of the alloy flakes of the present invention is that in the flakes produced by the strip cast method, the generation of fine R-rich phase regions is suppressed by controlling the surface roughness on the mold surface side. As shown in FIG. 2, in the alloy flakes of the present invention, there is no fine R-rich phase region on the mold surface side, and the dispersion state of the R-rich phase is extremely uniform from the mold surface to the free surface.
[0019]
The relationship between the surface roughness of the mold side surface of the alloy flake produced by the strip cast method and the fine R-rich phase region can be explained as follows.
In order that the mold surface side surface of the alloy flakes is smooth, the surface of the rotary roll for casting needs to be smooth and the wettability with the molten alloy must be good. In such a state, the heat transfer from the molten metal to the mold is very good (the heat transfer coefficient is large), and the mold surface side of the alloy is excessively cooled. The fine R-rich phase region has a large heat transfer coefficient between the mold and the molten metal, and it is considered that the fine R-rich phase region tends to be generated when the mold surface side of the alloy is excessively cooled.
[0020]
On the other hand, if fine irregularities are formed on the surface of the casting rotary roll, the molten metal cannot completely enter the fine irregularities on the casting rotary roll surface due to the viscosity of the molten alloy, resulting in a non-contact part, Reduces heat transfer coefficient. As a result, it is considered that the mold surface side of the alloy is not excessively cooled, and generation of a fine R-rich phase region can be suppressed. Here, when the surface roughness of the surface of the rotary roll for casting is increased, the unevenness is transferred to some extent on the mold surface side of the alloy flakes, so the surface roughness of the surface of the alloy flakes on the mold surface side is naturally increased. It is presumed that the reason why the R-rich phase is suppressed by the alloy flakes having an appropriate surface roughness on the mold surface side is that excessive heat transfer is suppressed when the molten metal solidifies as described above. Is done.
[0021]
However, when the surface roughness of the casting rotary roll surface becomes excessively large, the molten metal can enter the surface irregularities, the heat transfer coefficient increases again, and at the same time, the surface roughness on the mold surface side of the produced alloy flakes increases. It gets bigger. In this case, the volume ratio of the fine R-rich phase region also increases again.
[0022]
Even in the conventional SC method, alloy flakes having a homogeneous structure as shown in FIG. 2 are included to some extent, but flakes containing a large amount of fine R-rich phase regions as shown in FIG. 1 are also generated at the same time. As a result, there was a problem in the homogeneity of the structure throughout the alloy. Such variations in the alloy structure produced by the conventional SC method are considered to be caused by the difference in the contact state between the roll surface and the molten metal, such as the subtle surface condition of the rotating roll for casting, the supply state of the molten metal, and the atmosphere. It is done.
On the other hand, in the present invention, since the irregularities of an appropriate size are formed on the surface of the casting rotary roll, excessive heat transfer when the molten metal solidifies is eliminated, and the generation of the fine R-rich phase region is suppressed with good reproducibility. be able to. As a result, an alloy flake having a homogeneous structure as shown in FIG. 2 can be produced with a high yield.
[0023]
Further details of the present invention will be described.
(1) Strip casting method
The present invention relates to an R-T-B alloy flake for a rare earth magnet cast by a strip casting method. Here, casting of the R-T-B alloy by the strip casting method will be described.
FIG. 4 shows a schematic view of an apparatus for casting by strip casting. Usually, the RTB-based alloy is melted with the refractory crucible 1 in a vacuum or an inert gas atmosphere because of its active properties. The molten alloy melt is kept at a temperature of 1350-1500 ° C. for a predetermined time, and if necessary, the casting rotary roll 3 is cooled with water through a tundish 2 provided with a rectifying mechanism and a slag removing mechanism. To be supplied. The supply speed of the molten metal and the number of rotations of the rotating roll are appropriately controlled according to the desired thickness of the alloy. Generally, the rotational speed of the rotating roll is about 1 to 3 m / s in terms of peripheral speed. The material of the rotary roll for casting is suitably copper or a copper alloy from the viewpoint of good thermal conductivity and easy availability. Depending on the material of the rotating roll and the surface condition of the roll, metal easily adheres to the surface of the rotating roll for casting. Therefore, if a cleaning device is installed as necessary, the quality of the cast R-T-B alloy is stable. To do. The alloy 4 solidified on the rotating roll separates from the roll on the opposite side of the tundish and is collected in the collection container 5. By providing a heating and cooling mechanism in the collection container, the state of the R-rich phase tissue in the normal part can be controlled.
[0024]
The thickness of the alloy flakes of the present invention is preferably 0.1 mm or more and 0.5 mm or less. If the thickness of the alloy flakes is less than 0.1 mm, the solidification rate increases excessively, the crystal grain size becomes too fine, and it becomes close to the finely pulverized grain size in the magnetizing process. There is a problem of inviting. On the other hand, if the thickness of the alloy flake is greater than 0.5 mm, problems such as a decrease in the dispersibility of the Nd-rich phase due to a decrease in the solidification rate and precipitation of α-Fe are caused.
[0025]
(2) Surface roughness of casting surface of casting rotary roll
In the present invention, when the R-T-B magnet alloy is cast by the strip casting method, the surface roughness of the casting surface of the rotary roll for casting is 5 μm or more and 100 μm or less in terms of 10-point average roughness (Rz). .
Here, the surface roughness is measured under the conditions shown in JIS B 0601 “Definition and Display of Surface Roughness”, and ten-point average roughness (Rz) is also defined therein. Specifically, first, a curve (roughness curve) obtained by removing a surface waviness component longer than a predetermined wavelength with a phase compensation type high-pass filter or the like from a cut surface (cross-sectional curve) obtained by cutting along a plane perpendicular to the measurement surface. Ask. From the roughness curve, a reference length is extracted in the direction of the average line, and from the average line of the extracted part, the average value of the absolute values of the altitude (Yp) of the highest peak from the highest peak to the fifth peak is the lowest. The sum of the absolute values of the elevations (Yv) of the valley bottom from the valley bottom to the fifth is called ten-point average roughness (Rz). For the measurement parameters such as the reference length, standard values for the surface roughness are specified in the above JIS.
The surface roughness on the mold surface side of the alloy flakes may vary greatly, and at least 5 flakes should be measured and the average value should be used.
When the surface roughness is 5 μm or less, the effect of unevenness on the surface of the rotary roll for casting cannot be obtained, and since the contact with the molten metal is good, the heat transfer coefficient is large. As a result, it becomes easy to generate a fine R-rich phase region in the alloy. On the other hand, if the surface roughness of the rotating roll for casting is 5 μm or more, the molten alloy cannot completely enter the fine irregularities on the surface of the rotating roll due to the viscosity of the molten alloy, resulting in a non-contact part, Transfer coefficient decreases. As a result, generation of a fine R-rich phase in the alloy can be suppressed. The surface roughness is more preferably 10 μm or more in terms of 10-point average roughness (Rz).
[0026]
If the surface roughness of the rotary roll for casting exceeds 100 μm, the depth of the unevenness on the surface of the rotary roll increases, and generally the distance between the unevenness increases, so that the molten metal can enter along the surface of the rotary roll without any gaps. Become. Therefore, the heat transfer coefficient tends to be excessively increased again, and a fine R-rich phase region is easily generated in the alloy. Therefore, the surface roughness of the rotary roll for casting is 100 μm or less, preferably 50 μm or less.
[0027]
R-T-B alloy flake surface roughness
In the present invention, the surface roughness of at least one surface of the R-T-B type alloy flake for rare earth magnet is 5 μm or more and 50 μm or less in terms of 10-point average roughness (Rz). The surface on which the unevenness of the roughness is formed on the surface is a mold surface side surface where solidification starts when casting by the strip casting method, and is a surface reflecting the unevenness of the surface of the rotating roll. As described above, when the surface roughness of the surface is 5 μm or less or 50 μm or more, the volume ratio generated by the fine R-rich phase region is increased, resulting in non-uniform dispersion of the R-rich phase in the alloy. As a result, the particle size distribution of the finely pulverized alloy powder is widened in the manufacturing process of the sintered magnet, and the characteristics of the magnet are deteriorated. In the present invention, the surface roughness of one side of the alloy flake is 5 μm or more and 50 μm or less, more preferably 7 μm or more and 25 μm or less.
[0028]
Volume fraction of fine R-rich phase region in alloy
In the present invention, the volume ratio of the fine R-rich phase region in the RTB-based alloy is 20% or less. As a result, since the particle size distribution of the finely pulverized alloy powder is narrowly aligned in the sintered magnet process, a homogeneous sintered magnet with no variation in characteristics can be obtained.
[0029]
Alloy powder for rare earth sintered magnet, method for producing rare earth sintered magnet
From an alloy flake for a rare earth magnet made of an RTB-based alloy cast according to the present invention, an anisotropic sintered magnet having high characteristics can be manufactured through pulverization, molding and sintering processes.
[0030]
The alloy flakes are usually pulverized in the order of hydrogen pulverization and fine pulverization to produce an alloy powder of about 3 μm (FSSS).
Here, hydrogen cracking is divided into a hydrogen storage process in the previous process and a dehydrogenation process in the subsequent process. In the hydrogen storage step, hydrogen is mainly stored in the R-rich phase of the alloy flakes in a hydrogen gas atmosphere at a pressure of 266 hPa to 0.3 MPa · G, and the R-rich phase is formed by the R-hydride generated at this time. Utilizing the volume expansion, the alloy flakes themselves are finely divided or innumerable fine cracks are generated. This hydrogen occlusion is carried out in the range of room temperature to about 600 ° C. In order to increase the volume expansion of the R-rich phase and efficiently divide it, the pressure in the hydrogen gas atmosphere is increased and the room temperature is about 100 ° C. It is preferable to implement in the range. A preferred treatment time is 1 hour or more. Since the R-hydride produced by this hydrogen storage process is unstable in the atmosphere and easily oxidized, dehydration is performed by holding the alloy flakes in a vacuum of about 1.33 hPa or less at about 200 to 600 ° C. after the hydrogen storage process. It is preferable to perform a raw treatment. By this treatment, it can be changed to R-hydride which is stable in the atmosphere. A preferable treatment time for the dehydrogenation treatment is 30 minutes or more. In the case where atmosphere management for preventing oxidation is performed in each process from hydrogen storage to sintering, dehydrogenation treatment can be omitted.
[0031]
The RTB-based alloy flakes produced by the strip casting method of the present invention are characterized in that the R-rich phase is uniformly dispersed. A preferable average value of the R-rich phase interval depends on the pulverized particle size in the magnet manufacturing process, but is generally 3 μm to 8 μm. In hydrogen cracking, cracks are introduced along the R-rich phase or starting from the R-rich phase. Therefore, by crushing after hydrogen cracking, it is possible to maximize the effect of the R-rich phase uniformly and finely dispersed in the alloy, and the alloy powder with a very narrow particle size distribution can be efficiently obtained. It is possible to produce. When a sintered magnet is manufactured without performing this hydrogen crushing step, the characteristics of the manufactured sintered magnet are inferior. (M. Sagawa et al. Proceeding of the 5th International Conference on Advanced Materials, Beijing China (1999)).
[0032]
The fine pulverization is to pulverize the RTB-based alloy flakes to about 3 μm (FSSS). As a pulverizing apparatus for fine pulverization, a jet mill apparatus is most suitable because of good productivity and a narrow particle size distribution. By using the alloy flakes having a small fine R-rich phase region of the present invention, an alloy powder having a narrow particle size distribution can be produced with high efficiency and good stability.
The atmosphere when pulverizing is an inert gas atmosphere such as argon gas or nitrogen gas. 2% by mass or less, preferably 1% by mass or less of oxygen may be mixed into these inert gases. As a result, the grinding efficiency is improved, the oxygen concentration of the ground alloy powder can be 1000 to 10,000 ppm, and the alloy powder can be appropriately stabilized. At the same time, abnormal growth of crystal grains when the magnet is sintered can be suppressed.
[0033]
When molding the above alloy powder in a magnetic field, the powder is lubricated with zinc stearate or the like to reduce the friction between the alloy powder and the inner wall of the mold and to improve the orientation by reducing the friction between the powders. It is preferable to add an agent. A preferable addition amount is 0.01 to 1% by mass. The lubricant may be added before or after fine pulverization, but before forming in a magnetic field, it is preferable to sufficiently mix using a V-type blender or the like in an inert gas atmosphere such as argon gas or nitrogen gas.
[0034]
The alloy powder pulverized to about 3 μm (FSSS) is press-molded with a molding machine in a magnetic field. The mold is manufactured by combining a magnetic material and a non-magnetic material in consideration of the direction of the magnetic field in the cavity. Molding pressure is 0.5-2t / cm 2 Is preferred. The magnetic field in the cavity at the time of molding is preferably 5 to 20 kOe. Further, the atmosphere during molding is preferably an inert gas atmosphere such as argon gas or nitrogen gas, but in the case of the above-mentioned oxidation-resistant powder, it can also be performed in the air.
The molding can also be performed by cold isostatic pressing (CIP) or pseudo isostatic pressing (RIP) using a rubber mold. Since CIP and RIP are compressed hydrostatically, there is less disorder in the orientation during molding, the orientation ratio can be increased as compared with mold molding, and the maximum magnetic energy product can be increased.
[0035]
Sintering of the molded body is performed at 1000 to 1100 ° C. The sintering atmosphere is an argon gas atmosphere or 1.33 × 10 6 -2 A vacuum atmosphere of hPa or less is preferable. The holding time at the sintering temperature is preferably 1 hour or longer. In sintering, it is necessary to remove as much as possible hydrogen contained in the lubricant and alloy powder in the molded body before reaching the sintering temperature. The preferable removal condition of the lubricant is 1.33 × 10 -2 It is to hold at 300 to 500 ° C. for 30 minutes or more in a vacuum of hPa or less or in a reduced Ar flow atmosphere. Moreover, the preferable removal conditions of hydrogen are 1.33 × 10 6. -2 It is to hold at 700 to 900 ° C. for 30 minutes or more in a vacuum of hPa or less.
[0036]
After the sintering is completed, heat treatment can be performed at 500 to 650 ° C. as necessary to improve the coercive force of the sintered magnet. A preferable atmosphere in this case is an argon gas atmosphere or a vacuum atmosphere, and a preferable holding time is 30 minutes or more.
[0037]
Moreover, the R-T-B type alloy flakes for rare earth magnets that suppress the production of the fine R-rich region produced in the present invention can be suitably used for producing bonded magnets in addition to sintered magnets. Below, the case where a bonded magnet is produced from the alloy flakes for rare earth magnets of this invention is demonstrated.
[0038]
The RTB-based alloy flakes of the present invention are first heat treated as necessary. The purpose of the heat treatment is to remove α-Fe from the alloy and to coarsen the grains. HDDR (Hydrogenation Deposition Recombination Recombination) processing is used to manufacture alloy powders for bond magnet manufacturing, but α-Fe present in the alloy cannot be erased in the HDDR processing process, causing the magnetism to decrease It becomes. Therefore, α-Fe needs to be erased before the HDDR process is performed.
[0039]
Moreover, the average particle diameter of the alloy powder for bonded magnets is 50 to 300 μm, which is very large compared to the alloy powder for sintered magnets. In the HDDR method, the crystal orientation of the original alloy coincides with the orientation of the recombined submicron crystal grains with a certain distribution. Therefore, when two or more crystal grains having different crystal orientations in the alloy flakes of the raw material are included in one bond magnet alloy powder, the alloy powder includes a region having greatly different crystal orientations. The orientation rate of the magnet decreases, and the maximum magnetic energy product decreases. In order to avoid this, it is convenient that the crystal grain size in the alloy flakes is large. In an alloy cast by a rapid solidification method such as a strip casting method, the crystal grain size tends to be relatively small, so that the coarsening of the crystal grain by heat treatment is effective in improving the magnet characteristics.
[0040]
There are many reports on a method for producing an alloy powder for bonded magnets by the HDDR method (for example, T. Takeshita et al, Proc. 10th Int. Worksshop on RE magnets and therair application, Kyoto, Vol. 1 p551 (1989). ). Production of the alloy powder by the HDDR method is performed as follows.
[0041]
When the raw R-T-B alloy flakes are heated in a hydrogen atmosphere, the R of the magnetic phase is about 700 to 850 ° C. 2 T 14 B phase is α-Fe, RH 2 , Fe 2 Decomposes into the B phase. Next, when hydrogen is removed by switching to an inert gas atmosphere or a vacuum atmosphere at the same temperature, the decomposed phase has a crystal grain size of about submicron. 2 T 14 Recombines with phase B. At this time, if the composition and processing conditions of the alloy are appropriately controlled, each recombined R 2 T 14 B phase easy axis (R 2 T 14 B phase C axis) is the R in the raw material alloy before decomposition 2 T 14 An anisotropic magnet powder that is substantially parallel to the C axis of the B phase and in which the direction of the easy axis of magnetization of each fine crystal grain is aligned can be obtained.
[0042]
The HDDR-treated alloy is pulverized to about 50 to 300 μm to form an alloy powder, which is then mixed with a resin and subjected to compression molding, injection molding, or the like to obtain a bonded magnet.
[0043]
The fine R-rich phase region has a strong tendency to be pulverized during the HDDR treatment as in the above-described hydrogen cracking treatment. The characteristics of magnetic powder by the HDDR method decrease as the particle size decreases. Therefore, the RTB-based alloy that suppresses the formation of the fine R-rich phase of the present invention can be suitably used for the production of magnetic powder for bonded magnets in HDDR processing.
[0044]
【Example】
Example 1
The alloy composition is Nd: 31.5% by mass, B: 1.00% by mass, Co: 1.0% by mass, Al: 0.30% by mass, Cu: 0.10% by mass, and the balance iron. The raw materials blended with metal neodymium, ferroboron, cobalt, aluminum, copper, and iron are melted in a high-frequency melting furnace in an atmosphere of 1 atm with argon gas using an alumina crucible, and the molten metal is strip cast. The alloy flake was produced by casting.
The diameter of the casting rotary roll was 300 mm, the material was pure copper, the inside was water-cooled, and the surface roughness of the casting surface was adjusted to 20 μm with a 10-point average roughness (Rz). The peripheral speed of the roll during casting was 0.9 m / s, and an alloy flake with an average thickness of 0.30 mm was produced.
[0045]
The surface roughness on the mold surface side of the obtained alloy flakes was 10 μm in terms of 10-point average roughness (Rz). After 10 alloy flakes were embedded and polished, a backscattered electron beam image (BEI) of each alloy flake was taken at a magnification of 100 with a scanning electron microscope (SEM). When the photographed photograph was taken into an image analyzer and measured, the volume ratio of the fine R-rich phase region was 3% or less.
[0046]
(Example 2)
Raw materials blended so that the alloy composition is Nd 28.5%, B: 1.00% by mass, Co: 1.0% by mass, Al: 0.30% by mass, Cu: 0.10% by mass, and the balance iron Was cast by the SC method under the same conditions as in Example 1 to produce alloy flakes.
[0047]
The obtained alloy flakes were evaluated in the same manner as in Example 1. As a result, the surface roughness on the mold surface side was 9 μm in terms of 10-point average roughness (Rz), and the volume ratio of the fine R-rich phase region was 3%. It was the following.
[0048]
(Comparative Example 1)
Raw materials were blended in the same composition as in Example 1, and dissolution and casting by the SC method were performed in the same manner as in Example 1. However, the surface roughness of the surface of the rotary roll for casting was 3.0 μm in terms of ten-point average roughness (Rz).
As a result of evaluating the obtained alloy flakes in the same manner as in Example 1, the surface roughness of the mold side surface was 3.3 μm in terms of 10-point average roughness (Rz), and the volume ratio of the fine R-rich phase region was 41%.
[0049]
(Comparative Example 2)
Raw materials were blended in the same composition as in Example 1, and dissolution and casting by the SC method were performed in the same manner as in Example 1. However, the surface roughness of the surface of the rotary roll for casting was 120 μm in terms of 10-point average roughness (Rz).
As a result of evaluating the obtained alloy flakes in the same manner as in Example 1, the surface roughness on the mold surface side was 86 μm in terms of 10-point average roughness (Rz), and the volume ratio of the fine R-rich phase region was 29%. Met.
[0050]
Next, an example in which a sintered magnet was produced will be described.
(Example 3)
The alloy flakes obtained in Example 1 were cracked with hydrogen and pulverized with a jet mill. The conditions of the hydrogen occlusion process, which is the previous process of the hydrogen crushing process, were maintained at 100% hydrogen atmosphere and 2 atm for 1 hour. The temperature of the metal piece at the start of the hydrogen storage reaction was 25 ° C. The conditions for the dehydrogenation process, which is a subsequent process, were maintained at 500 ° C. for 1 hour in a vacuum of 0.133 hPa. To this powder, 0.07% by mass of zinc stearate powder was added, thoroughly mixed with a V-type blender in a 100% nitrogen atmosphere, and then finely pulverized with a jet mill apparatus. The atmosphere during pulverization was a nitrogen atmosphere mixed with 4000 ppm of oxygen. Thereafter, the mixture was sufficiently mixed again with a V-type blender in a 100% nitrogen atmosphere. The oxygen concentration of the obtained powder was 2500 ppm, and it was calculated from the analysis of the carbon concentration of the powder that the zinc stearate powder mixed in the powder was 0.05% by mass. The average particle size D50 was 5.10 μm, D10 was 2.10 μm, and D90 was 8.62 μm.
[0051]
Next, the obtained powder was press-molded in a transverse magnetic field molding machine in a 100% nitrogen atmosphere. Molding pressure is 1.2t / cm 2 The magnetic field in the mold cavity was 15 kOe. The resulting molded body was 1.33 × 10 -Five Hold in hPa vacuum at 500 ° C. for 1 hour, then 1.33 × 10 -Five After holding at 800 ° C. for 2 hours in a vacuum of hPa, further 1.33 × 10 -Five Sintering was performed at 1050 ° C. for 2 hours in a vacuum of hPa. Sintering density is 7.5 g / cm Three This is the density of a sufficient size. Furthermore, this sintered body was heat-treated at 560 ° C. for 1 hour in an argon atmosphere to produce a sintered magnet.
[0052]
Table 1 shows the results of measuring the magnetic properties of the sintered magnet with a DC BH curve tracer. Table 1 also shows the oxygen concentration and particle size of the fine powder of the sintered magnet raw material.
[0053]
(Comparative Examples 3 and 4)
The alloy flakes obtained in Comparative Examples 1 and 2 were pulverized in the same manner as in Example 3 to obtain fine powder. Further, through the same molding and sintering steps as in Example 3, a sintered magnet was produced. However, since the fine powder obtained from the alloy flakes of Comparative Examples 1 and 2 became difficult to sinter, the sintering temperature was increased by 20 ° C. The results of sintered magnets using the alloy flakes of Comparative Examples 1 and 2 are referred to as Comparative Examples 3 and 4, respectively.
[0054]
Table 1 shows the results of measuring the magnetic properties of these sintered magnets using a DC BH curve tracer. Table 1 also shows the oxygen concentration and the particle size of the fine powder of each sintered magnet material.
[0055]
[Table 1]
Figure 0004479944
[0056]
As shown in Table 1, in Comparative Examples 3 and 4, since D10 is small compared to Example 3, it can be seen that the proportion of very fine powder smaller than about 1 μm is large. Such very fine particles are easily oxidized, and the oxygen concentration of the fine powder is slightly higher in Comparative Examples 3 and 4 than in Example 3. The reason why the magnetic properties of the magnets of Comparative Examples 3 and 4 are lower than that of Example 3 is that sintering is difficult due to the increase in oxygen concentration, and the main reason is that the crystal grains are coarsened by increasing the sintering temperature by 20C it is conceivable that.
[0057]
Next, an example in which a bonded magnet was produced will be described.
Example 4
The raw materials were blended so that the alloy composition was Nd 28.5%, B: 1.00% by mass, Co: 10.0% by mass, Ga: 0.5% by mass, and the balance iron. An alloy flake was cast by the SC method under conditions.
The obtained alloy flakes were evaluated in the same manner as in Example 1. As a result, the surface roughness of the mold side surface was 9 μm in terms of 10-point average roughness (Rz), and the volume ratio of the fine R-rich phase region was 3% or less. , Α-Fe was not included.
[0058]
The alloy flakes described above were held in 1 atmosphere of hydrogen at 820 ° C. for 1 hour and then subjected to HDDR treatment in which the alloy flakes were held at the same temperature in vacuum for 1 hour. The obtained alloy powder was pulverized to 150 μm or less with a brown mill, 2.5% by mass of an epoxy resin was added, and a magnetic field of 1.5T was applied to perform compression molding to obtain a bonded magnet. Table 1 shows the magnetic properties of the obtained bonded magnet.
[0059]
(Comparative Example 5)
Raw materials were blended in the same composition as in Example 4, and dissolution and casting by the SC method were performed as in Comparative Example 1. The obtained alloy flakes were evaluated in the same manner as in Example 1. As a result, the surface roughness of the mold surface side surface was 3.1 μm in terms of 10-point average roughness (Rz), and the volume ratio of the fine R-rich phase region was 40%. Met.
[0060]
Next, a bonded magnet was produced in the same manner as in Example 4. Table 1 shows the magnetic properties of the obtained bonded magnet.
[0061]
From Table 1, it can be seen that the bonded magnets of Example 4 and Comparative Example 5 have excellent magnetic characteristics of Example 4. In Comparative Example 5, since the volume ratio of the fine R-rich region is high and the amount of relatively fine particles of 50 μm or less after the HDDR treatment or pulverization is large, it can be estimated that the magnetism is low.
[0062]
【The invention's effect】
The alloy flakes of the present invention have a small volume fraction in the fine R-rich region, and the homogeneity of the dispersion state of the R-rich phase in the alloy is even better than conventional SC materials. For this reason, sintered magnets manufactured from the present alloy flakes and bonded magnets by the HDDR method exhibit magnet characteristics superior to conventional ones.
[Brief description of the drawings]
FIG. 1 is a view showing a cross-sectional structure of an alloy flake for a rare earth magnet containing a fine R-rich phase produced by a conventional SC method.
FIG. 2 is a view showing a cross-sectional structure of a rare earth magnet alloy flake according to the present invention.
3 is a diagram in which a line is drawn at the boundary between a fine R-rich region and a normal part in the cross-sectional structure of FIG. 1;
FIG. 4 is a schematic view of a casting apparatus of a strip cast method.
[Explanation of symbols]
1 Refractory crucible
2 Tundish
3 Rotating roll for casting
4 Alloy
5 Collection container

Claims (11)

R−T−B系合金(但し、RはYを含む希土類元素のうち少なくとも1種、TはFeを必須とする遷移金属、Bは硼素である。)からなる希土類磁石用合金薄片において、厚さが0.1mm以上0.5mm以下であり、該合金薄片の少なくとも片面の表面粗さが十点平均粗さ(Rz)で10μm以上50μm以下であり、合金中の微細Rリッチ相領域の体積率が20%以下であり、Rリッチ相の間隙の平均値が3〜8μmである希土類磁石用合金薄片。  In an alloy flake for a rare earth magnet made of an R-T-B alloy (where R is at least one of rare earth elements including Y, T is a transition metal in which Fe is essential, and B is boron) The surface roughness of at least one surface of the alloy flake is 10 μm or more and 50 μm or less in terms of 10-point average roughness (Rz), and the volume of the fine R-rich phase region in the alloy is 0.1 mm or more and 0.5 mm or less. Alloy flakes for rare earth magnets having a rate of 20% or less and an average value of gaps in the R-rich phase of 3 to 8 μm. 該合金薄片の少なくとも片面の表面粗さが十点平均粗さ(Rz)で10μm以上25μm以下であることを特徴とする請求項1に記載の希土類磁石用合金薄片。  2. The alloy flake for a rare earth magnet according to claim 1, wherein the surface roughness of at least one surface of the alloy flake is 10 μm or more and 25 μm or less in terms of 10-point average roughness (Rz). 合金中の微細Rリッチ相領域の体積率が3%以下であることを特徴とする請求項1又は2に記載の希土類磁石用合金薄片。  3. The alloy flake for rare earth magnet according to claim 1, wherein the volume fraction of the fine R-rich phase region in the alloy is 3% or less. R−T−B系合金が、Nd−Fe−B系合金であることを特徴とする請求項1ないし3の何れか1項に記載の希土類磁石用合金薄片。  4. The rare earth magnet alloy flake according to claim 1, wherein the RTB-based alloy is an Nd—Fe—B-based alloy. 5. R−T−B系合金が、Co,Al,Cu,Gaからなる群から選ばれた何れか1種以上の元素を含むことを特徴とする請求項1ないし4の何れか1項に記載の希土類磁石用合金薄片。  The RTB-based alloy contains one or more elements selected from the group consisting of Co, Al, Cu, and Ga, according to any one of claims 1 to 4. Alloy flakes for rare earth magnets. ストリップキャスト法によるR−T−B系合金からなる希土類磁石用合金薄片の製造方法において、鋳造用回転ロールの鋳造面の表面粗さを十点平均粗さ(Rz)で0μm以上100μm以下とすることを特徴とする請求項1ないし5の何れか1項に記載の希土類磁石用合金薄片の製造方法。In the manufacturing method of the alloy flake rare earth magnet made of R-T-B alloy according to a strip casting method, and 2 0 .mu.m or 100μm or less in surface roughness ten-point average roughness of the casting surfaces of the casting rotating roll (Rz) The method for producing an alloy flake for a rare earth magnet according to any one of claims 1 to 5, wherein: 回転ロールの表面の細かな凸凹に溶湯が完全に入り込まないようにすることを特徴とする請求項6に記載の希土類磁石用合金薄片の製造方法。  The method for producing an alloy flake for a rare earth magnet according to claim 6, wherein the molten metal is prevented from completely entering the fine irregularities on the surface of the rotating roll. R−T−B系合金が、Nd−Fe−B系合金であることを特徴とする請求項6または7 に 記載の希土類磁石用合金薄片の製造方法。  The method for producing an alloy flake for a rare earth magnet according to claim 6 or 7, wherein the RTB-based alloy is an Nd-Fe-B-based alloy. R−T−B系合金が、Co,Al,Cu,Gaからなる群から選ばれた何れか1種以上の元素を含むことを特徴とする請求項6ないし8の何れか1項に記載の希土類磁石用合金薄片の製造方法。  The RTB-based alloy contains any one or more elements selected from the group consisting of Co, Al, Cu, and Ga, according to any one of claims 6 to 8. Manufacturing method of alloy flakes for rare earth magnets. 鋳造用回転ロールの鋳造面の表面粗さを十点平均粗さ(Rz)で0μm以上50μm以下とすることを特徴とする請求項6ないし9の何れか1項に記載の希土類磁石用合金薄片の製造方法。Alloying the rare earth magnet according to any one of claims 6 to 9, characterized in that the surface roughness of the casting surfaces of the casting rotating rolls than 50 [mu] m 2 0 .mu.m or more ten-point mean roughness (Rz) A method for producing flakes. 請求項1ないし5の何れか1項に記載の希土類磁石用合金薄片に水素解砕工程を施した後にジェットミル粉砕することを特徴とする希土類磁石用合金粉末の製造方法。  A method for producing an alloy powder for a rare earth magnet, comprising subjecting the alloy flake for a rare earth magnet according to any one of claims 1 to 5 to a hydrogen crushing step and then pulverizing with a jet mill.
JP2001383989A 2001-12-18 2001-12-18 Alloy flake for rare earth magnet and method for producing the same Expired - Lifetime JP4479944B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2001383989A JP4479944B2 (en) 2001-12-18 2001-12-18 Alloy flake for rare earth magnet and method for producing the same
PCT/JP2002/013231 WO2003052778A1 (en) 2001-12-18 2002-12-18 Alloy flake for rare earth magnet, production method thereof, alloy powder for rare earth sintered magnet, rare earth sintered magnet, alloy powder for bonded magnet and bonded magnet
US10/498,932 US7442262B2 (en) 2001-12-18 2002-12-18 Alloy flake for rare earth magnet, production method thereof, alloy powder for rare earth sintered magnet, rare earth sintered magnet, alloy powder for bonded magnet and bonded magnet
CNB028050975A CN1306527C (en) 2001-12-18 2002-12-18 Rare earth magnetic alloy sheet, its manufacturing method, sintered rare earth magnetic alloy powder, sintered rare earth magnet, metal powder for bonded magnet, and bonded magnet
AU2002358316A AU2002358316A1 (en) 2001-12-18 2002-12-18 Alloy flake for rare earth magnet, production method thereof, alloy powder for rare earth sintered magnet, rare earth sintered magnet, alloy powder for bonded magnet and bonded magnet
US11/826,114 US7571757B2 (en) 2001-12-18 2007-07-12 Alloy flake for rare earth magnet, production method thereof, alloy powder for rare earth sintered magnet, rare earth sintered magnet, alloy powder for bonded magnet and bonded magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001383989A JP4479944B2 (en) 2001-12-18 2001-12-18 Alloy flake for rare earth magnet and method for producing the same

Publications (3)

Publication Number Publication Date
JP2003188006A JP2003188006A (en) 2003-07-04
JP2003188006A5 JP2003188006A5 (en) 2005-03-17
JP4479944B2 true JP4479944B2 (en) 2010-06-09

Family

ID=27593834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001383989A Expired - Lifetime JP4479944B2 (en) 2001-12-18 2001-12-18 Alloy flake for rare earth magnet and method for producing the same

Country Status (1)

Country Link
JP (1) JP4479944B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002358316A1 (en) 2001-12-18 2003-06-30 Showa Denko K.K. Alloy flake for rare earth magnet, production method thereof, alloy powder for rare earth sintered magnet, rare earth sintered magnet, alloy powder for bonded magnet and bonded magnet
EP1749599B1 (en) * 2004-04-30 2015-09-09 Hitachi Metals, Ltd. Methods for producing raw material alloy for rare earth magnet, powder and sintered magnet
WO2006054617A1 (en) * 2004-11-17 2006-05-26 Tdk Corporation Rare earth sintered magnet
JP4671024B2 (en) * 2005-03-18 2011-04-13 Tdk株式会社 Manufacturing method of rare earth sintered magnet
US7846273B2 (en) 2005-10-31 2010-12-07 Showa Denko K.K. R-T-B type alloy, production method of R-T-B type alloy flake, fine powder for R-T-B type rare earth permanent magnet, and R-T-B type rare earth permanent magnet
JP4832856B2 (en) * 2005-10-31 2011-12-07 昭和電工株式会社 Method for producing RTB-based alloy and RTB-based alloy flakes, fine powder for RTB-based rare earth permanent magnet, RTB-based rare earth permanent magnet
US7958929B2 (en) 2006-04-07 2011-06-14 Showa Denko K.K. Apparatus for producing alloy and rare earth element alloy
JP5274781B2 (en) 2007-03-22 2013-08-28 昭和電工株式会社 R-T-B type alloy and method for producing R-T-B type alloy, fine powder for R-T-B type rare earth permanent magnet, R-T-B type rare earth permanent magnet
JP4219390B1 (en) * 2007-09-25 2009-02-04 昭和電工株式会社 Alloy production equipment
WO2009075351A1 (en) 2007-12-13 2009-06-18 Showa Denko K.K. R-t-b alloy, process for production of r-t-b alloy, fine powder for r-t-b rare earth permanent magnets, and r-t-b rare earth permanent magnets
JP5477282B2 (en) * 2008-03-31 2014-04-23 日立金属株式会社 R-T-B system sintered magnet and manufacturing method thereof
JP5705141B2 (en) 2012-01-24 2015-04-22 中央電気工業株式会社 Rare earth alloy piece manufacturing method

Also Published As

Publication number Publication date
JP2003188006A (en) 2003-07-04

Similar Documents

Publication Publication Date Title
JP4832856B2 (en) Method for producing RTB-based alloy and RTB-based alloy flakes, fine powder for RTB-based rare earth permanent magnet, RTB-based rare earth permanent magnet
US7571757B2 (en) Alloy flake for rare earth magnet, production method thereof, alloy powder for rare earth sintered magnet, rare earth sintered magnet, alloy powder for bonded magnet and bonded magnet
US20090000701A1 (en) Rare earth magnet alloy ingot, manufacturing method for the same, r-t-b type magnet alloy ingot, r-tb type magnet, r-t-b type bonded magnet, r-t-b type exchange spring magnet alloy ingot, r-t-b type exchange spring magnet, and r-t-b type exchange spring bonded magnet
JPWO2009075351A1 (en) R-T-B type alloy and method for producing R-T-B type alloy, fine powder for R-T-B type rare earth permanent magnet, R-T-B type rare earth permanent magnet
JP3267133B2 (en) Alloy for rare earth magnet, method for producing the same, and method for producing permanent magnet
JP4389427B2 (en) Sintered magnet using alloy powder for rare earth-iron-boron magnet
JP3724513B2 (en) Method for manufacturing permanent magnet
JP4479944B2 (en) Alloy flake for rare earth magnet and method for producing the same
US7846273B2 (en) R-T-B type alloy, production method of R-T-B type alloy flake, fine powder for R-T-B type rare earth permanent magnet, and R-T-B type rare earth permanent magnet
JP4879503B2 (en) Alloy block for RTB-based sintered magnet, manufacturing method thereof and magnet
JPH1036949A (en) Alloy for rare earth magnet and its production
JP4689652B2 (en) Method for evaluating metal structure of RTB-based magnet alloy
WO2019220950A1 (en) Cast alloy flakes for r-t-b rare earth sintered magnet
JP4318204B2 (en) Rare earth-containing alloy flake manufacturing method, rare earth magnet alloy flake, rare earth sintered magnet alloy powder, rare earth sintered magnet, bonded magnet alloy powder, and bonded magnet
WO2003020993A1 (en) Rare earth magnet alloy ingot, manufacturing method for the same, r-t-b type magnet alloy ingot, r-t-b type magnet, r-t-b type bonded magnet, r-t-b type exchange spring magnet alloy ingot, r-t-b type exchange spring magnet, and r-t-b type exchange spring bonded magnet
EP1632299B1 (en) Method for producing rare earth based alloy powder and method for producing rare earth based sintered magnet
JP4366360B2 (en) Raw material alloy for RTB-based permanent magnet and RTB-based permanent magnet
JP3561692B2 (en) Structure control method for rare earth element-containing alloy, alloy powder and magnet using the same
JP2003183787A (en) Principal phase-based alloy for rare earth magnet, manufacturing method therefor, mixed powder for sintered rare earth magnet, and rare earth magnet
JP4040571B2 (en) Method for producing rare earth-containing alloy flakes
JP2004043921A (en) Rare-earth-containing alloy flake, its manufacturing process, rare-earth sintered magnet, alloy powder for this, bond magnet and alloy powder for this
JP4754739B2 (en) Alloy ingot for rare earth magnet, method for producing the same, and sintered magnet
WO2009125671A1 (en) R-t-b-base alloy, process for producing r-t-b-base alloy, fines for r-t-b-base rare earth permanent magnet, r-t-b-base rare earth permanent magnet, and process for producing r-t-b-base rare earth permanent magnet
JP2019112720A (en) Alloy for r-t-b-based rare earth sintered magnet, r-t-b-based rare earth sintered magnet
JP2004214390A (en) Method for manufacturing rare-earth magnet, and raw alloy and powder for rare-earth magnet

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040408

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060810

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070517

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070605

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070706

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090806

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100204

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100310

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4479944

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160326

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term