JP4754739B2 - Alloy ingot for rare earth magnet, method for producing the same, and sintered magnet - Google Patents

Alloy ingot for rare earth magnet, method for producing the same, and sintered magnet Download PDF

Info

Publication number
JP4754739B2
JP4754739B2 JP2001266278A JP2001266278A JP4754739B2 JP 4754739 B2 JP4754739 B2 JP 4754739B2 JP 2001266278 A JP2001266278 A JP 2001266278A JP 2001266278 A JP2001266278 A JP 2001266278A JP 4754739 B2 JP4754739 B2 JP 4754739B2
Authority
JP
Japan
Prior art keywords
rare earth
alloy
molten metal
mold
rotating body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001266278A
Other languages
Japanese (ja)
Other versions
JP2003077717A (en
Inventor
正英 宇都宮
寛 長谷川
忠直 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2001266278A priority Critical patent/JP4754739B2/en
Priority to US10/232,520 priority patent/US7014718B2/en
Priority to PCT/JP2002/008931 priority patent/WO2003020993A1/en
Priority to CN02817079A priority patent/CN100591788C/en
Publication of JP2003077717A publication Critical patent/JP2003077717A/en
Priority to US11/330,145 priority patent/US7431070B2/en
Priority to US12/201,722 priority patent/US20090000701A1/en
Application granted granted Critical
Publication of JP4754739B2 publication Critical patent/JP4754739B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes

Description

【0001】
【発明の属する技術分野】
本発明は希土類磁石用合金、特にR−T−B系磁石用合金およびその製造法に関する。
【0002】
【従来の技術】
近年、磁石用合金としてNd−Fe−B系合金がその高特性から急激に生産量を伸ばしており、HD(ハードディスク)用、MRI(磁気共鳴映像法)用あるいは、各種モーター用等に使用されている。通常は、Ndの一部をPr、Dy等他の希土類元素で置換したもの(Rと表記する。)、および/またはFeの一部をCo、Ni等他の遷移元素で置換したもの(Tと表記する。)が一般的であり、Nd−Fe−B系合金を含め、R−T−B系合金と総称されている。
【0003】
R−T−B系合金は、磁化作用に寄与する強磁性相R214Bを主相とする結晶と、非磁性で希土類元素の濃縮した低融点のR−リッチ相を結晶粒界に持つ合金で、活性な金属であることから一般に真空又は不活性ガス中にて溶解され、金型に鋳造されてきた。
この合金鋳塊は、粉砕され3μm(FSSS:フィッシャーサブシーブサイザーでの測定)程度の粉体とした後、磁場中でプレス成形され、焼結炉で約1000〜1100℃の高温にて焼結され、その後必要に応じ熱処理、機械加工され、耐食のためのメッキをされ磁石化されるのが普通である。
【0004】
このR−リッチ相は、以下の点で重要な役割を担っている。
1)融点が低く、焼結時に液相となり、磁石の高密度化、従って磁化の向上に寄与する。
2)粒界の凹凸を無くし、逆磁区のニュークリエーションサイトを減少させ保持力を高める。
3)主相を磁気的に絶縁することから保持力を高める。
従ってR−リッチ相の分散状態が悪いと磁石としての特性に影響するため、均一であることが重要となる。
最終的な磁石としてのR―リッチ相の分布は、原料用合金塊の組織に大きく影響される。すなわち、金型にて鋳造された場合、冷却速度が遅いため往々にして結晶粒が大きくなる。この結果、粉砕した時の粒が結晶粒径よりはるかに細かくなり、金型鋳造ではR−リッチ相はほとんどが結晶粒界に凝集し粒内に無いため、R−リッチ相を含まない主相のみの粒とR−リッチ相のみの粒とが別々に存在し均一な混合がしにくくなる。
【0005】
金型鋳造でのもう一つの問題は、冷却速度が遅いため初晶としてγ―Feが生成しやすくなることである。γ―Feは約910℃以下では、α―Feに変態する。この変態したα―Feは、磁石製造時の粉砕効率の悪化をもたらし、焼結後も残存すれば磁気特性の低下をもたらす。そこで金型にて鋳造したインゴットの場合は、高温で長時間にわたる均質化処理によるα―Feの消去が必要となってくる。
【0006】
これらを解決するため、金型鋳造方法より速い冷却速度で鋳造する方法として、ストリップキャスティング法(SC法と略す。)が紹介され実際の工程にて使用されている。
これは内部が水冷された銅ロール上に溶湯を流し、0.1〜0.9mm程度の薄帯を鋳造することにより、急冷凝固させるものであり、結晶組織を微細化させ、R−リッチ相が微細に分散した組織を有する合金を生成させるものであり、合金内のR−リッチ相が微細に分散しているため、粉砕、焼結後のR−リッチ相の分散性も良好となり、磁気特性向上に成功している。(特開平5−222488号公報、特開平5−295490号公報)しかし、この方法においてもRの割合(%)が低下するに従ってα−Feの発生は避けがたく、例えばNd−Fe−Bの3元合金では、Ndが28質量%以下では、α−Feの発生が見られるようになる。
このα−Feは、磁石製造工程において粉砕性を著しく阻害する。
【0007】
【発明が解決しようとする課題】
本発明者らは、従来の遠心鋳造法を改良し、回転する鋳型の内側に配置した、往復運動し複数のノズルを備えた箱型のタンディッシュを介して、溶湯を回転鋳型の内側に堆積凝固させる方法(Centrifugal Casting:以下CC法と略す。)と装置を発明した。(特開平08−13078号公報、特開平08−332557号公報。)
【0008】
CC法では既に堆積凝固したインゴットの上に次の溶湯が順次注がれ、追加鋳造されたその溶湯は鋳型が1回転する間に凝固するため、凝固速度を速めることができる。しかし、このCC法でもRの濃度の低い合金を製造しようとすると、高温域の冷却速度が遅いためα−Feの生成はさけられないという問題がある。
【0009】
α−Feの生成をさけるためには、CC法で凝固冷却速度を速めればよい。本発明者らは溶湯の堆積速度をより小さくすることにより、α−Feの発生を抑制することを可能とした。これにより、磁石として磁化特性を上げるための手段としてR成分の割合の低い側での鋳造塊が得られるようになった。しかし、Rの濃度の低い成分側に移行すると、R‐リッチ相の存在割合が減少するため、磁石に焼結させるときの高密度化が期待できなくなることと、保持力の向上が期待できなくなる可能性がある。このため、更なる磁石特性を得るためには、より急冷凝固を行いR−リッチ相の微細均一な分布が必要であることが想定された。
【0010】
【課題を解決するための手段】
本発明は、従来の遠心鋳造法について改良を重ね、溶湯の供給速度を抑えかつ鋳型面の冷却速度を上げる方法を考案し、これをおこなうことによって従来見られない微細で均一なR−リッチ相の分布を持つ鋳塊が得られ、これを用いた焼結磁石は高磁化特性を発揮することを確認した。すなわち本発明は、
1)Nd、Pr、Dyのいずれか一種以上の元素を合計で11.8〜15.2原子%、Bを5.6〜7.9原子%含有するR−T−B系磁石用合金(RはYを含む希土類元素のうち少なくとも1種、TはFeを主成分とし1部をCo,Ni等で置換してもよい。)であって、鋳造のままの状態で長さ100μm以上のR−リッチ相が断面内で実質的に見当たらないことを特徴とする希土類磁石用合金塊。
2)Nd、Pr、Dyのいずれか一種以上の元素を合計で11.8〜15.2原子%、Bを5.6〜7.9原子%含有するR−T−B系磁石用合金(RはYを含む希土類元素のうち少なくとも1種、TはFeを主成分とし1部をCo,Ni等で置換してもよい。)であって、鋳造のままの状態で長さ50μm以下のR−リッチ相が分散している領域が断面内で50%以上であることを特徴とする希土類磁石用合金塊。
3)Nd、Pr、Dyのいずれか一種以上の元素を合計で11.8〜15.2原子%、Bを5.6〜7.9原子%含有するR−T−B系磁石用合金(RはYを含む希土類元素のうち少なくとも1種、TはFeを主成分とし1部をCo,Ni等で置換してもよい。)であって、鋳造のままの状態でアスペクト比20以上のR―リッチ相が断面内にて実質的に見当たらないことを特徴とする希土類磁石用合金塊。
4)長軸方向の結晶粒径が1000μm以上の領域が5%以上、R−リッチ相の間隔が平均10μm以下である前記1)乃至3)のいずれか1項に記載の希土類磁石用合金塊。
5)α−Feが実質的に無いことを特徴とする前記1)乃至4)のいずれか1項に記載の希土類磁石用合金塊。
6)前記1)乃至5)のいずれか1項に記載の希土類磁石用合金塊を原料として製造した焼結磁石。
7)溶湯を回転体に受け、該回転体の回転によって溶湯を飛散させ、その飛散した溶湯を、内面が凹又は/及び凸状の非平滑面をもつ回転する円筒状鋳型の内面で堆積凝固させる遠心鋳造方法にて鋳造した前記1)乃至5)のいずれか1項に記載の希土類磁石用合金塊。
8)回転体の回転軸と円筒状鋳型の回転軸とが傾斜角θをなす前記7)に記載の遠心鋳造方法によって鋳造した希土類磁石用合金塊。
9)溶湯を回転体に受け、該回転体の回転によって溶湯を飛散させ、その飛散した溶湯を、内面が凹又は/及び凸状な非平滑面をもつ回転する円筒状鋳型の内面で堆積凝固させることを特徴とする希土類磁石用合金塊の製造方法。
10)回転体の回転軸と円筒状鋳型の回転軸とが傾斜角θをなすことを特徴とする前記9)に記載の希土類磁石用合金塊の製造方法。
11)希土類磁石用合金がR−T−B系磁石用合金であることを特徴とする前記9)または10)に記載の希土類磁石用合金塊の製造方法。
である。
【0011】
【発明の実施の形態】
例えばNd−Fe−B系の従来のSC法により鋳造された鋳塊(Nd30.0質量%)の断面をSEM(走査電子顕微鏡)にて観察した時の反射電子像を図1に示す。
白い部分が、Nd−リッチ相で(RがNdになっているためR−リッチ相をNd−リッチ相と呼ぶ。)、その形状は凝固方向(左:ロール面側から右:自由面側)に向って棒状に一部は繋がって延びているものと点状に散在しているものがある。棒状のものの長手方向は、ほぼ結晶の粒界や粒内でも結晶の成長方向に伸びている。これらは、鋳造後の熱処理にて若干消失あるいは分断されるが、鋳造時の影響がそのままの形態で残っており、点状、棒状のものが不均一に分布している。これは、SC法にて鋳造したNd−Fe−B系合金鋳塊の一般的な断面組織をあらわしている。
【0012】
本発明の鋳塊(Nd30.0質量%)の断面写真を図9に示す。本発明の鋳塊における特徴は、Nd−リッチ相がほとんど点状に均一に分散していることである。この点状のNd−リッチ相は、ほとんどのものが大きさが最長巾で50μm以下であり、かつ従来のSC材に見られるような線状、棒状のものがほとんど見当たらず長さ100μm以上のNd−リッチ相は実質的に見当たらない。
【0013】
ここで、「実質的に見当たらない」という意味は、次のようにして鋳塊の断面観察から確認できる。
【0014】
鋳塊断面を研磨し、SEMにて断面の任意の視野を400倍にて観察し、その視野中に長手方向で100μm以上の棒状のNd−リッチ相を探す。この時、ランダムな10視野にて視野内に100μm以上のNd−リッチ相が見られないものが9視野以上であるレベルのものである。
【0015】
さらに、本発明の鋳塊は、細かい点状のNd−リッチ相が点在しており、断面のSEM観察で50μm以下の長さのNd−リッチ相のみで占められている組織の領域が50%以上を占めている。これは400倍のSEMにて観察した写真を任意に10枚撮った場合、写真中に50μmを超える長さのNd−リッチ相が見られないものは5枚以上であると言い換えられる。
【0016】
本発明の鋳塊の特徴は、棒状のR−リッチ相が少ないことである。より厳密に言えば、アスペクト20以上のR−リッチ相が「実質的にみられない」ことである。この測定についても、「実質的にみられない」とは同様に研磨した断面をSEMにて1000倍で観察し、同一視野内にアスペクト比20以上のものが存在する視野がランダムな10視野中1視野以下程度のレベルを言う。
【0017】
また、本発明の鋳塊は、断面の結晶粒の長軸方向の長さが1000μm以上の領域が5%以上であることにより結晶配向性がよいことが特徴であり、かつR−リッチ相間隔が平均10μm以下であることにより粉砕後の焼結性もよい。
R−リッチ相間隔は、断面SEMにより観察し、鋳造厚さ方向と直角方向のR−リッチ相間隔を、画像処理あるいは写真上からの手測定により平均したものである。
【0018】
また、本発明の鋳塊は、Rが化学量論組成付近まで実質的にα―Feが発生しない。ここで「実質的にα―Feが発生しない」というのは、鋳塊の任意の断面の任意の視野で10視野にてα―Feが存在するかどうかを確認した場合9割以上の視野で見つからない程度の状態をいう。SEMの反射電子線像では、α―Feはデンドライト状に黒く見える。
【0019】
本発明の合金塊は、次のような方法にて製造できる。図2は、本発明の希土類磁石用合金塊の製造に用いる装置の1例であり、これを用いて説明する。
【0020】
通常、希土類合金は、その活性な性質なため真空または不活性ガスの部屋1の中でルツボ3にて溶解される。溶湯31は、湯道6により回転軸をRとした回転体5に受け、該回転体5の回転によって溶湯を円筒状の鋳型4の内壁に飛散させる。回転体は、回転軸をRとして回転する物質であり、注がれた溶湯を周囲に飛散させる機能を有する物体であり、円盤、上に角度を持つカップ状、下に角度を持つコーン状等にて飛散させられるが、図で示すような容器状で側面に複数の孔部を有する形状(回転受け容器)が好ましい。
【0021】
このような回転体や回転体の内部に溶湯が注がれた場合、溶湯は回転による力や遠心力により、回転体の周囲に飛散させられる。この場合、回転体の熱容量を小さくすることによって溶湯を回転体上で凝固させず、円筒上鋳型の内壁にて堆積凝固させることができる。
図2では、鋳型が水平に置かれているが、垂直に置いても、傾斜させておいても回転体との位置関係を一定に保てばなんら問題はない。
【0022】
回転体5の回転軸と鋳型4の回転軸は、ある角度θをもたせることにより堆積面を鋳型の長手方向全体に広げることができ、それによって溶湯の堆積速度をコントロールすることが出来る。
この角度をつけることにより、溶湯を大きな面積範囲にばら撒くことができ結果的に凝固速度を大きくすることができる。
溶湯を鋳型内全体にばら撒くには、上述の角度をつける方法以外に、鋳型又は回転体を鋳型回転軸方法に前後させることによっても同様の効果が得られる。
【0023】
なお、回転体と鋳型は同一方向に回転速度をずらして回転させることが好ましい。反対方向に回転させると、溶湯が鋳型に衝突する際に鋳型に乗らずに飛散するスプラッシュ現象が発生し易くなり、歩留りの低下を招く。
また、回転体と鋳型の回転速度が同じであると鋳型上の同一面に線状に堆積することになり、鋳型前面に広がらない。
従ってあまり両者の回転速度が近いことも避けるべきで、通常は、両者の回転速度の差は少なくとも10%以上、望ましくは20%以上差をつけるべきである。
【0024】
回転体の回転数は、溶湯の遠心力により溶湯が鋳型の内壁面に衝突するような条件を選ぶ必要がある。また、鋳型の回転数は、堆積凝固した鋳塊が落下しないように1G以上の遠心力を与えるとともに、遠心力を増すことにより溶湯を鋳型内壁へ押し付けることで冷却効果を増すことができる。
【0025】
本発明の特徴は、更にこの回転する鋳型4の内面を凹又は凸あるいは、それらの組合せによる非平滑面にすることにより鋳型の冷却面積を増すことで冷却能を上げ冷却速度を上げていることである。
内面の凹又は凸は、例えば図3のように曲面でも良いが図4、図5、図6のように直線的に角度のついた溝のほうが、溶湯が鋳型面に当った瞬間の凝固収縮による鋳型面からのずれによる離れを防ぎ、鋳型との密着性を上げ熱伝導の低下を防ぐ意味で好ましい。
なお、凹凸の深さは、鋳型体積、鋳型表面積、比熱等を勘案して設計することが必要であるが、0.5mm〜数mmが適当である。浅過ぎると冷却効果が小さくなり、所望の組織が得られなくなり、深すぎると鋳造後の鋳造品の剥離に手間がかかる。
また、回転体から飛来してくる溶湯の大きさと溝形状、大きさとの関係も大切であり、飛来する溶湯が大きい場合凹凸の溝巾が狭すぎ、深すぎると、溶湯が溝に完全に入らず鋳型と堆積溶湯との間にギャップを生じ冷却を損なうことがあるので注意を要する。
鋳型の材質は、Cuが熱伝導率から見て好ましいが、Feでも問題はない。
【0026】
従来の鋳造法では柱状晶的に伸びていた結晶に沿ってR−リッチ相も晶出していたため、R−リッチ相が棒状に伸びていた。また、この柱状晶の方向がばらばらであることも手伝ってR−リッチ相の分布は不均一であったが、上記の鋳型内面の冷却能の向上により凝固速度が上がることによって、本発明の組織は、等軸晶となりやすく、かつR−リッチ相の晶出が細かくなることから棒状のものがほとんど少なく、分布も均一性を増すこととなったと考えられる。
【0027】
本鋳造法は、鋳型にて堆積し凝固過程にある溶湯の上に更に後から溶湯が追加され、冷却のための熱の伝達は鋳造された鋳塊を通して行われるため無限に厚い鋳塊を作ることは不可能であり、通常は数十mm厚さが限度であり、好ましくは、1〜10mm程度である。1mm未満であまり薄すぎると後の磁石製造工程のハンドリングが面倒となる。10mmを超えると鋳型と反対面側における冷却能が落ちてくる。
【0028】
本鋳造法にて製造したR−T−B系磁石用合金塊から粉砕、成型、焼結することにより、高特性の異方性磁石を製造することができる。
粉砕は、通常、水素解砕、中粉砕、微粉砕の順で行なわれ、3μm(FSSS)程度の粉体にされる。
【0029】
ここで、水素解砕は、前工程の水素吸蔵工程と後工程の脱水素工程に分けられる。水素吸蔵工程では、267hPa〜50000hPaの圧力の水素ガス雰囲気で、主に合金塊のR−リッチ相に水素を吸蔵させ、この時に生成されるR−水素化物によりR−リッチ相が体積膨張することを利用して、合金塊自体を微細に割ることまたは無数の微細な割れ目を生じさせる。この水素吸蔵は常温〜600℃程度の範囲で実施されるが、R−リッチ相の体積膨張を大きくして効率良く割るためには、常温〜100℃程度の範囲で実施することが好ましい。好ましい処理時間は1時間以上である。この水素吸蔵工程により生成したR−水素化物は大気中では不安定であり酸化され易いため、200〜600℃程度で1.33hPa以下真空中に保持する脱水素処理を行なうことが好ましい。この処理により、大気中で安定なR-水素化物に変化させることができる。好ましい処理時間は30分以上である。水素吸蔵後から焼結までの各工程で酸化防止のための雰囲気管理がなされている場合は、脱水素処理を省くこともできる。
なお、この水素解砕をせずに中粉砕、微粉砕することもできる。
【0030】
中粉砕とは、合金片をアルゴンガスや窒素ガスなどの不活性ガス雰囲気中で、例えば500μm以下まで粉砕することである。このための粉砕機には、例えばブラウンミル粉砕機がある。本発明の水素解砕した合金片の場合、既に微細に割れている、または内部に無数の微細な割れ目が生じているため、この中粉砕を省略することもできる。
【0031】
微粉砕とは、3μm(FSSS)程度まで粉砕することである。このための粉砕機には、例えばジェットミル装置がある。この場合、粉砕時の雰囲気はアルゴンガスや窒素ガスなどの不活性ガス雰囲気とする。これらの不活性ガス中に2質量%以下、好ましくは1質量%以下の酸素を混入させてもよい。このことにより粉砕効率が向上するとともに、粉砕後の粉体の酸素濃度が1000〜10000ppmとなり耐酸化性が向上する。また、焼結時の異常粒成長を抑制することもできる。
【0032】
磁場成型時に粉体と金型内壁との摩擦を低減し、また粉体どうしの摩擦も低減させて配向性を向上させるため、粉体にはステアリン酸亜鉛等の潤滑剤を添加することが好ましい。好ましい添加量は0.01〜1質量%である。添加は微粉砕前でも後でもよいが、磁場中成形前に、アルゴンガスや窒素ガスなどの不活性ガス雰囲気中でV型ブレンダー等を用いて十分に混合することが好ましい。
【0033】
3μm(FSSS)程度まで粉砕された粉体は、磁場中成型機でプレス成型される。金型は、キャビティ内の磁界方向を考慮して、磁性材と非磁性材を組み合わせて作製される。成型圧力は0.5〜2t/cm2が好ましい。成型時のキャビティ内の磁界は5〜20kOeが好ましい。また、成型時の雰囲気はアルゴンガスや窒素ガスなどの不活性ガス雰囲気が好ましいが、上述の耐酸化処理した粉体の場合、大気中でも可能である。
【0034】
焼結は、1000〜1100℃で行なわれる。焼結温度に到達する前に潤滑剤と、微粉中の水素は完全に除去しておく必要がある。潤滑剤の好ましい除去条件は、1.33×10-2hPaの真空中またはAr減圧フロー雰囲気中、300〜500℃で30分以上保持することである。また、水素の好ましい除去条件は、1.33×10-2hPa以下の真空中、700〜900℃で30分以上保持することである。焼結時の雰囲気はアルゴンガス雰囲気または1.33×10-2hPa以下の真空雰囲気が好ましい。保持時間は1時間以上が好ましい。
【0035】
焼結後、保磁力向上のため、必要に応じて500〜650℃で熱処理することができる。好ましい雰囲気はアルゴンガス雰囲気または真空雰囲気である。好ましい保持時間は30分以上である。
【0036】
なお、本鋳造方法は、R−T−B系磁石用合金に限らず、例えばニッケル水素電池の負極用のミッシュメタル−Ni合金等の希土類合金にも適用でき、本法の急冷凝固により、Mn等の偏析を解消できる。
【0037】
【実施例】
(実施例1)
合金組成が、Nd:30.0質量%、B:1.00質量%、Co:1.0質量%、Al:0.30質量%、Cu:0.10質量%、残部鉄になるように、金属ネオジウム、フェロボロン、コバルト、アルミニウム、銅、鉄を配合し、アルミナ坩堝を使用して、アルゴンガス1気圧雰囲気中で、高周波溶解炉で溶解し、溶湯を図2に示す装置で鋳造を行った。
鋳型は、内径500mm、長さ500mmで、鋳型内面は図7に示す深さ1mm、底部の巾5mmの溝が3mm間隔で彫られている。
回転受け容器は、直径2mmの孔部を周囲に8個配置した内径250mmのものである。
回転受け容器の回転軸と鋳型の回転軸との角度θは、25°で、鋳型内壁への平均溶湯体積速度を0.01cm/秒の条件とした。
鋳型の回転数は、遠心力が10Gになるように、189rpmに設定し、回転受け容器の回転速度は535rpmとし、溶湯に約40Gの遠心力を加えた。
得られた合金塊の厚さは、円筒状鋳型の中央部で6〜8mm、両端部近傍の最も厚い部分で11〜13mmであった。断面のミクロ組織は、電子顕微鏡にて反射電子像を観察した。それらの結果を表1に示す。
【0038】
【表1】

Figure 0004754739
【0039】
(実施例2)
合金組成が、Nd28.0質量%、B:1.00質量%、Co:1.0質量%、Al:0.30質量%、Cu:0.10質量%、残部鉄になるように、金属ネオジウム、フェロボロン、コバルト、アルミニウム、銅、鉄を配合し、アルミナ坩堝を使用して、アルゴンガス1気圧雰囲気中で、高周波溶解炉で溶解し、溶湯を図2に示す装置で鋳造を行った。
鋳型、回転受け容器の寸法は、実施例1と同じであるが、鋳型内面は、平滑であり、鋳型の回転数は、遠心力が15Gになるように、231rpmに設定した。回転受け容器は、実施例と同じ条件にて実施した。
この結果を、上記の表1に示した。
【0040】
(比較例1)
実施例1と同様の組成の合金を配合し、実施例1と同様に溶解し、同様の鋳造装置にて鋳造を行った。ただし、この場合の鋳型内面は、なんら凹凸は無く、表面は、事前に平滑にサンドペーパー240番にて研磨された。また、鋳型の回転は、2.5Gとなるような回転数とした。
【0041】
この鋳造で得られた合金塊は、円筒状鋳型の中央部で7〜8mm、両端部近傍の最も厚い部分で12〜13mmであった。これを実施例1と同様に断面の反射電子像の観察を行った。この結果を上記の表1に示す。
【0042】
(比較例2)
実施例1と同様の組成となるよう配合し、溶解を1気圧のアルゴン雰囲気下で行い、図8に示すようなSC法の鋳造装置を用いて鋳造を行った。この水冷銅ロール23の外径は400mm、周速度は1m/sとし、平均厚さ0.32mmのフレーク状の合金塊を得た。得られた合金塊の断面の組織を反射電子線像で観察した。この結果を、上記の表1に示す。
【0043】
(実施例3)
本実施例3では、焼結磁石を作製した例を示す。実施例1で得られた合金片を水素解砕、中粉砕、微粉砕の順に粉砕した。水素解砕工程の前工程である水素吸蔵工程の条件は、100%水素雰囲気、大気圧で1時間保持とした。水素吸蔵反応開始時の金属片の温度は25℃であった。また後工程である脱水素工程の条件は、0.13hPaの真空中、500℃で1時間保持とした。中粉砕にはブラウンミル装置を用い、水素解砕した粉末を100%窒素雰囲気中で425μm以下まで粉砕した。この粉に、ステアリン酸亜鉛粉末を0.07質量%添加し、100%窒素雰囲気中でV型ブレンダーで十分混合した後、ジェットミル装置で3.2μm(FSSS)まで微粉砕した。粉砕時の雰囲気は、4000ppmの酸素を混合した窒素雰囲気中とした。その後、再度、100%窒素雰囲気中でV型ブレンダーで十分混合した。得られた粉体の酸素濃度は2500ppmであった。またこの粉体の炭素濃度の分析から、粉体に混合されているステアリン酸亜鉛粉末は0.05質量%であると計算された。
次に、得られた粉体を100%窒素雰囲気中で横磁場中成型機でプレス成型した。成型圧力は1.2t/cm2であり、金型のキャビティ内の磁界は15kOeとした。
得られた成型体を、1.33×10-5hPaの真空中、500℃で1時間保持し、次いで1.33×10-5hPa真空中、800℃で2時間保持した後、1.33×10-5hPa真空中、1060℃で2時間保持して焼結させた。焼結密度は7.5g/cm3以上であり十分な大きさの密度となった。さらに、この焼結体をアルゴン雰囲気中、540℃で1時間熱処理した。
直流BHカーブトレーサーでこの焼結体の磁気特性を測定した結果を表2に示す。また、この焼結体の断面を鏡面研磨し、この面を偏光顕微鏡で観察したところ、結晶粒の大きさは平均で15〜20μmであり、ほぼ均一の大きさであった。
【0044】
(比較例3、4)
本比較例3、比較例4では、比較例1、比較例2で得られた合金片をそれぞれ、実施例3と同様の方法で粉砕して、3.3μm(FSSS)の大きさの粉体を得た。粉体の酸素濃度は2600ppmであった。これらの粉体を使って、実施例3と同様の方法で磁場中成型、焼結し、異方性磁石を作製した。得られた焼結体の磁気特性を表2に示す。
【0045】
【表2】
Figure 0004754739
【0046】
表2より、実施例3で作製した磁石と比較して、比較例3で作製した磁石は、保磁力(iHc)が2kOe以上低い。これは、Rリッチ相の分散状況が悪いためであると思われる。また、比較例4で作製した磁石は、Brが0.15kG低い。これは、本発明の合金よりも結晶配向性が悪いためであると思われる。
【0047】
【発明の効果】
本発明の希土類磁石用合金塊は、従来見られないR−リッチ相の細かさと均一性をもち、本合金塊から製造した焼結磁石は、従来の磁石より高特性を発現する。
【図面の簡単な説明】
【図1】従来のSC法による合金塊の断面組織の一例を示す。
【図2】本発明の希土類磁石用合金塊の製造に用いる装置の一例を示す。
【図3】本発明の鋳型内面の断面図の一例を示す。
【図4】本発明の鋳型内面の断面図の一例を示す。
【図5】本発明の鋳型内面の断面図の一例を示す。
【図6】本発明の鋳型内面の断面図の一例を示す。
【図7】本発明の鋳型内面の断面図の一例を示す。
【図8】従来のSC法の鋳造装置の一例を示す。
【図9】本発明の希土類磁石合金塊の断面組織の一例を示す。
【符号の説明】
1 溶解チャンバー
2 鋳造チャンバー
3 るつぼ
31 溶湯
4 円筒状回転鋳型
L 円筒状鋳型の回転軸
5 回転体(回転受け容器)
R 回転体(回転受け容器)の回転軸
6 湯道
7 インゴット
8 鋳型駆動機構
9 回転体(回転受け容器)回転駆動機構
10 回転体の回転モーター
21 るつぼ
22 タンディッシュ
23 水冷銅ロール
24 ストリップ状合金塊[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an alloy for a rare earth magnet, particularly an alloy for an R-T-B magnet and a method for producing the same.
[0002]
[Prior art]
In recent years, Nd-Fe-B alloys as magnet alloys have rapidly increased in production due to their high characteristics and are used for HD (Hard Disk), MRI (Magnetic Resonance Imaging) or various motors. ing. Usually, a part of Nd is substituted with other rare earth elements such as Pr and Dy (represented as R) and / or a part of Fe is substituted with other transition elements such as Co and Ni (T And is generally referred to as an RTB-based alloy, including Nd—Fe—B alloys.
[0003]
In the R-T-B system alloy, a crystal having a ferromagnetic phase R 2 T 14 B that contributes to a magnetization action as a main phase and a low-melting R-rich phase that is nonmagnetic and enriched with rare earth elements is used as a grain boundary. Since it is an active metal, it is generally melted in a vacuum or an inert gas and cast into a mold.
This alloy ingot is pulverized to a powder of about 3 μm (measured with a FSSS: Fischer sub-sieve sizer), press-molded in a magnetic field, and sintered at a high temperature of about 1000 to 1100 ° C. in a sintering furnace. After that, it is usually heat treated and machined as necessary, plated for corrosion resistance and magnetized.
[0004]
This R-rich phase plays an important role in the following points.
1) The melting point is low and it becomes a liquid phase at the time of sintering, which contributes to increasing the density of the magnet and thus improving the magnetization.
2) Eliminate grain boundary irregularities, reduce reverse domain nucleation sites and increase retention.
3) Since the main phase is magnetically insulated, the holding force is increased.
Therefore, if the dispersion state of the R-rich phase is poor, it affects the characteristics of the magnet, and therefore it is important that it is uniform.
The distribution of the R-rich phase as the final magnet is greatly influenced by the structure of the raw material alloy ingot. That is, when cast in a mold, the cooling rate is slow and the crystal grains are often large. As a result, the grains when pulverized become much finer than the crystal grain size, and in the mold casting, the R-rich phase is mostly agglomerated at the grain boundaries and is not in the grains, so the main phase does not contain the R-rich phase. Only particles and only R-rich phase particles are present separately, making uniform mixing difficult.
[0005]
Another problem in mold casting is that γ-Fe is likely to be formed as primary crystals due to the slow cooling rate. γ-Fe transforms into α-Fe at about 910 ° C or less. This transformed α-Fe deteriorates the pulverization efficiency at the time of magnet production, and if it remains after sintering, it causes a decrease in magnetic properties. Therefore, in the case of an ingot cast by a mold, it is necessary to erase α-Fe by a homogenization treatment for a long time at a high temperature.
[0006]
In order to solve these problems, a strip casting method (abbreviated as SC method) has been introduced and used in actual processes as a method of casting at a faster cooling rate than the mold casting method.
This is a method in which a molten metal is poured onto a copper roll whose inside is water-cooled, and a thin strip of about 0.1 to 0.9 mm is cast and solidified rapidly, and the crystal structure is refined, and an R-rich phase is obtained. Produces an alloy having a finely dispersed structure, and since the R-rich phase in the alloy is finely dispersed, the dispersibility of the R-rich phase after pulverization and sintering is improved, and magnetic Has succeeded in improving characteristics. However, in this method as well, the generation of α-Fe is unavoidable as the R ratio (%) decreases. For example, Nd—Fe—B In the ternary alloy, when Nd is 28% by mass or less, generation of α-Fe is observed.
This α-Fe significantly impairs grindability in the magnet manufacturing process.
[0007]
[Problems to be solved by the invention]
The present inventors improved the conventional centrifugal casting method, and deposited the molten metal on the inside of the rotary mold through a box-type tundish that was reciprocated and provided with a plurality of nozzles arranged inside the rotating mold. A method of coagulation (Centrifugal Casting: hereinafter abbreviated as CC method) and an apparatus were invented. (Unexamined-Japanese-Patent No. 08-13078, Unexamined-Japanese-Patent No. 08-332557)
[0008]
In the CC method, the next molten metal is sequentially poured onto the ingot that has already been deposited and solidified, and the additionally cast molten metal solidifies during one rotation of the mold, so that the solidification rate can be increased. However, even in this CC method, when an alloy having a low concentration of R is to be produced, there is a problem that the production of α-Fe cannot be avoided because the cooling rate in the high temperature range is slow.
[0009]
In order to avoid the formation of α-Fe, the solidification cooling rate may be increased by the CC method. The present inventors made it possible to suppress the generation of α-Fe by reducing the deposition rate of the molten metal. As a result, a cast ingot on the side having a low ratio of the R component can be obtained as a means for improving the magnetization characteristics as a magnet. However, when moving to the component side where the concentration of R is low, the ratio of the R-rich phase decreases, so that it is not possible to expect a higher density when sintering the magnet, and an improvement in holding power cannot be expected. there is a possibility. Therefore, in order to obtain further magnet characteristics, it was assumed that rapid solidification is required and a fine and uniform distribution of the R-rich phase is required.
[0010]
[Means for Solving the Problems]
The present invention continually improves the conventional centrifugal casting method, and devise a method of suppressing the molten metal supply rate and increasing the cooling rate of the mold surface, and by carrying out this, a fine and uniform R-rich phase that has not been conventionally seen. It was confirmed that the ingot having the distribution of the above was obtained, and that the sintered magnet using this exhibited high magnetization characteristics. That is, the present invention
1) R-T-B magnet alloy containing 11.8 to 15.2 atomic percent of any element of Nd, Pr, and Dy in total and 5.6 to 7.9 atomic percent of B ( R is at least one of rare earth elements including Y, T is Fe as a main component, and 1 part may be replaced with Co, Ni, etc.) An alloy ingot for a rare earth magnet, wherein the R-rich phase is substantially not found in the cross section.
2) R-T-B type magnet alloy containing 11.8 to 15.2 atomic% in total of any one or more elements of Nd, Pr and Dy and 5.6 to 7.9 atomic% of B ( R is at least one of rare earth elements including Y, T is Fe as a main component, and 1 part may be substituted with Co, Ni, etc.), and is 50 μm or less in length as cast An alloy ingot for a rare earth magnet, wherein the region in which the R-rich phase is dispersed is 50% or more in the cross section.
3) R-T-B system magnet alloy containing 11.8 to 15.2 atomic percent of Bd and 5.6 to 7.9 atomic percent in total of any one or more elements of Nd, Pr and Dy ( R is at least one of rare earth elements including Y, T is Fe as a main component, and 1 part may be substituted with Co, Ni, etc.) An alloy ingot for a rare earth magnet, wherein the R-rich phase is substantially not found in the cross section.
4) The alloy ingot for a rare earth magnet according to any one of 1) to 3) above, wherein a region having a crystal grain size in the major axis direction of 1000 μm or more is 5% or more and an R-rich phase interval is 10 μm or less on average. .
5) The alloy ingot for a rare earth magnet according to any one of 1) to 4) above, wherein α-Fe is substantially absent.
6) A sintered magnet manufactured using the alloy ingot for rare earth magnet according to any one of 1) to 5) as a raw material.
7) The molten metal is received by the rotating body, and the molten metal is scattered by the rotation of the rotating body. The scattered molten metal is deposited and solidified on the inner surface of a rotating cylindrical mold having a concave or / and convex non-smooth inner surface. The alloy block for a rare earth magnet according to any one of 1) to 5), which is cast by a centrifugal casting method.
8) An alloy block for a rare earth magnet cast by the centrifugal casting method according to 7) above, wherein the rotating shaft of the rotating body and the rotating shaft of the cylindrical mold form an inclination angle θ.
9) The molten metal is received by the rotating body, and the molten metal is scattered by the rotation of the rotating body, and the scattered molten metal is deposited and solidified on the inner surface of the rotating cylindrical mold having a concave or / and convex inner surface. A method for producing an alloy ingot for a rare earth magnet.
10) The method for producing an alloy ingot for a rare earth magnet as described in 9) above, wherein the rotation axis of the rotating body and the rotation axis of the cylindrical mold form an inclination angle θ.
11) The method for producing an alloy block for a rare earth magnet according to 9) or 10) above, wherein the alloy for a rare earth magnet is an alloy for an R-T-B magnet.
It is.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
For example, FIG. 1 shows a backscattered electron image when a cross section of an ingot (Nd 30.0 mass%) cast by the conventional SC method of Nd—Fe—B system is observed with an SEM (scanning electron microscope).
The white part is the Nd-rich phase (the R-rich phase is called the Nd-rich phase because R is Nd), and the shape is the solidification direction (left: roll surface side to right: free surface side) Some of them are connected in a bar shape and others are scattered like dots. The longitudinal direction of the rod-like material extends in the crystal growth direction almost at the grain boundaries and within the grains. These are slightly lost or divided by the heat treatment after casting, but the influence at the time of casting remains as it is, and the dot-like and rod-like ones are unevenly distributed. This represents a general cross-sectional structure of an Nd—Fe—B alloy ingot cast by the SC method.
[0012]
FIG. 9 shows a cross-sectional photograph of the ingot (Nd 30.0 mass%) of the present invention. The feature of the ingot of the present invention is that the Nd-rich phase is uniformly dispersed almost in the form of dots. Most of these dot-like Nd-rich phases have a maximum length of 50 μm or less, and there are almost no linear or rod-like shapes found in conventional SC materials, and a length of 100 μm or more. There is virtually no Nd-rich phase.
[0013]
Here, the meaning of “substantially missing” can be confirmed by observing the cross section of the ingot as follows.
[0014]
The ingot cross section is polished, an arbitrary field of view of the cross section is observed with a SEM at 400 times, and a rod-like Nd-rich phase having a length of 100 μm or more is searched in the field of view. At this time, those in which Nd-rich phase of 100 μm or more is not observed in the visual field in 10 random visual fields are at the level of 9 visual fields or more.
[0015]
Furthermore, the ingot of the present invention is dotted with fine punctiform Nd-rich phases, and the area of the structure occupied by only the Nd-rich phases having a length of 50 μm or less by SEM observation of the cross section is 50. Accounted for over 50%. In other words, when 10 photographs taken with a 400 times SEM are taken arbitrarily, it is paraphrased that there are 5 or more photographs in which no Nd-rich phase with a length of more than 50 μm is observed.
[0016]
The feature of the ingot of the present invention is that there are few rod-like R-rich phases. More strictly speaking, an R-rich phase having an aspect of 20 or more is “not substantially seen”. Also in this measurement, “substantially not seen” is similarly observed by observing a polished cross section with a SEM at a magnification of 1000, and 10 fields with an aspect ratio of 20 or more in the same field are random. A level of about 1 field of view or less.
[0017]
In addition, the ingot of the present invention is characterized in that the crystal orientation is good when the length of the crystal grains of the cross section in the long axis direction is 5% or more and the R-rich phase interval is good. Since the average is 10 μm or less, the sinterability after grinding is good.
The R-rich phase interval is observed by a cross-sectional SEM, and the R-rich phase interval in the direction perpendicular to the casting thickness direction is averaged by image processing or manual measurement from a photograph.
[0018]
In the ingot of the present invention, α-Fe is not substantially generated until R is close to the stoichiometric composition. Here, “substantially no α-Fe is generated” means that 90% or more of visual fields are present when it is confirmed whether or not α-Fe is present in 10 visual fields of an arbitrary cross section of the ingot. A state that is not found. In the reflected electron beam image of SEM, α-Fe appears black in a dendrite shape.
[0019]
The alloy lump of the present invention can be manufactured by the following method. FIG. 2 shows an example of an apparatus used for manufacturing the rare earth magnet alloy ingot of the present invention, which will be described.
[0020]
Normally, rare earth alloys are melted in a crucible 3 in a vacuum or inert gas chamber 1 due to their active nature. The molten metal 31 is received by the rotating body 5 having a rotation axis R by the runner 6, and the molten metal is scattered on the inner wall of the cylindrical mold 4 by the rotation of the rotating body 5. The rotating body is a substance that rotates with the rotation axis as R, and is an object having the function of scattering the poured molten metal around, such as a disk, a cup shape with an angle on top, a cone shape with an angle on the bottom, etc. However, a shape having a plurality of holes on the side surface (rotary receiving container) as shown in the figure is preferable.
[0021]
When the molten metal is poured into such a rotating body or the rotating body, the molten metal is scattered around the rotating body by the force of rotation or centrifugal force. In this case, by reducing the heat capacity of the rotating body, the molten metal can be deposited and solidified on the inner wall of the mold on the cylinder without solidifying on the rotating body.
In FIG. 2, the mold is placed horizontally, but there is no problem if the positional relationship with the rotating body is kept constant regardless of whether it is placed vertically or inclined.
[0022]
The rotation surface of the rotating body 5 and the rotation shaft of the mold 4 have a certain angle θ, so that the deposition surface can be spread over the entire longitudinal direction of the mold, thereby controlling the deposition rate of the molten metal.
By providing this angle, the molten metal can be spread over a large area range, and as a result, the solidification rate can be increased.
In order to spread the molten metal throughout the mold, the same effect can be obtained by moving the mold or the rotating body back and forth to the mold rotating shaft method in addition to the above-described method of setting the angle.
[0023]
Note that the rotating body and the mold are preferably rotated at different rotational speeds in the same direction. When it is rotated in the opposite direction, when the molten metal collides with the mold, a splash phenomenon is likely to occur without getting on the mold and the yield is reduced.
Further, if the rotational speeds of the rotating body and the mold are the same, they will be deposited linearly on the same surface on the mold and will not spread on the front surface of the mold.
Therefore, it should be avoided that the rotational speeds of the two are too close. Normally, the difference between the rotational speeds of the two should be at least 10% or more, preferably 20% or more.
[0024]
The rotational speed of the rotating body needs to be selected so that the molten metal collides with the inner wall surface of the mold due to the centrifugal force of the molten metal. Further, the rotational speed of the mold can increase the cooling effect by applying a centrifugal force of 1 G or more so that the deposited and solidified ingot does not fall and by pressing the molten metal against the inner wall of the mold by increasing the centrifugal force.
[0025]
The feature of the present invention is that the inner surface of the rotating mold 4 is concave or convex, or a non-smooth surface by a combination thereof, thereby increasing the cooling area of the mold and increasing the cooling rate. It is.
The concave or convex surface of the inner surface may be a curved surface as shown in FIG. 3, for example, but the linearly angled grooves as shown in FIGS. 4, 5, and 6 are solidified and contracted at the moment when the molten metal hits the mold surface. It is preferable in terms of preventing separation due to deviation from the mold surface due to, increasing adhesion to the mold and preventing a decrease in heat conduction.
The depth of the irregularities needs to be designed in consideration of the mold volume, mold surface area, specific heat, etc., but 0.5 mm to several mm is appropriate. If it is too shallow, the cooling effect will be small and the desired structure will not be obtained. If it is too deep, it will take time to peel off the cast product after casting.
In addition, the relationship between the size of the molten metal coming from the rotating body and the shape and size of the molten metal is also important. If the molten metal is large, the uneven groove width is too narrow, and if it is too deep, the molten metal will completely enter the groove. Care must be taken since a gap may be formed between the mold and the molten molten metal and cooling may be impaired.
The material of the mold is preferably Cu from the viewpoint of thermal conductivity, but there is no problem with Fe.
[0026]
In the conventional casting method, the R-rich phase was also crystallized along the crystals that were elongated like columnar crystals, and thus the R-rich phase was elongated in a rod shape. Further, the distribution of the R-rich phase was non-uniform due to the fact that the direction of the columnar crystals was disjoint, but the solidification rate increased due to the improvement of the cooling ability of the inner surface of the mold described above. Is likely to be equiaxed and the crystallization of the R-rich phase becomes fine, so that there are almost no rod-like crystals, and the distribution is considered to have increased uniformity.
[0027]
In this casting method, the molten metal is further added on the molten metal that is deposited in the mold and is in the process of solidification, and heat transfer for cooling is performed through the cast ingot, so that an infinitely thick ingot is formed. This is impossible, and the thickness is usually several tens of mm, preferably about 1 to 10 mm. If it is less than 1 mm and too thin, handling of the subsequent magnet manufacturing process becomes troublesome. If it exceeds 10 mm, the cooling capacity on the side opposite to the mold will decrease.
[0028]
By pulverizing, molding, and sintering from an alloy block for an R-T-B magnet manufactured by the present casting method, an anisotropic magnet having high characteristics can be manufactured.
The pulverization is usually performed in the order of hydrogen pulverization, medium pulverization, and fine pulverization, and is made into a powder of about 3 μm (FSSS).
[0029]
Here, hydrogen cracking is divided into a hydrogen storage process in the previous process and a dehydrogenation process in the subsequent process. In the hydrogen storage step, hydrogen is mainly stored in the R-rich phase of the alloy lump in a hydrogen gas atmosphere at a pressure of 267 hPa to 50000 hPa, and the R-rich phase is volume-expanded by the R-hydride generated at this time. Is used to finely break the alloy ingot itself or to generate countless fine cracks. This hydrogen occlusion is carried out in the range from room temperature to about 600 ° C., but it is preferably carried out in the range from room temperature to about 100 ° C. in order to increase the volume expansion of the R-rich phase and efficiently divide it. A preferred treatment time is 1 hour or more. Since the R-hydride produced by this hydrogen occlusion process is unstable in the atmosphere and easily oxidized, it is preferable to perform a dehydrogenation treatment in which a vacuum is maintained at about 200 to 600 ° C. and 1.33 hPa or less. By this treatment, it can be changed to R-hydride which is stable in the atmosphere. A preferred treatment time is 30 minutes or more. In the case where atmosphere management for preventing oxidation is performed in each process from hydrogen storage to sintering, dehydrogenation treatment can be omitted.
It is also possible to pulverize inside and finely without this hydrogen cracking.
[0030]
Medium pulverization refers to pulverizing an alloy piece to, for example, 500 μm or less in an inert gas atmosphere such as argon gas or nitrogen gas. An example of a pulverizer for this purpose is a brown mill pulverizer. In the case of the hydrogen-crushed alloy piece of the present invention, since it has already been finely cracked or innumerable fine cracks are generated inside, the pulverization can be omitted.
[0031]
The fine pulverization is to pulverize to about 3 μm (FSSS). An example of a pulverizer for this purpose is a jet mill device. In this case, the atmosphere during pulverization is an inert gas atmosphere such as argon gas or nitrogen gas. 2% by mass or less, preferably 1% by mass or less of oxygen may be mixed into these inert gases. This improves the pulverization efficiency, and the oxygen concentration of the pulverized powder becomes 1000 to 10,000 ppm, thereby improving the oxidation resistance. Also, abnormal grain growth during sintering can be suppressed.
[0032]
It is preferable to add a lubricant such as zinc stearate to reduce the friction between the powder and the inner wall of the mold during magnetic field molding and to improve the orientation by reducing the friction between the powders. . A preferable addition amount is 0.01 to 1% by mass. The addition may be before or after fine pulverization, but it is preferable to sufficiently mix using a V-type blender or the like in an inert gas atmosphere such as argon gas or nitrogen gas before molding in a magnetic field.
[0033]
The powder pulverized to about 3 μm (FSSS) is press-molded in a magnetic field molding machine. The mold is manufactured by combining a magnetic material and a non-magnetic material in consideration of the direction of the magnetic field in the cavity. The molding pressure is preferably 0.5 to 2 t / cm 2 . The magnetic field in the cavity at the time of molding is preferably 5 to 20 kOe. Further, the atmosphere during molding is preferably an inert gas atmosphere such as argon gas or nitrogen gas, but in the case of the above-mentioned oxidation-resistant powder, it can also be performed in the air.
[0034]
Sintering is performed at 1000 to 1100 ° C. Before reaching the sintering temperature, the lubricant and the hydrogen in the fine powder must be completely removed. A preferable removal condition of the lubricant is to hold at 300 to 500 ° C. for 30 minutes or more in a vacuum of 1.33 × 10 −2 hPa or in an Ar reduced pressure flow atmosphere. Moreover, the preferable removal conditions of hydrogen are hold | maintaining at 700-900 degreeC for 30 minutes or more in the vacuum of 1.33 * 10 <-2 > hPa or less. The atmosphere during sintering is preferably an argon gas atmosphere or a vacuum atmosphere of 1.33 × 10 −2 hPa or less. The holding time is preferably 1 hour or longer.
[0035]
After sintering, heat treatment can be performed at 500 to 650 ° C. as necessary to improve the coercive force. A preferable atmosphere is an argon gas atmosphere or a vacuum atmosphere. A preferable holding time is 30 minutes or more.
[0036]
This casting method can be applied not only to R-T-B magnet alloys but also to rare earth alloys such as misch metal-Ni alloys for negative electrodes of nickel metal hydride batteries. Can be eliminated.
[0037]
【Example】
Example 1
The alloy composition is Nd: 30.0% by mass, B: 1.00% by mass, Co: 1.0% by mass, Al: 0.30% by mass, Cu: 0.10% by mass, and the balance iron. , Metal neodymium, ferroboron, cobalt, aluminum, copper, and iron are blended, an alumina crucible is used and melted in a high-frequency melting furnace in an atmosphere of argon gas at 1 atmosphere, and the molten metal is cast using the apparatus shown in FIG. It was.
The mold has an inner diameter of 500 mm and a length of 500 mm. On the inner surface of the mold, grooves having a depth of 1 mm and a bottom width of 5 mm shown in FIG. 7 are carved at intervals of 3 mm.
The rotation receiving container has an inner diameter of 250 mm in which eight holes having a diameter of 2 mm are arranged around the periphery.
The angle θ between the rotating shaft of the rotating container and the rotating shaft of the mold was 25 °, and the average molten metal volume velocity to the inner wall of the mold was set to 0.01 cm / second.
The rotational speed of the mold was set to 189 rpm so that the centrifugal force was 10 G, the rotational speed of the rotating container was 535 rpm, and a centrifugal force of about 40 G was applied to the molten metal.
The thickness of the obtained alloy lump was 6 to 8 mm at the center of the cylindrical mold, and 11 to 13 mm at the thickest part near both ends. As for the microstructure of the cross section, a reflection electron image was observed with an electron microscope. The results are shown in Table 1.
[0038]
[Table 1]
Figure 0004754739
[0039]
(Example 2)
Metal so that the alloy composition is Nd 28.0 mass%, B: 1.00 mass%, Co: 1.0 mass%, Al: 0.30 mass%, Cu: 0.10 mass%, and the balance iron. Neodymium, ferroboron, cobalt, aluminum, copper, and iron were blended, an alumina crucible was used and melted in a high-frequency melting furnace in an argon gas atmosphere at 1 atmosphere, and the molten metal was cast using the apparatus shown in FIG.
The dimensions of the mold and the rotating container were the same as in Example 1, but the inner surface of the mold was smooth, and the rotation speed of the mold was set to 231 rpm so that the centrifugal force was 15G. The rotating receptacle was performed under the same conditions as in the example.
The results are shown in Table 1 above.
[0040]
(Comparative Example 1)
An alloy having the same composition as in Example 1 was blended, dissolved in the same manner as in Example 1, and cast in the same casting apparatus. However, the inner surface of the mold in this case had no irregularities, and the surface was polished with sandpaper No. 240 smoothly in advance. The rotation of the mold was set to 2.5 G.
[0041]
The alloy lump obtained by this casting was 7 to 8 mm at the center of the cylindrical mold, and 12 to 13 mm at the thickest part near both ends. In the same manner as in Example 1, the cross-section reflected electron image was observed. The results are shown in Table 1 above.
[0042]
(Comparative Example 2)
The mixture was blended so as to have the same composition as in Example 1, dissolved in an argon atmosphere of 1 atm, and cast using an SC casting apparatus as shown in FIG. The water-cooled copper roll 23 had an outer diameter of 400 mm, a peripheral speed of 1 m / s, and an flaky alloy lump having an average thickness of 0.32 mm. The cross-sectional structure of the obtained alloy lump was observed with a reflected electron beam image. The results are shown in Table 1 above.
[0043]
(Example 3)
In Example 3, an example in which a sintered magnet is produced is shown. The alloy pieces obtained in Example 1 were pulverized in the order of hydrogen pulverization, medium pulverization, and fine pulverization. The conditions of the hydrogen occlusion process, which is the previous process of the hydrogen crushing process, were maintained at 100% hydrogen atmosphere and atmospheric pressure for 1 hour. The temperature of the metal piece at the start of the hydrogen storage reaction was 25 ° C. The conditions for the dehydrogenation step, which is a subsequent step, were maintained at 500 ° C. for 1 hour in a vacuum of 0.13 hPa. The medium pulverization was performed using a brown mill apparatus, and the hydrogen crushed powder was pulverized to 425 μm or less in a 100% nitrogen atmosphere. To this powder, 0.07% by mass of zinc stearate powder was added, thoroughly mixed with a V-type blender in a 100% nitrogen atmosphere, and then finely pulverized to 3.2 μm (FSSS) with a jet mill apparatus. The atmosphere during pulverization was a nitrogen atmosphere mixed with 4000 ppm of oxygen. Thereafter, the mixture was sufficiently mixed again with a V-type blender in a 100% nitrogen atmosphere. The oxygen concentration of the obtained powder was 2500 ppm. From the analysis of the carbon concentration of the powder, it was calculated that the zinc stearate powder mixed in the powder was 0.05% by mass.
Next, the obtained powder was press-molded in a transverse magnetic field molding machine in a 100% nitrogen atmosphere. The molding pressure was 1.2 t / cm 2 and the magnetic field in the mold cavity was 15 kOe.
The resulting molded body in a vacuum of 1.33 × 10 -5 hPa, and held 1 hour at 500 ° C., and then in a 1.33 × 10 -5 hPa vacuum was held for 2 hours at 800 ° C., 1. Sintering was carried out in a vacuum of 33 × 10 −5 hPa at 1060 ° C. for 2 hours. The sintered density was 7.5 g / cm 3 or more, which was a sufficiently large density. Furthermore, this sintered body was heat-treated at 540 ° C. for 1 hour in an argon atmosphere.
Table 2 shows the results of measuring the magnetic properties of the sintered body using a direct current BH curve tracer. Moreover, when the cross section of this sintered compact was mirror-polished and this surface was observed with the polarization microscope, the average grain size was 15-20 micrometers, and it was a substantially uniform magnitude | size.
[0044]
(Comparative Examples 3 and 4)
In Comparative Example 3 and Comparative Example 4, the alloy pieces obtained in Comparative Example 1 and Comparative Example 2 were each pulverized in the same manner as in Example 3 to obtain powder having a size of 3.3 μm (FSSS). Got. The oxygen concentration of the powder was 2600 ppm. Using these powders, an anisotropic magnet was produced by molding and sintering in a magnetic field in the same manner as in Example 3. Table 2 shows the magnetic properties of the obtained sintered body.
[0045]
[Table 2]
Figure 0004754739
[0046]
From Table 2, compared with the magnet produced in Example 3, the magnet produced in Comparative Example 3 has a coercive force (iHc) of 2 kOe or lower. This seems to be because the dispersion state of the R-rich phase is poor. Further, the magnet produced in Comparative Example 4 has a Br of 0.15 kG lower. This seems to be because the crystal orientation is worse than that of the alloy of the present invention.
[0047]
【The invention's effect】
The alloy ingot for rare earth magnets of the present invention has fineness and uniformity of R-rich phase, which is not conventionally seen, and a sintered magnet produced from this alloy ingot exhibits higher characteristics than conventional magnets.
[Brief description of the drawings]
FIG. 1 shows an example of a cross-sectional structure of an alloy ingot by a conventional SC method.
FIG. 2 shows an example of an apparatus used for producing the alloy ingot for rare earth magnet of the present invention.
FIG. 3 shows an example of a cross-sectional view of the inner surface of the mold of the present invention.
FIG. 4 shows an example of a sectional view of the inner surface of the mold of the present invention.
FIG. 5 shows an example of a sectional view of the inner surface of the mold of the present invention.
FIG. 6 shows an example of a cross-sectional view of the inner surface of the mold of the present invention.
FIG. 7 shows an example of a cross-sectional view of the inner surface of the mold of the present invention.
FIG. 8 shows an example of a conventional SC method casting apparatus.
FIG. 9 shows an example of a cross-sectional structure of a rare earth magnet alloy ingot of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Melting chamber 2 Casting chamber 3 Crucible 31 Molten metal 4 Cylindrical rotary mold L Rotating shaft 5 of a cylindrical mold Rotating body (rotating receptacle)
R Rotating shaft 6 of rotating body (rotating container) Runway 7 Ingot 8 Mold drive mechanism 9 Rotating body (rotating container) rotating drive mechanism 10 Rotating body rotating motor 21 Crucible 22 Tundish 23 Water-cooled copper roll 24 Strip-shaped alloy mass

Claims (7)

Nd、Pr、Dyのいずれか一種以上の元素を合計で11.8〜15.2原子%、Bを5.6〜7.9原子%含有するR−T−B系磁石用合金(RはYを含む希土類元素のうち少なくとも1種、TはFeを主成分とし1部をCo,Ni等で置換してもよい。)であって、鋳造のままの状態で長さ100μm以上のR−リッチ相が断面内で実質的に見当たらなく、
長さ50μm以下のR−リッチ相が分散している領域が断面内で50%以上であり、
アスペクト比20以上のR−リッチ相が断面内にて実質的に見当たらなく、
長軸方向の結晶粒径が1000μm以上の領域が5%以上、R−リッチ相の間隔が平均10μm以下であって、
α−Feが実質的に無いこと、
を特徴とする希土類磁石用合金塊。
An alloy for R-T-B magnets containing 11.8 to 15.2 atomic% in total of any one or more elements of Nd, Pr and Dy and 5.6 to 7.9 atomic% of B (R is At least one of rare earth elements including Y, and T may be substituted by Fe, with one part replaced by Co, Ni, etc.), and R- having a length of 100 μm or more in the as-cast state The rich phase is virtually absent in the cross section,
The region where the R-rich phase having a length of 50 μm or less is dispersed is 50% or more in the cross section,
There is substantially no R-rich phase with an aspect ratio of 20 or more in the cross section,
The region where the crystal grain size in the major axis direction is 1000 μm or more is 5% or more, and the interval between the R-rich phases is 10 μm or less on average,
substantially free of α-Fe,
An alloy ingot for rare earth magnets.
請求項1に記載の希土類磁石用合金塊を原料として製造した焼結磁石。A sintered magnet manufactured using the alloy ingot for rare earth magnet according to claim 1 as a raw material. 溶湯を回転体に受け、該回転体の回転によって溶湯を飛散させ、その飛散した溶湯を、内面が深さ0.5mm以上の凹又は/及び凸状の非平滑面もつ回転する円筒状鋳型の内面で堆積凝固させる遠心鋳造方法にて鋳造した請求項に記載の希土類磁石用合金塊。The molten metal is received by the rotating body, the molten metal is scattered by the rotation of the rotating body, and the scattered molten metal is rotated by a cylindrical mold having a concave or / and convex non-smooth surface having a depth of 0.5 mm or more . The alloy ingot for a rare earth magnet according to claim 1 , which is cast by a centrifugal casting method in which the inner surface is deposited and solidified. 請求項3における、回転体の回転軸と円筒状鋳型の回転軸とが傾斜角θをなす請求項に記載の希土類磁石用合金塊。The rare earth magnet alloy ingot according to claim 3 , wherein the rotation axis of the rotating body and the rotation axis of the cylindrical mold form an inclination angle θ. 溶湯を回転体に受け、該回転体の回転によって溶湯を飛散させ、その飛散した溶湯を、内面が深さ0.5mm以上の凹又は/及び凸状の非平滑面もつ回転する円筒状鋳型の内面で堆積凝固させることを特徴とする請求項に記載の希土類磁石用合金塊の製造方法。The molten metal is received by the rotating body, the molten metal is scattered by the rotation of the rotating body, and the scattered molten metal is rotated by a cylindrical mold having a concave or / and convex non-smooth surface having a depth of 0.5 mm or more . 2. The method for producing an alloy ingot for a rare earth magnet according to claim 1 , wherein the inner surface is deposited and solidified. 請求項5における、回転体の回転軸と円筒状鋳型の回転軸とが傾斜角θをなすことを特徴とする請求項に記載の希土類磁石用合金塊の製造方法。6. The method for producing an alloy block for a rare earth magnet according to claim 5 , wherein the rotation axis of the rotating body and the rotation axis of the cylindrical mold form an inclination angle θ. 希土類磁石用合金がR−T−B系磁石用合金であることを特徴とする請求項5または6に記載の希土類磁石用合金塊の製造方法。The method for producing an alloy block for a rare earth magnet according to claim 5 or 6 , wherein the rare earth magnet alloy is an R-T-B magnet alloy.
JP2001266278A 2001-09-03 2001-09-03 Alloy ingot for rare earth magnet, method for producing the same, and sintered magnet Expired - Fee Related JP4754739B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2001266278A JP4754739B2 (en) 2001-09-03 2001-09-03 Alloy ingot for rare earth magnet, method for producing the same, and sintered magnet
US10/232,520 US7014718B2 (en) 2001-09-03 2002-09-03 Rare earth magnet alloy ingot, manufacturing method for the same, R-T-B type magnet alloy ingot, R-T-B type magnet, R-T-B type bonded magnet, R-T-B type exchange spring magnet alloy ingot, R-T-B type exchange spring magnet, and R-T-B type exchange spring bonded magnet
PCT/JP2002/008931 WO2003020993A1 (en) 2001-09-03 2002-09-03 Rare earth magnet alloy ingot, manufacturing method for the same, r-t-b type magnet alloy ingot, r-t-b type magnet, r-t-b type bonded magnet, r-t-b type exchange spring magnet alloy ingot, r-t-b type exchange spring magnet, and r-t-b type exchange spring bonded magnet
CN02817079A CN100591788C (en) 2001-09-03 2002-09-03 Rare earth magnet alloy ingot, manufacturing method for the same, r-t-b type magnet alloy ingot, r-t-b type magnet, r-t-b type bonded magnet, r-t-b type exchange spring magnet alloy ingot, r-t-b type
US11/330,145 US7431070B2 (en) 2001-09-03 2006-01-12 Rare earth magnet alloy ingot, manufacturing method for the same, R-T-B type magnet alloy ingot, R-T-B type magnet, R-T-B type bonded magnet, R-T-B type exchange spring magnet alloy ingot, R-T-B type exchange spring magnet, and R-T-B type exchange spring bonded magnet
US12/201,722 US20090000701A1 (en) 2001-09-03 2008-08-29 Rare earth magnet alloy ingot, manufacturing method for the same, r-t-b type magnet alloy ingot, r-tb type magnet, r-t-b type bonded magnet, r-t-b type exchange spring magnet alloy ingot, r-t-b type exchange spring magnet, and r-t-b type exchange spring bonded magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001266278A JP4754739B2 (en) 2001-09-03 2001-09-03 Alloy ingot for rare earth magnet, method for producing the same, and sintered magnet

Publications (2)

Publication Number Publication Date
JP2003077717A JP2003077717A (en) 2003-03-14
JP4754739B2 true JP4754739B2 (en) 2011-08-24

Family

ID=19092605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001266278A Expired - Fee Related JP4754739B2 (en) 2001-09-03 2001-09-03 Alloy ingot for rare earth magnet, method for producing the same, and sintered magnet

Country Status (1)

Country Link
JP (1) JP4754739B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1860248A (en) * 2003-09-30 2006-11-08 株式会社新王磁材 Raw material alloy for r-t-b permanent magnet and r-t-b permanent magnet
JP4879503B2 (en) * 2004-04-07 2012-02-22 昭和電工株式会社 Alloy block for RTB-based sintered magnet, manufacturing method thereof and magnet
WO2005098878A2 (en) 2004-04-07 2005-10-20 Showa Denko K.K. Alloy lump for r-t-b type sintered magnet, producing method thereof, and magnet
CN113035559B (en) * 2021-04-01 2022-07-08 包头市科锐微磁新材料有限责任公司 Preparation method of high-performance neodymium iron boron isotropic magnetic powder

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3248942B2 (en) * 1992-03-24 2002-01-21 ティーディーケイ株式会社 Cooling roll, method for manufacturing permanent magnet material, permanent magnet material, and permanent magnet material powder
JP3667783B2 (en) * 1993-10-06 2005-07-06 株式会社Neomax Method for producing raw powder for anisotropic bonded magnet
JP3535253B2 (en) * 1995-02-23 2004-06-07 住友特殊金属株式会社 Method for producing cast slab for R-Fe-B permanent magnet
JP4106099B2 (en) * 1995-03-29 2008-06-25 日立金属株式会社 Method for producing slab for R-Fe-B magnet alloy
DE19528291C2 (en) * 1995-08-02 1998-06-04 Ald Vacuum Techn Gmbh Method and device for producing particles from directionally solidified castings
JP3267133B2 (en) * 1995-12-18 2002-03-18 昭和電工株式会社 Alloy for rare earth magnet, method for producing the same, and method for producing permanent magnet
JP3449166B2 (en) * 1996-04-10 2003-09-22 昭和電工株式会社 Alloy for rare earth magnet and method for producing the same
JP3549382B2 (en) * 1997-12-22 2004-08-04 信越化学工業株式会社 Rare earth element / iron / boron permanent magnet and method for producing the same
JP3712581B2 (en) * 1999-02-15 2005-11-02 信越化学工業株式会社 Alloy ribbon for permanent magnet and sintered permanent magnet
JP3712595B2 (en) * 1999-06-08 2005-11-02 信越化学工業株式会社 Alloy ribbon for permanent magnet and sintered permanent magnet
JP4818547B2 (en) * 2000-08-31 2011-11-16 昭和電工株式会社 Centrifugal casting method, centrifugal casting apparatus and alloy produced thereby

Also Published As

Publication number Publication date
JP2003077717A (en) 2003-03-14

Similar Documents

Publication Publication Date Title
US7431070B2 (en) Rare earth magnet alloy ingot, manufacturing method for the same, R-T-B type magnet alloy ingot, R-T-B type magnet, R-T-B type bonded magnet, R-T-B type exchange spring magnet alloy ingot, R-T-B type exchange spring magnet, and R-T-B type exchange spring bonded magnet
JP4832856B2 (en) Method for producing RTB-based alloy and RTB-based alloy flakes, fine powder for RTB-based rare earth permanent magnet, RTB-based rare earth permanent magnet
JPWO2009075351A1 (en) R-T-B type alloy and method for producing R-T-B type alloy, fine powder for R-T-B type rare earth permanent magnet, R-T-B type rare earth permanent magnet
US7264683B2 (en) Centrifugal casting method, centrifugal casting apparatus, and cast alloy produced by same
JP3267133B2 (en) Alloy for rare earth magnet, method for producing the same, and method for producing permanent magnet
JPH05295490A (en) Mother alloy for manufacturing magnet, its manufacture and manufacture of magnet
JP4389427B2 (en) Sintered magnet using alloy powder for rare earth-iron-boron magnet
JP4879503B2 (en) Alloy block for RTB-based sintered magnet, manufacturing method thereof and magnet
JP3724513B2 (en) Method for manufacturing permanent magnet
JPH1036949A (en) Alloy for rare earth magnet and its production
JP4479944B2 (en) Alloy flake for rare earth magnet and method for producing the same
JP4689652B2 (en) Method for evaluating metal structure of RTB-based magnet alloy
JP4754739B2 (en) Alloy ingot for rare earth magnet, method for producing the same, and sintered magnet
JP4818547B2 (en) Centrifugal casting method, centrifugal casting apparatus and alloy produced thereby
JP3561692B2 (en) Structure control method for rare earth element-containing alloy, alloy powder and magnet using the same
WO2003020993A1 (en) Rare earth magnet alloy ingot, manufacturing method for the same, r-t-b type magnet alloy ingot, r-t-b type magnet, r-t-b type bonded magnet, r-t-b type exchange spring magnet alloy ingot, r-t-b type exchange spring magnet, and r-t-b type exchange spring bonded magnet
WO2002072900A2 (en) Method for controlling structure of rare earth element-containing alloy, powder material of the alloy and magnet using the same
JP4318204B2 (en) Rare earth-containing alloy flake manufacturing method, rare earth magnet alloy flake, rare earth sintered magnet alloy powder, rare earth sintered magnet, bonded magnet alloy powder, and bonded magnet
JP4213417B2 (en) Rare earth alloy manufacturing method, alloy block for RTB-based magnet, RTB-based magnet, RTB-based bond magnet, alloy block for RTB-based exchange spring magnet, RT -B system exchange spring magnet, and RTB system exchange spring bond magnet
JP2003183787A (en) Principal phase-based alloy for rare earth magnet, manufacturing method therefor, mixed powder for sintered rare earth magnet, and rare earth magnet
WO2005031023A1 (en) Raw material alloy for r-t-b permanent magnet and r-t-b permanent magnet
JP4040571B2 (en) Method for producing rare earth-containing alloy flakes
WO2009125671A1 (en) R-t-b-base alloy, process for producing r-t-b-base alloy, fines for r-t-b-base rare earth permanent magnet, r-t-b-base rare earth permanent magnet, and process for producing r-t-b-base rare earth permanent magnet
JP2004043921A (en) Rare-earth-containing alloy flake, its manufacturing process, rare-earth sintered magnet, alloy powder for this, bond magnet and alloy powder for this
EP1652606B1 (en) Centrifugal casting method, centrifugal casting apparatus, and cast alloy produced by same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101214

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20101214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110524

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110526

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4754739

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees