JP3667783B2 - Method for producing raw powder for anisotropic bonded magnet - Google Patents

Method for producing raw powder for anisotropic bonded magnet Download PDF

Info

Publication number
JP3667783B2
JP3667783B2 JP27624593A JP27624593A JP3667783B2 JP 3667783 B2 JP3667783 B2 JP 3667783B2 JP 27624593 A JP27624593 A JP 27624593A JP 27624593 A JP27624593 A JP 27624593A JP 3667783 B2 JP3667783 B2 JP 3667783B2
Authority
JP
Japan
Prior art keywords
powder
crystal
treatment
hours
slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27624593A
Other languages
Japanese (ja)
Other versions
JPH07109504A (en
Inventor
哲 広沢
誠一 細川
尚 池上
稔 上原
浩之 富澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Neomax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neomax Co Ltd filed Critical Neomax Co Ltd
Priority to JP27624593A priority Critical patent/JP3667783B2/en
Publication of JPH07109504A publication Critical patent/JPH07109504A/en
Application granted granted Critical
Publication of JP3667783B2 publication Critical patent/JP3667783B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0573Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes obtained by reduction or by hydrogen decrepitation or embrittlement

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Description

【0001】
【産業上の利用分野】
この発明は、R(Rは希土類元素の少なくとも1種)、Fe、B、M1(MはCo,Ni,Crの1種または2種以上)、M2(M2はAl,Ga,Zr,Ti,V,Nb,Mo,In,Sn,Hf,Ta,Wのうち少なくとも1種)を主成分とする異方性ボンド磁石用原料粉末の製造方法、特に、ストリップキャスティング法による鋳片から異方性ボンド磁石用合金粉末を得る製造方法に係り、Fe,B,R,M1,M2を主成分とする合金溶湯よりストリップキャスティング法にて特定板厚の微細均質組織を有する鋳片を得た後、真空中あるいはArガス中にて特定温度で熱処理することにより、結晶方位が一方向に揃った領域を有する結晶粒を粒成長させ、これに特定条件の水素処理、脱水素処理して、特定の結晶粒度を有する異方性ボンド磁石用合金粉末を得る製造方法に関する。
【0002】
【従来の技術】
従来、異方性ボンド磁石用原料粉末としては、鋳造法にて磁石組成の鋳塊を得た後、微細な金属組織を生成して保磁力を発現させるため、特定のパターンの熱処理をした後、粉砕して、磁石用粉末として樹脂と混合後、磁場中にて成形、固化して異方性ボンド磁石の製造方法が提案されている。
【0003】
しかしながら、磁化を高めるために組成を主相となる化合物に近づけると、前記鋳造法によって得られた原料粉末中の結晶方位が一方向に揃った領域での最も短い方向に測定した直径は磁石粉末としての粉末直径よりも小さくなるため、磁石粉末中に方位の異なった多数の結晶が含まれる可能性が大きくなり、十分な配向度が得られず、かえって磁石粉末の磁気的特性(Br,(BH)max)が低下する問題があった。
【0004】
また、従来の鋳塊粉砕法によるFe−B−R系合金粉末の欠点であるα−Feの残留及び偏析を防止するため、磁石組成の溶湯をストリップキャスティング法により特定厚に急冷凝固した鋳片を粉砕後、前記粉砕粉を磁場中で成形、焼結するFe−B−R系焼結磁石の製造方法が提案(特開昭63−317643号公報)されている。
【0005】
【発明が解決しようとする課題】
ストリップキャスティング法により得られた原料粉末は、従来の鋳塊粉砕法により得られた原料粉末に比べ、結晶粒は微細化し、焼結磁石の磁気特性の改善向上には有効であるが、微粉末中の結晶の磁気的方向性がアトランダムであるため、異方性ボンド磁石用原料粉末としては不適であり、異方性ボンド磁石を得ることができなかった。
【0006】
一方、従来の超急冷法により得られた粉末は熱処理して結晶化し、結晶粒の成長を起こさせることが可能であり、また、超急冷粉末よりボンド磁石を製造する方法としては、前記超急冷粉末をホットプレスしさらに温間塑性変形させる方法や、金属容器に封入した状態にて温間圧延後に粉砕して、異方性ボンド磁石用原料粉末を得て、異方性ボンド磁石を製造することが提案されているが、いずれの方法も製造効率が低く、実用的でない問題があった。
【0007】
この発明は、Fe−B−R系異方性ボンド磁石を製造するため、磁気特性がすぐれた同系異方性ボンド磁石用原料粉末を製造効率よく得ることを目的とし、特に、製造効率のすぐれたストリップキャスティング法による鋳片より磁気特性がすぐれた異方性ボンド磁石用原料粉末を得る製造方法の提供を目的としている。
【0008】
【課題を解決するための手段】
発明者らは、従来、異方性ボンド磁石用原料粉末の製造が不可能視されたストリップキャスティング法にて得られた鋳片より、異方性ボンド磁石用原料粉末を得る方法について、種々検討した結果、ストリップキャスティング法により得られた特定組成の鋳片あるいは該鋳片を粗粉砕した粉末を特定の雰囲気、温度条件にて熱処理して、粉末中の結晶内の結晶方位が、一定方向に揃った結晶領域の大きさを最短方向にて20μm以上に粒成長させた後、鋳片あるいは粉砕粉を特定の雰囲気、温度条件で加熱して水素処理した後、特定H2分圧の雰囲気、温度条件にて脱水素処理を行なうことにより、平均結晶粒径が0.05〜0.5μmである磁気的に異方性を有する平均粒度20〜400μmの合金粉末が得られることを知見しこの発明を完成した。
【0009】
すなわち、この発明は、
R(但し、RはYを含む希土類元素のうち少なくとも1種でかつPrまたはNdの1種または2種をRのうち90%以上含有)9.0at%〜15at%、
B5.5at%〜8.0at%、
M1(但し、M1はCo,Ni,Crの1種または2種以上)2at%〜20at%、
M2(但し、M2はAl,Ga,Zr,Ti,V,Nb,Mo,In,Sn,Hf,Ta,Wのうち1種または2種以上)0.01at%〜2.0at%、
残部Fe及び不可避的不純物からなる合金溶湯をストリップキャスティング法にて、主相のR2Fe14B結晶の短軸方向寸法が0.1μm〜50μm、長軸方向寸法が 5 μ m 200 μ m である板厚0.03mm〜10mmの鋳片に鋳造後、
真空中または不活性ガス雰囲気中で1000℃1200℃の温度で30分〜48時間の熱処理をして、結晶内の結晶方位が一定方向に揃った結晶領域の大きさを最短方向に20μm以上に粒成長させた後、
前記鋳片及び/又は粉末(前記鋳片又は粉末あるいは鋳片及び粉末)を10kPa〜1000kPaのH2ガス中で750〜900℃に15分〜8時間加熱保持する水素処理を施し、
更にH2分圧10kPa以下にて700〜900℃に5分〜8時間保持する脱水素処理を行ない、
次いで冷却し、熱処理工程の前工程または水素処理及び脱水素処理工程の前工程あるいは後工程で粉砕を行い、平均結晶粒径が0.05〜0.5μmである磁気的に異方性を有する平均粒度20〜400μmの合金粉末を得ることを特徴とする異方性ボンド磁石用合金粉末の製造方法である。
【0010】
この発明は、上記の構成において、
熱処理または水素処理及び脱水素処理工程の前工程あるいは後工程で粉砕を行う異方性ボンド磁石用合金粉末の製造方法、
また、ストリップキャスティング法にて鋳造し、熱処理を施した後、冷却された鋳片及び/又は粉末を、真空中または不活性ガス中で温度750℃以上の温度域まで昇温後、水素処理を施す異方性ボンド磁石用原料粉末の製造方法を併せて提案する。
【0011】
この発明に使用する原料合金に用いるRすなわち希土類元素は、Y,La,Ce,Pr,Nd,Sm,Gd,Tb,Dy,Ho,Er,Tm,Luが包含され、このうち少なくとも1種以上で、Pr,Ndのうち少なくとも1種または2種をRのうち90%以上含有し、さらにRのすべてがPr,Ndのうち1種または2種の場合がある。
Rの90%以上をPr,Ndのうち少なくとも1種以上とするのは、90%未満では十分な磁化が得られないためである。
Rは、9.0at%未満ではα−Fe相の析出により保磁力が低下し、また15at%を超えると、目的とする正方晶Nd2Fe14B型化合物以外に、Rリッチの第2相が多く析出し、この第2相が多すぎると合金の磁化を低下させる。従って、Rの範囲は、9.0〜15.0at%とする。
【0012】
Bについては、正方晶Nd2Fe14B型結晶構造を安定して析出させるためには必須である。添加量は5.5at%以下ではR217相が析出して保磁力を低下させ、また減磁曲線の角型性が著しく損なわれる。また、8.0at%を超えて添加した場合は、磁化の小さい第2相が析出して粉末の磁化を低下させる。従って、Bは5.5〜8.0at%とした。
【0013】
1はCo,Ni,Crの1種または2種以上であり、M1が2at%未満では低保磁力、低磁化の第2相が析出して磁気的特性が低下し、また20at%を超えるとα−Fe相の析出により保磁力、角型性が低下するため、M1は2〜20at%とする。
【0014】
添加元素M2の効果は、水素処理時に母相の分解反応を完全に終了させずに、母相すなわちR214B相を安定化して故意に残存させるのに有効な元素が望まれる。特に顕著な効果を持つものとして、Al,Ti,V,Ga,Zr,Nb,Mo,In,Sn,Hf,Ta,Wがある。
2が0.01at%未満では添加効果が十分発揮できず、また2.0at%を超えると水素化反応の進行が抑制されすぎて、保磁力角型性が低下する問題があり、好ましくないため、M2は0.01〜2.0at%とする。
【0015】
Feは、本系組成の基幹をなし上述の各元素の含有残余を占める。
【0016】
この発明のストリップキャスティング法により得られた特定組成のR−Fe−B系合金の断面組織は、主相のR2Fe14B結晶が従来の鋳型に鋳造して得られた鋳塊のものに比べて約1/10以上も微細であり、例えば、その短軸方向の寸法は0.1〜50μm、長軸方向は5〜200μmの微細結晶であり、かつその主相結晶粒を取り囲むようにRリッチ相が微細に分散されており、局部に遍在している領域においても、その大きさは20μm以下である。Rリッチ相の存在はこの発明の目的のために必要でなく、Ndを9〜12at%、Bを5.5〜6.5at%に限定することによって、その存在を実質的になくすことができる。
【0017】
この発明の特定組成のRリッチ相が微細に分離した組織を有する磁石材料の鋳片は、特定組成の合金溶湯を単ロール法、あるいは双ロール法によるストリップキャスティング法にて製造される。得られた鋳片は板厚が0.03〜10mmの薄板材であり、所望の鋳片板厚により、単ロール法と双ロール法を使い分けるが、板厚が厚い場合は双ロール法を、また板厚が薄い場合は単ロール法を採用したほうが好ましい。
鋳片の板厚を0.03〜10mmに限定した理由は、0.03mm未満では急冷効果が大となり、結晶粒径が0.1μmより小となり、溶態化による結晶粒の拡大が困難となるため、磁気特性の劣化を招来するので好ましくなく、また10mmを超えると、冷却速度が遅くなり、α−Feが晶出しやすく、Ndリッチ層の遍在も生じるため、磁気特性が低下するので好ましくないことによる。
【0018】
この発明において、ストリップキャスティング法により得られた特定組成の鋳片を真空中または不活性ガス雰囲気中の熱処理条件として、温度が1000℃未満では拡散速度が十分ではなく、結晶粒が成長せず、また1200℃を超えるとNd2Fe14B相の融点を超えるので好ましくない。
また、加熱時間も30分未満では十分な結晶粒成長が行なわれず、また1000℃1200℃高温での処理時間が48時間を超えると処理のコスト上昇を招来するので好ましくない。
この発明において、上記処理が重要であり、この熱処理により結晶内の結晶方位が定方向に揃った結晶領域の大きさを最短方向にて20μm以上に粒成長させることができる。粒成長が20μm未満では製品粉末が方位の異なる多数個の結晶粒からなる多結晶組織の粉末粒子を多く含むことになり、磁化が低下するので好ましくない。
【0019】
この発明において、水素処理法は、所要粒度の粗粉砕粉が外観上その大きさを変化させることなく、極微細結晶組織の集合体が得られることを特徴とする。すなわち、正方晶Nd2Fe14B型化合物に対し、高温、実際上は600℃〜900℃の温度範囲でH2ガスと反応させると、RH2 3、αFe、Fe2Bなどに相分離し、さらに同温度域でH2ガスを脱H2処理により除去すると、再度正方晶Nd2Fe14B型化合物の再結晶組織が得られる。
しかしながら、現実には、水素処理条件によって分解生成物の結晶粒径、反応の度合いが異なり、水素化状態の金属組織は、水素化温度750℃未満と750℃以上で明らかに異なる。この金属組織上の違いが、脱水素処理を行った後の磁粉の磁気的性質に大きく影響する。
【0020】
水素処理におけるH2ガス中での加熱処理温度は、600℃未満ではRH2 3、αFe、Fe2Bなどへの分解反応が起こらない。また、600℃〜750℃の温度範囲では分解反応がほぼ完全に進行してしまい、分解生成物中に適量のR214B相が残存せず、脱水素処理後に磁気的、また結晶方位的に充分な異方性が得られない。また900℃を超えるとRH2 3が不安定となり、かつ生成物が粒成長して正方晶Nd2Fe14B型化合物極微細結晶組織を得ることが困難になる。
水素化の温度範囲が750℃〜900℃の領域であれば、脱水素時の再結晶反応の核となるR214B相が分散して適量残存するため、脱水素後のR214B相の結晶方位が残存R214B相によって決定され、結果的に再結晶組織の結晶方位が原料インゴットの結晶方位と一致し、少なくとも原料インゴットの結晶粒径の範囲内では大きな異方性を示すことになる。そのため、水素化処理の温度範囲を750℃〜900℃とする。
また、加熱処理保持時間については、上記の分解反応を充分に行わせるためには15分以上必要であり、また、8時間を越えると残存R214B相が減少するため、脱水素後の異方性が低下するので好ましくない、よって、15分〜8時間の加熱保持とする。
この発明において、H2ガス中での熱処理に際し、H2ガス圧力が10kPa未満では、前述の分解反応が充分に進行せず、また1000kPaを超えると処理設備が大きくなりすぎ、工業的にコスト面、また安全面で好ましくないため、圧力範囲を10〜1000kPaとした。さらに好ましい圧力範囲は20〜150kPaである。
【0021】
また、この発明における真空中または不活性ガス中での昇温は、昇温速度、保持時間などを特に規定するものではなく、目的は750℃以下で水素ガスと原料を反応させないことである。従って、750℃以下での処理条件は、雰囲気以外は特に規定しない。なお、ここでの不活性ガスとはArガスまたはHeガスであって、通常不活性ガスとして扱われることの多いN2ガスは、本系原料と高温域で反応してしまうため、不活性ガスとしては好ましくない。
【0022】
この発明において、脱水素処理時のH2分圧は、10kPaを超えると下記の温度範囲、すなわち900℃以下ではRH2 3相の分解条件に至らないため、10kPa以下とする。また好ましくは1Pa〜1kPaの範囲である。
脱水素処理時の温度が700℃未満では、RH2 3相からのH2の離脱が起こらないか、正方晶Nd2Fe14B型化合物の再結晶が充分進行しない。また、900℃を超えると正方晶Nd2Fe14B型化合物は生成するが、再結晶粒が粗大に成長し、高い保磁力が得られない。そのため、脱H2処理の温度範囲は700℃〜900℃とする。
また、脱水素処理保持時間は、処理設備の排気能力にもよるが、上記の再結晶反応を充分に行わせることも重要であり、少なくとも5分以上保持する必要があるが、2次的な再結晶反応によって結晶が粗大化すれば保磁力の低下を招くので、できる限り短時間の方が好ましい。そのため、5分〜8時間の加熱保持で充分である。
脱水素処理は、原料の酸化防止の観点から、また処理設備の熱効率の観点で、水素化処理に引き続いて行うのがよいが、水素化処理後、一旦原料を冷却して、再び改めて脱水素のための熱処理を行うこともできる。
【0023】
この発明において、脱水素処理後の正方晶Nd2Fe14B型化合物の再結晶粒径は実質的に0.05μm以下の平均再結晶粒径を得ることは困難であり、またたとえ得られたとしても磁気特性上の利点がない。一方、平均再結晶粒径が0.5μmを超えると、粉末の保磁力が低下するため好ましくない。そのため、平均再結晶粒径を0.05μm〜0.5μmとした。
【0024】
この発明において、得られた合金粉末の平均粒度を20〜400μmに限定したのは、20μm未満では粉末の酸化による磁性劣化の恐れがあり、また400μmを超えると小型磁気部品の精密成形に際して、ボンド磁石の原料として粗大化して好ましくないことによる。
平均粒度20〜400μmの合金粉末を得るには、粒成長させるための特定条件の熱処理工程の前に粉砕するか、また、この熱処理工程後、極微細結晶組織の集合体を得るための特定条件の水素処理及び脱水素処理前に粉砕するか、あるいは水素処理及び脱水素処理工程の後に粉砕するとよい。
【0025】
【作用】
この発明は、R(Rは希土類元素の少なくとも1種)、Fe、B、M1(MはCo,Ni,Crの1種または2種以上)、M2(M2はAl,Ga,Zr,Ti,V,Nb,Mo,In,Sn,Hf,Ta,Wのうち少なくとも1種)を主成分とする合金溶湯を用いて、ストリップキャスティング法にて所要厚みの鋳片となした後、真空中または不活性ガス雰囲気中で1000℃〜1200℃に30分〜48時間の熱処理を施すことにより、鋳片あるいは粉末内の結晶方位が一定方向に揃った結晶領域の大きさを最短方向に20μm以上に粒成長させて、その後、極微細結晶組織の集合体が得られる特定条件の水素処理と脱水素処理を行うことにより、従来、異方性ボンド磁石用原料粉末の製造が不可能視されたストリップキャスティング法にて得られた鋳片より、磁気特性がすぐれた異方性ボンド磁石用原料粉末を得ることができる。
【0026】
【実施例】
実施例1
高周波溶解炉にて、溶解して得られたNd13.4−Fe残−Co11−B6.7−Ga1−Zr0.1組成の合金溶湯を直径200mmの銅製ロールを用いた片ロール法にて、板厚0.5mmの薄板状鋳片を得た。この合金を真空中で1120℃に12時間の熱処理を行ない、結晶粒を成長させた。この場合の平均結晶粒径は約80μmになった。
この合金を真空中で840℃まで加熱し、絶対圧2気圧のH2ガスを導入して4時間保持した後、1気圧に減圧し、1気圧のAr流気を20分行ない、その後840℃に保持したまま減圧し、100Torrの圧力で2時間保持する脱H2処理を行なった。
その後合金を粉砕して、38〜150μmの粒度に粉砕粉を得た。前記粉砕粉に2.5wt%のクレゾールノボラソク型樹脂を混合し、15kOeの磁界中で6Ton/cm2の圧力を印加して成形、160℃に1時間硬化して、10mm角の立方体ボンド磁石を得た。BHトレーサーにて磁気特性を測定した結果を表1に示す。
【0027】
比較例1
実施例1と同一組成のストリップキャスティング法による鋳片を熱処理することなく、直接実施例1と同一条件のH2処理後、実施例1と同一条件にてボンド磁石化した。得られたボンド磁石の特性を表1に示す。
【0028】
【表1】

Figure 0003667783
【0029】
実施例2
表2に示す組成(at%)の合金溶湯を、実施例1と同様にストリップキャスティング法にて板厚0.5mmの薄板状鋳片を得た。その後薄板状鋳片を粉砕し、さらに真空中で1150℃に12時間の熱処理を行ない、結晶粒を成長させた。この場合の平均結晶粒径は約95μmになった。
この合金を真空中で850℃まで加熱し、18気圧のH2ガスを導入して4時間保持した後、1気圧に減圧し、1気圧のAr流気を20分行ない、その後850℃に保持したまま、850Torrの圧力で3時間保持する脱H2処理を行なった。
その後、実施例1と同一条件にてボンド磁石化した。得られたボンド磁石の特性を表3に示す。
【0030】
実施例3
表2に示す組成(at%)の合金溶湯を、実施例1と同様にストリップキャスティング法にて板厚0.5mmの薄板状鋳片を得た。この合金をArガス中で1120℃に20時間の熱処理を行ない、結晶粒を成長させた。この場合の平均結晶粒径は約80μmになった。その後合金を粉砕して、38〜150μmの粒度に粉砕粉を得た。
この合金を真空中で850℃まで加熱し、2気圧のH2ガスを導入して4時間保持した後、1気圧に減圧し、気圧のAr流気を20分行ない、その後850℃に保持したまま、850Torrの圧力で3時間保持する脱H2処理を行なった。
その後、実施例1と同一条件にてボンド磁石化した。得られたボンド磁石の特性を表3に示す。
【0031】
【表2】
Figure 0003667783
【0032】
【表3】
Figure 0003667783
【0033】
【発明の効果】
この発明は、従来、異方性ボンド磁石用原料粉末の製造が不可能視されたストリップキャスティング法にて得られた鋳片より、磁気特性がすぐれた異方性ボンド磁石用原料粉末を得るもので、実施例に明らかなように、R(Rは希土類元素の少なくとも1種)、Fe、B、M1(MはCo,Ni,Crの1種または2種以上)、M2(M2はAl,Ga,Zr,Ti,V,Nb,Mo,In,Sn,Hf,Ta,Wのうち少なくとも1種)を主成分とする合金溶湯を用いて、ストリップキャスティング法にて所要厚みの鋳片となした後、真空中または不活性ガス雰囲気中で1000℃〜1200℃に30分〜48時間の熱処理を施すことにより、鋳片あるいは粉末内の結晶方位が一定方向に揃った結晶領域の大きさを最短方向に20μm以上に粒成長させて、その後、極微細結晶組織の集合体が得られる特定条件の水素処理と脱水素処理を行うことにより、生産効率よく、高性能の異方性ボンド磁石用原料粉末を得ることができる。[0001]
[Industrial application fields]
In the present invention, R (R is at least one of rare earth elements), Fe, B, M 1 (M is one or more of Co, Ni, Cr), M 2 (M 2 is Al, Ga, Zr). , Ti, V, Nb, Mo, In, Sn, Hf, Ta, and W) as a main component, a method for producing a raw material powder for an anisotropic bonded magnet, particularly from a slab by strip casting. TECHNICAL FIELD The present invention relates to a manufacturing method for obtaining an alloy powder for an anisotropic bonded magnet, and a slab having a fine homogeneous structure having a specific plate thickness by a strip casting method from a molten alloy containing Fe, B, R, M 1 and M 2 as main components. Then, heat treatment is performed at a specific temperature in a vacuum or Ar gas to grow crystal grains having a region where crystal orientations are aligned in one direction, and hydrogen treatment and dehydrogenation treatment are performed under specific conditions. An anisotropic bob with a specific grain size The present invention relates to a manufacturing method for obtaining an alloy powder for a green magnet.
[0002]
[Prior art]
Conventionally, as a raw material powder for anisotropic bonded magnets, after obtaining an ingot of a magnet composition by a casting method, after heat treatment of a specific pattern in order to generate a fine metal structure and express coercive force A method for producing an anisotropic bonded magnet has been proposed that is pulverized and mixed with a resin as a magnet powder and then molded and solidified in a magnetic field.
[0003]
However, when the composition is brought close to the main phase compound to increase the magnetization, the diameter measured in the shortest direction in the region where the crystal orientations in the raw material powder obtained by the casting method are aligned in one direction is the magnet powder. Therefore, the possibility that a large number of crystals with different orientations are included in the magnet powder increases, and a sufficient degree of orientation cannot be obtained. On the contrary, the magnetic properties (Br, ( There was a problem that BH) max) decreased.
[0004]
In addition, in order to prevent α-Fe residual and segregation, which is a defect of the Fe-BR alloy powder by the conventional ingot crushing method, the slab was rapidly solidified to a specific thickness by a strip casting method. Has been proposed (JP-A-63-317643) for producing a Fe—BR—sintered magnet in which the pulverized powder is molded and sintered in a magnetic field.
[0005]
[Problems to be solved by the invention]
The raw material powder obtained by the strip casting method is effective in improving the magnetic properties of the sintered magnet, although the crystal grains are refined compared to the raw material powder obtained by the conventional ingot crushing method. Since the magnetic orientation of the crystal inside is at random, it was unsuitable as a raw material powder for an anisotropic bonded magnet, and an anisotropic bonded magnet could not be obtained.
[0006]
On the other hand, the powder obtained by the conventional ultra-quenching method can be crystallized by heat treatment to cause the growth of crystal grains. Also, as a method for producing a bonded magnet from the ultra-quenched powder, the ultra-quenching method can be used. A method of hot-pressing the powder and further plastically deforming it, or crushing after warm rolling in a state of being enclosed in a metal container to obtain a raw material powder for anisotropic bonded magnet, and manufacturing an anisotropic bonded magnet However, each method has a problem in that the production efficiency is low and it is not practical.
[0007]
An object of the present invention is to produce a Fe—B—R system anisotropic bonded magnet, and to obtain a raw material powder for the same type anisotropic bonded magnet having excellent magnetic properties with high manufacturing efficiency. Another object of the present invention is to provide a production method for obtaining a raw material powder for anisotropic bonded magnets having better magnetic properties than a cast slab produced by strip casting.
[0008]
[Means for Solving the Problems]
The inventors conducted various studies on methods for obtaining raw material powder for anisotropic bonded magnets from slabs obtained by the strip casting method in which production of raw material powder for anisotropic bonded magnets has been impossible. As a result, the slab of a specific composition obtained by the strip casting method or a powder obtained by roughly pulverizing the slab is heat-treated in a specific atmosphere and temperature condition, and the crystal orientation in the crystal in the powder is in a certain direction. After the grain size of the aligned crystal region is grown to 20 μm or more in the shortest direction, the slab or pulverized powder is heated in a specific atmosphere and temperature condition to be subjected to hydrogen treatment, and then an atmosphere having a specific H 2 partial pressure, It has been found that by performing dehydrogenation treatment under temperature conditions, an alloy powder having an average grain size of 0.05 to 0.5 μm and magnetically anisotropic average grain size of 20 to 400 μm can be obtained. Complete the invention It was.
[0009]
That is, this invention
R (provided that R is at least one of rare earth elements including Y and contains one or two of Pr or Nd in 90% or more of R) 9.0 at% to 15 at%,
B5.5at% ~ 8.0at%,
M 1 (where M 1 is one or more of Co, Ni, Cr) 2at% to 20at%,
M 2 (where M 2 is one or more of Al, Ga, Zr, Ti, V, Nb, Mo, In, Sn, Hf, Ta, W) 0.01 at% to 2.0 at%,
The molten alloy and the balance Fe and unavoidable impurities by a strip casting method, the minor axis dimension of the R 2 Fe 14 B crystal main phase 0.1Myuemu~50myuemu, longitudinal dimension at 5 μ m ~ 200 μ m after casting to cast pieces of a certain thickness 0.03mm~10mm,
Heat treatment in a vacuum or in an inert gas atmosphere at a temperature of 1000 ° C. to 1200 ° C. for 30 minutes to 48 hours, the size of the crystal region in which the crystal orientation in the crystal is aligned in a certain direction is 20 μm or more in the shortest direction After growing the grains into
The slab and / or powder (the slab or powder or slab and powder) is subjected to hydrogen treatment in which heat is maintained at 750 to 900 ° C. for 15 minutes to 8 hours in H 2 gas of 10 kPa to 1000 kPa,
In addition, dehydrogenation treatment is performed at 700 to 900 ° C. for 5 minutes to 8 hours at a H 2 partial pressure of 10 kPa or less,
Next, it is cooled and pulverized in the pre-process of the heat treatment process or the pre-process or post-process of the hydrogen treatment and dehydrogenation process, and the average crystal grain size is 0.05 to 0.5 μm. An alloy powder for anisotropic bonded magnets is obtained by obtaining an alloy powder of ˜400 μm.
[0010]
The present invention is configured as described above,
A method for producing an alloy powder for anisotropic bonded magnet, which is pulverized in a pre-process or post-process of heat treatment or hydrogen treatment and dehydrogenation treatment process,
Also, after casting by strip casting and heat treatment, the cooled slab and / or powder is heated to a temperature range of 750 ° C. or higher in vacuum or inert gas, and then subjected to hydrogen treatment. The manufacturing method of the raw material powder for anisotropic bonded magnets to apply is also proposed.
[0011]
R, that is, a rare earth element used in the raw material alloy used in the present invention includes Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, and Lu, and at least one of them is included. In some cases, at least one or two of Pr and Nd are contained in 90% or more of R, and all of R may be one or two of Pr and Nd.
The reason why 90% or more of R is at least one of Pr and Nd is that if it is less than 90%, sufficient magnetization cannot be obtained.
If R is less than 9.0 at%, the coercive force decreases due to precipitation of the α-Fe phase, and if it exceeds 15 at%, in addition to the target tetragonal Nd 2 Fe 14 B type compound, R-rich second phase When a large amount of the second phase is precipitated, the magnetization of the alloy is lowered. Accordingly, the range of R is 9.0 to 15.0 at%.
[0012]
For B, and order to stably precipitate the tetragonal Nd 2 Fe 14 B type crystal structure is essential. If the addition amount is 5.5 at% or less, the R 2 T 17 phase precipitates to lower the coercive force, and the squareness of the demagnetization curve is significantly impaired. Moreover, when adding exceeding 8.0 at%, the 2nd phase with small magnetization precipitates and the magnetization of powder is reduced. Therefore, B is set to 5.5 to 8.0 at%.
[0013]
M 1 is one or more of Co, Ni, and Cr. If M 1 is less than 2 at%, a second phase having a low coercive force and low magnetization is precipitated and the magnetic properties are lowered, and 20 at% is reduced. If exceeding, coercive force and squareness will decrease due to precipitation of the α-Fe phase, so M 1 is made 2 to 20 at%.
[0014]
The effect of the additive element M 2 is desired to be an element effective for stabilizing and deliberately leaving the parent phase, that is, the R 2 T 14 B phase, without completely terminating the decomposition reaction of the parent phase during the hydrogen treatment. Examples of particularly remarkable effects include Al, Ti, V, Ga, Zr, Nb, Mo, In, Sn, Hf, Ta, and W.
If M 2 is less than 0.01 at%, the effect of addition cannot be sufficiently exhibited, and if it exceeds 2.0 at%, the progress of the hydrogenation reaction is excessively suppressed, and there is a problem that the coercivity squareness is lowered, which is not preferable. Therefore, M 2 is a 0.01~2.0at%.
[0015]
Fe forms the basis of this system composition, and occupies the remainder of the content of each element described above.
[0016]
The cross-sectional structure of the R—Fe—B alloy having a specific composition obtained by the strip casting method of the present invention is that of an ingot obtained by casting the main phase R 2 Fe 14 B crystal in a conventional mold. Compared to, for example, a fine crystal having a minor axis dimension of 0.1 to 50 μm and a major axis direction of 5 to 200 μm, and surrounding the main phase crystal grains. Even in the region where the R-rich phase is finely dispersed and is ubiquitous locally, the size is 20 μm or less. The presence of the R-rich phase is not necessary for the purposes of this invention, and its presence can be substantially eliminated by limiting Nd to 9-12 at% and B to 5.5-6.5 at%. .
[0017]
The slab of a magnet material having a structure in which the R-rich phase having a specific composition according to the present invention is finely separated is manufactured by strip casting using a single-roll method or a twin-roll method with a molten alloy having a specific composition. The obtained slab is a thin plate material having a plate thickness of 0.03 to 10 mm. Depending on the desired slab plate thickness, the single roll method and the twin roll method are used separately. Further, when the plate thickness is thin, it is preferable to adopt the single roll method.
The reason for limiting the thickness of the slab to 0.03 to 10 mm is that if it is less than 0.03 mm, the rapid cooling effect becomes large, the crystal grain size becomes smaller than 0.1 μm, and it is difficult to expand the crystal grains by solution treatment. Therefore, it is not preferable because it causes deterioration of the magnetic characteristics. When the thickness exceeds 10 mm, the cooling rate becomes slow, α-Fe is easily crystallized, and the ubiquity of the Nd-rich layer occurs, so that the magnetic characteristics deteriorate. Because it is not preferable.
[0018]
In this invention, as a heat treatment condition in a vacuum or an inert gas atmosphere for a slab of a specific composition obtained by a strip casting method, if the temperature is less than 1000 ° C., the diffusion rate is not sufficient, crystal grains do not grow, the excess of 1200 ° C. is not preferable since above the melting point of the Nd 2 Fe 14 B phase.
Further, sufficient grain growth is not performed in the heating time is also less than 30 minutes, and since the processing time at a high temperature of 1000 ° C. ~ 1200 ° C. to lead to cost increase of the process exceeds 48 hours is not preferable.
In the present invention, the above treatment is important, and by this heat treatment, the size of the crystal region in which the crystal orientation in the crystal is aligned in a fixed direction can be grown to 20 μm or more in the shortest direction. If the grain growth is less than 20 μm, the product powder contains many powder particles having a polycrystalline structure consisting of a large number of crystal grains having different orientations, and this is not preferable because the magnetization is lowered.
[0019]
In the present invention, the hydrotreating method is characterized in that a coarsely pulverized powder having a required particle size can obtain an aggregate of an ultrafine crystal structure without changing its size in appearance. That is, when a tetragonal Nd 2 Fe 14 B type compound is reacted with H 2 gas at a high temperature, practically in a temperature range of 600 ° C. to 900 ° C., phase separation into RH 2 to 3 , αFe, Fe 2 B, etc. When the H 2 gas is further removed by de-H 2 treatment in the same temperature range, a recrystallized structure of tetragonal Nd 2 Fe 14 B type compound is obtained again.
However, in reality, the crystal grain size of the decomposition product and the degree of reaction differ depending on the hydrotreating conditions, and the metal structure in the hydrogenated state clearly differs between the hydrogenation temperature of less than 750 ° C. and 750 ° C. or more. This difference in metal structure greatly affects the magnetic properties of the magnetic powder after the dehydrogenation treatment.
[0020]
When the heat treatment temperature in H 2 gas in the hydrogen treatment is less than 600 ° C., the decomposition reaction into RH 2 to 3 , αFe, Fe 2 B or the like does not occur. In addition, the decomposition reaction proceeds almost completely in the temperature range of 600 ° C. to 750 ° C., and an appropriate amount of R 2 T 14 B phase does not remain in the decomposition product. Therefore, sufficient anisotropy cannot be obtained. On the other hand, if it exceeds 900 ° C., RH 2 to 3 become unstable, and the product grows and it becomes difficult to obtain a tetragonal Nd 2 Fe 14 B type compound ultrafine crystal structure.
When the temperature range of hydrogenation is in the range of 750 ° C. to 900 ° C., an appropriate amount of R 2 T 14 B phase, which becomes the nucleus of the recrystallization reaction during dehydrogenation, is dispersed and remains, so that R 2 T after dehydrogenation remains. 14 crystal orientation of the B phase is determined by the residual R 2 T 14 B phase, resulting in crystal orientation of the recrystallized structure is consistent with the crystal orientation of the material ingot, large within the range of the crystal grain size of at least a raw material ingot different Will show direction. Therefore, the temperature range of the hydrogenation treatment is set to 750 ° C to 900 ° C.
In addition, the heat treatment holding time is required to be 15 minutes or longer in order to sufficiently perform the above decomposition reaction, and when it exceeds 8 hours, the remaining R 2 T 14 B phase is reduced. This is not preferable because the anisotropy of the film is lowered. Therefore, the heat holding is performed for 15 minutes to 8 hours.
In this invention, when heat treatment with H 2 gas, H in 2 gas pressure is less than 10 kPa, it does not proceed sufficiently that the above decomposition reaction, also processing facility becomes too large and exceeds 1000 kPa, industrial cost Moreover, since it is not preferable in terms of safety, the pressure range was set to 10 to 1000 kPa. A more preferable pressure range is 20 to 150 kPa.
[0021]
In the present invention, the temperature rise in vacuum or in an inert gas does not particularly define the temperature rise rate, the holding time, etc., and the object is not to react the hydrogen gas and the raw material at 750 ° C. or lower. Accordingly, the processing conditions at 750 ° C. or lower are not particularly defined except for the atmosphere. Note that the inert gas here is Ar gas or He gas, and N 2 gas, which is usually handled as an inert gas, reacts with the raw material in a high temperature range, so that it is an inert gas. It is not preferable.
[0022]
In the present invention, if the H 2 partial pressure during the dehydrogenation process exceeds 10 kPa, the RH 2 to 3 phase decomposition conditions are not reached in the following temperature range, that is, 900 ° C. or less, so that it is 10 kPa or less. Moreover, it is preferably in the range of 1 Pa to 1 kPa.
If the temperature during the dehydrogenation treatment is less than 700 ° C., the separation of H 2 from the RH 2 to 3 phases does not occur or the recrystallization of the tetragonal Nd 2 Fe 14 B type compound does not proceed sufficiently. When the temperature exceeds 900 ° C., a tetragonal Nd 2 Fe 14 B type compound is produced, but the recrystallized grains grow coarsely, and a high coercive force cannot be obtained. Therefore, the temperature range of the de-H 2 treatment is set to 700 ° C to 900 ° C.
In addition, although the dehydrogenation holding time depends on the exhaust capacity of the processing equipment, it is important that the above-mentioned recrystallization reaction is sufficiently performed, and it is necessary to hold at least 5 minutes or more. If the crystal is coarsened by the recrystallization reaction, the coercive force is lowered, so that a shorter time is preferable. Therefore, heating and holding for 5 minutes to 8 hours is sufficient.
The dehydrogenation treatment is preferably performed subsequent to the hydrogenation treatment from the viewpoint of preventing oxidation of the raw materials and from the viewpoint of the thermal efficiency of the processing equipment, but after the hydrogenation treatment, the raw materials are once cooled and dehydrogenated again. It is also possible to perform heat treatment for the purpose.
[0023]
In this invention, the recrystallized grain size of the tetragonal Nd 2 Fe 14 B type compound after the dehydrogenation treatment is substantially difficult to obtain an average recrystallized grain size of 0.05 μm or less. However, there is no advantage in magnetic properties. On the other hand, if the average recrystallized grain size exceeds 0.5 μm, the coercive force of the powder decreases, which is not preferable. Therefore, the average recrystallized grain size is set to 0.05 μm to 0.5 μm.
[0024]
In the present invention, the average particle size of the obtained alloy powder is limited to 20 to 400 μm because if it is less than 20 μm, there is a risk of magnetic deterioration due to oxidation of the powder. This is because it is not preferable because it becomes coarse as a raw material of the magnet.
In order to obtain an alloy powder having an average grain size of 20 to 400 μm, it is pulverized before the heat treatment step under specific conditions for grain growth, or after the heat treatment step, specific conditions for obtaining an aggregate of ultrafine crystal structures. It may be pulverized before the hydrogen treatment and dehydrogenation treatment, or pulverized after the hydrogen treatment and dehydrogenation treatment steps.
[0025]
[Action]
In the present invention, R (R is at least one of rare earth elements), Fe, B, M 1 (M is one or more of Co, Ni, Cr), M 2 (M 2 is Al, Ga, Zr). , Ti, V, Nb, Mo, In, Sn, Hf, Ta, W using a molten alloy whose main component is a slab of the required thickness by the strip casting method, By performing heat treatment at 1000 ° C. to 1200 ° C. for 30 minutes to 48 hours in a vacuum or in an inert gas atmosphere, the size of the crystal region in which the crystal orientation in the slab or powder is aligned in a certain direction is reduced to the shortest direction. Conventionally, it is impossible to produce raw material powder for anisotropic bonded magnets by growing grains to 20 μm or more and then performing hydrogen treatment and dehydrogenation treatment under specific conditions to obtain an aggregate of ultrafine crystal structure. Strip casting method The raw material powder for anisotropic bonded magnets with excellent magnetic properties can be obtained from the slab obtained as described above.
[0026]
【Example】
Example 1
In a high frequency melting furnace, a molten alloy having a composition of Nd13.4-Fe remaining-Co11-B6.7-Ga1-Zr0.1 obtained by melting is obtained by a one-roll method using a copper roll having a diameter of 200 mm. A thin plate cast with a thickness of 0.5 mm was obtained. This alloy was heat-treated at 1120 ° C. for 12 hours in a vacuum to grow crystal grains. In this case, the average crystal grain size was about 80 μm.
This alloy was heated to 840 ° C. in a vacuum, H 2 gas having an absolute pressure of 2 atm was introduced and held for 4 hours, then the pressure was reduced to 1 atm, and 1 atmosphere of Ar was flowed for 20 minutes, and then 840 ° C. The pressure was reduced while the pressure was maintained, and a de-H 2 treatment was performed in which the pressure was maintained at 100 Torr for 2 hours.
Thereafter, the alloy was pulverized to obtain a pulverized powder having a particle size of 38 to 150 μm. The pulverized powder is mixed with 2.5 wt% cresol novolac type resin, molded by applying a pressure of 6 Ton / cm 2 in a magnetic field of 15 kOe, cured at 160 ° C. for 1 hour, and a 10 mm square cube bond A magnet was obtained. Table 1 shows the results of measuring the magnetic properties with a BH tracer.
[0027]
Comparative Example 1
A cast slab by the strip casting method having the same composition as in Example 1 was directly heat treated with H 2 under the same conditions as in Example 1 and then made into a bonded magnet under the same conditions as in Example 1. The properties of the obtained bonded magnet are shown in Table 1.
[0028]
[Table 1]
Figure 0003667783
[0029]
Example 2
A thin plate-shaped slab having a thickness of 0.5 mm was obtained from the molten alloy having the composition (at%) shown in Table 2 by the strip casting method in the same manner as in Example 1. Thereafter, the thin plate-shaped slab was pulverized and further subjected to heat treatment at 1150 ° C. for 12 hours in a vacuum to grow crystal grains. In this case, the average crystal grain size was about 95 μm.
This alloy is heated to 850 ° C. in a vacuum, 18 atmospheres of H 2 gas is introduced and maintained for 4 hours, then reduced to 1 atmosphere, and 1 atmosphere of Ar is flown for 20 minutes, and then maintained at 850 ° C. In this state, a de-H 2 treatment was performed by maintaining the pressure at 850 Torr for 3 hours.
Thereafter, a bonded magnet was formed under the same conditions as in Example 1. Table 3 shows the properties of the obtained bonded magnet.
[0030]
Example 3
A thin plate-shaped slab having a thickness of 0.5 mm was obtained from the molten alloy having the composition (at%) shown in Table 2 by the strip casting method in the same manner as in Example 1. This alloy was heat-treated at 1120 ° C. for 20 hours in Ar gas to grow crystal grains. In this case, the average crystal grain size was about 80 μm. Thereafter, the alloy was pulverized to obtain a pulverized powder having a particle size of 38 to 150 μm.
This alloy was heated to 850 ° C. in a vacuum, introduced with 2 atmospheres of H 2 gas and maintained for 4 hours, then reduced to 1 atmosphere, and Ar pressure was applied for 20 minutes, and then maintained at 850 ° C. The de-H 2 treatment was performed while maintaining the pressure at 850 Torr for 3 hours.
Thereafter, a bonded magnet was formed under the same conditions as in Example 1. Table 3 shows the properties of the obtained bonded magnet.
[0031]
[Table 2]
Figure 0003667783
[0032]
[Table 3]
Figure 0003667783
[0033]
【The invention's effect】
This invention obtains a raw material powder for anisotropic bonded magnets with excellent magnetic properties from a slab obtained by a strip casting method in which production of raw material powder for anisotropic bonded magnets has been impossible in the past. As is apparent from the examples, R (R is at least one rare earth element), Fe, B, M 1 (M is one or more of Co, Ni, Cr), M 2 (M 2 Is a cast alloy having a required thickness by a strip casting method using a molten alloy mainly composed of Al, Ga, Zr, Ti, V, Nb, Mo, In, Sn, Hf, Ta, and W). After being formed into pieces, a heat treatment is performed at 1000 ° C. to 1200 ° C. for 30 minutes to 48 hours in a vacuum or in an inert gas atmosphere, so that a crystal region in which the crystal orientation in the slab or powder is aligned in a certain direction is obtained. Increase the size to 20μm or more in the shortest direction It is possible to obtain a high-performance raw material powder for anisotropic bonded magnet with high production efficiency by carrying out hydrogen treatment and dehydrogenation treatment under specific conditions to obtain an aggregate of ultrafine crystal structure after grain growth. it can.

Claims (2)

R(但し、RはYを含む希土類元素のうち少なくとも1種でかつPrまたはNdの1種または2種をRのうち90%以上含有)9.0at%〜15at%、B5.5at%〜8.0at%、M1(但し、M1はCo,Ni,Crの1種または2種以上)2at%〜20at%、M2(但し、M2はAl,Ga,Zr,Ti,V,Nb,Mo,In,Sn,Hf,Ta,Wのうち1種または2種以上)0.01at%〜2.0at%、残部Fe及び不可避的不純物からなる合金溶湯をストリップキャスティング法にて、主相のR2Fe14B結晶の短軸方向寸法が0.1μm〜50μm、長軸方向寸法が 5 μ m 200 μ m である板厚0.03mm〜10mmの鋳片に鋳造後、真空中または不活性ガス雰囲気中で1000℃1200℃の温度で30分〜48時間の熱処理をして、結晶内の結晶方位が一定方向に揃った結晶領域の大きさを最短方向に20μm以上に粒成長させた後、前記鋳片及び / 又は粉末を10kPa〜1000kPaのH2ガス中で750〜900℃に15分〜8時間加熱保持する水素処理を施し、更にH2分圧10kPa以下にて700〜900℃に5分〜8時間保持する脱水素処理を行ない、次いで冷却し、熱処理工程の前工程または水素処理及び脱水素処理工程の前工程あるいは後工程で粉砕を行い、平均結晶粒径が0.05〜0.5μmである磁気的に異方性を有する平均粒度20〜400μmの合金粉末を得ることを特徴とする異方性ボンド磁石用合金粉末の製造方法。R (provided that R is at least one of rare earth elements including Y and contains one or two of Pr or Nd in 90% or more of R) 9.0 at% to 15 at%, B5.5 at% to 8.0 at %, M 1 (where M 1 is one or more of Co, Ni, Cr) 2 at% to 20 at%, M 2 (where M 2 is Al, Ga, Zr, Ti, V, Nb, Mo , In, Sn, Hf, Ta, W or one or more of them) The molten alloy consisting of 0.01at% to 2.0at%, the balance Fe and unavoidable impurities is strip cast and the main phase R 2 Fe 14 B After casting into a slab with a plate thickness of 0.03 mm to 10 mm with a minor axis dimension of 0.1 μm to 50 μm and a major axis dimension of 5 μm to 200 μm , in a vacuum or in an inert gas atmosphere After heat treatment at a temperature of 1000 ° C. to 1200 ° C. for 30 minutes to 48 hours to grow a crystal region in which the crystal orientation in the crystal is aligned in a certain direction to a grain size of 20 μm or more in the shortest direction, the casting pieces and / or powder hydrotreating heating maintained for 15 minutes to 8 hours 750 to 900 ° C. with H 2 gas of 10kPa~1000kPa the And further subjected to dehydrogenation treatment to hold 5 minutes to 8 hours 700 to 900 ° C. at a H 2 partial pressure 10kPa or less, then cooled, before the step of pre-process or hydrotreating and dehydrogenation step of the heat treatment process or An anisotropic bonded magnet alloy powder characterized in that it is pulverized in a post-process to obtain an alloy powder having an average grain size of 0.05 to 0.5 μm and magnetically anisotropic average grain size of 20 to 400 μm. Production method. ストリップキャスティング法にて鋳造し、熱処理を施した後、冷却された鋳片及び / 又は粉末を、真空中または不活性ガス中で温度750℃以上の温度域まで昇温後、水素処理を施すことを特徴とする請求項1 記載の異方性ボンド磁石用原料粉末の製造方法。After casting by the strip casting method and heat treatment, the cooled slab and / or powder is heated to a temperature range of 750 ° C or higher in vacuum or inert gas, and then subjected to hydrogen treatment. 2. The method for producing a raw material powder for an anisotropic bonded magnet according to claim 1 , wherein:
JP27624593A 1993-10-06 1993-10-06 Method for producing raw powder for anisotropic bonded magnet Expired - Lifetime JP3667783B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27624593A JP3667783B2 (en) 1993-10-06 1993-10-06 Method for producing raw powder for anisotropic bonded magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27624593A JP3667783B2 (en) 1993-10-06 1993-10-06 Method for producing raw powder for anisotropic bonded magnet

Publications (2)

Publication Number Publication Date
JPH07109504A JPH07109504A (en) 1995-04-25
JP3667783B2 true JP3667783B2 (en) 2005-07-06

Family

ID=17566731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27624593A Expired - Lifetime JP3667783B2 (en) 1993-10-06 1993-10-06 Method for producing raw powder for anisotropic bonded magnet

Country Status (1)

Country Link
JP (1) JP3667783B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4754739B2 (en) * 2001-09-03 2011-08-24 昭和電工株式会社 Alloy ingot for rare earth magnet, method for producing the same, and sintered magnet
WO2003020993A1 (en) * 2001-09-03 2003-03-13 Showa Denko K.K. Rare earth magnet alloy ingot, manufacturing method for the same, r-t-b type magnet alloy ingot, r-t-b type magnet, r-t-b type bonded magnet, r-t-b type exchange spring magnet alloy ingot, r-t-b type exchange spring magnet, and r-t-b type exchange spring bonded magnet
US7014718B2 (en) 2001-09-03 2006-03-21 Showa Denko K.K. Rare earth magnet alloy ingot, manufacturing method for the same, R-T-B type magnet alloy ingot, R-T-B type magnet, R-T-B type bonded magnet, R-T-B type exchange spring magnet alloy ingot, R-T-B type exchange spring magnet, and R-T-B type exchange spring bonded magnet
US8907755B2 (en) * 2012-03-30 2014-12-09 Toda Kogyo Corporation R-T-B-based rare earth magnet particles, process for producing the R-T-B- based rare earth magnet particles, and bonded magnet
CN111029075B (en) * 2019-12-31 2020-12-29 烟台首钢磁性材料股份有限公司 Preparation method of neodymium iron boron magnetic powder

Also Published As

Publication number Publication date
JPH07109504A (en) 1995-04-25

Similar Documents

Publication Publication Date Title
US4921551A (en) Permanent magnet manufacture from very low coercivity crystalline rare earth-transition metal-boron alloy
WO2003066922A1 (en) Sinter magnet made from rare earth-iron-boron alloy powder for magnet
JPH09165601A (en) Anisotropic rare earth alloy powder for permanent magnet and production of anisotropic bonded magnet
JPH1036949A (en) Alloy for rare earth magnet and its production
JPS62276803A (en) Rare earth-iron permanent magnet
JP3667783B2 (en) Method for producing raw powder for anisotropic bonded magnet
JP3368295B2 (en) Method for producing anisotropic rare earth alloy powder for permanent magnet
JP3693838B2 (en) Alloy ribbon for rare earth magnet, alloy fine powder, and production method thereof
JP3368294B2 (en) Method for producing anisotropic rare earth alloy powder for permanent magnet
JP3623571B2 (en) Method for producing RTB-based anisotropic bonded magnet
JP3597615B2 (en) Method for producing RTB based anisotropic bonded magnet
EP0288637B1 (en) Permanent magnet and method of making the same
JP3504735B2 (en) Method for producing RTMN based anisotropic bonded magnet
JP3634565B2 (en) Method for producing anisotropic rare earth alloy powder for permanent magnet
JP3423965B2 (en) Method for producing anisotropic rare earth alloy powder for permanent magnet
JP3710837B2 (en) Rare earth alloy ingot for permanent magnet, alloy powder and method for producing bonded magnet
JP3935512B2 (en) Method for manufacturing anisotropic bonded magnet
JP3481653B2 (en) Method for producing anisotropic rare earth alloy powder for permanent magnet
JP3755902B2 (en) Magnet powder for anisotropic bonded magnet and method for producing anisotropic bonded magnet
JP3427765B2 (en) Rare earth-Fe-Co-B based magnet powder, method for producing the same, and bonded magnet using the powder
JP6773150B2 (en) RTB-based rare earth sintered magnet alloy, RTB-based rare earth sintered magnet
JP3086334B2 (en) Anisotropic rare earth alloy powder for permanent magnet
JPH07278615A (en) Production of anisotropic rare-earth alloy powder for permanent magnet
JP3529551B2 (en) Manufacturing method of rare earth sintered magnet
JP2978004B2 (en) Method for producing rare earth composite magnet having magnetic anisotropy

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050407

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080415

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090415

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100415

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110415

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120415

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130415

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130415

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 9

EXPY Cancellation because of completion of term