JPH1036949A - Alloy for rare earth magnet and its production - Google Patents

Alloy for rare earth magnet and its production

Info

Publication number
JPH1036949A
JPH1036949A JP9108109A JP10810997A JPH1036949A JP H1036949 A JPH1036949 A JP H1036949A JP 9108109 A JP9108109 A JP 9108109A JP 10810997 A JP10810997 A JP 10810997A JP H1036949 A JPH1036949 A JP H1036949A
Authority
JP
Japan
Prior art keywords
phase
alloy
rich
cooling rate
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9108109A
Other languages
Japanese (ja)
Other versions
JP3449166B2 (en
Inventor
Shiro Sasaki
史郎 佐々木
Hiroshi Hasegawa
寛 長谷川
Yoichi Hirose
洋一 広瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26448071&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH1036949(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP10810997A priority Critical patent/JP3449166B2/en
Publication of JPH1036949A publication Critical patent/JPH1036949A/en
Application granted granted Critical
Publication of JP3449166B2 publication Critical patent/JP3449166B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To stably exhibit a high magnetic characteristics in which residual magnetization is high in an R-T-B alloy by controlling cooling conditions at the time of strip casting and reducing the volume ratio of R-enriched phases. SOLUTION: An alloy molten metal having a compsn. contg., by weight, 27 to 34% R (one or more kinds among rare earth elements including Y), 0.7 to 1.4% B, and the balance T (transition metals essentially consisting of Fe) is cast by a strip casting method, and the average cooling rate from the m.p. of this alloy to 1000 deg.C is regulated to >=300 deg.C/sec, and the average cooling rate from 800 to 600 deg.C is regulated to <=1.0 deg.C/sec. In this way, a strong permanent magnet in which the volume ratio V(%) of phases other than R-enriched phases is regulated to >=(138-1.6r) where (r) denotes the content of R}, the average particle diameter of the main R2 T14 B phases is regulated to 10 to 100μm, the distance between the R-enriched phases is regulated to 3 to 15μm, and the maximum magnetic force product (BH) MAX} is regulated to >=40MGOe class can easily be obtd.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は希土類元素を含む永
久磁石の原料用合金とその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a raw material alloy for a permanent magnet containing a rare earth element and a method for producing the same.

【0002】[0002]

【従来の技術】希土類磁石は電子機器の小型高性能化に
伴い、生産量は増加の一途をたどっている。特にNdF
eB系材料はSmCoを凌ぐ高特性と原料面での優位性
から、生産量は増加し続けており、その中でも磁気特性
をさらに向上させた磁石へのニーズが高まりつつある。
R−T−B系磁石では磁性を担う強磁性相R2T14B相の他
に、非磁性でNd等の希土類元素の濃度の高い相(Rリ
ッチ相と呼ぶ)が存在し、次の様な重要な役割を果たし
ている。 融点が低く、磁石化工程の焼結時に液相となり、磁石
の高密度化、したがって磁化の向上に寄与する。 粒界の凹凸をなくし、逆磁区のニュークリエーション
サイトを減少させ保磁力を高める。 Rリッチ相は非磁性であり主相を磁気的に絶縁するこ
とから、保磁力を高める。 したがって、Rリッチ相の分散状態が悪いためにRリッ
チ相に覆われていない界面が存在すれば、その部分では
局所的な保磁力低下によって角型性が悪化するととも
に、焼結不良によって磁化も低下するため最大磁気エネ
ルギー積の低下をもたらすことが知られている。
2. Description of the Related Art The production of rare earth magnets has been increasing steadily with the miniaturization and high performance of electronic devices. Especially NdF
The production of eB-based materials continues to increase due to their superior properties over SmCo and superior raw materials, and among them, the need for magnets with further improved magnetic properties is increasing.
Other ferromagnetic phase R 2 T 14 B phase responsible for the magnetism in the R-T-B magnet, such as Nd nonmagnetic high phase concentrations of rare earth elements (referred to as R-rich phase) exists, the following Plays an important role. It has a low melting point and becomes a liquid phase at the time of sintering in the magnetizing step, which contributes to increasing the density of the magnet and thus improving the magnetization. Eliminates irregularities at grain boundaries, reduces nucleation sites in reverse magnetic domains, and increases coercive force. The R-rich phase is non-magnetic and magnetically insulates the main phase, thereby increasing the coercive force. Therefore, if there is an interface that is not covered by the R-rich phase due to the poor dispersion state of the R-rich phase, the rectangularity is deteriorated due to a local decrease in coercive force, and the magnetization is also reduced due to poor sintering. It is known that lowering results in lowering of the maximum magnetic energy product.

【0003】ところが、高特性磁石になるほど強磁性相
であるR2T14B相の体積率を高める必要があるため、必然
的にRリッチ相の体積率が減少し、部分的なRリッチ相
不足を生じ、十分な特性が得られない場合が多い。そこ
で高特性材においてRリッチ相不足による特性低下の防
止方法に関する多くの研究が報告されており、それらは
大きく2つのグループに分けられる。
[0003] However, the volume ratio of the R 2 T 14 B phase, which is a ferromagnetic phase, must be increased as the magnet becomes higher in performance. In many cases, shortage occurs and sufficient characteristics cannot be obtained. Therefore, many studies have been reported on methods for preventing deterioration of properties due to lack of R-rich phase in high-performance materials, and they are roughly divided into two groups.

【0004】1つは主相R2T14B相とRリッチ相を別々の
合金から供給するものであり、一般に2合金法と呼ばれ
ている。2合金法は最終的な磁石組成は似通ったもので
も、2つの合金の組成の選択幅が広いこと、Rリッチ相
を供給する合金の組成、製法にも自由度が高いことから
幾つか興味深い結果が報告されている。
One is to supply the main phase R 2 T 14 B phase and the R-rich phase from different alloys, which is generally called a two-alloy method. Although the two-alloy method is similar to the final magnet composition, there are some interesting results because the choice of the composition of the two alloys is wide, the composition of the alloy that supplies the R-rich phase, and the manufacturing method is high. Have been reported.

【0005】例えば、粒界相合金として焼結温度におい
て液相となる組成の非晶質合金を使用すれば、通常の一
合金法で作成した原料合金よりも、粒界相がFeリッチ
になっただけその粒界相の体積率を増加させることがで
きるため、磁石製作時のRリッチ相の分散性が良好とな
り、磁気特性向上に成功している。また、非晶質合金の
使用による粉末酸化の抑制も非常に有効に機能している
(E.Otsuki,T.Otsukaand T.Imai,11th International W
orkshop on Rare Earth magnets and theirApplication
s,vol.1,p328(1990) )。その他、Rリッチ相を供給す
る合金を高Co組成として粉末酸化の抑制に成功した研
究も報告されている(M.Honshimaand K.Ohashi,Journal
of Materials Engineering and Performance P.218-22
2 vol.3(2) April 1994 )。
For example, when an amorphous alloy having a composition that becomes a liquid phase at a sintering temperature is used as a grain boundary phase alloy, the grain boundary phase becomes Fe-rich as compared with a raw material alloy prepared by a normal one alloy method. Since the volume ratio of the grain boundary phase can be increased, the dispersibility of the R-rich phase during the production of the magnet is improved, and the magnetic properties are successfully improved. In addition, suppression of powder oxidation by using an amorphous alloy also functions very effectively (E. Otsuki, T. Otsukaand T. Imai, 11th International W
orkshop on Rare Earth magnets and theirApplication
s, vol. 1, p328 (1990)). In addition, there has been reported a study that succeeded in suppressing powder oxidation by using an alloy that supplies an R-rich phase with a high Co composition (M. Honshima and K. Ohashi, Journal)
of Materials Engineering and Performance P.218-22
2 vol.3 (2) April 1994).

【0006】もう一つは最終組成の合金をストリップキ
ャスティング法により、従来の金型鋳造法よりも早い冷
却速度で凝固させることで組織を微細化し、Rリッチ相
が微細に分散した組織を有する合金を生成させるもので
ある。合金内のRリッチ相が微細に分散しているため、
粉砕、焼結後のRリッチ相の分散性も良好となり、磁気
特性向上に成功している(特開平5-222488、特開平5-29
5490)。一方、R2T14B相は初晶α−Feと液相との包晶
反応で生成するため、R含有量が低下すると、α−Fe
が生成しやすくなる。α−Feは磁石製造時の粉砕効率
の悪化を招き、焼結後の磁石に残存すれば特性の低下を
もたらす。そこで、通常の金型鋳造法で溶製したインゴ
ットの場合、高温で長時間にわたる均質化熱処理による
α−Feの消去が必要となる。しかし、ストリップキャ
スティング法により凝固速度を増加させ、包晶反応温度
以下に過冷却できれば、α−Fe析出の抑制が可能とな
る。また、2合金法で一方の合金のR含有量を比較的少
なくして、主にR217相からなる組織を生成する場合
でも、ストリップキャティング法によりα−Fe生成抑
制、粉砕性向上が認められている。この際、主相系合金
は前例よりもR含有量が増加するため、従来の鋳造法で
もα−Feの生成量は少ないものと考えられるが、スト
リップキャスティング法によりRリッチ相の分散性が非
常に良好な組織を生成し、粉砕性、粒度分布の向上がも
たらされている(特開平7-45413 )。
[0006] The other is an alloy having a structure in which the microstructure is refined by solidifying the alloy of the final composition by a strip casting method at a cooling rate higher than that of a conventional die casting method, and an R-rich phase is finely dispersed. Is generated. Because the R-rich phase in the alloy is finely dispersed,
The dispersibility of the R-rich phase after pulverization and sintering has also been improved, and the magnetic properties have been successfully improved (JP-A-5-222488, JP-A-5-29-92).
5490). On the other hand, since the R 2 T 14 B phase is formed by a peritectic reaction between the primary crystal α-Fe and the liquid phase, when the R content decreases, α-Fe
Is easily generated. α-Fe causes deterioration of the pulverization efficiency during the production of the magnet, and if it remains on the magnet after sintering, the properties are reduced. Therefore, in the case of an ingot produced by a normal die casting method, it is necessary to eliminate α-Fe by a homogenizing heat treatment at a high temperature for a long time. However, if the solidification rate can be increased by the strip casting method and supercooled below the peritectic reaction temperature, α-Fe precipitation can be suppressed. Further, even when the R content of one alloy is relatively reduced by the two-alloy method and a structure mainly composed of the R 2 T 17 phase is generated, the production of α-Fe is suppressed by the strip casting method and the crushability is improved. Has been recognized. At this time, since the R content of the main phase alloy is larger than that of the previous example, it is considered that the amount of α-Fe generated is small even in the conventional casting method, but the dispersibility of the R rich phase is extremely low by the strip casting method. In addition, a good structure is formed, and the pulverizability and the particle size distribution are improved (Japanese Patent Application Laid-Open No. 7-45413).

【0007】[0007]

【発明が解決しようとする課題】以上のように2合金法
とストリップキャスティング法、又はこれらの併用によ
って焼結後のRリッチ相の良好な分散がもたらされ、磁
気特性の向上がなされたが、まだ充分に要求特性が満た
されていない。本発明では、それら従来法にさらに改良
を加える事で、残留磁化(Br)が高い高磁気特性を安
定して発現することを目的とする。
As described above, although the two-alloy method and the strip casting method, or a combination thereof, provided an excellent dispersion of the R-rich phase after sintering and improved the magnetic properties. However, the required characteristics have not yet been sufficiently satisfied. It is an object of the present invention to stably express high magnetic characteristics with high residual magnetization (Br) by further improving these conventional methods.

【0008】[0008]

【課題を解決するための手段】本発明者はR- T- B系
合金の組織と磁気特性の関連について検討した結果、ス
トリップキャスティング時の冷却条件を制御することに
より、Rリッチ相の体積率を減少させることによって、
残留磁化が大きくなることを見出した。あるいはまた、
鋳造後の熱処理により、Rリッチ相の体積率を減少させ
ることによって、磁石化して評価した際に、残留磁化が
大きくなる事実を見出した。この事実は2合金法の主相
系合金をストリップキャスティング法で作製した際にも
確認された。
The present inventor has studied the relationship between the structure of the RTB-based alloy and the magnetic properties. As a result, by controlling the cooling conditions during strip casting, the volume fraction of the R-rich phase is controlled. By reducing
It has been found that the remanent magnetization increases. Alternatively,
By reducing the volume ratio of the R-rich phase by heat treatment after casting, it was found that when magnetized and evaluated, the residual magnetization increased. This fact was also confirmed when the main alloy of the two-alloy method was produced by the strip casting method.

【0009】また本発明者は、ストリップキャスト材も
含めて、R- T- B系磁石合金インゴットではRリッチ
相は結晶粒界に存在し、Rリッチ相の均一微細分布のた
めにはRリッチ相の間隔を小さくすること、すなわち結
晶粒径を小さくすることが重要であるとされてきた従来
の解析結果と異なり、Rリッチ相と結晶粒界とは必ずし
も対応していないこと。また、良好な磁気特性を得るた
めには結晶粒径は大きく、かつRリッチ相の間隔は細か
いことが必要であることも見出した。そして、鋳造時の
インゴットの冷却条件を制御することによって、Rリッ
チ相の間隔を細かくする一方で、結晶粒径を大きめにす
ることが可能であることを見出している。
Further, the present inventor has reported that the R-rich phase exists at the crystal grain boundaries in the RTB-based magnet alloy ingots, including the strip cast material, and the R-rich phase is required for uniform fine distribution of the R-rich phase. The difference between the R-rich phase and the crystal grain boundary does not always correspond to the conventional analysis result in which it is important to reduce the phase interval, that is, to reduce the crystal grain size. It has also been found that in order to obtain good magnetic properties, it is necessary that the crystal grain size is large and the interval between R-rich phases is small. By controlling the cooling condition of the ingot during casting, it has been found that it is possible to increase the crystal grain size while reducing the interval between R-rich phases.

【0010】すなわち、本発明はR(Yを含む希土類元
素のうち少なくとも1種)、T(Feを必須とする遷移
金属)及びBを基本成分とする永久磁石の原料用合金と
原料用合金の製造方法に於て、凝固速度の制御により、
あるいは凝固後の冷却速度の制御によってRリッチ相の
体積率、さらにはRリッチ相の間隔を適正化させるこ
と、さらにR2T14B相結晶粒径を制御することによって、
残留磁化の増加をもたらすものである。
That is, the present invention relates to a raw material alloy for a permanent magnet and a raw material alloy containing R (at least one of rare earth elements including Y), T (transition metal having Fe as an essential component) and B as basic components. In the manufacturing method, by controlling the solidification rate,
Alternatively, by controlling the cooling rate after the solidification, the volume ratio of the R-rich phase, and further, the interval between the R-rich phases is optimized, and further, by controlling the crystal grain size of the R 2 T 14 B phase,
This causes an increase in remanent magnetization.

【0011】ここで、本発明の構成を詳細に記す前にR2
T14B化学量論組成よりも若干Rリッチである一般的な主
相系合金の凝固、熱処理による組織変化に関してNd−
Fe−B3元系を例に説明する。通常の鋳型を使用した
凝固の場合、特に冷却速度が遅くなるインゴットの厚さ
方向の中央部近傍では、まず初晶α−Feが生成し、液
相との2相共存状態となる。次に1155℃の包晶反応によ
って、α−Feと液相からNd2Fe14B相を生成するが、反
応速度が冷却速度と比較して遅いため、α−FeはNd2F
e14B相内部に残存する。その後、温度低下に従い液相か
らNd2Fe14B相が排出され、液相は体積率が減少すると共
に、組成もNdリッチ側に変化し、最終的に液相は665
℃の3元共晶反応でNd2Fe14B相、Ndリッチ相、Bリッ
チ相の3相に凝固する。
Before describing the structure of the present invention in detail, R 2
Solidification of T 14 B stoichiometry is somewhat R-rich than the composition common main phase alloy, with respect to tissue changes due to heat treatment Nd-
The Fe-B ternary system will be described as an example. In the case of solidification using an ordinary mold, especially near the center in the thickness direction of the ingot where the cooling rate is slow, firstly, primary crystal α-Fe is generated, and the two phases coexist with the liquid phase. Next, an Nd 2 Fe 14 B phase is generated from α-Fe and the liquid phase by the peritectic reaction at 1155 ° C., but since the reaction rate is slower than the cooling rate, α-Fe becomes Nd 2 F
remaining in the e 14 B phase. Thereafter, the Nd 2 Fe 14 B phase is discharged from the liquid phase as the temperature decreases, and the liquid phase decreases in volume ratio and the composition also changes to the Nd-rich side.
Solidifies into three phases of Nd 2 Fe 14 B phase, Nd-rich phase and B-rich phase by a ternary eutectic reaction at ℃.

【0012】しかし、ストリップキャスティング法等に
より凝固速度を増加した際には、先に触れたように合金
溶湯を包晶反応温度以下まで過冷却可能となるため、α
−Feの生成を抑制し、液相からNd2Fe14B相を直接生成
可能となる。また、その後の冷却も速く、液相からNd2F
e14B相が十分生成される以前に凝固するため、平衡状態
図で予想されるよりもNd2Fe14B相の体積率は少なく、高
温域での液相に相当するNd リッチ相のNdの濃度は低
く、Ndリッチ相の体積率は増加する。以上、Nd−F
e−B3元系を例に説明したが、一般のR−T−B系に
拡張しても反応温度等の多少の相違は存在するものの同
様に変化することが知られている。
However, when the solidification rate is increased by a strip casting method or the like, as described above, the molten alloy can be supercooled to a temperature below the peritectic reaction temperature.
-The generation of Fe is suppressed, and the Nd 2 Fe 14 B phase can be directly generated from the liquid phase. In addition, the subsequent cooling is fast, and Nd 2 F
Since the solidification occurs before the e 14 B phase is sufficiently formed, the volume fraction of the Nd 2 Fe 14 B phase is smaller than expected in the equilibrium diagram, and the Nd of the Nd-rich phase corresponding to the liquid phase at a high temperature region Is low, and the volume fraction of the Nd-rich phase increases. Above, Nd-F
Although the e-B ternary system has been described as an example, it is known that even if the reaction system is expanded to a general RTB system, the reaction temperature and the like may be slightly changed, although they may be slightly different.

【0013】次に本発明の構成を以下に詳細に記す。 (1) Rリッチ相以外の相の体積率 本発明は、Rリッチ相以外の相の体積率V(%)が13
8−1.6r以上(rは重量%で示したR含有量)であ
ることを特徴とする。ここで、Rリッチ相以外の相と
は、主相であるR2T14B相、Bリッチ相、その他合金組成
によって出現するR2T17 相等の主相R2T14B相よりも希土
類含有量の少ない相を総称して示す。先に説明したよう
にストリップキャスティング法等により凝固速度を増加
した際には、平衡状態図で予想されるよりも、Rリッチ
相が増え、R2T14B相の体積率は減少する。本発明の合金
ではストリップキャスティング法を採用しさらに鋳造後
の冷却条件を最適化することにより、α−Feの生成を
防止し、かつRリッチ相の体積率を減少させ、主相の体
積率を増加させると同時に、微細なRリッチ相が分布し
た組織としていることを特徴とする。
Next, the configuration of the present invention will be described in detail below. (1) Volume fraction of phases other than R-rich phase In the present invention, the volume fraction V (%) of phases other than the R-rich phase is 13
8-1.6 r or more (r is the R content in weight%). Here, the phase other than the R-rich phase, the main phase R 2 T 14 B phase, B-rich phase, other rare-earth than the main phase R 2 T 14 B phase of the R 2 T 17 phase etc. appearing by alloy composition The phases with low content are generically indicated. As described above, when the solidification rate is increased by the strip casting method or the like, the R-rich phase increases and the volume ratio of the R 2 T 14 B phase decreases as expected from the equilibrium diagram. The alloy of the present invention employs a strip casting method and further optimizes cooling conditions after casting to prevent the formation of α-Fe, reduce the volume fraction of the R-rich phase, and reduce the volume fraction of the main phase. At the same time, the structure is characterized by having a structure in which fine R-rich phases are distributed.

【0014】本発明は原料合金のRリッチ相の体積率が
磁石の残留磁化向上に寄与する点に着目した。Rリッチ
相不足で焼結性が低下しない範囲内で、R2T14B相の体積
率が大きく、Rリッチ相の体積率が小さいほど、磁石の
残留磁化は増加する。ここでR含有量が低いほどRリッ
チ相は減少し、R2T14B相を主体としたRリッチ相以外の
相の体積率が増加する。平衡状態図から主相R2T14B相の
体積率を推定して、実験により確認した結果、本発明の
効果をもたらすRリッチ相以外の相の体積率Vは、重量
%で示したRの含有量rに対して変化し、残留磁化が高
くなり好ましいVの範囲はV>(138−1.6r)と
なることが判明した。また、rが30(wt%)程度以
上と比較的大きい場合には、残留磁化と焼結性とのバラ
ンスから、主相R2T14B相の体積率をV’(%)とする
と、V’としては(138−1.6r)<V’<95で
あることが好ましいことが判明した。また、2合金法に
於いては主相系合金の希土類量は、希土類量の多い粒界
相系合金と混合して使用するために、一般に30(wt
%)以下と小さい。その場合でもV’>91が好まし
い。さらに好ましくはV’>93である。一方、粒界相
系合金は、本特許に記す合金よりも希土類量が大きく、
組織も大きく異なるため、特にここで規定するものでは
ない。
The present invention has focused on the point that the volume fraction of the R-rich phase of the raw material alloy contributes to the improvement of the residual magnetization of the magnet. As long as the sinterability does not decrease due to the lack of the R-rich phase, the residual magnetism of the magnet increases as the volume fraction of the R 2 T 14 B phase increases and the volume fraction of the R-rich phase decreases. Here, as the R content is lower, the R-rich phase decreases, and the volume fraction of the phase other than the R-rich phase mainly composed of the R 2 T 14 B phase increases. As a result of estimating the volume fraction of the main phase R 2 T 14 B phase from the equilibrium diagram and confirming it by experiments, the volume fraction V of the phase other than the R-rich phase, which brings about the effect of the present invention, is expressed by R in wt%. It has been found that the preferable range of V is V> (138-1.6r) because the residual magnetization increases and the preferable range of V becomes higher. Further, when r is relatively large, about 30 (wt%) or more, the volume ratio of the main phase R 2 T 14 B phase is set to V ′ (%) from the balance between the residual magnetization and the sinterability. It has been found that V 'is preferably (138-1.6r) <V'<95. In the two-alloy method, the amount of rare earth in the main phase alloy is generally 30 (wt.) Because it is used by mixing with a grain boundary phase alloy having a large amount of rare earth.
%) Or less. Even in that case, V ′> 91 is preferable. More preferably, V ′> 93. On the other hand, the grain boundary phase alloy has a larger rare earth content than the alloy described in this patent,
Since the organization differs greatly, it is not specified here.

【0015】先に従来の技術で取り上げた特開平7-1764
14では主相系合金のRリッチ相の減少は、単に焼結性の
低下による残留磁化の低下をもたらすとしているが、本
発明では、焼結性の低下をもたらすほど、Rリッチ相の
体積率が減少しない範囲内であれば、残留磁化が増加す
ることを確認している。
[0015] Japanese Patent Laid-Open No. 7-1764, which was previously mentioned in the prior art,
According to FIG. 14, the decrease in the R-rich phase of the main phase alloy simply causes a decrease in the remanent magnetization due to the decrease in the sinterability. However, in the present invention, the volume ratio of the R-rich phase increases as the sinterability decreases. It has been confirmed that the remanence increases if the value does not decrease.

【0016】(2) R2T14B相の平均結晶粒径 R2T14B相の短軸方向の平均結晶粒径が10〜100μm
であることを特徴とする。主相の結晶粒径が10μm以
下であると、磁場成形用の粉末粒径3〜5μmに微粉砕
したとき粉砕粒径の中に結晶粒界が存在する粉末粒子の
割合が多くなる。したがって、そのような粉末粒子には
方位の異なる2つ以上の主相が存在することになり、配
向性を低下させ残留磁化の低下を招く。そのため、平均
結晶粒径は大きい方が都合が良い。一方、100μm以
上ではストリップキャスティング法の高冷却速度の効果
が薄れ、α−Fe析出等の弊害を招く。より好ましく
は、rが30程度以上と比較的大きい場合には、10〜
50μm、さらに好ましくは15〜35μmである。一
方、rが比較的少ない2合金法の主相系合金としては、
20〜50μmが最も好ましい。
[0016] (2) Average crystal grain diameter in the short axis direction of the R 2 T 14 B phase with an average grain size R 2 T 14 B phase is 10~100μm
It is characterized by being. When the crystal grain size of the main phase is 10 μm or less, the ratio of the powder particles having crystal grain boundaries in the milled particle size increases when the powder for magnetic field molding is finely pulverized to 3 to 5 μm. Therefore, such powder particles have two or more main phases having different orientations, which lowers the orientation and lowers the residual magnetization. Therefore, the larger the average crystal grain size, the better. On the other hand, when the thickness is 100 μm or more, the effect of the high cooling rate of the strip casting method is weakened, and adverse effects such as α-Fe precipitation are caused. More preferably, when r is relatively large, about 30 or more, 10 to 10
It is 50 μm, more preferably 15 to 35 μm. On the other hand, as the main alloy of the two alloy method in which r is relatively small,
Most preferably, it is 20 to 50 μm.

【0017】主相の各結晶粒は合金をエメリー紙で研磨
した後、アルミナ、ダイヤモンド等を使用してバフ研磨
した面を偏光顕微鏡で観察することにより容易に識別可
能である。偏光顕微鏡では磁気Kerr効果により、入
射した偏光が強磁性体表面の磁化方向に応じた偏光面の
回転を生じて反射するため、各結晶粒から反射する偏光
面の相違が明暗として観察される。
Each crystal grain of the main phase can be easily identified by polishing the alloy with emery paper and then observing the surface buffed with alumina, diamond or the like with a polarizing microscope. In a polarization microscope, the polarization of the incident light is reflected by the rotation of the polarization plane corresponding to the magnetization direction of the surface of the ferromagnetic material due to the magnetic Kerr effect, so that the difference in the polarization plane reflected from each crystal grain is observed as light and dark.

【0018】(3) Rリッチ相の間隔 Rリッチ相の間隔が3〜15μmであることを特徴とす
る。Rリッチ相の間隔が15μm以上であると、Rリッ
チ相の分散状態が悪くなり、磁場成形用の粉末粒径3〜
5μmに微粉砕したとき、Rリッチ相が存在する粉末粒
子の割合が減少する。したがって、磁場成形後のRリッ
チ相の分散状態も悪化して、焼結性の低下を招き、磁石
化後の磁化、保磁力の低下をもたらす。また、Rリッチ
相の偏在は部分的な保磁力の低下をもたらし、磁石化後
の角型性の低下をもたらす。一方、3μm以下である場
合は、凝固速度が速すぎる場合に相当し、結晶粒の微細
化といった弊害をもたらす。より好ましくは、rが30
程度以上と比較的大きい場合には、3〜10μm、さら
に好ましくは3〜8μmである。一方、rが比較的少な
い2合金法の主相系合金としては、5〜12μmが最も
好ましい。
(3) The interval between R-rich phases The interval between R-rich phases is 3 to 15 μm. When the interval between the R-rich phases is 15 μm or more, the dispersion state of the R-rich phase becomes worse, and the particle size of the magnetic field-forming powder is 3 to 3 μm.
When finely ground to 5 μm, the proportion of powder particles in which the R-rich phase is present decreases. Therefore, the dispersion state of the R-rich phase after the magnetic field molding is also deteriorated, resulting in a decrease in sinterability and a decrease in magnetization and coercive force after magnetization. In addition, the uneven distribution of the R-rich phase causes a partial decrease in coercive force and a decrease in squareness after magnetization. On the other hand, when the thickness is 3 μm or less, it corresponds to a case where the solidification speed is too high, and causes an adverse effect such as crystal grain refinement. More preferably, r is 30
When it is relatively large, such as at least about 3 to 10 μm, it is more preferably 3 to 8 μm. On the other hand, 5 to 12 μm is most preferable as the main phase alloy of the two-alloy method in which r is relatively small.

【0019】Rリッチ相は、合金をエメリー紙で研磨し
た後、アルミナ、ダイヤモンド等を使用してバフ研磨し
た面を走査型電子顕微鏡(SEM)の反射電子線像によ
り観察できる。Rリッチ相は主相よりも平均原子番号が
大きいため、反射電子線像では、主相よりも明るく観察
される。そしてRリッチ相の間隔は、例えばストリップ
断面の観察において、ロール面あるいは自由面に平行に
線分を引き、その線分が横切ったRリッチ相の数で、線
分の長さを割ることにより求めることができる。
The R-rich phase can be observed by a reflection electron beam image of a scanning electron microscope (SEM) after polishing the alloy with emery paper and then buffing the surface using alumina, diamond or the like. Since the R-rich phase has a larger average atomic number than the main phase, it is observed brighter than the main phase in the reflected electron beam image. The interval between the R-rich phases can be calculated by, for example, observing the cross section of a strip, drawing a line parallel to the roll surface or the free surface, and dividing the length of the line by the number of R-rich phases crossed by the line. You can ask.

【0020】(4) 製造方法 第1は、ストリップキャスト法で作製したことを特徴と
する。特に、ストリップキャスト後、融点から1000
℃までの平均冷却速度を300℃/秒以上とし、800
〜600℃での冷却速度を1.0℃/秒以下とすること
を特徴とする。ストリップキャスティング法によれば、
α−Feの存在しない薄片状合金の作製が可能であり、
最近、装置の改良も進み生産性も向上してきた。結晶粒
径とα−Feの生成有無に影響するのは、凝固速度や包
晶温度近傍までの高温域での冷却速度と考えられる。結
晶粒径を大きくするためにはこれらの冷却速度が遅い方
が望ましく、一方α−Feの生成を防止するためには速
い方が望ましい。また、Rリッチ相の間隔はこれら高温
域での冷却速度とさらに共晶温度域に近いより低温域ま
での冷却速度に依存し、これらの冷却速度が速いほどよ
り小さく、微細に分布することになる。以上から最適な
組織を得るためには、最適な冷却条件が存在することに
なる。
(4) Manufacturing method First, it is characterized by being manufactured by a strip casting method. In particular, after strip casting, the melting point is 1000
The average cooling rate to 300 ° C. is 300 ° C./sec or more,
The cooling rate at -600 ° C is set to 1.0 ° C / sec or less. According to the strip casting method,
It is possible to produce a flaky alloy without α-Fe,
Recently, the productivity has been improved with the improvement of the apparatus. It is considered that the influence of the crystal grain size and the presence / absence of α-Fe is the solidification rate and the cooling rate in a high-temperature region near the peritectic temperature. In order to increase the crystal grain size, it is desirable that the cooling rate be low, while it is desirable that the cooling rate be high in order to prevent the formation of α-Fe. Further, the interval between the R-rich phases depends on the cooling rate in these high-temperature areas and the cooling rate in a lower temperature area closer to the eutectic temperature area, and the higher the cooling rate, the smaller and finer the distribution. Become. As described above, in order to obtain an optimal structure, there are optimal cooling conditions.

【0021】広範囲の実験を行った結果、融点から10
00℃までの平均冷却速度は300℃/秒以上、より好
ましくは500℃/秒以上とすれば良いことが知られ
た。300℃/秒以下ではα−Feが生成し、またRリ
ッチ相の間隔も広く、微細な組織とならない。ロールか
ら離脱する前のストリップの冷却速度に最も大きく影響
する要因としてストリップ厚さが挙げられる。融点から
1000℃までの平均冷却速度を300℃/秒以上と
し、かつ最適な結晶粒径とRリッチ相の間隔を有した組
織とするためには、ストリップ厚さは0. 15〜0. 6
0mmとするのが良い。より好ましくは0. 20〜0.
45mmである。ストリップの厚さが0.15mm以下で
は、凝固速度が速くなりすぎてしまい、結晶粒径が好ま
しい範囲よりも小さくなってしまう。冷却速度の正確な
測定は困難であるが、簡易的には次のようにして求めら
れる。ロールから離脱した直後のストリップの温度は、
簡単に測定可能であり、700〜800℃程度である。
そこで、温度降下値を溶湯がロールに供給されてから、
離脱、温度測定するまでの時間で割れば、その温度範囲
での平均冷却速度を求めることができる。この方法によ
り融点から800℃までの平均冷却速度が求められる。
本方法を含めて、通常の凝固、冷却過程に於いては、高
温域ほど冷却速度は大きい。そのため、前記した方法に
よって、融点から800℃までの平均冷却速度が、30
0℃/秒以上であることが確認できれば、融点から10
00℃での冷却速度も300℃/秒以上であると言え
る。なお、冷却速度の上限を正確に規定するのは困難で
あるが、104 ℃/秒程度以下であることが好ましいと
思われる。
As a result of conducting a wide range of experiments, it was
It has been known that the average cooling rate to 00 ° C. should be 300 ° C./sec or more, more preferably 500 ° C./sec or more. At 300 ° C./sec or less, α-Fe is generated, and the interval between R-rich phases is wide, and a fine structure is not formed. The factor that most affects the cooling rate of the strip before it is released from the roll is the strip thickness. In order to set the average cooling rate from the melting point to 1000 ° C. at 300 ° C./sec or more, and to obtain a structure having an optimum crystal grain size and an interval between R-rich phases, the strip thickness is 0.15 to 0.6.
It is good to be 0 mm. More preferably, 0.20 to 0.2.
45 mm. When the thickness of the strip is 0.15 mm or less, the solidification rate becomes too fast, and the crystal grain size becomes smaller than a preferable range. Although accurate measurement of the cooling rate is difficult, it can be simply obtained as follows. The temperature of the strip immediately after leaving the roll is
It can be easily measured, and is about 700 to 800 ° C.
Then, after the molten metal is supplied to the roll,
The average cooling rate in the temperature range can be obtained by dividing by the time required for separation and temperature measurement. By this method, the average cooling rate from the melting point to 800 ° C. is determined.
In the ordinary solidification and cooling processes including this method, the cooling rate is higher in a higher temperature range. Therefore, the average cooling rate from the melting point to 800 ° C. is 30
If it can be confirmed that the temperature is 0 ° C./second or more, the melting point is 10
It can be said that the cooling rate at 00 ° C. is 300 ° C./sec or more. Although it is difficult to accurately define the upper limit of the cooling rate, it is considered that the cooling rate is preferably about 10 4 ° C / sec or less.

【0022】ストリップキャスティング法では冷却速度
が数百〜数千℃/ 秒と速いため、先に説明したように、
Rリッチ相の体積率が平衡状態図で予想されるよりも高
い組織が得られ、従来はそのような組織は好ましいもの
として受入れられてきた。しかし、本発明ではRリッチ
相以外の相の体積率を高めるため、800〜600℃の
冷却速度を1.0℃/秒以下、好ましくは0.75℃/
秒以下として液相からのR2T14B相の生成を促進すること
とした。800〜600℃の冷却速度が1.0℃/秒を
越えると、液相のRリッチ相からR2T14B相が十分に生成
しきらない内に凝固してしまい、結果としてRリッチ相
の体積率が多くなるため、本発明の主旨から外れる。ま
た、この冷却速度の制御により、Rリッチ相の間隔を適
度に大きくする効果ももたらされる。
In the strip casting method, the cooling rate is as fast as several hundreds to several thousands ° C./sec.
Microstructures are obtained in which the volume fraction of the R-rich phase is higher than expected in the equilibrium diagram, and such microstructures have heretofore been accepted as preferred. However, in the present invention, in order to increase the volume ratio of the phase other than the R-rich phase, the cooling rate at 800 to 600 ° C. is set to 1.0 ° C./sec or less, preferably 0.75 ° C./sec.
It was decided to promote the formation of the R 2 T 14 B phase from the liquid phase by setting the time to less than seconds. When the cooling rate at 800 to 600 ° C. exceeds 1.0 ° C./sec, the R 2 T 14 B phase solidifies from the liquid R rich phase before it is not sufficiently formed, and as a result, the R rich phase Is out of the gist of the present invention because the volume ratio of Further, by controlling the cooling rate, an effect of appropriately increasing the interval between the R-rich phases is also provided.

【0023】本発明ではロールから落下する際の温度を
700℃以上として、その後に適度に保温可能な工程を
有することで800〜600℃での冷却速度の制御が可
能となる。
In the present invention, the temperature at the time of dropping from the roll is set to 700 ° C. or more, and a process capable of appropriately keeping the temperature thereafter is provided, so that the cooling rate at 800 to 600 ° C. can be controlled.

【0024】また、本発明の合金を得る他の方法とし
て、ストリップキャスティング法により鋳造冷却した後
に、800〜600℃で熱処理することによっても同様
の効果が得られる。この熱処理はα−Fe消去を目的と
した均質化熱処理よりも低温短時間であるため、装置
的、生産効率面での弊害は少ない。鋳造片が薄いため熱
処理時間は通常10分以上あれば良く、3時間を超える
必要はない。熱処理雰囲気は酸化を防止するため、真空
又は不活性雰囲気とする必要がある。熱処理後の冷却は
600℃程度までを徐冷とするのが好ましい。
As another method for obtaining the alloy of the present invention, the same effect can be obtained by heat-treating at 800 to 600 ° C. after casting and cooling by strip casting. Since this heat treatment is performed at a lower temperature and a shorter time than the homogenization heat treatment for the purpose of eliminating α-Fe, there is little harm in terms of equipment and production efficiency. Since the cast piece is thin, the heat treatment time usually needs to be 10 minutes or more, and need not exceed 3 hours. The heat treatment atmosphere needs to be a vacuum or an inert atmosphere in order to prevent oxidation. It is preferable that the cooling after the heat treatment is gradually cooled to about 600 ° C.

【0025】なお、最近ストリップキャスト材に関する
発明が幾つか報告されている。一つは、やはり特定の冷
却速度により、所望の組織を生成するものである(特開
平8-269643)。それは、溶湯をロールにて2×103
/sec 〜7×103 ℃/sec の1次冷却にて鋳片温度7
00〜1000℃に冷却後、ロール離脱後に前記鋳片を
合金の固相線温度以下に50〜2×103 ℃/min の2
次冷却速度にて冷却し、平均短軸結晶粒径3〜15μm
のR2T14B相と5μm以下のRリッチ相とが、微細に分散
した組織を形成し、配向度の低下及び磁石化の際の粉砕
時の微粉化、粉末の酸化を防止し、磁気特性の向上に成
功したものである。
Recently, several inventions relating to strip cast materials have been reported. One is to produce a desired structure also at a specific cooling rate (JP-A-8-269643). It is 2 × 10 3
/ Sec ~ 7 × 10 3 ℃ / sec.
After cooling to 00 to 1000 ° C and removing the rolls, the slab was cooled to a temperature below the solidus temperature of the alloy at 50 to 2 × 10 3 ° C / min.
Cool at the next cooling rate, average short axis crystal grain size 3 ~ 15μm
The R 2 T 14 B phase and the R-rich phase of 5 μm or less form a micro-dispersed structure, reduce the degree of orientation, prevent pulverization at the time of pulverization during magnetization, and prevent oxidation of the powder. The characteristics have been successfully improved.

【0026】一方、本発明も鋳造時の冷却速度を高温域
と低温域に分けて規定して、所望の組織を生成し、磁気
特性の向上をもたらしている。しかし、本発明の合金組
織は、R2T14B相の平均結晶粒径は10〜100μmで、
特開平8-269643の3〜15μmとは異なる。また、Rリ
ッチ相についても、本発明では、その間隔を3〜15μ
mとしたのに対し、特開平8-269643ではその大きさのみ
にしか触れていない。そして、特開平8-269643では低温
域にあたる2次冷却速度が遅いと、結晶粒が成長し、焼
結磁石のiHc の低下を招くとしている。そして、好ま
しい2次冷却速度は、50℃/min 〜2×103 ℃/mi
n であり、この冷却速度の上限も量産性の面から設定さ
れたものであり、特性面から規定されたものではない。
一方、本発明では、高温域、低温域のそれぞれの冷却速
度を制御して、R2T14B相の結晶粒径は大きく、Rリッチ
相はその間隔を狭く、体積率を小さくしたものであり、
例えば800から600℃での低温域の冷却速度は、特
開平8-269643の50℃/min 〜2×103 ℃/min
(0.83〜33.3℃/sec )とは反対に遅くして、
1.0℃/sec 以下、好ましくは0.75℃/sec 以下
としたもので、鋳造後の熱処理の有効性にも触れてお
り、全く異なったものである。
On the other hand, in the present invention, the cooling rate at the time of casting is defined separately for a high temperature range and a low temperature range, thereby producing a desired structure and improving the magnetic properties. However, the alloy structure of the present invention has an average crystal grain size of the R 2 T 14 B phase of 10 to 100 μm,
It is different from 3 to 15 μm of JP-A-8-269643. In the present invention, the interval between the R-rich phases is also 3 to 15 μm.
In contrast, Japanese Patent Application Laid-Open No. Hei 8-269643 mentions only the size. Japanese Unexamined Patent Publication No. Hei 8-269643 states that if the secondary cooling rate corresponding to a low temperature range is low, crystal grains grow, which causes a decrease in iHc of the sintered magnet. The preferable secondary cooling rate is 50 ° C./min to 2 × 10 3 ° C./mi.
n, and the upper limit of the cooling rate is also set from the viewpoint of mass productivity, and is not specified from the characteristics.
On the other hand, in the present invention, the cooling rate of each of the high-temperature region and the low-temperature region is controlled so that the crystal grain size of the R 2 T 14 B phase is large, the spacing of the R-rich phase is small, and the volume ratio is small. Yes,
For example, the cooling rate in the low temperature range from 800 to 600 ° C. is from 50 ° C./min to 2 × 10 3 ° C./min in JP-A-8-269643.
(0.83 ~ 33.3 ° C / sec)
It is 1.0 ° C./sec or less, preferably 0.75 ° C./sec or less, and mentions the effectiveness of heat treatment after casting, which is completely different.

【0027】もう一つはストリップキャスト法で得た薄
板を800〜1100℃で熱処理し、表層部の硬化除
去、次工程での水素吸蔵処理における合金の崩壊性を速
め微細化を促進するものである(特開平8-264363)。し
かし、合金組織についての規定はなく、好ましい熱処理
の範囲も本発明の600から800℃とは異なる。
The other is to heat-treat the thin plate obtained by the strip casting method at 800 to 1100 ° C. to remove the hardening of the surface layer portion, accelerate the disintegration of the alloy in the hydrogen absorbing process in the next step, and promote the miniaturization. (JP-A-8-264363). However, there is no stipulation on the alloy structure, and the preferable range of the heat treatment is different from 600 to 800 ° C. of the present invention.

【0028】[0028]

【作用】本発明は、R(Yを含む希土類元素のうち少な
くとも1種)、T(Feを必須とする遷移金属)及びB
を基本成分とする永久磁石用の原料用合金と原料用合金
の製造方法に於て、合金中のRリッチ相以外の相の体積
率を凝固速度、または凝固後の熱処理によって増加する
こと、またR2T14B相結晶粒径の制御によって、さらにR
リッチ相の間隔を制御することにより、焼結磁石化後の
残留磁化の増加をもたらしたものである。
According to the present invention, R (at least one of rare earth elements including Y), T (transition metal having Fe as an essential component) and B
In a method for producing a raw material alloy for a permanent magnet and a raw material alloy having a basic component of, the volume ratio of a phase other than the R-rich phase in the alloy is increased by a solidification rate or a heat treatment after the solidification, By controlling the crystal grain size of the R 2 T 14 B phase,
By controlling the interval of the rich phase, the residual magnetization after the conversion to the sintered magnet was increased.

【0029】ここで各合金中のRリッチ相の体積率が、
磁石の残留磁化に影響を及ぼす原因について考察する。
Rリッチ相の体積率が大きい時は、Rリッチ相が非平衡
状態で多量に存在する。そして一般的に磁石の製造工程
で一般的に採用されている水素解砕を行う際、Rリッチ
相は優先的に水素を吸収し、脆化し、そのような作用に
よりRリッチ相がクラックの優先的な発生伝播経路とな
る。したがって、結果として、Rリッチ相の体積率と分
布状態が微粉砕後の粉末の形状、粒度分布に影響し、結
果として磁場成形時の配向度に影響すると推定すること
も可能である。実際にRリッチ相の間隔が3μm程度以
下になると、粉末の形状が角ばったものとなる傾向を確
認している。
Here, the volume fraction of the R-rich phase in each alloy is
The factors affecting the residual magnetization of the magnet will be discussed.
When the volume fraction of the R-rich phase is large, the R-rich phase exists in a large amount in a non-equilibrium state. When performing the hydrogen crushing generally employed in the magnet manufacturing process, the R-rich phase preferentially absorbs hydrogen and becomes embrittled. Generation and propagation path. Therefore, as a result, it can be estimated that the volume ratio and the distribution state of the R-rich phase affect the shape and particle size distribution of the finely pulverized powder, and consequently affect the degree of orientation during magnetic field molding. Actually, it has been confirmed that when the interval between the R-rich phases is about 3 μm or less, the shape of the powder tends to be square.

【0030】[0030]

【実施例】【Example】

(実施例1)合金組成が、Nd:30.7重量%、B:
1. 00重量%、Co:2.00重量%、Al:0. 3
0重量%、Cu:0.10重量%、残部鉄になるよう
に、鉄ネオジム合金、金属ディスプロシウム、フェロボ
ロン、コバルト、アルミニウム、銅、鉄を配合し、アル
ゴンガス雰囲気中で、アルミナるつぼを使用して高周波
溶解炉で溶解し、ストリップキャスティング法により、
厚さ約0.33mmのストリップを生成した。この際、
キャスティングロールから離脱した高温のストリップ
を、保温効果の大きい断熱材で作製した箱の中に1時間
保持した後、水冷構造を有する箱の中に入れて常温まで
急冷した。断熱箱中でのストリップの温度変化を箱に設
置した熱電対で測定した結果、断熱箱に落下した時の温
度は710℃であった。その後、600℃に到達するま
でに8分が経過した。したがって、800℃から710
℃までの冷却に要する時間を無視しても、800〜60
0℃の平均冷却速度は毎秒0.56℃であり、実際には
これより低くなる。一方、融点から800℃までの冷却
速度は、断熱箱に落下するまでに要する時間より毎秒4
00℃以上であった。また、ロール上のストリップの温
度を放射温度計で測定した結果から、融点から1000
℃までの冷却速度は毎秒1000℃以上であることが判
った。得られたストリップの断面組織を偏光顕微鏡で観
察した結果、主相R2Fe14B 相の平均結晶粒径は約28μ
mであった。また、走査型電子顕微鏡の反射電子線像を
観察した結果、Rリッチ相は結晶粒界と主相粒内に筋
状、あるいは一部粒状となって存在し、その間隔は約5
μmであった。その他Bリッチ相と思われる比較的希土
類含有量の少ない相が少量存在していた。Rリッチ相以
外の相の体積率Vと主相R2Fe14B 相の体積率V’を画像
処理装置を用いて測定した結果、それぞれ、92%、9
1%であった。
(Example 1) Alloy composition: Nd: 30.7% by weight, B:
1.00% by weight, Co: 2.00% by weight, Al: 0.3
0% by weight, Cu: 0.10% by weight, the balance being iron neodymium alloy, metal dysprosium, ferroboron, cobalt, aluminum, copper, iron, and alumina crucible in an argon gas atmosphere. Melted in a high-frequency melting furnace using the strip casting method
A strip approximately 0.33 mm thick was produced. On this occasion,
The high-temperature strip detached from the casting roll was kept for 1 hour in a box made of a heat insulating material having a large heat-retaining effect, and then placed in a box having a water-cooled structure and rapidly cooled to room temperature. As a result of measuring the temperature change of the strip in the insulated box with a thermocouple installed in the box, the temperature when dropped into the insulated box was 710 ° C. After that, eight minutes had elapsed until the temperature reached 600 ° C. Therefore, from 800 ° C. to 710
Ignoring the time required for cooling to
The average cooling rate at 0 ° C. is 0.56 ° C. per second, which is actually lower. On the other hand, the cooling rate from the melting point to 800 ° C. is 4 times per second more than the time required to fall into the insulating box.
It was 00 ° C or higher. The temperature of the strip on the roll was measured with a radiation thermometer.
The cooling rate to 1000C was found to be 1000C or more per second. As a result of observing the cross-sectional structure of the obtained strip with a polarizing microscope, the average crystal grain size of the main phase R 2 Fe 14 B phase was about 28 μm.
m. Further, as a result of observing the reflected electron beam image of the scanning electron microscope, it was found that the R-rich phase was present in the form of streaks or partial grains in the crystal grain boundaries and the main phase grains, and the distance between them was approximately 5%.
μm. In addition, a small amount of a phase having a relatively low rare earth content, which is considered to be a B-rich phase, was present. The volume ratio V of the phase other than the R-rich phase and the volume ratio V ′ of the main phase R 2 Fe 14 B phase were measured using an image processing apparatus.
1%.

【0031】次に同合金に室温にて水素を吸蔵させ、6
00℃にて水素を放出させた。この混合粉をブラウンミ
ルで粗粉砕し、粒径0.5mm以下の合金粉末を得、次
にジェットミルで微粉砕し、3.5μmの平均粒径から
なる磁石粉を得た。得られた微粉末を15kOeの磁場
中にて1.5ton/cm2 の圧力で成形した。得られ
た成形体を真空中1050℃で4時間焼結した後、1段
目の熱処理を850℃で1時間、2段目の熱処理を52
0℃で1時間行なった。得られた磁石の磁気特性を表1
に示す。
Next, hydrogen was absorbed into the alloy at room temperature,
Hydrogen was released at 00 ° C. This mixed powder was roughly pulverized by a brown mill to obtain an alloy powder having a particle diameter of 0.5 mm or less, and then finely pulverized by a jet mill to obtain a magnet powder having an average particle diameter of 3.5 μm. The obtained fine powder was molded at a pressure of 1.5 ton / cm 2 in a magnetic field of 15 kOe. After sintering the obtained molded body in vacuum at 1050 ° C. for 4 hours, the first heat treatment is performed at 850 ° C. for 1 hour, and the second heat treatment is performed at 52
Performed at 0 ° C. for 1 hour. Table 1 shows the magnetic properties of the obtained magnets.
Shown in

【0032】(比較例1)実施例1と同じ組成となるよ
うに、実施例1と同様にストリップキャスティング法に
より、厚さ約0.33mmの合金ストリップを生成し
た。この際、キャスティングロールから離脱した高温の
ストリップを直接、水冷構造を有する箱の中に入れて常
温まで急冷した。箱中でのストリップの温度変化を箱に
設置した熱電対で測定した結果、箱に落下した時の温度
は710℃であった。その後、600℃に到達するまで
に要した時間は15秒であった。一方、800℃から7
10℃の冷却に要した時間は、ストリップが箱に落下す
るまでに要した時間よりも短くなるため、最大でも2秒
程度である。したがって、それを加えても800〜60
0℃の平均冷却速度は毎秒12℃であり、実際にはこれ
よりも大きくなる。一方、融点から800℃までの冷却
速度は、実施例1と相違ない。その断面の組織を偏光顕
微鏡で観察した結果、主相R2Fe14B 相の平均結晶粒径は
約28μmであった。また、走査型電子顕微鏡の反射電
子線像を観察した結果、Rリッチ相は結晶粒界と主相粒
内に筋状、あるいは一部粒状となって存在し、その間隔
は約2μmであった。Rリッチ相以外の相の体積率Vと
主相R2Fe14B 相の体積率V’を画像処理装置を用いて測
定した結果、ともに87%であった。次にこの合金を用
いて、実施例1と同様の方法で焼結磁石を作製し、その
磁気特性を表1に示す。
Comparative Example 1 An alloy strip having a thickness of about 0.33 mm was produced by the strip casting method in the same manner as in Example 1 so as to have the same composition as in Example 1. At this time, the high-temperature strip detached from the casting roll was directly placed in a box having a water-cooled structure and rapidly cooled to room temperature. As a result of measuring the temperature change of the strip in the box with a thermocouple installed in the box, the temperature when dropped into the box was 710 ° C. Thereafter, the time required to reach 600 ° C. was 15 seconds. On the other hand, from 800 ° C to 7
The time required for cooling at 10 ° C. is shorter than the time required for the strip to fall into the box, and is at most about 2 seconds. Therefore, even if it is added,
The average cooling rate at 0 ° C. is 12 ° C. per second, which is actually higher. On the other hand, the cooling rate from the melting point to 800 ° C. is the same as that in Example 1. As a result of observing the structure of the cross section with a polarizing microscope, the average crystal grain size of the main phase R 2 Fe 14 B phase was about 28 μm. Further, as a result of observing the reflected electron beam image of the scanning electron microscope, it was found that the R-rich phase was present in the form of streaks or partial grains in the crystal grain boundaries and the main phase grains, and the interval between them was about 2 μm. . The volume ratio V of the phase other than the R-rich phase and the volume ratio V ′ of the main phase R 2 Fe 14 B phase were measured using an image processing apparatus, and as a result, both were 87%. Next, using this alloy, a sintered magnet was produced in the same manner as in Example 1, and the magnetic properties are shown in Table 1.

【0033】(実施例2)実施例1と同じ組成となるよ
うに、実施例1と同様にストリップキャスティング法に
より、厚さ約0.33mmの合金ストリップを生成し
た。ロールから離脱したストリップは実施例1と同様の
断熱材で作製した箱の中に薄く広げるように堆積させ
た。その状態で1時間保持した後、水冷構造を有する箱
の中に入れて常温まで急冷した。断熱箱中でのストリッ
プの温度変化を箱に設置した熱電対で測定した結果、断
熱箱に落下した時の温度は710℃であった。その後、
600℃に到達するまでに要した時間は4分10秒であ
った。したがって、800〜600℃の平均冷却速度は
毎秒0.80℃以下である。一方、融点から800℃ま
での冷却速度は、実施例1と相違ない。その断面の組織
を偏光顕微鏡で観察した結果、主相R2Fe14B 相の平均結
晶粒径は約28μmであった。また、走査型電子顕微鏡
の反射電子線像を観察した結果、Rリッチ相は結晶粒界
と主相粒内に筋状、あるいは一部粒状となって存在し、
その間隔は約4μmであった。その他Bリッチ相と思わ
れる比較的希土類含有量の少ない相が少量存在してい
た。Rリッチ相以外の相の体積率Vと主相R2Fe14B 相の
体積率V’を画像処理装置を用いて測定した結果、それ
ぞれ、91%、90%であった。次にこの合金を用い
て、実施例1と同様の方法で焼結磁石を作製し、その磁
気特性を表1に示す。
Example 2 An alloy strip having a thickness of about 0.33 mm was produced by the strip casting method in the same manner as in Example 1 so as to have the same composition as in Example 1. The strip separated from the roll was deposited so as to spread thinly in a box made of the same heat insulating material as in Example 1. After maintaining for one hour in that state, the resultant was put into a box having a water-cooled structure and rapidly cooled to room temperature. As a result of measuring the temperature change of the strip in the insulated box with a thermocouple installed in the box, the temperature when dropped into the insulated box was 710 ° C. afterwards,
The time required to reach 600 ° C. was 4 minutes and 10 seconds. Therefore, the average cooling rate at 800 to 600 ° C is 0.80 ° C or less per second. On the other hand, the cooling rate from the melting point to 800 ° C. is the same as that in Example 1. As a result of observing the structure of the cross section with a polarizing microscope, the average crystal grain size of the main phase R 2 Fe 14 B phase was about 28 μm. In addition, as a result of observing the reflected electron beam image of the scanning electron microscope, the R-rich phase is present in the form of streaks or partly grains in the crystal grain boundaries and main phase grains,
The interval was about 4 μm. In addition, a small amount of a phase having a relatively low rare earth content, which is considered to be a B-rich phase, was present. The volume ratio V of the phase other than the R-rich phase and the volume ratio V ′ of the main phase R 2 Fe 14 B phase were measured using an image processing apparatus, and as a result, they were 91% and 90%, respectively. Next, using this alloy, a sintered magnet was produced in the same manner as in Example 1, and the magnetic properties are shown in Table 1.

【0034】(比較例2)実施例1と同じ組成となるよ
うに、実施例1と同様にストリップキャスティング法に
より、主相系合金のストリップを生成した。この際、注
湯速度を減少させたため、ストリップの厚さは約0.1
3mmであった。ロールから離脱したストリップは実施
例1と同様に断熱材で作製した箱の中に1時間保持した
後、水冷構造を有する箱の中に入れて常温まで急冷し
た。断熱箱中でのストリップの温度変化を箱に設置した
熱電対で測定した結果、断熱箱に落下した時の温度は6
30℃であった。その後、600℃に到達するまでに要
した時間は3分であった。したがって、800〜600
℃の平均冷却速度は毎秒1.1℃以下である。一方、融
点から800℃までの冷却速度は、毎秒500℃以上で
あった。その断面の組織を偏光顕微鏡で観察した結果、
主相R2Fe14B 相の平均結晶粒径は約12μmであった。
また、走査型電子顕微鏡の反射電子線像を観察した結
果、Rリッチ相は結晶粒界と主相粒内に筋状、あるいは
一部粒状となって存在し、その間隔は約4μmであっ
た。Rリッチ相以外の相の体積率Vと、主相R2Fe14B 相
の体積率V’を画像処理装置を用いて測定した結果、そ
れぞれ、91%、90%であった。
Comparative Example 2 Strips of the main phase alloy were produced by the strip casting method in the same manner as in Example 1 so as to have the same composition as in Example 1. At this time, since the pouring speed was reduced, the thickness of the strip was about 0.1.
3 mm. The strip separated from the roll was kept in a box made of a heat insulating material for one hour as in Example 1, and then placed in a box having a water-cooled structure and rapidly cooled to room temperature. As a result of measuring the temperature change of the strip in the insulated box with the thermocouple installed in the box, the temperature when dropped into the insulated box was 6
30 ° C. Thereafter, the time required to reach 600 ° C. was 3 minutes. Therefore, 800 to 600
The average cooling rate in ° C. is below 1.1 ° C. per second. On the other hand, the cooling rate from the melting point to 800 ° C. was 500 ° C. or more per second. As a result of observing the structure of the cross section with a polarizing microscope,
The average crystal grain size of the main phase R 2 Fe 14 B phase was about 12 μm.
Further, as a result of observing the reflected electron beam image of the scanning electron microscope, it was found that the R-rich phase was present in the form of streaks or partial grains in the crystal grain boundaries and the main phase grains, and the interval between them was about 4 μm. . The volume ratio V of the phase other than the R-rich phase and the volume ratio V ′ of the main phase R 2 Fe 14 B phase were measured using an image processing apparatus, and as a result, were 91% and 90%, respectively.

【0035】(比較例3)実施例1と同じ組成となるよ
うに、水冷機構を有する鉄製鋳型を用いて、厚さ25m
mのインゴットを作製した。その断面の組織を偏光顕微
鏡で観察した結果、主相R2Fe14B 相の平均結晶粒径は約
150μmであった。しかし、走査型電子顕微鏡の反射
電子線像を観察した結果、インゴット全体に多量のα−
Feが存在していたため、磁石は作製しなかった。
(Comparative Example 3) Using an iron mold having a water cooling mechanism and a thickness of 25 m so as to have the same composition as in Example 1,
m ingots were produced. As a result of observing the structure of the cross section with a polarizing microscope, the average crystal grain size of the main phase R 2 Fe 14 B phase was about 150 μm. However, as a result of observing the reflected electron beam image of the scanning electron microscope, a large amount of α-
Since Fe was present, no magnet was made.

【0036】(実施例3)合金組成として、NdとDy
の含有量がそれぞれ30.8重量%、1.2重量%であ
り、その他の成分及び含有量は実施例1と同じ組成とな
るように、実施例1と同様の条件でストリップキャステ
ィング法により、約0.33mmの合金ストリップを生
成し、実施例1と同様の方法で焼結磁石を作製した。こ
の際の冷却速度、合金組織、焼結磁石の特性を併せて表
1に示す。
Example 3 Nd and Dy were used as alloy compositions.
Are 30.8% by weight and 1.2% by weight, respectively, and the other components and contents are the same composition as in Example 1 by strip casting under the same conditions as in Example 1. An alloy strip of about 0.33 mm was produced, and a sintered magnet was produced in the same manner as in Example 1. Table 1 also shows the cooling rate, alloy structure and characteristics of the sintered magnet at this time.

【0037】(実施例4)2合金法に於いて、主相系合
金は組成がNd:28.0重量%、B:1. 09重量
%、Al:0. 3重量%、残部鉄になるように、実施例
1と同様にしてストリップキャスティング法で、厚さ約
0.35mmのストリップを生成した。この際の冷却速
度、合金組織を表1に示す。一方、粒界相系合金は組成
がNd:38.0重量%、Dy:10.0重量%、B:
0.5重量%、Co:20重量%、Cu:0.67重量
%、Al:0.3重量%、残部鉄になるように、鉄ネオ
ジム合金、金属ディスプロシウム、フェロボロン、コバ
ルト、銅、アルミニウム、鉄を配合し、アルゴンガス雰
囲気中で、アルミナるつぼを使用して高周波溶解炉で溶
解し、遠心鋳造法により、厚さ約10mmのインゴット
を生成した。次に主相系合金85重量%と粒界相系合金
15重量%を混合し、室温にて水素を吸蔵させ、600
℃にて水素を放出させた。この混合粉をブラウンミルで
粗粉砕し、粒径0.5mm以下の合金粉末を得、次にジ
ェットミルで微粉砕し、3.5μmの平均粒径からなる
磁石粉を得た。得られた微粉末を15kOeの磁場中に
て1.5 ton/cm2の圧力で成形した。得られた成形体を
真空中1050℃で4時間焼結した後、1段目の熱処理
を850℃で1時間、2段目の熱処理を520℃で1時
間行なった。得られた磁石の磁気特性を表1に併せて示
す。
(Example 4) In the two-alloy method, the composition of the main phase alloy was 28.0% by weight of Nd, 1.09% by weight of B, 0.3% by weight of Al, and the balance iron. Thus, a strip having a thickness of about 0.35 mm was produced by the strip casting method in the same manner as in Example 1. Table 1 shows the cooling rate and alloy structure at this time. On the other hand, the grain boundary phase alloy has a composition of 38.0% by weight of Nd, 10.0% by weight of Dy, and B:
0.5% by weight, Co: 20% by weight, Cu: 0.67% by weight, Al: 0.3% by weight, iron neodymium alloy, metal dysprosium, ferroboron, cobalt, copper Aluminum and iron were mixed and melted in a high frequency melting furnace using an alumina crucible in an argon gas atmosphere, and an ingot having a thickness of about 10 mm was produced by centrifugal casting. Next, 85% by weight of the main phase alloy and 15% by weight of the grain boundary phase alloy were mixed, and hydrogen was absorbed at room temperature.
Hydrogen was released at ° C. This mixed powder was roughly pulverized by a brown mill to obtain an alloy powder having a particle diameter of 0.5 mm or less, and then finely pulverized by a jet mill to obtain a magnet powder having an average particle diameter of 3.5 μm. The obtained fine powder was molded at a pressure of 1.5 ton / cm 2 in a magnetic field of 15 kOe. After sintering the obtained molded body in vacuum at 1050 ° C. for 4 hours, the first-stage heat treatment was performed at 850 ° C. for 1 hour, and the second-stage heat treatment was performed at 520 ° C. for 1 hour. Table 1 also shows the magnetic properties of the obtained magnet.

【0038】(比較例4)実施例4と同じ組成となるよ
うに、実施例4と同様してにストリップキャスティング
法により、厚さ約0.35mmの主相系合金のストリッ
プを生成した。この際、キャスティングロールから離脱
した高温のストリップを直接、水冷構造を有する箱の中
に入れて常温まで急冷した。この際の冷却速度、合金組
織を表1に示す。次にこの主相系合金と実施例4で作製
した粒界相系合金を用いて、実施例4と同様の方法で焼
結磁石を作製し、その磁気特性を表1に併せて示す。
Comparative Example 4 A main phase alloy strip having a thickness of about 0.35 mm was produced by a strip casting method in the same manner as in Example 4 so as to have the same composition as in Example 4. At this time, the high-temperature strip detached from the casting roll was directly placed in a box having a water-cooled structure and rapidly cooled to room temperature. Table 1 shows the cooling rate and alloy structure at this time. Next, using this main phase alloy and the grain boundary phase alloy produced in Example 4, a sintered magnet was produced in the same manner as in Example 4, and the magnetic properties are also shown in Table 1.

【0039】[0039]

【表1】 [Table 1]

【0040】[0040]

【発明の効果】本発明によれば、最大磁力積((BH)
MAX )が40MGOe級以上の強力な永久磁石を容易に
得ることが可能となる。
According to the present invention, the maximum magnetic impulse ((BH)
MAX) can easily obtain a strong permanent magnet of 40 MGOe class or more.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1の合金の結晶粒径を示す偏光顕微鏡組
織写真(倍率200倍)。
FIG. 1 is a polarizing microscope micrograph (200 × magnification) showing the crystal grain size of the alloy of Example 1.

【図2】実施例1の合金のRリッチ相の分散状態を示す
反射電子顕微鏡組織写真(倍率200倍)。
FIG. 2 is a photomicrograph (200 × magnification) of a microstructure of a reflection electron microscope showing a dispersion state of an R-rich phase of the alloy of Example 1.

【図3】比較例1の合金のRリッチ相の分散状態を示す
反射電子顕微鏡組織写真(倍率200倍)。
FIG. 3 is a micrograph (200-fold magnification) of a structure of an alloy of Comparative Example 1 showing an R-rich phase in a dispersed state by a reflection electron microscope.

【図4】比較例2の合金の結晶粒径を示す偏光顕微鏡組
織写真(倍率200倍)。
FIG. 4 is a polarizing microscope structure photograph (magnification: 200 times) showing the crystal grain size of the alloy of Comparative Example 2.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 R(Y を含む希土類元素のうち少なくと
も1種)を27〜34wt%、B を0.7〜1.4wt
%含み、残部がT(TはFeを必須とする遷移金属)から
成る組成を有し、R-リッチ相以外の相の体積率V(%)
が(138−1.6r)以上(ただしrはR の含有量)
で、R2T14B相の平均結晶粒径が10〜100μm、R リ
ッチ相の間隔が3〜15μmであることを特徴とする希
土類磁石用合金。
1. R (at least one of rare earth elements including Y) is 27 to 34 wt%, and B is 0.7 to 1.4 wt%.
%, And the balance is composed of T (T is a transition metal that essentially requires Fe), and the volume fraction V (%) of phases other than the R-rich phase
Is (138-1.6r) or more (where r is the R content)
An alloy for rare earth magnets, characterized in that the average crystal grain size of the R 2 T 14 B phase is 10 to 100 μm and the interval between R-rich phases is 3 to 15 μm.
【請求項2】 合金組成が R(Y を含む希土類元素のう
ち少なくとも1種)を28〜33wt%、B を0.95
〜1.1 wt%含み、残部がT (Feを必須とする遷移金
属)から成る組成であり、R2T14B相の体積率V’(%)
が138−1.6r<V’<95であり、R2T14B相の平
均結晶粒径が10〜50μmで、R リッチ相の間隔が3
〜10μmであることを特徴とする請求項1に記載の希
土類磁石用合金。
2. An alloy composition comprising 28 to 33 wt% of R (at least one of rare earth elements including Y) and 0.95 of B
T1.1 wt%, the balance being composed of T (transition metal with Fe indispensable), and the volume fraction V ′ (%) of the R 2 T 14 B phase
138-1.6r <V ′ <95, the average crystal grain size of the R 2 T 14 B phase is 10 to 50 μm, and the distance between the R-rich phases is 3
The alloy for a rare-earth magnet according to claim 1, wherein the thickness is from 10 to 10 m.
【請求項3】 合金組成が R(Y を含む希土類元素のう
ち少なくとも1種)を30〜32wt%、B を0.95
〜1.05wt%含み、残部がT (Feを必須とする遷移
金属)から成る組成であり、R2T14B相の体積率V’
(%)が138−1.6r<V’<95であり、R2T14B
相の平均結晶粒径が15〜35μmで、Rリッチ相の間
隔が3〜8μmであることを特徴とする請求項1に記載
の希土類磁石用合金。
3. The alloy composition is such that R (at least one of rare earth elements including Y) is 30 to 32 wt% and B is 0.95 wt%.
And a balance of T (transition metal containing Fe as an essential component), and a volume fraction V ′ of the R 2 T 14 B phase.
(%) Is 138-1.6r <V ′ <95, and R 2 T 14 B
The rare earth magnet alloy according to claim 1, wherein the average crystal grain size of the phase is 15 to 35 µm, and the interval between the R-rich phases is 3 to 8 µm.
【請求項4】 合金組成が R(Y を含む希土類元素のう
ち少なくとも1種)を27〜30wt%、B を0.7 〜
1.4wt%含み、残部がT (Feを必須とする遷移金
属)から成る組成であり、R2T14B相の体積率V’(%)
が91以上であり、R2T14B相の平均結晶粒径が15〜1
00μm、Rリッチ相の間隔が3〜15μmであること
を特徴とする請求項1に記載の希土類磁石用合金。
4. An alloy composition in which R (at least one of the rare earth elements including Y) is 27 to 30 wt% and B is 0.7 to 0.7 wt%.
It has a composition of 1.4 wt%, the balance being T (transition metal which essentially requires Fe), and the volume fraction V ′ (%) of the R 2 T 14 B phase.
Is 91 or more, and the average crystal grain size of the R 2 T 14 B phase is 15 to 1
2. The alloy for a rare earth magnet according to claim 1, wherein the interval between the R-rich phase and the R-rich phase is 3 μm to 15 μm. 3.
【請求項5】 合金組成が R(Y を含む希土類元素のう
ち少なくとも1種)を28〜29.5wt%、B を1.
1〜1.3wt%含み、残部がT (Feを必須とする遷移
金属)から成る組成であり、R2T14B相の体積率V’
(%)が93以上であり、R2T14B相の平均結晶粒径が2
0〜50μm、Rリッチ相の間隔が5〜12μmである
ことを特徴とする請求項1に記載の希土類磁石用合金。
5. An alloy composition comprising 28 to 29.5 wt% of R (at least one of rare earth elements including Y) and B of 1.
1 to 1.3 wt%, the balance being composed of T (transition metal having Fe as an essential component), and the volume fraction V ′ of the R 2 T 14 B phase.
(%) Is 93 or more, and the average crystal grain size of the R 2 T 14 B phase is 2
The alloy for a rare-earth magnet according to claim 1, wherein the R-rich phase has an interval of 0 to 50 m and 5 to 12 m.
【請求項6】 R(Y を含む希土類元素のうち少なくと
も1種)を27〜34wt%、B を0.7〜1.4wt
%含み、残部がT (Feを必須とする遷移金属)から成る
組成を有する合金溶湯をストリップキャステイング法で
鋳造し、該合金の融点から1000℃迄の平均冷却速度
を300℃/秒以上とし、800℃から600℃間の平
均冷却速度を1. 0℃/秒以下とすることを特徴とする
希土類磁石用合金の製造方法。
6. R (at least one of rare earth elements including Y) is 27 to 34 wt% and B is 0.7 to 1.4 wt%.
%, And the balance is cast by a strip casting method and has an average cooling rate from the melting point of the alloy to 1000 ° C. of 300 ° C./second or more. A method for producing an alloy for a rare earth magnet, wherein an average cooling rate between 800 ° C. and 600 ° C. is 1.0 ° C./sec or less.
【請求項7】 融点から1000℃迄の平均冷却速度を
500℃/秒以上とし、800℃から600℃間の平均
冷却速度を0. 75℃/秒以下とすることを特徴とする
請求項6に記載の希土類磁石用合金の製造方法。
7. An average cooling rate from the melting point to 1000 ° C. is 500 ° C./sec or more, and an average cooling rate between 800 ° C. and 600 ° C. is 0.75 ° C./sec or less. 3. The method for producing an alloy for a rare earth magnet according to claim 1.
JP10810997A 1996-04-10 1997-04-10 Alloy for rare earth magnet and method for producing the same Expired - Lifetime JP3449166B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10810997A JP3449166B2 (en) 1996-04-10 1997-04-10 Alloy for rare earth magnet and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11308596 1996-04-10
JP8-113085 1996-04-10
JP10810997A JP3449166B2 (en) 1996-04-10 1997-04-10 Alloy for rare earth magnet and method for producing the same

Publications (2)

Publication Number Publication Date
JPH1036949A true JPH1036949A (en) 1998-02-10
JP3449166B2 JP3449166B2 (en) 2003-09-22

Family

ID=26448071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10810997A Expired - Lifetime JP3449166B2 (en) 1996-04-10 1997-04-10 Alloy for rare earth magnet and method for producing the same

Country Status (1)

Country Link
JP (1) JP3449166B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002275598A (en) * 2001-03-16 2002-09-25 Showa Denko Kk Normal/defective judgement method for rare earth magnet alloy ingot, manufacturing method, rare earth magnet alloy ingot and rare earth magnet alloy
WO2002075305A1 (en) * 2001-03-16 2002-09-26 Showa Denko K.K. Quality testing method and production method of rare earth magnet alloy ingot, the rare earth magnet alloy ingot, and rare earth magnet alloy
JP2003077717A (en) * 2001-09-03 2003-03-14 Showa Denko Kk Rare-earth magnetic alloy agglomeration, its manufacturing method and sintered magnet
WO2003052779A1 (en) * 2001-12-19 2003-06-26 Neomax Co., Ltd. Rare earth element-iron-boron alloy, and magnetically anisotropic permanent magnet powder and method for production thereof
WO2003052778A1 (en) * 2001-12-18 2003-06-26 Showa Denko K.K. Alloy flake for rare earth magnet, production method thereof, alloy powder for rare earth sintered magnet, rare earth sintered magnet, alloy powder for bonded magnet and bonded magnet
US6797081B2 (en) 2000-08-31 2004-09-28 Showa Denko K.K. Centrifugal casting method, centrifugal casting apparatus, and cast alloy produced by same
WO2005095024A1 (en) * 2004-03-31 2005-10-13 Santoku Corporation Process for producing alloy slab for rare-earth sintered magnet, alloy slab for rare-earth sintered magnet and rare-earth sintered magnet
JP2008058323A (en) * 2002-11-22 2008-03-13 Showa Denko Kk Method of evaluating metal structure of r-t-b magnet alloy
CN100400199C (en) * 2004-03-31 2008-07-09 株式会社三德 Process for producing alloy slab for rare-earth sintered magnet, alloy slab for rare-earth sintered magnet and rare-earth sintered magnet
JP2008264875A (en) * 2007-04-16 2008-11-06 Grirem Advanced Materials Co Ltd Rare earth alloy cast sheet and method for producing the same
EP2026923A1 (en) * 2006-04-07 2009-02-25 Showa Denko K.K. Apparatus for producing alloy and rare earth element alloy
JP2009068111A (en) * 2002-09-30 2009-04-02 Santoku Corp Material alloy for rare earth sintered magnet and alloy powder for rare earth sintered magnet
JP2011199069A (en) * 2010-03-19 2011-10-06 Tdk Corp Method for manufacturing rare earth sintered magnet, and material for the rare earth sintered magnet
JP2011210838A (en) * 2010-03-29 2011-10-20 Tdk Corp Rare-earth sintered magnet, method of manufacturing the same, and rotary machine
US8056610B2 (en) 2007-09-25 2011-11-15 Ulvac, Inc. Secondary cooling apparatus and casting apparatus
WO2013111573A1 (en) * 2012-01-24 2013-08-01 中電レアアース株式会社 Method for producing rare earth based alloy piece
JP2016096181A (en) * 2014-11-12 2016-05-26 Tdk株式会社 R-t-b system sintered magnet

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6797081B2 (en) 2000-08-31 2004-09-28 Showa Denko K.K. Centrifugal casting method, centrifugal casting apparatus, and cast alloy produced by same
US7264683B2 (en) 2000-08-31 2007-09-04 Showa Denko K.K. Centrifugal casting method, centrifugal casting apparatus, and cast alloy produced by same
WO2002075305A1 (en) * 2001-03-16 2002-09-26 Showa Denko K.K. Quality testing method and production method of rare earth magnet alloy ingot, the rare earth magnet alloy ingot, and rare earth magnet alloy
JP4723741B2 (en) * 2001-03-16 2011-07-13 昭和電工株式会社 Rare earth magnet alloy ingot quality determination method, manufacturing method, rare earth magnet alloy ingot and rare earth magnet alloy
JP2002275598A (en) * 2001-03-16 2002-09-25 Showa Denko Kk Normal/defective judgement method for rare earth magnet alloy ingot, manufacturing method, rare earth magnet alloy ingot and rare earth magnet alloy
JP2003077717A (en) * 2001-09-03 2003-03-14 Showa Denko Kk Rare-earth magnetic alloy agglomeration, its manufacturing method and sintered magnet
US7442262B2 (en) 2001-12-18 2008-10-28 Showa Denko K.K. Alloy flake for rare earth magnet, production method thereof, alloy powder for rare earth sintered magnet, rare earth sintered magnet, alloy powder for bonded magnet and bonded magnet
WO2003052778A1 (en) * 2001-12-18 2003-06-26 Showa Denko K.K. Alloy flake for rare earth magnet, production method thereof, alloy powder for rare earth sintered magnet, rare earth sintered magnet, alloy powder for bonded magnet and bonded magnet
US7571757B2 (en) 2001-12-18 2009-08-11 Showa Denko K.K. Alloy flake for rare earth magnet, production method thereof, alloy powder for rare earth sintered magnet, rare earth sintered magnet, alloy powder for bonded magnet and bonded magnet
US7550047B2 (en) 2001-12-19 2009-06-23 Hitachi Metals, Ltd. Rare earth element-iron-boron alloy and magnetically anisotropic permanent magnet powder and method for production thereof
WO2003052779A1 (en) * 2001-12-19 2003-06-26 Neomax Co., Ltd. Rare earth element-iron-boron alloy, and magnetically anisotropic permanent magnet powder and method for production thereof
US7892365B2 (en) 2001-12-19 2011-02-22 Hitachi Metals, Ltd. Rare earth element-iron-boron alloy, and magnetically anisotropic permanent magnet powder and method for production thereof
JP2009068111A (en) * 2002-09-30 2009-04-02 Santoku Corp Material alloy for rare earth sintered magnet and alloy powder for rare earth sintered magnet
JP2008058323A (en) * 2002-11-22 2008-03-13 Showa Denko Kk Method of evaluating metal structure of r-t-b magnet alloy
US8105446B2 (en) 2004-03-31 2012-01-31 Santoku Corporation Process for producing alloy slab for rare-earth sintered magnet, alloy slab for rare-earth sintered magnet and rare-earth sintered magnet
WO2005095024A1 (en) * 2004-03-31 2005-10-13 Santoku Corporation Process for producing alloy slab for rare-earth sintered magnet, alloy slab for rare-earth sintered magnet and rare-earth sintered magnet
US7722726B2 (en) 2004-03-31 2010-05-25 Santoku Corporation Process for producing alloy slab for rare-earth sintered magnet, alloy slab for rare-earth sintered magnet and rare-earth sintered magnet
CN100400199C (en) * 2004-03-31 2008-07-09 株式会社三德 Process for producing alloy slab for rare-earth sintered magnet, alloy slab for rare-earth sintered magnet and rare-earth sintered magnet
EP2026923A4 (en) * 2006-04-07 2010-07-21 Showa Denko Kk Apparatus for producing alloy and rare earth element alloy
EP2026923A1 (en) * 2006-04-07 2009-02-25 Showa Denko K.K. Apparatus for producing alloy and rare earth element alloy
US7958929B2 (en) 2006-04-07 2011-06-14 Showa Denko K.K. Apparatus for producing alloy and rare earth element alloy
JP2008264875A (en) * 2007-04-16 2008-11-06 Grirem Advanced Materials Co Ltd Rare earth alloy cast sheet and method for producing the same
US8056610B2 (en) 2007-09-25 2011-11-15 Ulvac, Inc. Secondary cooling apparatus and casting apparatus
JP2011199069A (en) * 2010-03-19 2011-10-06 Tdk Corp Method for manufacturing rare earth sintered magnet, and material for the rare earth sintered magnet
JP2011210838A (en) * 2010-03-29 2011-10-20 Tdk Corp Rare-earth sintered magnet, method of manufacturing the same, and rotary machine
WO2013111573A1 (en) * 2012-01-24 2013-08-01 中電レアアース株式会社 Method for producing rare earth based alloy piece
JP2013150996A (en) * 2012-01-24 2013-08-08 Chuden Rare Earth Co Ltd Method for manufacturing rare earth alloy piece
US9649691B2 (en) 2012-01-24 2017-05-16 Santoku Corporation Method of producing rare earth alloy flakes
JP2016096181A (en) * 2014-11-12 2016-05-26 Tdk株式会社 R-t-b system sintered magnet

Also Published As

Publication number Publication date
JP3449166B2 (en) 2003-09-22

Similar Documents

Publication Publication Date Title
EP0886284B1 (en) Cast alloy used for production of rare earth magnet and method for producing cast alloy and magnet
JP4832856B2 (en) Method for producing RTB-based alloy and RTB-based alloy flakes, fine powder for RTB-based rare earth permanent magnet, RTB-based rare earth permanent magnet
JP3267133B2 (en) Alloy for rare earth magnet, method for producing the same, and method for producing permanent magnet
EP1187147A2 (en) Rare-earth alloy, rare-earth sintered magnet, and methods of manufacturing
US20090000701A1 (en) Rare earth magnet alloy ingot, manufacturing method for the same, r-t-b type magnet alloy ingot, r-tb type magnet, r-t-b type bonded magnet, r-t-b type exchange spring magnet alloy ingot, r-t-b type exchange spring magnet, and r-t-b type exchange spring bonded magnet
JP3449166B2 (en) Alloy for rare earth magnet and method for producing the same
JP4389427B2 (en) Sintered magnet using alloy powder for rare earth-iron-boron magnet
JP3724513B2 (en) Method for manufacturing permanent magnet
WO2003052779A1 (en) Rare earth element-iron-boron alloy, and magnetically anisotropic permanent magnet powder and method for production thereof
JP4879503B2 (en) Alloy block for RTB-based sintered magnet, manufacturing method thereof and magnet
JP4479944B2 (en) Alloy flake for rare earth magnet and method for producing the same
US7390369B2 (en) Method for producing rare earth based alloy powder and method for producing rare earth based sintered magnet
JP3561692B2 (en) Structure control method for rare earth element-containing alloy, alloy powder and magnet using the same
EP1263003A2 (en) Preparation of a rare earth magnet alloy powder for a bonded magnet and rare earth bonded magnet therewith
JP3721831B2 (en) Rare earth magnet alloy and method for producing the same
JP4853629B2 (en) Manufacturing method of rare earth sintered magnet
JP2003301203A (en) Rare earth-iron-boron based alloy, permanent magnet powder with magnetic anisotropy, and manufacturing method therefor
WO2009125671A1 (en) R-t-b-base alloy, process for producing r-t-b-base alloy, fines for r-t-b-base rare earth permanent magnet, r-t-b-base rare earth permanent magnet, and process for producing r-t-b-base rare earth permanent magnet
JP2002208509A (en) Rare earth magnet and its manufacturing method
JP4650218B2 (en) Method for producing rare earth magnet powder
JP3536943B2 (en) Alloy for rare earth magnet and method for producing the same
JP4574820B2 (en) Method for producing magnet powder for rare earth bonded magnet
JP3256413B2 (en) Slab for R-Fe-BC magnet alloy having excellent corrosion resistance and method for producing the same
JPH0920954A (en) Slab for r-fe-b-c magnet alloy excellent in corrosion resistance and its production
JP2002083728A (en) Method of manufacturing rare earth permanent magnet

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090711

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 10

EXPY Cancellation because of completion of term