JP2009068111A - Material alloy for rare earth sintered magnet and alloy powder for rare earth sintered magnet - Google Patents

Material alloy for rare earth sintered magnet and alloy powder for rare earth sintered magnet Download PDF

Info

Publication number
JP2009068111A
JP2009068111A JP2008259885A JP2008259885A JP2009068111A JP 2009068111 A JP2009068111 A JP 2009068111A JP 2008259885 A JP2008259885 A JP 2008259885A JP 2008259885 A JP2008259885 A JP 2008259885A JP 2009068111 A JP2009068111 A JP 2009068111A
Authority
JP
Japan
Prior art keywords
alloy
slab
rare earth
sintered magnet
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008259885A
Other languages
Japanese (ja)
Other versions
JP5091079B2 (en
Inventor
Kenji Konishi
謙治 小西
Koji Higuchi
宏二 樋口
Hiroshi Abe
浩史 阿部
Shinya Tabata
進也 田畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Santoku Corp
Original Assignee
Santoku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Santoku Corp filed Critical Santoku Corp
Priority to JP2008259885A priority Critical patent/JP5091079B2/en
Publication of JP2009068111A publication Critical patent/JP2009068111A/en
Application granted granted Critical
Publication of JP5091079B2 publication Critical patent/JP5091079B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a material alloy for a R<SB>2</SB>Fe<SB>14</SB>B rare earth magnet excellent in magnetic properties, and an alloy powder thereof. <P>SOLUTION: The material alloy for the rare earth sintered magnet is an alloy having a composition composed of 27.6-33.0 mass% of R including neodymium or including neodymium and at least one element chosen from the group consisting of rare earth metal elements including yttrium but not including neodymium, 0.94-1.30 mass% of boron and the balance M containing iron. The average distance between R-rich phases in the alloy is 3-12 μm; the value obtained by dividing the standard deviation of the R-rich phase distance with the average distance between the R-rich phases is ≤0.25, and the volume percentage of a R<SB>2</SB>Fe<SB>14</SB>B main phase is ≥88 vol.%. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、希土類金属、鉄及びボロンを必須成分とするR2Fe14B系の希土類焼結磁石用原料合金及び希土類焼結磁石用原料合金粉末に関する。 The present invention, rare earth metals, about material alloy powder for iron and boron as an essential component R 2 Fe 14 B based rare-earth sintered material alloy及 beauty rare earth sintered magnet for a magnet.

最近の電子機器の小型化・軽量化を進めるにあたり、これらに用いられる磁石の更なる高磁気特性化が要望されている。なかでも磁束密度の高いR2Fe14B系焼結磁石の開発が活発に行われている。一般にR2Fe14B系焼結磁石は、原料を溶解、鋳造、粉砕した磁石原料合金を磁場成形、焼結、時効処理して得られる。焼結の際、比較的融点の低い希土類金属を多く含む相(以下R−rich相という)は溶融して液相となり、R2Fe14B相(以下2−14−1系主相という)からなる結晶粒子の間を埋めるよう働き、焼結性を向上させ、焼結体の高密度化に寄与する。また凝固後、非磁性のR−rich相が、強磁性体の2−14−1主相からなる粒子を被覆し、2−14−1系主相を磁気的に絶縁して保磁力を高める役割を果たす。
R2Fe14B系焼結磁石に適する原料合金として、急冷凝固法により作製したR−rich相が微細に分散した組織を有する合金が用いられている。この合金はR−rich相が微細分散されている為、粉砕性がよく、結果として焼結後、2−14−1系主相からなる粒子にR−rich相が均一に被覆された状態となり、磁気特性が向上する(例えば、特許文献1参照)。また、微視的な鋳片結晶組織の解析により、鋳片に存在する微細樹枝状もしくは柱状結晶が、粉砕時の微粉化に伴う磁石粉末の酸化及び焼結磁石の配向度の低下に影響をもたらすとし、前記微細樹枝状もしくは柱状結晶を低減する為、急冷凝固法における溶湯温度、1次冷却速度、2次冷却速度を制御する磁石粉末の製法が知られている(例えば、特許文献2参照)。更に、2−14−1系主相の体積率を高め、かつR−rich相の間隔を細かくすることにより残留磁化が大きくなるとし、急冷凝固法における1次冷却速度、2次冷却速度又は熱処理温度を制御する磁石粉末の製法が知られている(例えば、特許文献3〜5参照)。
しかし、これらの技術により磁気特性の向上はなされているが、未だ十分なものではない。
特許第2639609号明細書 特開平8−269643号公報 特許第3267133号明細書 特開平10−36949号公報 特開2002−266006号公報
As recent electronic devices are reduced in size and weight, there is a demand for higher magnetic properties of magnets used in these devices. In particular, R 2 Fe 14 B sintered magnets with high magnetic flux density are being actively developed. Generally, an R 2 Fe 14 B sintered magnet is obtained by magnetic field forming, sintering, and aging treatment of a magnet raw material alloy obtained by melting, casting, and grinding a raw material. During sintering, a phase containing a large amount of a rare earth metal having a relatively low melting point (hereinafter referred to as “R-rich phase”) melts to become a liquid phase, and an R 2 Fe 14 B phase (hereinafter referred to as “2-14-1 system main phase”). It works to fill the space between the crystal grains made of, improves the sinterability, and contributes to higher density of the sintered body. Further, after solidification, the non-magnetic R-rich phase covers particles composed of the 2-14-1 main phase of the ferromagnetic material and magnetically insulates the 2-14-1 main phase to increase the coercive force. Play a role.
As a raw material alloy suitable for an R 2 Fe 14 B-based sintered magnet, an alloy having a structure in which R-rich phases prepared by a rapid solidification method are finely dispersed is used. In this alloy, the R-rich phase is finely dispersed, so the grindability is good. As a result, after sintering, the particles composed of the 2-14-1 main phase are uniformly coated with the R-rich phase. The magnetic characteristics are improved (see, for example, Patent Document 1). In addition, the microscopic analysis of the slab crystal structure shows that the fine dendritic or columnar crystals present in the slab have an effect on the oxidation of the magnet powder accompanying the pulverization during pulverization and the decrease in the degree of orientation of the sintered magnet. In order to reduce the fine dendritic or columnar crystals, there is known a method for producing a magnet powder that controls the melt temperature, primary cooling rate, and secondary cooling rate in the rapid solidification method (see, for example, Patent Document 2). ). Furthermore, it is assumed that the residual magnetization increases by increasing the volume fraction of the 2-14-1 main phase and reducing the interval between the R-rich phases, and the primary cooling rate, secondary cooling rate or heat treatment in the rapid solidification method A method for producing a magnet powder for controlling temperature is known (see, for example, Patent Documents 3 to 5).
However, although the magnetic characteristics have been improved by these techniques, it is not yet sufficient.
Japanese Patent No. 2,639,609 Japanese Patent Laid-Open No. 8-269634 Japanese Patent No. 3267133 JP-A-10-36949 JP 2002-266006 A

本発明の目的は、磁気特性に優れたR2Fe14B系の希土類焼結磁石用原料合金、その合金粉末を提供することにある。 An object of the present invention is to provide a raw material alloy for R 2 Fe 14 B-based rare earth sintered magnets having excellent magnetic properties, and an alloy powder thereof .

本発明者は、上記課題を解決するためにR2Fe14B系磁石用原料合金の組織と磁気特性の関連について検討した結果、R2Fe14B系磁石用原料合金中のR−rich相の平均間隔及びR−rich相間隔の標準偏差、2−14−1系主相の体積率を制御すること、更にR2Fe14B系磁石用原料合金を微粉砕した後の粒度分布を制御することにより、これらR2Fe14B系磁石用原料合金を用いて作製した焼結磁石の残留磁化及び保磁力が向上することを見出した。また、本発明者は上述のR2Fe14B系磁石用原料合金が、ストリップキャスティング法において冷却速度及び鋳片保持温度等を制御することにより得られることを見出し本発明を完成した。 In order to solve the above problems, the present inventor has examined the relationship between the structure and magnetic properties of the raw material alloy for R 2 Fe 14 B magnets, and as a result, the R-rich phase in the raw alloy for R 2 Fe 14 B magnets. Control of the mean spacing of R2 and the standard deviation of R-rich phase spacing, the volume ratio of the 2-14-1 main phase, and the particle size distribution after finely pulverizing the R 2 Fe 14 B magnet raw material alloy As a result, it was found that the remanent magnetization and coercivity of the sintered magnet produced using these raw material alloys for R 2 Fe 14 B magnets were improved. Further, the present inventor has found that the above-mentioned raw material alloy for R 2 Fe 14 B-based magnets can be obtained by controlling the cooling rate, slab holding temperature, etc. in the strip casting method, and has completed the present invention.

すなわち本発明によれば、ネオジムからなるか、もしくはネオジムと、イットリウムを含みネオジムを含まない希土類金属元素からなる群より選ばれる少なくとも1種とからなるR27.6〜33.0質量%と、ボロン0.94〜1.30質量%と、鉄を含む残部Mとからなる組成を有する合金であって、
該合金のR−rich相の平均間隔が3〜12μm、R−rich相間隔の標準偏差をR−rich相の平均間隔で割った値が0.25以下であり、かつR2Fe14B系主相の体積比率が88体積%以上であることを特徴とする希土類焼結磁石用原料合金が提供される。
また本発明によれば、前記希土類焼結磁石用原料用合金を平均粒度3〜7μmに粉砕して得た合金粉末であって、
該合金粉末の粒度分布が、Rosin−Ramller分布を適用した場合、均等数が1.90以上、粒度特性数が4.0〜10.0であることを特徴とする希土類焼結磁石用原料合金粉末が提供される。
That is, according to the present invention, R27.6-33.0% by mass consisting of neodymium, or at least one selected from the group consisting of neodymium and a rare earth metal element containing yttrium and not containing neodymium, boron, An alloy having a composition of 0.94 to 1.30% by mass and the balance M containing iron,
The R-rich phase has an average interval of 3 to 12 μm, the standard deviation of the R-rich phase interval divided by the average interval of the R-rich phase is 0.25 or less, and the R 2 Fe 14 B system A raw material alloy for a rare earth sintered magnet is provided in which the volume ratio of the main phase is 88% by volume or more.
According to the present invention, the alloy powder obtained by pulverizing the alloy for rare earth sintered magnet raw material to an average particle size of 3 to 7 μm,
A raw material alloy for rare earth sintered magnet, wherein the alloy powder has a particle size distribution of 1.90 or more and a particle size characteristic number of 4.0 to 10.0 when the Rosin-Ramller distribution is applied. A powder is provided .

本発明の希土類焼結磁石用原料合金は、最適なR−rich相の相間隔、体積割合、構成相比及び最適な2−14−1系主相の形状を有するので、磁気特性に優れる。 The raw material alloy for rare earth sintered magnets of the present invention has an excellent R-rich phase interval, volume ratio, constituent phase ratio, and optimal 2-14-1 main phase shape, and therefore has excellent magnetic properties .

以下本発明を更に詳細に説明する。
本発明の希土類焼結磁石用原料合金は、ネオジムからなるか、もしくはネオジムと、イットリウムを含みネオジムを含まない希土類金属元素からなる群より選ばれる少なくとも1種からなるRと、ボロンと、鉄を含む残部Mとを特定割合とした組成を有する。
前記ネオジム以外のRは特に限定されず、ランタン、セリウム、プラセオジム、イットリウム、ガドリウム、テルビウム、ディスプロシウム、ホルミウム、エルビウム、イッテルビウム又はこれらの2種以上の混合物が好ましく挙げられる。Rの含有割合は、27.6〜33.0質量%である。Rが27.6質量%未満では、焼結体の緻密化に必要な液相量が不足して焼結体密度が低下し、磁気特性が低下する。一方、33.0質量%を超えると、焼結体内部のR−rich相の割合が高くなり、耐食性が低下する。また、必然的に2−14−1系主相の体積割合が少なくなるため、残留磁束密度Brが低下する。好ましくはRは、ネオジムの他に、ガドリウム、テルビウム、ディスプロシウム、ホルミウム、エルビウム及びイッテルビウムからなる群より選ばれる少なくとも1種を含む。これらの重希土類元素は、磁石特性のうち主に保磁力を向上する。これらの重希土類元素のうちテルビウムはもっとも大きな効果を示すが高価であり、コストと効果を考慮するとディスプロシウムを単体でまたはガドリウム、テルビウム、ホルミウムを共に用いることが好ましい。
これらの重希土類元素の含有割合は通常0.2〜15質量%、好ましくは1〜15質量%、更に好ましくは3〜15質量%である。該含有割合が15質量%より大きくなると高価になり好ましくなく、0.2質量%未満では磁気特性の向上効果が小さい。
前記ボロンの含有割合は、0.94〜1.30質量%である。ボロンが0.94質量%未満では、2−14−1系主相の割合が減少し、残留磁束密度Brが低下し、1.30質量%を超えると、B−rich相の割合が増加し、磁気特性及び耐食性が共に低下する。
The present invention will be described in detail below.
The raw material alloy for rare earth sintered magnets of the present invention is composed of neodymium, or R composed of at least one selected from the group consisting of neodymium and rare earth metal elements containing yttrium and not containing neodymium, boron, and iron. It has the composition which made the remainder M to contain into a specific ratio.
R other than the neodymium is not particularly limited, and lanthanum, cerium, praseodymium, yttrium, gadolinium, terbium, dysprosium, holmium, erbium, ytterbium, or a mixture of two or more of these is preferable. The content ratio of R is 27.6 to 33.0% by mass. When R is less than 27.6% by mass, the liquid phase amount necessary for densification of the sintered body is insufficient, the density of the sintered body is lowered, and the magnetic properties are lowered. On the other hand, if it exceeds 33.0% by mass, the proportion of the R-rich phase inside the sintered body increases, and the corrosion resistance decreases. Moreover, since the volume ratio of the 2-14-1 main phase is inevitably reduced, the residual magnetic flux density Br decreases. Preferably, R contains at least one selected from the group consisting of gadolinium, terbium, dysprosium, holmium, erbium and ytterbium in addition to neodymium. These heavy rare earth elements mainly improve the coercive force among the magnet characteristics. Of these heavy rare earth elements, terbium exhibits the greatest effect but is expensive, and it is preferable to use dysprosium alone or in combination with gadolinium, terbium, and holmium in consideration of cost and effects.
The content of these heavy rare earth elements is usually 0.2 to 15% by mass, preferably 1 to 15% by mass, and more preferably 3 to 15% by mass. When the content ratio is more than 15% by mass, the cost becomes high, which is not preferable.
The boron content is 0.94 to 1.30% by mass. If boron is less than 0.94% by mass, the ratio of the 2-14-1 main phase decreases and the residual magnetic flux density Br decreases. If it exceeds 1.30% by mass, the ratio of the B-rich phase increases. In addition, both magnetic properties and corrosion resistance are reduced.

前記残部Mは鉄を含むが、残部M中の鉄の含有割合は、好ましくは50質量%以上、更に好ましくは60質量%以上である。残部Mは、必要に応じて、鉄以外の遷移金属、珪素及び炭素からなる群より選ばれる少なくとも1種を含んでいても良く、また、酸素、窒素等の工業生産上における不可避不純分を含んでいても良い。
前記鉄以外の遷移金属は特に限定されないが、例えば、コバルト、アルミニウム、クロム、チタン、バナジウム、マンガン、マグネシウム、銅、錫、タングステン、ニオブ及びガリウムからなる群より選ばれる少なくとも1種が好ましく挙げられる。
The balance M contains iron, and the content ratio of iron in the balance M is preferably 50% by mass or more, and more preferably 60% by mass or more. The balance M may contain at least one selected from the group consisting of transition metals other than iron, silicon and carbon, if necessary, and also contains inevitable impurities in industrial production such as oxygen and nitrogen. You can leave.
The transition metal other than iron is not particularly limited. For example, at least one selected from the group consisting of cobalt, aluminum, chromium, titanium, vanadium, manganese, magnesium, copper, tin, tungsten, niobium, and gallium is preferable. .

本発明の希土類焼結磁石用原料合金は、R−rich相の平均間隔が3〜12μm、好ましくは4〜6μmであり、R−rich相間隔の標準偏差をR−rich相の平均間隔で割った値が0.25以下、好ましくは0.2以下である。R−rich相間隔の標準偏差をR−rich相の平均間隔で割った値が小さいほど鋳片組織のばらつきが小さいことを意味する。
前記R−rich相の平均間隔及びR−rich相間隔の標準偏差は、次の方法により求めることができる。
まず、ストリップキャスト鋳片の厚さ方向の断面組織写真を光学顕微鏡により撮影し、厚さ方向の断面中央位置で断面幅方向に400μmに相当する線分を引き、その線分を横切るR−rich相の点数を数え、断面幅方向に引いた線分の長さをR−rich相の点数で割る。20個以上の鋳片について同様にして値を求め、それらの平均値をR−rich相の平均間隔とした。またR−rich相間隔の標準偏差は、鋳片の厚さ方向の断面中央位置で断面幅方向に50μmに相当する線分を引き、その線分を横切るR−rich相の点数を数え、断面幅方向に引いた線分の長さをR−rich相の点数で割る。鋳片1個について5点、鋳片20個について平均間隔を求め、そのデータから標準偏差を算出する。
R−rich相の平均間隔が3〜12μmで、R−rich相間隔の標準偏差を平均間隔で割った値が0.25以下である場合、平均粒度3〜7μmに粉砕した際、R−rich相を含んだ単一粒子の割合が多くなるため、焼結時に液相となるR−rich相が2−14−1系主相粒子間に効果的に広がり焼結性が向上する。また2−14−1系主相粒子同士の接触を分断するため、異常な粒成長を抑制し、保磁力が向上する。R−rich相の平均間隔が3μm未満では、単一粒子内に方位の異なる結晶粒が存在する割合が高くなり、残留磁束密度が低下し、R−rich相の平均間隔が12μmを超えると、R−rich相が存在しない単一粒子の割合が高くなり、焼結性、保磁力ともに低下する。また、R−rich相の平均間隔が3〜12μmであっても、R−rich相間隔の標準偏差をR−rich相の平均間隔で割った値が0.25より大きい場合、微粉砕後の粒度分布がブロードになり保磁力、最大エネルギー積が低下する。
In the raw material alloy for rare earth sintered magnet of the present invention, the average interval of R-rich phase is 3 to 12 μm, preferably 4 to 6 μm, and the standard deviation of R-rich phase interval is divided by the average interval of R-rich phase. The value is 0.25 or less, preferably 0.2 or less. The smaller the value obtained by dividing the standard deviation of the R-rich phase interval by the average interval of the R-rich phase, the smaller the variation in the slab structure.
The average interval of the R-rich phase and the standard deviation of the R-rich phase interval can be determined by the following method.
First, a cross-sectional structure photograph in the thickness direction of the strip cast slab was taken with an optical microscope, a line segment corresponding to 400 μm was drawn in the cross-sectional width direction at the central position of the cross section in the thickness direction, and R-rich crossing the line segment. Count the number of phases and divide the length of the line drawn in the cross-sectional width direction by the number of R-rich phases. Values were obtained in the same manner for 20 or more slabs, and the average value thereof was taken as the average interval of the R-rich phase. Also, the standard deviation of the R-rich phase interval is calculated by drawing a line segment corresponding to 50 μm in the cross-sectional width direction at the center position of the cross-section in the thickness direction of the slab, counting the number of R-rich phases crossing the line segment, Divide the length of the line drawn in the width direction by the number of R-rich phases. Five points for one slab and an average interval for 20 slabs are obtained, and a standard deviation is calculated from the data.
When the average interval of the R-rich phase is 3 to 12 μm and the value obtained by dividing the standard deviation of the R-rich phase interval by the average interval is 0.25 or less, when pulverizing to an average particle size of 3 to 7 μm, Since the ratio of the single particle containing a phase increases, the R-rich phase which becomes a liquid phase at the time of sintering spreads effectively between 2-14-1 system main phase particles, and sinterability improves. Further, since the contact between the 2-14-1 main phase particles is divided, abnormal grain growth is suppressed and the coercive force is improved. When the average interval between R-rich phases is less than 3 μm, the proportion of crystal grains having different orientations in a single particle increases, the residual magnetic flux density decreases, and when the average interval between R-rich phases exceeds 12 μm, The proportion of single particles in which no R-rich phase is present increases, and both sinterability and coercive force decrease. In addition, even when the average interval of the R-rich phase is 3 to 12 μm, when the value obtained by dividing the standard deviation of the R-rich phase interval by the average interval of the R-rich phase is larger than 0.25, The particle size distribution becomes broad and the coercive force and the maximum energy product decrease.

本発明の希土類焼結磁石用原料合金は、2−14−1系主相の体積比率が88体積%以上、好ましくは90体積%以上である。2−14−1系主相の体積比率は、ストリップキャスト鋳片の厚さ方向の断面組織のEPMAのCompo像を画像解析することにより求められる面積率とした。2−14−1系主相の体積比率が88体積%未満では、R−rich相の体積割合が多くなり残留磁化が低下する。
本発明の希土類焼結磁石用原料合金は、前記2−14−1系主相の体積比率、R−rich相の平均間隔及び標準偏差をR−rich相の平均間隔で割った値を、同時に上述規定の範囲において充足する必要がある。
In the raw material alloy for rare earth sintered magnet of the present invention, the volume ratio of the 2-14-1 main phase is 88% by volume or more, preferably 90% by volume or more. The volume ratio of the 2-14-1 main phase was an area ratio determined by image analysis of the EPMA Compo image of the cross-sectional structure in the thickness direction of the strip cast slab. When the volume ratio of the 2-14-1 main phase is less than 88% by volume, the volume ratio of the R-rich phase increases and the residual magnetization decreases.
The raw material alloy for rare earth sintered magnet of the present invention is obtained by dividing the volume ratio of the 2-14-1 main phase, the average interval of the R-rich phase, and the standard deviation divided by the average interval of the R-rich phase at the same time. It is necessary to meet the requirements specified above.

本発明の希土類焼結磁石用原料合金粉末は、前記本発明の希土類焼結磁石用原料合金を平均粒度(D50)3〜7μmに粉砕して得た合金粉末であって、該粉末の粒度分布に、Rosin-Rammler分布を適用した場合、均等数が1.90以上、好ましくは2.00以上、粒度特性数が4.0〜10.0となる。該均等数は次のようにして求められる。
まず、レーザー回折式粒度分布計を用いて、合金粉末の粒度分布を測定し、各粒度(x)に対する粒度積算値(R(x))を求める。そして、各粒度の対数値(ln x)と粒度積算値の逆数について2回対数をとった値(ln(ln(1/R(x))))を算出する。X軸にln x、Y軸に(ln(ln(1/R(x))))をとりプロットすると直線になり、この直線の傾きがRosin-Rammler分布における均等数となる。また、粒度特性数は、R(x)=0.368となる時のxの値である。上述の通り粉砕粉の均等数が1.90以上、粒度特性数が4.0〜10.0となる場合、磁気特性、特に保磁力が向上する。
The raw material alloy powder for rare earth sintered magnet of the present invention is an alloy powder obtained by pulverizing the raw material alloy for rare earth sintered magnet of the present invention to an average particle size (D50) of 3 to 7 μm, and the particle size distribution of the powder In addition, when the Rosin-Rammler distribution is applied, the uniform number is 1.90 or more, preferably 2.00 or more, and the particle size characteristic number is 4.0 to 10.0. The equal number is obtained as follows.
First, the particle size distribution of the alloy powder is measured using a laser diffraction particle size distribution meter, and the particle size integrated value (R (x)) for each particle size (x) is obtained. Then, a value (ln (ln (1 / R (x)))) obtained by taking the logarithm twice for the logarithmic value (ln x) of each particle size and the inverse of the particle size integrated value is calculated. Plotting with ln x on the X axis and (ln (ln (1 / R (x)))) on the Y axis gives a straight line, and the slope of this straight line is an even number in the Rosin-Rammler distribution. The particle size characteristic number is the value of x when R (x) = 0.368. As described above, when the equal number of pulverized powders is 1.90 or more and the number of particle size characteristics is 4.0 to 10.0, the magnetic characteristics, particularly the coercive force, is improved.

本発明の希土類焼結磁石用原料合金を製造するには、例えば、前述の本発明の希土類焼結磁石用原料合金における組成に調整したR、ボロン及びMからなる組成の合金溶湯を、ストリップキャスティング法により、ロール又はディスク上で冷却凝固させ、該冷却凝固された合金鋳片がロール又はディスクから剥離後に合金鋳片の熱履歴を制御しながら更に冷却して希土類焼結磁石用原料合金を製造する方法であって、前記冷却における熱履歴を特定なものに制御して行う。 To produce the rare earth sintered material alloy for a magnet of the present invention, For example, R adjusted to the composition of the material alloy for rare earth sintered magnet before mentioned of the present invention, a molten alloy having a composition consisting of boron and M, A raw material alloy for rare earth sintered magnet that is cooled and solidified on a roll or disk by strip casting, and further cooled while controlling the heat history of the alloy slab after the cooled and solidified alloy slab is peeled off from the roll or disk. In which the heat history in the cooling is controlled to a specific one .

前記合金溶湯は、例えば、原料を不活性ガス雰囲気下、高周波溶融法により溶融する方法等により行うことができる。
前記製造方法では、前記合金溶湯を、単ロール、双ロール又はディスク等を用いるストリップキャスティング法により連続的に冷却凝固させる。その際、合金溶湯をロール又はディスクに供給してロール又はディスクから合金鋳片が剥離するまでの平均冷却速度を50〜1200℃/秒、好ましくは100〜1000℃/秒、更に好ましくは130〜800℃/秒に制御して冷却凝固を行う(1次冷却工程という)。この1次冷却工程により、2−14−1系主相の結晶粒径及びR−rich相の相間隔、体積割合のおおよそが確定する。該平均冷却速度が速くなりすぎるとR−rich相の体積割合が多くなり、残留磁化が低下する。また遅すぎると2−14−1系主相が粗大化し、R−rich相の分散性が低下し、保磁力が低下する。
The molten alloy can be performed, for example, by a method of melting a raw material by an induction melting method in an inert gas atmosphere.
In the manufacturing method, the molten alloy is continuously cooled and solidified by a strip casting method using a single roll, a twin roll or a disk. At that time, the average cooling rate until the molten alloy is supplied to the roll or disk and the cast alloy strip is peeled off from the roll or disk is 50 to 1200 ° C./second, preferably 100 to 1000 ° C./second, more preferably 130 to Cooling and solidification are performed by controlling at 800 ° C./second (referred to as primary cooling step). By this primary cooling step, the crystal grain size of the 2-14-1 main phase, the phase interval of the R-rich phase, and the volume ratio are determined. If the average cooling rate becomes too fast, the volume ratio of the R-rich phase increases and the residual magnetization decreases. On the other hand, if it is too slow, the 2-14-1 main phase is coarsened, the dispersibility of the R-rich phase is lowered, and the coercive force is lowered.

前記製造方法では、前記1次冷却工程後、合金鋳片がロール又はディスクから剥離後、合金の特定温度T+30℃までの平均冷却速度を30℃/秒以上に制御して冷却する(2次冷却工程という)。この2次冷却工程における平均冷却速度が30℃/秒未満では、結晶粒の成長が著しくなり、R−rich相間隔が12μmを超える組織の割合が増加し、組織バラツキが大きくなる。また、後工程で微粉砕した際、粒度分布がブロードとなり、残留磁化及び保磁力がともに低下する。合金鋳片の2次冷却工程における平均冷却速度の上限は特に限定されないが、1次冷却工程における平均冷却速度以下であることが好ましい。1次冷却工程における平均冷却速度を超えるような速度で2次冷却工程を行うと、温度制御が困難であり、次に述べる合金鋳片の温度保持を行う特定温度T近傍での温度と時間制御において部位バラツキを生じてしまう場合があるので好ましくない。
前記2次冷却工程は、例えば、合金鋳片がロール又はディスクから剥離し温度保持容器に到達するまでの自然な放熱又は温度保持容器に導入されるまでの鋳造装置の構成部材との接触による熱伝導等によって行なわれる。
In the manufacturing method, after the primary cooling step, the alloy slab is peeled off from the roll or the disk, and then the alloy is cooled by controlling the average cooling rate to the specific temperature T + 30 ° C. to 30 ° C./second or more (secondary cooling). Process). When the average cooling rate in the secondary cooling step is less than 30 ° C./second, the growth of crystal grains becomes remarkable, the proportion of the structure in which the R-rich phase interval exceeds 12 μm increases, and the structure variation increases. Further, when finely pulverized in the subsequent process, the particle size distribution becomes broad, and both the residual magnetization and the coercive force are reduced. Although the upper limit of the average cooling rate in the secondary cooling process of an alloy slab is not specifically limited, It is preferable that it is below the average cooling rate in a primary cooling process. If the secondary cooling step is performed at a speed exceeding the average cooling rate in the primary cooling step, it is difficult to control the temperature, and the temperature and time control in the vicinity of the specific temperature T for maintaining the temperature of the alloy slab described below. In this case, it is not preferable because there may be a variation in part.
The secondary cooling step includes, for example, natural heat dissipation until the alloy slab peels off from the roll or disk and reaches the temperature holding container, or heat generated by contact with a component of the casting apparatus until the alloy slab is introduced into the temperature holding container. Performed by conduction or the like.

前記製造方法では、前記2次冷却工程後、合金鋳片を特定温度T±30℃の範囲、好ましくは特定温度T±20℃の範囲において、5〜600秒、好ましくは20〜400秒保持する(温度保持工程という)。この温度保持工程は、特定温度T+30℃となった時点から、特定温度T−30℃となった時点までに要した時間が5〜600秒であることを意味する。特定温度T±30℃の範囲で合金鋳片の温度は、低下、一定あるいは上昇していても構わない。
前記製造方法において規定する特定温度Tは、以下の方法により規定される温度を意味する。
即ち、まず、前記1次冷却工程の冷却速度を400〜470℃/秒、ロール離脱後600℃までの冷却速度を40〜50℃/秒、その後、600℃〜室温までの冷却速度を10〜15℃/分にそれぞれ制御して得られた合金鋳片を、700℃、800℃及び900℃で各々30分間熱処理を行ない、熱処理前後での前記R−rich相の平均間隔を比較し、結晶粒の成長率を求める。次に、熱処理温度(絶対温度)の逆数をx、結晶粒の成長率をyとして最小二乗法によりxとyの関係式を求める。得られた関係式より、結晶粒の成長率が130%の時のxから求めた温度を特定温度Tと規定する。
In the manufacturing method, after the secondary cooling step, the alloy slab is held for 5 to 600 seconds, preferably 20 to 400 seconds, in a specific temperature T ± 30 ° C. range, preferably in a specific temperature T ± 20 ° C. range. (Referred to as temperature holding step). This temperature maintaining step means that the time required from the time when the specific temperature T + 30 ° C. is reached to the time when the specific temperature T−30 ° C. is 5 to 600 seconds. The temperature of the alloy slab may be lowered, constant, or increased within the specific temperature T ± 30 ° C.
The specific temperature T defined in the manufacturing method means a temperature defined by the following method.
That is, first, the cooling rate in the primary cooling step is 400 to 470 ° C./second, the cooling rate from the roll to 600 ° C. is 40 to 50 ° C./second, and the cooling rate from 600 ° C. to room temperature is The alloy slabs obtained by controlling each at 15 ° C./min were heat-treated at 700 ° C., 800 ° C. and 900 ° C. for 30 minutes, respectively, and the average interval between the R-rich phases before and after the heat treatment was compared. Find the grain growth rate. Next, a relational expression between x and y is obtained by the least square method, where x is the reciprocal of the heat treatment temperature (absolute temperature) and y is the crystal grain growth rate. From the obtained relational expression, the temperature obtained from x when the crystal grain growth rate is 130% is defined as the specific temperature T.

前記温度保持工程により、2−14−1系主相の形状及びR−rich相の相間隔、R−rich相の相間隔のばらつき、体積割合、構成相比等を精密に制御することができる。例えば、この温度保持工程により、2−14−1系主相の微細なデントライアームが消失し、相の方位が一定となり、後工程で粉砕した時、単一の粉砕粉中に方位の異なる2−14−1系主相が存在するものが少なくなり、残留磁化の向上につながる。保持時間が短すぎると効果がなく、長すぎると2−14−1系主相結晶粒の粗大化、R−rich相中に偏析が生じ、保磁力の低下を招く。また、2−14−1系主相からなる結晶粒の平均粒成長率は、180%以下、好ましくは平均粒成長率160%以下とする。   By the temperature holding step, it is possible to precisely control the shape of the 2-14-1 main phase, the phase interval of the R-rich phase, the variation in the phase interval of the R-rich phase, the volume ratio, the constituent phase ratio, and the like. . For example, by this temperature holding step, the fine dentry arms of the 2-14-1 main phase disappear, the phase orientation becomes constant, and when pulverized in a subsequent step, the orientation differs in a single pulverized powder. The number of 2-14-1 main phases is reduced, which leads to an improvement in residual magnetization. If the holding time is too short, there is no effect, and if it is too long, the 2-14-1 main phase crystal grains become coarse, segregation occurs in the R-rich phase, and the coercive force is reduced. The average grain growth rate of the crystal grains composed of the 2-14-1 main phase is 180% or less, preferably 160% or less.

前記温度保持工程は、加熱機構を有する装置等により行うことができる。得られる希土類磁石用合金は、例えば、合金鋳片を断熱性の高い材料で作製した収納容器に回収した場合、鋳造開始直後の合金鋳片の多くは、収納容器と直接接触することにより熱伝導を行うが、鋳造が進むにつれ、収納容器内で合金鋳片が積み重なり、鋳片同士の接触による熱伝導が行なわれるために各鋳片同士の熱履歴が不均一となる。特に工業上、数百kgのロットでストリップキャスティング法により鋳造した場合、鋳造開始から終了までに数分〜数十分かかるので、同一ロット内での熱履歴の違いが無視できなくなることがある。熱履歴が不均一になると合金鋳片の組織にばらつきが生ずる。特に合金のR−rich相間隔にばらつきを生じ、R−rich相間隔の標準偏差をR−rich相の平均間隔で割った値が0.25より大きくなり、磁石特性の低下へとつながる。従って、得られる希土類磁石用合金は、鋳造ロット内で一定の熱履歴を有することが好ましい。
そこで、温度保持工程においては、前記熱履歴を一定にするために、例えば、回転ドラム式、ロータリーキルン方式の温度保持装置等を用いて合金鋳片を連続的に移動させながら温度保持する方法を採用することが好ましい。回転ドラム式においては、ドラムの回転により鋳片同士を混合させながらドラム内に滞留させる方法が採用でき、ロータリーキルン方式においては、鋳片がドラムの回転によりドラム内を滞留せずに所定方向に連続的に進行する方法が採用できる。特に、ロータリーキルン方式が好ましい。このような方法を前述のストリップキャスティング法と組合わせることにより、鋳造ロット内でほぼ均一な合金鋳片組織が得られる。
The temperature holding step can be performed by an apparatus having a heating mechanism. For example, when the alloy for a rare earth magnet is recovered in a storage container made of a highly heat-insulating material, most of the alloy cast immediately after the start of casting is brought into thermal conduction by directly contacting the storage container. However, as casting progresses, the alloy slabs are stacked in the storage container, and heat conduction by contact between the slabs is performed, so that the heat history between the slabs becomes non-uniform. In particular, in the case of casting by a strip casting method in a lot of hundreds of kg in industry, it takes several minutes to several tens of minutes from the start to the end of casting, so the difference in heat history in the same lot may not be negligible. If the thermal history becomes non-uniform, the structure of the alloy slab will vary. In particular, the R-rich phase interval of the alloy varies, and the value obtained by dividing the standard deviation of the R-rich phase interval by the average interval of the R-rich phase is greater than 0.25, leading to a decrease in magnet properties. Therefore, it is preferable that the obtained alloy for rare earth magnets has a certain thermal history within a casting lot.
Therefore, in the temperature holding step, in order to make the heat history constant, for example, a method of holding the temperature while continuously moving the alloy slab using a rotary drum type, rotary kiln type temperature holding device or the like is adopted. It is preferable to do. In the rotary drum type, a method can be adopted in which the slabs are retained in the drum while mixing the slabs by rotating the drum. In the rotary kiln system, the slabs are continuously retained in a predetermined direction without retaining in the drum by the rotation of the drums. The method of proceeding automatically can be adopted. In particular, the rotary kiln method is preferable. By combining such a method with the above-described strip casting method, a substantially uniform alloy slab structure can be obtained within a casting lot.

前記製造方法では、必要により、前記温度保持工程後、合金鋳片を平均冷却速度3〜10℃/分で500℃まで冷却する工程(徐冷工程という)を行っても良い。該徐冷工程により、R−rich相中に占める例えばα−Nd相の割合が増加し、後工程での粉砕性を向上させることができる。
前記製造方法では、更に必要により、前記徐冷工程の後、水冷もしくはガス冷却等の冷却容器に移し、平均冷却速度7〜30℃/分で100℃以下まで合金鋳片を冷却するか、若しくは前記徐冷工程を必要としない場合は、前記温度保持工程の後、平均冷却速度7〜30℃/分で100℃以下まで合金鋳片を冷却しても良い(これらを3次冷却工程という)。
前記3次冷却工程により、上述の各工程を経て高精度に制御したR−rich相の相間隔、R−rich相間隔のばらつき、体積割合、構成相比、及び2−14−1系主相の形状を維持することが容易となる。また3次冷却工程により、合金鋳片温度を早く室温近くまで下げ、鋳片を酸化の起こりにくい状態で回収し、粉砕等の工程に供することができ、生産効率を更に向上させることができる。
In the manufacturing method, if necessary, after the temperature holding step, a step of cooling the alloy slab to 500 ° C. at an average cooling rate of 3 to 10 ° C./min (referred to as a slow cooling step) may be performed. By the slow cooling step, the proportion of, for example, the α-Nd phase in the R-rich phase increases, and the pulverizability in the subsequent step can be improved.
In the manufacturing method, if necessary, after the slow cooling step, the alloy slab is transferred to a cooling vessel such as water cooling or gas cooling and the alloy slab is cooled to 100 ° C. or less at an average cooling rate of 7 to 30 ° C./min. When the slow cooling step is not required, the alloy slab may be cooled to 100 ° C. or less at an average cooling rate of 7 to 30 ° C./min after the temperature holding step (these are referred to as a tertiary cooling step). .
By the tertiary cooling step, the phase spacing of the R-rich phase, the variation in the R-rich phase spacing, the volume ratio, the constituent phase ratio, and the 2-14-1 main phase, which are controlled with high accuracy through the above-described steps. It becomes easy to maintain the shape. In addition, the tertiary cooling step can quickly lower the alloy slab temperature to near room temperature, collect the slab in a state in which oxidation is unlikely to occur, and subject it to pulverization and the like, thereby further improving production efficiency.

本発明の希土類磁石用合金粉末を製造するには、前記製造方法の後、得られた希土類磁石用合金を、例えば、水素吸蔵放出により粗粉砕した後、ジェットミル等で粉砕する公知の粉砕工程等を行うことにより得ることができる。 To produce the rare earth alloy powder for a magnet of the present invention, after the production process, the obtained rare earth magnet alloy, for example, was coarsely pulverized by hydrogen absorption-desorption, known to be pulverized with a jet mill pulverization process Etc. can be obtained.

以下、実施例及び比較例により本発明をさらに詳細に説明するが、本発明はこれらに限定されない。
実施例1−1
合金組成が、ネオジム31.5質量%、ボロン1.04質量%、アルミニウム0.15質量%、コバルト0.9質量%及び残部鉄になるように、ネオジムメタル、フェロボロン、アルミニウム、コバルト及び鉄を配合し、アルゴンガス雰囲気中で、アルミナるつぼを使用して高周波溶解炉で溶解した。次いで、得られた合金溶湯をストリップキャスティング法により単ロールに供給し、厚さ約0.4mmの鋳片を作製した(1次冷却工程)。この合金の特定温度Tは約630℃である。前記ロールから剥離した直後の鋳片の温度を赤外線熱画像計測装置で測定したところ約780℃であった。ロールに接する直前の合金溶湯の温度は約1300℃で、ロール上での冷却時間を約1.2秒に制御した。従って、1次冷却工程における平均冷却速度は約430℃/秒に制御した。
Hereinafter, although an example and a comparative example explain the present invention still in detail, the present invention is not limited to these.
Example 1-1
Neodymium metal, ferroboron, aluminum, cobalt and iron so that the alloy composition is 31.5 mass% neodymium, 1.04 mass% boron, 0.15 mass% aluminum, 0.9 mass% cobalt and the balance iron. It mix | blended and melt | dissolved in the high frequency melting furnace using the alumina crucible in argon gas atmosphere. Subsequently, the obtained molten alloy was supplied to a single roll by a strip casting method to produce a cast piece having a thickness of about 0.4 mm (primary cooling step). The specific temperature T of this alloy is about 630 ° C. It was about 780 degreeC when the temperature of the slab immediately after peeling from the said roll was measured with the infrared thermal image measuring device. The temperature of the molten alloy immediately before contacting the roll was about 1300 ° C., and the cooling time on the roll was controlled to about 1.2 seconds. Therefore, the average cooling rate in the primary cooling step was controlled to about 430 ° C./second.

その後、ロールから剥離した鋳片を図1のロータリーキルン方式の温度制御装置10に導いた(2次冷却工程)。装置10は、鋳片の導入口11a、熱線12aを配した加熱部12を備えた回転可能な管11−1、11−2を備え、管11−2の外側には、中心軸を共有する回転可能な管状冷却管15を備えている。管状冷却管15は冷媒通路17aを配した冷却部17を有している。管11−1、11−2は内部にフィン13を備えている。管11−1、11−2が回転することにより鋳片18は図中の矢印の方向に進行した。導入口11aより管11−1に導入された鋳片18は、加熱部12、管11−1の回転速度、フィン13の設置角度を調節することにより滞留することなく、図示する矢印の所定方向に連続的に移動し、一定の熱履歴を与えられ温度保持され、管11−1から排出された(温度保持工程)。
鋳片がロールから剥離後、導入口11aに到達するまでに要した時間は約0.8秒であった。導入口11aに到達後、管11−1から排出されるまでに要した時間は120秒であった。前記ロール剥離直後の鋳片温度は約780℃、導入口11aでの鋳片温度は約645℃、管11−1から排出される直前の鋳片温度は約600℃であった。特定温度T±30℃に保持された時間は、660〜645℃に冷却された時間はほぼ無視できるとし120秒とした。また、2次冷却工程の平均冷却速度は約170℃/秒であった。
管11−1から排出された鋳片は、管11−2に導入され、管11−2の加熱部12、回転速度、フィン13の設置角度を調節することにより、管11−2に導入された鋳片18は矢印方向に連続的に移動し、一定の熱履歴を与えられながら冷却され、管11−2から排出された(徐冷工程)。管11−2に導入された直後の温度は管11−2から排出される直前の鋳片温度600℃とほぼ同じであり、管11−1から排出される直前の鋳片温度は約500℃であった。鋳片が管11−2に導入されてから排出されるまでに要した時間は15分間であった。従って、徐冷工程の平均冷却速度は約6.7℃/分であった。管11−2から排出された鋳片は管状冷却管15に導入された。管状冷却管15を回転させることにより鋳片を連続的に移動して冷却した(3次冷却工程)。40分後、鋳片を管状冷却管15から取り出した。その時の鋳片温度は約60℃であった。従って、3次冷却工程における平均冷却速度は11℃/分に制御できた。
残部の鉄以外の組成、並びに鋳造時の1次冷却速度、2次冷却速度、特定温度T±30℃に保持された時間、徐冷速度及び3次冷却速度を表1に示す。
After that, the slab peeled from the roll was guided to the temperature control device 10 of the rotary kiln system in FIG. 1 (secondary cooling step). The apparatus 10 includes rotatable pipes 11-1 and 11-2 including a heating part 12 provided with a slab inlet 11a and a heat wire 12a, and shares a central axis outside the pipe 11-2. A rotatable tubular cooling pipe 15 is provided. The tubular cooling pipe 15 has a cooling part 17 provided with a refrigerant passage 17a. The pipes 11-1 and 11-2 have fins 13 inside. As the tubes 11-1 and 11-2 rotate, the slab 18 advances in the direction of the arrow in the figure. The slab 18 introduced into the pipe 11-1 from the introduction port 11 a does not stay by adjusting the rotation speed of the heating unit 12, the pipe 11-1, and the installation angle of the fin 13, and the predetermined direction of the arrow shown in the figure. , Continuously given a thermal history, kept at temperature, and discharged from the tube 11-1 (temperature keeping step).
The time required for the slab to reach the inlet 11a after peeling from the roll was about 0.8 seconds. After reaching the inlet 11a, the time required for discharging from the pipe 11-1 was 120 seconds. The slab temperature immediately after the roll peeling was about 780 ° C., the slab temperature at the inlet 11a was about 645 ° C., and the slab temperature just before being discharged from the tube 11-1 was about 600 ° C. The time maintained at the specific temperature T ± 30 ° C. was 120 seconds assuming that the time cooled to 660 to 645 ° C. was almost negligible. The average cooling rate in the secondary cooling step was about 170 ° C./second.
The slab discharged from the pipe 11-1 is introduced into the pipe 11-2, and is introduced into the pipe 11-2 by adjusting the heating section 12, the rotation speed, and the installation angle of the fins 13 of the pipe 11-2. The cast slab 18 continuously moved in the direction of the arrow, was cooled while being given a constant heat history, and was discharged from the tube 11-2 (slow cooling step). The temperature immediately after being introduced into the tube 11-2 is substantially the same as the slab temperature 600 ° C immediately before being discharged from the tube 11-2, and the slab temperature just before being discharged from the tube 11-1 is approximately 500 ° C. Met. The time required for the slab to be discharged after being introduced into the tube 11-2 was 15 minutes. Therefore, the average cooling rate in the slow cooling step was about 6.7 ° C./min. The slab discharged from the tube 11-2 was introduced into the tubular cooling tube 15. The slab was continuously moved and cooled by rotating the tubular cooling pipe 15 (third cooling process). After 40 minutes, the slab was taken out from the tubular cooling pipe 15. The slab temperature at that time was about 60 ° C. Therefore, the average cooling rate in the tertiary cooling step could be controlled to 11 ° C./min.
Table 1 shows the composition other than the remaining iron, the primary cooling rate during casting, the secondary cooling rate, the time maintained at the specific temperature T ± 30 ° C., the slow cooling rate, and the tertiary cooling rate.

得られた鋳片の断面組織を光学顕微鏡で観察したところ、R−rich相は2−14−1系主相結晶粒界に沿って筋状、あるいは一部粒状になって存在し、その平均間隔は4.7μmであった。R−rich相間隔の標準偏差は0.85であり、R−rich相間隔の標準偏差をR−rich相の平均間隔で割った値は0.18であった。また、EPMAのCompo像を画像解析した結果、2−14−1系主相の体積割合は92体積%であった。更に、XRDの回折ピーク強度比からR−rich相中の析出相について解析したところ、全R−rich相中に占めるα−Nd相の割合は約50体積%であった。
次に、同合金に水素を吸蔵、放出させて粗粉砕し、その後ジェットミルで微粉砕し、平均粒径約5μmの粉末を得た。このジェットミル粉の粒度分布をRosin-Rammler分布に適用した結果、均等数は2.1、粒度特性数は6.0であった。この粉末を15kOeの磁場中にて2.5ton/cm2の圧力で成形した。得られた成形体を真空中1060℃で2時間焼結した後、1段目の熱処理を900℃で1時間、2段目の熱処理を500℃で2時間行なった。
得られた鋳片の組織並びに磁石の磁気特性(残留磁束密度、保磁力、最大エネルギー積)を表2に示す。
When the cross-sectional structure of the obtained slab was observed with an optical microscope, the R-rich phase was present in the form of streaks or partial grains along the 2-14-1 main phase crystal grain boundary, and its average The spacing was 4.7 μm. The standard deviation of the R-rich phase interval was 0.85, and the value obtained by dividing the standard deviation of the R-rich phase interval by the average interval of the R-rich phase was 0.18. As a result of image analysis of the Compo image of EPMA, the volume ratio of the 2-14-1 main phase was 92% by volume. Further, when the precipitated phase in the R-rich phase was analyzed from the XRD diffraction peak intensity ratio, the proportion of the α-Nd phase in the total R-rich phase was about 50% by volume.
Next, hydrogen was occluded and released from the alloy and coarsely pulverized, and then finely pulverized by a jet mill to obtain a powder having an average particle diameter of about 5 μm. As a result of applying the particle size distribution of this jet mill powder to the Rosin-Rammler distribution, the uniform number was 2.1 and the particle size characteristic number was 6.0. This powder was molded at a pressure of 2.5 ton / cm 2 in a magnetic field of 15 kOe. The obtained molded body was sintered in vacuum at 1060 ° C. for 2 hours, and then the first heat treatment was performed at 900 ° C. for 1 hour and the second heat treatment was performed at 500 ° C. for 2 hours.
Table 2 shows the structure of the obtained slab and the magnetic properties (residual magnetic flux density, coercive force, maximum energy product) of the magnet.

実施例1−2〜1−4
図1における温度制御装置10の管11−2を有していない構造の図2に示すロータリーキルン方式の温度制御装置20を用いて、表1に示す熱履歴により実施例1−1と同様に鋳片を得た。この際、徐冷工程は行っていない。次に、得られた鋳片の組織を実施例1−1と同様に分析した。また、実施例1−1と同様にして鋳片を粉砕し、得られた粉砕物を分析した。更に実施例1−1と同様にして焼結磁石を調製し、得られた焼結磁石の磁石特性を測定した。結果を表2に示す。
Examples 1-2 to 1-4
2 using the rotary kiln type temperature control device 20 shown in FIG. 2 that does not have the tube 11-2 of the temperature control device 10 in FIG. I got a piece. At this time, the slow cooling step is not performed. Next, the structure of the obtained slab was analyzed in the same manner as in Example 1-1. Moreover, the slab was grind | pulverized like Example 1-1 and the obtained ground material was analyzed. Further, a sintered magnet was prepared in the same manner as in Example 1-1, and the magnet characteristics of the obtained sintered magnet were measured. The results are shown in Table 2.

実施例2−1
合金組成をネオジム23.5質量%、ディスプロシウム8.0質量%、ボロン1.04質量%、アルミニウム0.15質量%、コバルト0.9質量%及び残部鉄とした以外は、実施例1−1と同様にして、ストリップキャスティング法により厚さ約0.35mmの鋳片を作製した。この合金の特定温度Tは約730℃である。ロールに接する直前の溶湯の温度は約1350℃、ロールから剥離した直後の鋳片の温度は約880℃であった。その後、ロールから剥離した鋳片を実施例1−1で用いた温度制御装置10に導いた。導入口11aに到達後、管11−1から排出されるまでに要した時間は120秒であった。導入口11aでの鋳片温度は約750℃、管11−1から排出される直前の鋳片温度は約700℃であった。管11−2に導入された直後の温度は管11−1から排出される直前の鋳片温度700℃とほぼ同じであり、管11−2から排出される直前の鋳片温度は約500℃であった。その後、鋳片を管状冷却管15から取り出した。その時の鋳片温度は約60℃であった。特定温度T±30℃に保持された時間は、760〜750℃に冷却された時間はほぼ無視できるとし、120秒とした。
残部の鉄以外の組成、並びに鋳造時の1次冷却速度、2次冷却速度、特定温度T±30℃に保持された時間、徐冷速度及び3次冷却速度を表1に示す。
次に、得られた鋳片の組織を実施例1−1と同様に分析した。また、実施例1−1と同様にして鋳片を粉砕し、得られた粉砕物を分析した。更に実施例1−1と同様にして焼結磁石を調製し、得られた焼結磁石の磁石特性を測定した。結果を表2に示す。
Example 2-1
Example 1 except that the alloy composition was 23.5 mass% neodymium, 8.0 mass% dysprosium, 1.04 mass% boron, 0.15 mass% aluminum, 0.9 mass% cobalt and the balance iron. In the same manner as -1, a slab having a thickness of about 0.35 mm was produced by a strip casting method. The specific temperature T of this alloy is about 730 ° C. The temperature of the molten metal immediately before coming into contact with the roll was about 1350 ° C., and the temperature of the slab immediately after peeling from the roll was about 880 ° C. Thereafter, the slab peeled from the roll was guided to the temperature control device 10 used in Example 1-1. After reaching the inlet 11a, the time required for discharging from the pipe 11-1 was 120 seconds. The slab temperature at the inlet 11a was about 750 ° C., and the slab temperature just before being discharged from the pipe 11-1 was about 700 ° C. The temperature immediately after being introduced into the tube 11-2 is substantially the same as the slab temperature 700 ° C immediately before being discharged from the tube 11-1, and the slab temperature immediately before being discharged from the tube 11-2 is approximately 500 ° C. Met. Thereafter, the slab was taken out from the tubular cooling pipe 15. The slab temperature at that time was about 60 ° C. The time maintained at the specific temperature T ± 30 ° C. was 120 seconds, assuming that the time cooled to 760 to 750 ° C. was almost negligible.
Table 1 shows the composition other than the remaining iron, the primary cooling rate during casting, the secondary cooling rate, the time maintained at the specific temperature T ± 30 ° C., the slow cooling rate, and the tertiary cooling rate.
Next, the structure of the obtained slab was analyzed in the same manner as in Example 1-1. Moreover, the slab was grind | pulverized like Example 1-1 and the obtained ground material was analyzed. Further, a sintered magnet was prepared in the same manner as in Example 1-1, and the magnet characteristics of the obtained sintered magnet were measured. The results are shown in Table 2.

実施例2−2〜2−4
実施例1−2で用いた温度制御装置20を用いて、表1に示す熱履歴とした以外は実施例2−1と同様に鋳片を得た。徐冷工程は行っていない。次に、得られた鋳片の組織を実施例1−1と同様に分析した。また、実施例1−1と同様にして鋳片を粉砕し、得られた粉砕物を分析した。更に実施例1−1と同様にして焼結磁石を調製し、得られた焼結磁石の磁石特性を測定した。結果を表2に示す。
Examples 2-2 to 2-4
Using the temperature control device 20 used in Example 1-2, a slab was obtained in the same manner as in Example 2-1, except that the thermal history shown in Table 1 was used. The slow cooling process is not performed. Next, the structure of the obtained slab was analyzed in the same manner as in Example 1-1. Moreover, the slab was grind | pulverized like Example 1-1 and the obtained ground material was analyzed. Further, a sintered magnet was prepared in the same manner as in Example 1-1, and the magnet characteristics of the obtained sintered magnet were measured. The results are shown in Table 2.

実施例3−1〜3−4
合金組成をネオジム26.5質量%、ディスプロシウム5.0質量%、ボロン1.04質量%、アルミニウム0.15質量%、コバルト0.9質量%及び残部鉄とした以外は、実施例2−1〜2−4と同様にして鋳片を作製した。この合金の特定温度Tは約700℃である。得られた鋳片の組織を実施例1−1と同様に分析した。また、実施例1−1と同様にして鋳片を粉砕し、得られた粉砕物を分析した。更に実施例1−1と同様にして焼結磁石を調製し、得られた焼結磁石の磁石特性を測定した。結果を表2に示す。
Examples 3-1 to 3-4
Example 2 except that the alloy composition was 26.5% by weight neodymium, 5.0% by weight dysprosium, 1.04% by weight boron, 0.15% by weight aluminum, 0.9% by weight cobalt and the balance iron. Cast pieces were produced in the same manner as -1 to 2-4. The specific temperature T of this alloy is about 700 ° C. The structure of the obtained slab was analyzed in the same manner as in Example 1-1. Moreover, the slab was grind | pulverized like Example 1-1 and the obtained ground material was analyzed. Further, a sintered magnet was prepared in the same manner as in Example 1-1, and the magnet characteristics of the obtained sintered magnet were measured. The results are shown in Table 2.

比較例1−1
実施例1−1と同一組成の原料を用い、ストリップキャスティング法により実施例1−1と同様に合金鋳片を得た。合金鋳片をロールから剥離させた後、温度保持機能を有さない鋼鉄製の容器に回収した。容器回収時の鋳片の温度は約645℃であった。次いで容器を密閉した後、容器を大気中に取り出し放冷した。鋳片の温度は容器へ回収後約80分で約600℃であり、1500分後に取り出したところ90℃であった。
鋳造時の1次冷却速度、2次冷却速度、特定温度T±30℃に保持された時間を表1に示す。この際、比較のために特定温度T±30℃の温度域に鋳片が曝された時間を温度保持時間とした。次に、得られた鋳片の組織を実施例1−1と同様に分析した。また、実施例1−1と同様にして鋳片を粉砕し、得られた粉砕物を分析した。更に実施例1−1と同様にして焼結磁石を調製し、得られた焼結磁石の磁石特性を測定した。結果を表2に示す。
Comparative Example 1-1
An alloy cast was obtained in the same manner as in Example 1-1 by strip casting using raw materials having the same composition as in Example 1-1. After the alloy slab was peeled from the roll, the alloy slab was collected in a steel container having no temperature holding function. The temperature of the slab at the time of container collection | recovery was about 645 degreeC. Next, after sealing the container, the container was taken out into the atmosphere and allowed to cool. The temperature of the slab was about 600 ° C. after about 80 minutes of collection into the container, and 90 ° C. when taken out after 1500 minutes.
Table 1 shows the primary cooling rate, the secondary cooling rate, and the time at which the specific temperature T ± 30 ° C. was maintained during casting. At this time, for comparison, the time during which the slab was exposed to the temperature range of the specific temperature T ± 30 ° C. was defined as the temperature holding time. Next, the structure of the obtained slab was analyzed in the same manner as in Example 1-1. Moreover, the slab was grind | pulverized like Example 1-1 and the obtained ground material was analyzed. Further, a sintered magnet was prepared in the same manner as in Example 1-1, and the magnet characteristics of the obtained sintered magnet were measured. The results are shown in Table 2.

比較例1−2
実施例1−1と同一組成の原料を用い、ストリップキャスティング法により実施例1−1と同様に合金鋳片を得た。合金鋳片をロールから剥離させた後、回転ドラム式の水冷装置に回収した。水冷装置回収時の鋳片の温度は約645℃であった。水冷装置に回収後、約3秒で鋳片の温度は約600℃、40分後鋳片を取り出したところ約70℃であった。
鋳造時の1次冷却速度、2次冷却速度、特定温度T±30℃に保持された時間を表1に示す。この際、比較のために特定温度T±30℃の温度域に鋳片が曝された時間を温度保持時間とした。次に、得られた鋳片の組織を実施例1−1と同様に分析した。また、実施例1−1と同様にして鋳片を粉砕し、得られた粉砕物を分析した。更に実施例1−1と同様にして焼結磁石を調製し、得られた焼結磁石の磁石特性を測定した。結果を表2に示す。
Comparative Example 1-2
An alloy cast was obtained in the same manner as in Example 1-1 by strip casting using raw materials having the same composition as in Example 1-1. The alloy slab was peeled from the roll, and then recovered in a rotary drum type water cooling device. The temperature of the slab at the time of water cooling apparatus collection | recovery was about 645 degreeC. The temperature of the slab was about 600 ° C. in about 3 seconds after being collected in the water cooling device, and after about 40 minutes, the slab was taken out and was about 70 ° C.
Table 1 shows the primary cooling rate, the secondary cooling rate, and the time at which the specific temperature T ± 30 ° C. was maintained during casting. At this time, for comparison, the time during which the slab was exposed to the temperature range of the specific temperature T ± 30 ° C. was defined as the temperature holding time. Next, the structure of the obtained slab was analyzed in the same manner as in Example 1-1. Moreover, the slab was grind | pulverized like Example 1-1 and the obtained ground material was analyzed. Further, a sintered magnet was prepared in the same manner as in Example 1-1, and the magnet characteristics of the obtained sintered magnet were measured. The results are shown in Table 2.

比較例1−3
実施例1−1と同一組成の原料を用い、ストリップキャスティング法により実施例1−1と同様に合金鋳片を得た。合金鋳片をロールから剥離させた後、断熱性の高い材料で作製した断熱箱に回収し1時間保持した。断熱箱に回収した直後の鋳片の温度は約780℃で、断熱箱へ回収後約2分で約660℃、約10分で約600℃、1時間保持後の鋳片温度は約550℃であった。その後、徐冷工程を行わずに鋳片を回転ドラム式の水冷装置に回収した。水冷装置に回収後、40分で鋳片を取り出したところ60℃であった。
鋳造時の1次冷却速度、2次冷却速度、特定温度T±30℃に保持された時間を表1に示す。この際、比較のために特定温度T±30℃に鋳片が曝された時間を温度保持時間とした。次に、得られた鋳片の組織を実施例1−1と同様に分析した。また、実施例1−1と同様にして鋳片を粉砕し、得られた粉砕物を分析した。更に実施例1−1と同様にして焼結磁石を調製し、得られた焼結磁石の磁石特性を測定した。結果を表2に示す。
Comparative Example 1-3
An alloy cast was obtained in the same manner as in Example 1-1 by strip casting using raw materials having the same composition as in Example 1-1. After the alloy slab was peeled from the roll, it was collected in a heat insulating box made of a material having high heat insulating properties and held for 1 hour. The temperature of the slab immediately after collection in the heat insulation box is about 780 ° C., about 660 ° C. in about 2 minutes after collection in the heat insulation box, about 600 ° C. in about 10 minutes, and the temperature of the slab after holding for 1 hour is about 550 ° C. Met. Thereafter, the slab was collected in a rotating drum type water cooling device without performing the slow cooling step. When the slab was taken out in 40 minutes after being collected in a water cooling device, it was 60 ° C.
Table 1 shows the primary cooling rate, the secondary cooling rate, and the time at which the specific temperature T ± 30 ° C. was maintained during casting. At this time, for comparison, the time during which the slab was exposed to the specific temperature T ± 30 ° C. was defined as the temperature holding time. Next, the structure of the obtained slab was analyzed in the same manner as in Example 1-1. Moreover, the slab was grind | pulverized like Example 1-1 and the obtained ground material was analyzed. Further, a sintered magnet was prepared in the same manner as in Example 1-1, and the magnet characteristics of the obtained sintered magnet were measured. The results are shown in Table 2.

比較例1−4
実施例1−1と同じ組成になるように原料を配合し、ストリップキャスティング法により鋳片を作製した。この際、1次冷却工程における平均冷却速度が大きくなるように、出湯量とロール回転数を調節した。鋳片の厚さは約0.2mmであった。ロールに接する直前の溶湯の温度は1300℃、ロールから剥離した直後の鋳片の温度は約750℃であった。その後、ロールから剥離した鋳片を実施例1−1で用いた温度制御装置10に導いた。導入口11aに到達後、管11−1から排出されるまでに要した時間は120秒であった。導入口11aでの鋳片温度は約630℃、管11−1から排出される直前の鋳片温度は約600℃であった。管11−2に導入された直後の温度は管11−1から排出される直前の鋳片温度600℃とほぼ同じであり、管11−2から排出される直前の鋳片温度は500℃であった。その後、鋳片を管状冷却管15から取り出した。その時の鋳片温度は約60℃であった。
鋳造時の1次冷却速度、2次冷却速度、特定温度T±30℃に保持された時間を表1に示す。次に、得られた鋳片の組織を実施例1−1と同様に分析した。また、実施例1−1と同様にして鋳片を粉砕し、得られた粉砕物を分析した。更に実施例1−1と同様にして焼結磁石を調製し、得られた焼結磁石の磁石特性を測定した。結果を表2に示す。
Comparative Example 1-4
Raw materials were blended so as to have the same composition as in Example 1-1, and a slab was produced by strip casting. At this time, the amount of hot water and the number of roll rotations were adjusted so that the average cooling rate in the primary cooling step was increased. The thickness of the slab was about 0.2 mm. The temperature of the molten metal immediately before contacting the roll was 1300 ° C., and the temperature of the slab immediately after peeling from the roll was about 750 ° C. Thereafter, the slab peeled from the roll was guided to the temperature control device 10 used in Example 1-1. After reaching the inlet 11a, the time required for discharging from the pipe 11-1 was 120 seconds. The slab temperature at the inlet 11a was about 630 ° C., and the slab temperature just before being discharged from the pipe 11-1 was about 600 ° C. The temperature immediately after being introduced into the tube 11-2 is substantially the same as the slab temperature 600 ° C immediately before being discharged from the tube 11-1, and the slab temperature immediately before being discharged from the tube 11-2 is 500 ° C. there were. Thereafter, the slab was taken out from the tubular cooling pipe 15. The slab temperature at that time was about 60 ° C.
Table 1 shows the primary cooling rate, the secondary cooling rate, and the time at which the specific temperature T ± 30 ° C. was maintained during casting. Next, the structure of the obtained slab was analyzed in the same manner as in Example 1-1. Moreover, the slab was grind | pulverized like Example 1-1 and the obtained ground material was analyzed. Further, a sintered magnet was prepared in the same manner as in Example 1-1, and the magnet characteristics of the obtained sintered magnet were measured. The results are shown in Table 2.

比較例2−1〜2−4
合金組成をネオジム23.5質量%、ディスプロシウム8.0質量%、ボロン1.04質量%、アルミニウム0.15質量%、コバルト0.9質量%及び残部鉄とした以外は、比較例1−1〜1−4と同様にして鋳片を作製した。比較の為、特定温度T±30℃と同じ温度域に鋳片が曝された時間を温度保持時間とした。
鋳造時の1次冷却速度、2次冷却速度、特定温度T±30℃に保持された時間を表1に示す。次に、得られた鋳片の組織を実施例1−1と同様に分析した。また、実施例1−1と同様にして鋳片を粉砕し、得られた粉砕物を分析した。更に実施例1−1と同様にして焼結磁石を調製し、得られた焼結磁石の磁石特性を測定した。結果を表2に示す。
Comparative Examples 2-1 to 2-4
Comparative Example 1 except that the alloy composition was 23.5 mass% neodymium, 8.0 mass% dysprosium, 1.04 mass% boron, 0.15 mass% aluminum, 0.9 mass% cobalt, and the balance iron Cast pieces were produced in the same manner as -1 to 1-4. For comparison, the time during which the slab was exposed to the same temperature range as the specific temperature T ± 30 ° C. was defined as the temperature holding time.
Table 1 shows the primary cooling rate, the secondary cooling rate, and the time at which the specific temperature T ± 30 ° C. was maintained during casting. Next, the structure of the obtained slab was analyzed in the same manner as in Example 1-1. Moreover, the slab was grind | pulverized like Example 1-1 and the obtained ground material was analyzed. Further, a sintered magnet was prepared in the same manner as in Example 1-1, and the magnet characteristics of the obtained sintered magnet were measured. The results are shown in Table 2.

比較例3−1〜3−4
合金組成をネオジム26.5質量%、ディスプロシウム5.0質量%、ボロン1.04質量%、アルミニウム0.15質量%、コバルト0.9質量%及び残部鉄とした以外は、比較例1−1〜1−4と同様にして鋳片を作製した。比較の為、特定温度T±30℃と同じ温度域に鋳片が曝された時間を温度保持時間とした。
鋳造時の1次冷却速度、2次冷却速度、特定温度T±30℃に保持された時間を表1に示す。次に、得られた鋳片の組織を実施例1−1と同様に分析した。また、実施例1−1と同様にして鋳片を粉砕し、得られた粉砕物を分析した。更に実施例1−1と同様にして焼結磁石を調製し、得られた焼結磁石の磁石特性を測定した。結果を表2に示す。
Comparative Examples 3-1 to 3-4
Comparative Example 1 except that the alloy composition was 26.5 mass% neodymium, 5.0 mass% dysprosium, 1.04 mass% boron, 0.15 mass% aluminum, 0.9 mass% cobalt, and the balance iron Cast pieces were produced in the same manner as -1 to 1-4. For comparison, the time during which the slab was exposed to the same temperature range as the specific temperature T ± 30 ° C. was defined as the temperature holding time.
Table 1 shows the primary cooling rate, the secondary cooling rate, and the time at which the specific temperature T ± 30 ° C. was maintained during casting. Next, the structure of the obtained slab was analyzed in the same manner as in Example 1-1. Moreover, the slab was grind | pulverized like Example 1-1 and the obtained ground material was analyzed. Further, a sintered magnet was prepared in the same manner as in Example 1-1, and the magnet characteristics of the obtained sintered magnet were measured. The results are shown in Table 2.

Figure 2009068111
Figure 2009068111

Figure 2009068111
Figure 2009068111

実施例において、温度保持工程、徐冷工程及び3次冷却工程の実施に用いたロータリーキルン方式の温度制御装置を説明するための概略図である。In an Example, it is the schematic for demonstrating the temperature control apparatus of the rotary kiln system used for implementation of a temperature holding process, a slow cooling process, and a tertiary cooling process. 実施例において、温度保持工程及び3次冷却工程の実施に用いた他のロータリーキルン方式の温度制御装置を説明するための概略図である。In an Example, it is the schematic for demonstrating the temperature control apparatus of the other rotary kiln system used for implementation of a temperature holding process and a tertiary cooling process.

符号の説明Explanation of symbols

10、20:温度制御装置
12:加熱部
13:フィン
15:管状冷却管
18:鋳片
10, 20: Temperature control device 12: Heating unit 13: Fin 15: Tubular cooling pipe 18: Cast slab

Claims (4)

ネオジムからなるか、もしくはネオジムと、イットリウムを含みネオジムを含まない希土類金属元素からなる群より選ばれる少なくとも1種とからなるR27.6〜33.0質量%と、ボロン0.94〜1.30質量%と、鉄を含む残部Mとからなる組成を有する合金であって、
該合金のR−rich相の平均間隔が3〜12μm、R−rich相間隔の標準偏差をR−rich相の平均間隔で割った値が0.25以下であり、かつR2Fe14B系主相の体積比率が88体積%以上であることを特徴とする希土類焼結磁石用原料合金。
R27.6-33.0% by mass consisting of neodymium or at least one selected from the group consisting of neodymium and a rare earth metal element containing yttrium and no neodymium, and boron 0.94-1.30. An alloy having a composition consisting of mass% and the balance M containing iron,
The R-rich phase has an average interval of 3 to 12 μm, the standard deviation of the R-rich phase interval divided by the average interval of the R-rich phase is 0.25 or less, and the R 2 Fe 14 B system A raw material alloy for a rare earth sintered magnet, wherein the volume ratio of the main phase is 88% by volume or more.
残部Mが、鉄以外の遷移金属元素、珪素及び炭素からなる群より選ばれる少なくとも1種を含む請求項1記載の希土類焼結磁石用原料合金。   The raw material alloy for a rare earth sintered magnet according to claim 1, wherein the balance M contains at least one selected from the group consisting of transition metal elements other than iron, silicon and carbon. Rが、ネオジムと、ガドリウム、テルビウム、ディスプロシウム、ホルミウム、エルビウム及びイッテルビウムからなる群より選ばれる少なくとも1種を含むことを特徴とする請求項1又は2記載の希土類焼結磁石用原料合金。 R is neodymium, gadolinium, terbium, dysprosium, holmium, erbium, and a rare earth sintered magnet material alloy according to claim 1 or 2, characterized in that it comprises at least one selected from the group consisting of ytterbium . 請求項1〜3のいずれか1項記載の希土類焼結磁石用原料用合金を平均粒度3〜7μmに粉砕して得た合金粉末であって、
該合金粉末の粒度分布が、Rosin−Ramller分布を適用した場合、均等数が1.90以上、粒度特性数が4.0〜10.0であることを特徴とする希土類焼結磁石用原料合金粉末。
An alloy powder obtained by grinding the alloy for a rare earth sintered magnet raw material according to any one of claims 1 to 3 to an average particle size of 3 to 7 µm,
A raw material alloy for rare earth sintered magnet, wherein the alloy powder has a particle size distribution of 1.90 or more and a particle size characteristic number of 4.0 to 10.0 when the Rosin-Ramller distribution is applied. Powder.
JP2008259885A 2002-09-30 2008-10-06 Alloy powder for rare earth sintered magnet Expired - Lifetime JP5091079B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008259885A JP5091079B2 (en) 2002-09-30 2008-10-06 Alloy powder for rare earth sintered magnet

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002286659 2002-09-30
JP2002286659 2002-09-30
JP2008259885A JP5091079B2 (en) 2002-09-30 2008-10-06 Alloy powder for rare earth sintered magnet

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003341326A Division JP4303074B2 (en) 2002-09-30 2003-09-30 Manufacturing method of raw material alloy for rare earth sintered magnet

Publications (2)

Publication Number Publication Date
JP2009068111A true JP2009068111A (en) 2009-04-02
JP5091079B2 JP5091079B2 (en) 2012-12-05

Family

ID=40604673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008259885A Expired - Lifetime JP5091079B2 (en) 2002-09-30 2008-10-06 Alloy powder for rare earth sintered magnet

Country Status (1)

Country Link
JP (1) JP5091079B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105938747A (en) * 2016-05-20 2016-09-14 中国计量大学 High-coercivity and high-performance nanocomposite permanent magnet and preparation method thereof
CN113518676A (en) * 2019-03-06 2021-10-19 杰富意钢铁株式会社 Iron-based powder for dust core and dust core

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09170055A (en) * 1995-12-18 1997-06-30 Showa Denko Kk Alloy for rare earth magnet, its production and production of permanent magnet
JPH1036949A (en) * 1996-04-10 1998-02-10 Showa Denko Kk Alloy for rare earth magnet and its production
JP2001059144A (en) * 1999-06-08 2001-03-06 Shin Etsu Chem Co Ltd Alloy thin strip for permanent magnet and sintered permanent magnet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09170055A (en) * 1995-12-18 1997-06-30 Showa Denko Kk Alloy for rare earth magnet, its production and production of permanent magnet
JPH1036949A (en) * 1996-04-10 1998-02-10 Showa Denko Kk Alloy for rare earth magnet and its production
JP2001059144A (en) * 1999-06-08 2001-03-06 Shin Etsu Chem Co Ltd Alloy thin strip for permanent magnet and sintered permanent magnet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105938747A (en) * 2016-05-20 2016-09-14 中国计量大学 High-coercivity and high-performance nanocomposite permanent magnet and preparation method thereof
CN105938747B (en) * 2016-05-20 2018-02-23 中国计量大学 A kind of high-coercive force high performance nano composite permanent magnetic body and preparation method thereof
CN113518676A (en) * 2019-03-06 2021-10-19 杰富意钢铁株式会社 Iron-based powder for dust core and dust core

Also Published As

Publication number Publication date
JP5091079B2 (en) 2012-12-05

Similar Documents

Publication Publication Date Title
JP5908836B2 (en) Method for producing alloy cast for rare earth sintered magnet
EP0886284B1 (en) Cast alloy used for production of rare earth magnet and method for producing cast alloy and magnet
JP4776653B2 (en) Rare earth alloy cast plate and manufacturing method thereof
JP4832856B2 (en) Method for producing RTB-based alloy and RTB-based alloy flakes, fine powder for RTB-based rare earth permanent magnet, RTB-based rare earth permanent magnet
WO2013054845A1 (en) Thin r-t-b alloy, r-t-b based sintered magnet, and production method for same
WO2009150843A1 (en) R-t-cu-mn-b type sintered magnet
JPWO2009075351A1 (en) R-T-B type alloy and method for producing R-T-B type alloy, fine powder for R-T-B type rare earth permanent magnet, R-T-B type rare earth permanent magnet
JP3267133B2 (en) Alloy for rare earth magnet, method for producing the same, and method for producing permanent magnet
US7846273B2 (en) R-T-B type alloy, production method of R-T-B type alloy flake, fine powder for R-T-B type rare earth permanent magnet, and R-T-B type rare earth permanent magnet
TW201831706A (en) R-Fe-B sintered magnet and production method therefor
JP6104162B2 (en) Raw material alloy slab for rare earth sintered magnet and method for producing the same
JP2004111481A (en) Rare earth sintered magnet and its manufacturing method
JP4303074B2 (en) Manufacturing method of raw material alloy for rare earth sintered magnet
JP5091079B2 (en) Alloy powder for rare earth sintered magnet
WO2023280259A1 (en) Corrosion-resistant and high-performance neodymium-iron-boron sintered magnet, preparation method therefor, and use thereof
JP3561692B2 (en) Structure control method for rare earth element-containing alloy, alloy powder and magnet using the same
JP4276541B2 (en) Alloy for Sm-Co magnet, method for producing the same, sintered magnet, and bonded magnet
JP3721831B2 (en) Rare earth magnet alloy and method for producing the same
JP3452561B2 (en) Rare earth magnet and manufacturing method thereof
CN112074621A (en) Cast alloy sheet for R-T-B based rare earth sintered magnet
WO2009125671A1 (en) R-t-b-base alloy, process for producing r-t-b-base alloy, fines for r-t-b-base rare earth permanent magnet, r-t-b-base rare earth permanent magnet, and process for producing r-t-b-base rare earth permanent magnet
JP2004214390A (en) Method for manufacturing rare-earth magnet, and raw alloy and powder for rare-earth magnet
JP2023070057A (en) Anisotropic rare earth sintered magnet and manufacturing method thereof
JPH08176755A (en) Alloy for rare earth element magnet and production thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120913

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5091079

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term