JP2004214390A - Method for manufacturing rare-earth magnet, and raw alloy and powder for rare-earth magnet - Google Patents

Method for manufacturing rare-earth magnet, and raw alloy and powder for rare-earth magnet Download PDF

Info

Publication number
JP2004214390A
JP2004214390A JP2002381779A JP2002381779A JP2004214390A JP 2004214390 A JP2004214390 A JP 2004214390A JP 2002381779 A JP2002381779 A JP 2002381779A JP 2002381779 A JP2002381779 A JP 2002381779A JP 2004214390 A JP2004214390 A JP 2004214390A
Authority
JP
Japan
Prior art keywords
phase
alloy
raw material
mass
material alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002381779A
Other languages
Japanese (ja)
Other versions
JP4133315B2 (en
Inventor
Kenji Konishi
謙治 小西
Hiroshi Abe
浩史 阿部
Shinya Tabata
進也 田畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Santoku Corp
Original Assignee
Santoku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Santoku Corp filed Critical Santoku Corp
Priority to JP2002381779A priority Critical patent/JP4133315B2/en
Publication of JP2004214390A publication Critical patent/JP2004214390A/en
Application granted granted Critical
Publication of JP4133315B2 publication Critical patent/JP4133315B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing rare-earth magnet by which the rare earth magnet of high magnetic characteristic is supplied easily and stably and an end material amount generated in the case of working a magnet is reduced, by improving the oxidation and yield of R component so as to expand a sintering temperature area in a method using a single alloy, and to provide alloy and powder useful for the method. <P>SOLUTION: The method for manufacturing comprises a process for preparing a material alloy (A) and a raw material (B). The material alloy (A) has the specific composition of R-B-M. In the material alloy (A), an R<SB>2</SB>Fe<SB>14</SB>B phase is a main phase and is 77 vol.%, an R-rich phase is 15 to 23 vol.%, 90 vol.% of the R<SB>2</SB>Fe<SB>14</SB>B phase consists of crystal grains of a specific grain diameter, and the axial lattice constant of the R<SB>2</SB>Fe<SB>14</SB>B phase is larger than that in a balanced state by 0.3 to 1%. The material alloy (B) has the specific composition of R-B-M. In the material alloy (B), a main phase R<SB>2</SB>Fe<SB>14</SB>B is 85 vol.%, and an R-rich phase is not larger than 15 vol.%. The method also comprises a process of crushing the alloys (A) and (B), a process of molding crushed powder, a process of sintering the molded matter, and a heat treatment process for treating a sintered matter with heat. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、希土類元素、ボロン及び鉄を含む優れた磁石特性を有する希土類磁石を、焼結熱処理条件の緩やかな管理により、容易に、且つ安定的に得ることができる希土類磁石の製造法、該製造法に主に利用可能な希土類磁石用原料合金及び粉末に関する。
【0002】
【従来の技術】
近年、電子機器の小型高性能化に伴って、希土類磁石の需要は伸び続けている。特に、高い磁気特性をもち比較的安価なR−Fe−B系希土類磁石の生産量は増加し続けており、用途の拡大に伴って、更なる高特性化と厳密な特性の管理が要求されてきている。R−Fe−B系希土類磁石の内部組織には、主相である強磁性のRFe14B相と、比較的融点が低く希土類元素を多く含む非磁性のR−rich相とが存在し、特に高特性磁石には、該R−rich相が微細に分散されていることが必要である。
このような組織を有する希土類磁石の製造法は大きく2つある。1つはRFe14B相とR−rich相とを別々の合金から供給する方法であり、一般に2合金法と呼ばれている。2合金法では、焼結時に液相となって磁石の緻密化を促進させるR−rich相を独立して調整できるため、R−rich相が微細に分散した組織を有する合金を製造するための焼結可能な温度範囲を広くとることができる(例えば、特許文献1参照)。
もう1つの方法は、ストリップキャスティング法で鋳造した単一の合金を用いる方法である。ストリップキャスティング法では、合金の冷却速度が速いため組織全体が微細化され、合金内のR−rich相が微細に分散される。そのため、粉砕、焼結後のR−rich相の分散性も良好となり、磁石の高特性化が実現できる(例えば、特許文献2参照)。
【0003】
2合金法の場合、R−rich相を供給する合金は、Rの含有量が通常40〜60質量%程度と高いため、酸素に対して極めて活性で、微粉砕時に合金が酸化し、特に残留磁束密度等の磁気特性の低下を招く。場合によっては微粉砕以降の磁石作製工程で発火を引き起こすことさえあり、作業員の危険性、製品歩留の低下が問題となっている。酸化、発火を防ぐ為、高価な設備により各工程での雰囲気の厳密な制御を試みているが十分とは言えない。また、R−rich相を供給する合金は、微粉砕時、Rの含有量が高く、強度の低い部分が選択的に、且つ異常に微粉化されて粉砕室の系外へ排出されるために歩留が低下する。更には回収される微粉末の組成が、仕込みの組成からずれて目的とする磁力特性が得られ難い。このため、酸化及び超微粉化による組成ずれを見越してRの含有量を多めに仕込むことが行われている。しかし、このようなRの含有量を多めに仕込む操作は、組成ずれを解消できても、前記酸化の問題や、歩留低下の問題解決にはならない。
前記ストリップキャスティング法で鋳造した単一の合金を用いる場合には、R−rich相が微細に分散した組織を有する磁石を製造するための焼結可能な最適な温度域が高くて狭い為、焼結、時効処理時の温度管理に非常に厳しい精度が要求される。しかし、実際には、焼結、時効処理時の炉内には温度分布があるため、合金温度の数℃のばらつきは避け難く、そのため得られる希土類磁石の磁気特性や、縮率にばらつきが生じる。縮率のばらつきが大きいと成形歩留が悪くなることから、希土類磁石の加工時に発生する端材量が増加する。
【0004】
【特許文献1】
特公平6−21324号公報
【特許文献2】
特許第2639609号公報
【0005】
【発明が解決しようとする課題】
本発明の目的は、2合金法におけるR分の酸化、R分の歩留の悪さを改善し、また、従来の単一の合金を用いる方法における焼結温度域を広げ、高磁気特性の希土類磁石を、容易に、且つ安定して供給することができ、希土類磁石の加工時に発生する端材量を減少させることが可能な希土類磁石の製造法を提供することにある。
本発明の別の目的は、高磁気特性の希土類磁石を安定して供給するための製造法に有用である希土類磁石用原料合金及びその粉末を提供することにある。
【0006】
【課題を解決するための手段】
本発明によれば、イットリウムを含む希土類金属元素から選ばれる少なくとも1種からなるR 27.6〜35.0質量%と、ボロン0.94〜1.30質量%と、鉄を含む残部Mとからなる組成を有し、RFe14B相を主相とし、RFe14B相の含有割合が77体積%以上、R−rich相の含有割合が15〜23体積%であり、RFe14B相の90体積%以上が、短軸方向の粒径が0.1〜50μm、長軸方向の粒径が30〜500μmの結晶粒からなり、RFe14B相のc軸格子定数が、平衡状態より0.3〜1%大きい原料合金(A)及び、イットリウムを含む希土類金属元素から選ばれる少なくとも1種からなるR 27.6〜35.0質量%と、ボロン0.94〜1.30質量%と、鉄を含む残部Mとからなる組成を有し、主相としてのRFe14B相の含有割合が85体積%以上、R−rich相の含有割合が15体積%未満である原料合金(B)とを準備する準備工程と、原料合金(A)及び(B)を粉砕する粉砕工程と、得られた粉砕粉末を成型する成型工程と、得られた成型物を焼結する焼結工程と、得られた焼結物を時効処理する熱処理工程とを含むことを特徴とする希土類磁石の製造法が提供される。
また本発明によれば、前記希土類磁石用原料合金(A)が提供される。
更に本発明によれば、前記原料合金(A)を水素吸蔵崩壊して得た粉末であって、粒径355〜850μmの粉末を50質量%以上含み、重量平均粒径が300〜800μmであることを特徴とする希土類磁石用原料合金粉末が提供される。
【0007】
【発明の実施の形態】
以下、本発明を更に詳細に説明する。
本発明の希土類磁石用原料合金(A)は、後述する本発明の製造法に主に有用な合金であるが、希土類磁石用であれば、その用途は必ずしも本発明の製造法のみに限定されない。該原料合金(A)の組成は、イットリウムを含む希土類金属元素から選ばれる少なくとも1種からなるR 27.6〜35.0質量%と、ボロン0.94〜1.30質量%と、鉄を含む残部Mとからなる組成を有する。
【0008】
Rの希土類金属元素は特に限定されないが、ランタン、セリウム、プラセオジム、ネオジム、イットリウム、ジスプロシウム等が好ましく挙げられる。Rの含有割合が27.6質量%未満では、α−Fe相が多く析出して磁気特性が低下し、35.0質量%を超えると、焼結体内部のR−rich相の割合が高くなって耐食性が低下する。
ボロンの含有割合が0.94質量%未満では、RFe17相が析出してRFe14B相の割合が減少するため残留磁束密度が低下し、1.30質量%を超えると、B−rich相の割合が増加して磁気特性及び耐食性がともに低下する。
残部M中の鉄の含有割合は、通常50質量%以上、好ましくは60質量%以上である。残部Mは、鉄以外に、コバルト、アルミニウム、クロム、マンガン、マグネシウム、銅、錫、タングステン、ニオブ、ガリウム等の遷移金属や、炭素、珪素又はこれらの2種以上等を含むことができる。更に、原料合金(A)には、その他、酸素、窒素等の工業生産上の不可避不純分が含まれていても良い。
【0009】
本発明の原料合金(A)の組織は、RFe14B相を主相とし、RFe14B相の90体積%以上が、短軸方向の粒径が0.1〜50μm、長軸方向の粒径が30〜500μmの結晶粒からなる。原料合金(A)は、RFe14B相を77体積%以上、好ましくは77〜85体積%含有し、R−rich相を15〜23体積%、好ましくは18〜23体積%含有する。該R−rich相は、前記RFe14B相を主相とする結晶粒を取り囲むように微細に分散されていることが好ましい。R−rich相の一部はRFe14B相結晶粒内に微細に分散されて存在する。R−rich相の含有割合が15体積%未満では、後述する本発明の製法に用いる場合、焼結温度域を広げる効果が小さく、23体積%を超えると残留磁束密度が低下する。
原料合金(A)における前記結晶粒の短軸方向及び長軸方向の粒径の測定は、薄片等の原料合金(A)の断面組織を、光学顕微鏡により撮影した写真から測定することができる。また、前記各結晶相の体積率はEPMAの画像解析により求めることができる。
本願発明においては、日本電子(株)社製JXA8800を用いて合金鋳片の厚み方向中央部断面のComp像を撮影し、画像処理ソフト(全自動粒子解析プログラム XM−87562)により、Comp像を解析してそれぞれの相の面積率を求め、体積率とした。ここで得られる値は、合金断面を2次元で解析した値である為、実際の体積率とは異なる場合がある。
【0010】
原料合金(A)のRFe14B相のc軸格子定数は、後述する平衡状態より0.3〜1%大きく、好ましくは0.3〜0.8%大きい。c軸格子定数は、合金を25μm以下に粉砕して、粉末X線回折法により求めた。原料合金(A)が、このような物性を示すのは、RFe14B相の結晶格子中にR原子が侵入し、結晶格子が歪んでいる状態であるからだと考えられる。
前記c軸格子定数の増大が平衡状態のc軸格子定数と比較して0.3%未満の場合、R−rich相の体積率が小さく、RFe14B相格子中に侵入するR原子が少ないため、焼結時にR−rich相及びRFe14B相より排出されるR分が少なく、後述する液相が十分供給されない。その為、焼結性が低下し、保持力が低下する。また、後述する本発明の製造法に用いた場合、焼結温度域を広げる効果が小さく、得られる希土類磁石の磁気特性や、縮率のばらつきを小さくできない。一方、c軸格子定数が平衡状態のc軸格子定数と比較して1%を超える合金の製造は困難である。
【0011】
前記平衡状態の合金とは、合金を600〜800℃で40時間以上熱処理し、その後、1℃/分以下の冷却速度で徐冷して得た合金をいう。
【0012】
原料合金(A)は、従来のストリップキャスト法により鋳造した原料合金と比較してR−rich相の体積率は高く、且つ該R−rich相が非常に微細に分散した状態で存在する。該R−rich相は、従来のストリップキャスト法により鋳造した原料合金のR−rich相と比較して、Fe、Bが多く存在する状態であると考えられる。このような組成及び結晶組織を有する原料合金(A)は、後述する本発明の製造法に用いることにより、焼結の際、R−rich相及びRFe14B相の結晶格子中に侵入しているR原子が、従来の2合金法においてR−rich相を供給する粒界相合金のように液相を作り出す。Rが微細に分散したR−rich相、並びにRFe14B相から均一に排出される為、その液相は、従来の2合金法の粒界相合金と比較して、焼結に必要な箇所に必要量のみがより均一に供給されることとなる。また、原料合金(A)は、2合金法における粒界相合金と較べてR量が少ない為、非磁性相であるR−rich相を必要以上に生成させず、残留磁束密度を低下させない。
【0013】
原料合金(A)は、その形態が、板厚0.03〜2.00mm、好ましくは0.10〜1.0mmの薄片であることが望ましい。
原料合金(A)は、合金単位質量当りのRFe14B相の水素吸蔵量が、平衡状態のRFe14B相の水素吸蔵量より3〜22%大きく、好ましくは12〜22%大きい。また、R−rich相の水素吸蔵量が、平衡状態のR−rich相の水素吸蔵量より10〜60%小さく、好ましくは10〜30%小さい。以下、平衡状態より水素吸蔵量が大きい場合は+、小さい場合は−を付して記載する。
このような水素吸蔵特性は、原料合金(A)のRFe14B相及びR−rich相の組成の特徴に起因するものと考えられる。原料合金(A)のRFe14B相は、R成分を通常より多く含み、水素吸蔵性がよく、R−rich相はR以外の成分(Fe、B等)を通常より多く含み、これらの成分はRと比較的水素吸蔵性が低い化合物を形成し、その結果、R−rich相の体積率は高いものの水素吸蔵量が比較的低いものとなっていると考えられる。
Fe14B相の水素吸蔵量が、平衡状態のRFe14B相の水素吸蔵量+3.0%より小さく、またR−rich相の水素吸蔵量が、平衡状態のR−rich相の水素吸蔵量と比較して−10%より大きい場合は、RFe14B相が粗大となり、焼結性が低下して保磁力が低下する恐れがあるので好ましくない。RFe14B相の水素吸蔵量が、平衡状態のRFe14B相の水素吸蔵量と比較して+22%より大きく、またR−rich相の水素吸蔵量が、平衡状態のR−rich相の水素吸蔵量と比較して−60%より小さい場合は、合金の製造が困難である。
ここで、平衡状態とは前述のとおりであり、水素吸蔵量は、PCT装置により以下のようにして測定することができる。
【0014】
まず、一定容量のセル内に測定する合金を投入し、1〜3Paに真空引きを行う。減圧雰囲気で40℃の温度に保持し、4気圧の水素雰囲気にする。次に、合金の水素吸蔵が停止した時点での水素圧を測定する。この時、水素吸蔵停止時の水素圧力が1気圧以下である場合、再び4気圧の水素雰囲気に置く。水素吸蔵停止時の圧力が1気圧以上になるまでこれを繰り返す。これらの水素圧の変動の合計から合金の水素吸蔵量を求め、セル内に投入した合金重量から、単位重量当たりの水素吸蔵量を求めることができる。
次に、同じ鋳造条件により得られたR添加量の異なる合金サンプルについても上記測定を行い、横軸がR添加量、縦軸が水素吸蔵量のグラフを作成する。そのグラフの近似曲線からRFe14B相の量論組成のR量(26.7質量%)での水素吸蔵量を求め、それをRFe14B相の水素吸蔵量とする。各組成での合金全体の水素吸蔵量とRFe14B相の水素吸蔵量との差よりR−rich相の水素吸蔵量を求めることができる。
平衡状態の合金のRFe14B相の水素吸蔵量及びR−rich相の水素吸蔵量も同様な方法により求めることができる。
【0015】
原料合金(A)は、R−rich相の体積率(Rx)を、Rx=Rc×X(ここで、Rcは平衡状態でのR−rich相の体積率である)と表した際のXが2.2〜5.0、特に3.0〜5.0であることが好ましい。R−rich相の体積率(Rx)及び平衡状態でのR−rich相の体積率(Rc)は、EPMAの画像解析により求めることができる。
Xが5.0を超える場合、R−rich相の体積割合が大きくなり、得られる磁石の残留磁束密度が低下する場合があり、Xが2.2未満では、前述に液相が十分供給されず、焼結性が低下し保磁力が低下する場合があるので好ましくない。
【0016】
本発明の希土類磁石用原料合金粉末は、前述の本発明の原料合金(A)を水素吸蔵崩壊して得た粉末であって、後述する本発明の製造法に有用な合金粉末であるが、希土類磁石用であれば、その用途は必ずしも本発明の製造法のみに限定されない。
本発明の希土類磁石用原料合金粉末は、粒径355〜850μmの粉末を50質量%以上含み、重量平均粒径が300〜800μm、好ましくは300〜500μmの粉末である。
前記水素吸蔵崩壊は、例えば、原料合金(A)を、水素圧力0.1〜0.4MPa、常温〜100℃の雰囲気中で30分以上水素吸蔵させた後、300〜500℃で1Pa以下の雰囲気になるまで真空引きを行って、脱水素させる方法等により行うことができる。
水素吸蔵崩壊させて得た本発明の希土類磁石用原料合金粉末は、極端な微粉が少なく、酸化が抑制され、R分の歩留が良く、また極端に粗大な粉砕粉が少なく、後の微粉砕工程が効率良く行うことができる。
【0017】
本発明の原料合金(A)を調製するには、例えば、以下の方法等により得ることができる。
まず、上述の原料合金(A)の組成に調整した、R、ボロン及びMの原料金属や母合金を、不活性ガス雰囲気下、高周波溶融法により溶融した後、該溶融物を単ロール、双ロール又はディスク等を用いるストリップキャスティング法により連続的に凝固させる。その際、合金の融点からロール剥離までの平均冷却速度は、50〜3000℃/秒にて行うことができる(1次冷却工程)。該1次冷却工程により、RFe14B相の短軸方向及び長軸方向の粒径、RFe14B相及びR−rich相の体積割合、RFe14B相のc軸格子定数のおおよそが確定する。
平均冷却速度が速すぎるとチル晶が発生し、規定の短軸方向、長軸方向の粒径のRFe14B相を主相とする結晶粒を規定の体積率とすることができず、残留磁束密度が低下する。また遅すぎるとRFe14B相のc軸格子定数が規定の範囲とならず、RFe14B相が粗大化し、R−rich相の分散性が低下し、保磁力が低下する。
【0018】
更に、ロール剥離後の鋳片の冷却過程を制御することにより、RFe14B相のc軸格子定数及び水素吸蔵量を好ましく制御した合金を均一に製造することができる。例えば、前記1次冷却工程後、鋳片を30℃/秒以上の平均冷却速度で三元共晶点+30℃の温度まで冷却し(2次冷却工程)、三元共晶温度±30℃の範囲を30秒以内で冷却させる(3次冷却工程)方法が挙げられる。該3次冷却工程は、好ましくは5秒以内で行う。該工程は、R−rich相内の析出相を制御して水素吸蔵特性を制御するために好ましく実施できる。3次冷却工程において、三元共晶温度±30℃の範囲における保持時間が長すぎると、RFe14B相が粗大化し、R−rich相の偏析が生じ保磁力の低下を招く恐れがある。その後、好ましくは5〜30℃/分で100℃以下まで冷却する(4次冷却工程)ことにより本発明の原料合金(A)を得ることができる。
前記原料合金(A)の製造における温度制御は、ロール離脱後の鋳片が接触する鋳造装置の部材の選定、加熱機構又は冷却機構を有する温度制御装置等により適宜行うことができる。
【0019】
本発明の希土類磁石の製造法は、前記原料合金(A)及び、イットリウムを含む希土類金属元素から選ばれる少なくとも1種からなるR 27.6〜35.0質量%と、ボロン0.94〜1.30質量%と、鉄を含む残部Mとからなる組成を有し、主相としてのRFe14B相の含有割合が85体積%以上、R−rich相の含有割合が15体積%以下である原料合金(B)とを準備する準備工程と、原料合金(A)及び(B)を粉砕する粉砕工程と、得られた粉砕粉末を成型する成型工程と、得られた成型物を焼結する焼結工程と、得られた焼結物を時効処理する熱処理工程とを含む。
【0020】
準備工程に用いる原料合金(A)は、前述の原料合金(A)を用いることができ、また、原料合金(A)として、前述の本発明の希土類磁石用原料合金粉末を用いることもできる。
準備工程に用いる原料合金(B)の組成範囲は、原料合金(A)と同じであり、必要により含有していても良い元素等も上述した原料合金(A)と同じものが挙げられる。従って、原料合金(A)及び(B)の組成は、規定する組成範囲において同一でも異なっていても良い。
【0021】
原料合金(B)のRFe14B相の体積率は85%以上であれば良く、該体積率は上述と同様な方法で求めることができる。
原料合金(B)の結晶組織は、R−rich相の含有割合が原料合金(A)と異なる以外は同一であっても異なっていても良い。原料合金(B)におけるR−rich相の含有割合は、15体積%以下、好ましくは3〜10体積%である。原料合金(B)のR−rich相の含有割合が15体積%を超える場合は、残留磁束密度が低下する。
【0022】
準備工程において準備する原料合金(A)は、上述の通り、液相を最適な条件で供給し、同時にRFe14B相も供給する。一方、原料合金(B)は、従来の2合金法における主相合金と同様に、主にRFe14B相を供給する役割を担う。原料合金(A)及び(B)は、従来の2合金法のようにR含有量の高い合金を使用しない為、R分の酸化を抑制し、R分の歩留が良い。原料合金(A)の作用により、単一合金を用いる場合に比較し、最適焼結温度幅を広げることができる為、得られる希土類磁石の磁気特性及び縮率のばらつきを抑制できる。
【0023】
準備工程において、原料合金(A)及び(B)の混合割合は、求める希土類磁石の磁気特性、原料合金(A)の特徴、原料合金(B)の特徴により適宜選択することができるが、質量比で原料合金(A):(B)=1:1〜30が好ましい。原料合金(B)は、規定の範囲内で適当な組成、若しくは結晶組織を有するものが使用できる。例えば、高残留磁束密度の永久磁石を得る場合には、原料合金(B)としてR含有割合が28.1〜30.0質量%の合金を用いることが好ましい。このようなR含有割合であれば、主相の体積率が大きくなり残留磁束密度が向上する。またR含有割合が30.0〜33.0質量%の合金を使用する場合、RFe14B相の短軸方向の平均粒径が5μm以上であれば、製造工程において粉砕した場合、粉砕粉中に結晶方位の異なる2つ以上の主相を含む割合が減少する為、高残留磁束密度の磁気特性が得られる。
また高保磁力の永久磁石を得る場合には、原料合金(B)としてR含有割合が31〜35質量%の合金の使用が好ましい。このようなR含有割合であれば、R含有割合が大きいほどR−rich相の体積率が増加して焼結性が向上し、保磁力が向上する。また原料合金(B)のR含有割合が31質量%未満であっても、RFe14B相の単軸方向の平均粒径が4.0μm以下で、R−rich相の含有割合が15体積%程度であれば、焼結性が向上して高保磁力が得られる。このような原料合金(B)を用いる場合の原料合金(A)の混合割合は、全原料合金に対して50質量%以下が好ましい。
【0024】
準備工程において、原料合金(A)は、上述の方法等により得ることができ、一方、原料合金(B)も製造条件を適宜変えることにより得ることができる。例えば、組成を変更したり、冷却工程において昇温、保持工程を含む冷却速度を制御すること等により得ることができる。
原料合金(A)及び(B)は、ストリップキャスト法で得た薄片の形状、薄片を粗粉砕した粗粉砕粉の形状であっても良く、このような粗粉砕形状のものとしては、例えば、本発明の希土類磁石用原料合金粉末が挙げられる。また、前記規定の範囲の原料合金(B)であれば、金型鋳造法で得たインゴットを粗粉砕した粗粉砕粉の形状のものであっても良い。
【0025】
本発明の製造法では、次に、粉砕工程を行う。該粉砕工程では、通常、水素化粉砕を行った後、ジェットミル等の粉砕機を用いて、原料合金(A)及び(B)を平均粒径3〜6μm程度に粉砕する。該粉砕は、原料合金(A)及び(B)を混合した状態で行うことが作業上、もしくは酸化を抑制する面で好ましい。しかし、それぞれを粉砕後、粉砕粉同士を混合することも可能である。
【0026】
本発明の製造法では、次いで、得られた粉砕粉末を所望の形状及び大きさに成型する。成型は、希土類磁石製造に採用される公知の方法で行うことができ、例えば、磁場中において加圧して成型する方法等により行うことができる。通常は、15〜30kOeの磁場中にて0.5〜3.0t/cmの圧力で成型する。
【0027】
本発明の製造法では、前記成型物を焼結するための焼結工程を行う。該焼結工程における焼結温度は、通常1000〜1100℃の範囲から適宜選択することができ、焼結時間も通常1〜5時間の範囲から適宜選択することができるが、本発明の製造法における焼結温度域は、上述の原料合金(A)を採用するので、従来の単一の合金を用いた場合と比較すると広い範囲で設定しても得られる希土類磁石の磁気特性及び縮率のばらつきを小さくすることができる。従って、焼結温度管理が従来の単一の合金を用いたより緩和される。
【0028】
本発明の製造法では、前記焼結物を時効処理する熱処理工程を行う。該時効処理も所望の希土類磁石を得るために公知の方法から適宜条件を選択して行うことができる。該時効処理は、例えば、450〜950℃の温度範囲から2回以上に分けて温度を下げて所望時間保持する方法等により行うことができる。
【0029】
【実施例】
以下、実施例及び比較例により、本発明を更に詳細に説明するが、本発明はこれらに限定されない。
実施例
(原料合金(A)の調製)
Nd 32.0質量%、Dy 1.0質量%、B 1.00質量%、Al 0.20質量%、Co 1.0質量%、残部鉄になるように、ネオジムメタル、ジスプロシウムメタル、フェロボロン、アルミニウム、コバルト及び鉄を配合し、アルゴンガス雰囲気中で、アルミナるつぼを使用して高周波溶解炉で溶解した。次いで、得られた合金溶湯を、水冷式の銅製単ロール鋳造装置を用いてストリップキャスティング法により鋳造し、厚さ約0.2mmの鋳片を得た。この合金の三元共晶点は約640℃である。この合金のロールに接する直前の溶湯の温度は約1350〜1400℃で、ロールから剥離した直後の鋳片の温度を赤外線熱画像計測装置で測定したところ約600℃であった。ロール上での冷却時間は約0.6秒であった。
次に、ロール剥離後の鋳片を回転ドラム式の水冷装置により冷却し、40分後回収し、原料合金(A)としての試料1を得た。ロール剥離後、水冷装置に入るまでに要した時間は約0.8秒であった。水冷装置に鋳片を移動した直後の鋳片温度は約450℃、取り出し直後の鋳片温度は約60℃であった。
【0030】
得られた鋳片(試料1)の断面組織を光学顕微鏡により撮影し、RFe14B相の短軸方向の平均粒径、長軸方向の平均粒径を測定し、それぞれの平均粒径を求め、EPMAの画像解析によりRFe14B相の体積率及びR−rich相の体積率を求めた。短軸方向の平均粒径が0.1〜50μmで、且つ長軸方向の平均粒径が30〜500μmである結晶粒(X)の体積率を求めた。短軸方向の粒径は3.3μm、長軸方向の粒径は74μm、RFe14B相の体積率は82体積%、結晶粒(X)の体積率は95体積%、R−rich相の体積率は18体積%であった。また、鋳片を約25μm程度に粉砕後、X線回折装置にてRFe14B相のc軸格子定数を測定したところ12.34Åであった。
得られた鋳片を30℃、0.1MPaの水素雰囲気中で1時間水素化した後、400℃で脱水素することで水素粉砕を行い、得られた粉砕粉末を、ロータップ式標準篩振盪機で篩い分けしたところ、粒径355〜850μmの粉末が約74質量%、粉末の平均粒径は約450μmであった。更に、PCT装置により水素吸蔵量を求めたところ0.393質量%であった。該吸蔵量から主相のRFe14B相及びR−rich相の水素吸蔵量を求めたところ、主相へ約0.278質量%、R−rich相へ0.115質量%吸蔵されていた。
得られた鋳片を800℃で40時間熱処理を行い、平衡状態とし、1℃/分以下の冷却速度で冷し、上述の方法で分析を行ったところ、主相のRFe14B相のc軸格子定数は12.25Å、水素吸蔵量は0.408質量%、主相の水素吸蔵量は0.237質量%、R−rich相の水素吸蔵量は0.171質量%、R−rich相の体積率は約4%であった。
以上の測定結果を表1及び2に示す。
【0031】
(原料合金(B)の調整)
Nd 32.0質量%、Dy 1.0質量%、B 1.00質量%、Al 0.20質量%、Co 1.0質量%及び残部鉄になるように、ネオジムメタル、ジスプロシウムメタル、フェロボロン、アルミニウム、コバルト、鉄を配合し、アルゴンガス雰囲気中で、アルミナるつぼを使用して高周波溶解炉で溶解した。次いで、水冷式の銅製単ロール鋳造装置を用いてストリップキャスティング法により鋳造し、厚さ約0.4mmの鋳片を得た。ロールに接する直前の溶湯の温度は1300〜1350℃で、ロールから剥離した直後の鋳片の温度を赤外線熱画像計測装置で測定したところ約800℃であった。ロール上での冷却時間は約1.2秒であった。
次に、ロール剥離後の鋳片を鋼鉄製の容器に回収し、容器を密閉後、大気中に取り出して放冷し、1500分後に回収し、原料合金(B)としての試料1aを得た。容器内の鋳片の温度は、回収直後で約665℃、回収後80分経過後で約615℃、1500分経過後に鋳片を取り出したときは約90℃であった。またロール剥離後、鋼鉄製の容器に入るまでに要した時間は約0.8秒であった。試料1aについて上述の試料1と同様の分析を行った。結果を表1及び2に示す。また、試料1及び試料1a製造時の熱履歴を表すグラフを図1に示す。
【0032】
(永久磁石の製法)
上記で調製した試料1及び試料1aを5:5の質量比でドラムミキサーに導入して混合した。30℃、0.1MPaの水素雰囲気中で1時間水素化した後、400℃で脱水素することで水素粉砕を行った。次いで、ジェットミルにより平均粒径が5.0μmになるように粉砕を行った。
次いで、15kOeの磁場中にて2.5ton/cmの圧力で成型を行い、得られた成型体を真空中で4時間焼結した。その際、焼結温度を1055℃、1060℃及び1065℃と変えた。焼結後、1段目の熱処理を900℃で1時間、2段目の熱処理を500℃で2時間行い時効処理した。得られた永久磁石の磁気特性を常法により測定した。結果を表3に示す。
また、得られた永久磁石の配向収縮率を以下の定義に従い測定した。一般に、R−Fe−B系焼結磁石では、磁気的に異方化させるため、磁界中で粒子を配向させながらプレス成型を行う。これに伴い、焼結時の収縮量は粒子の配向方向(c軸方向)とそれに垂直なa軸方向とで異なる。配向方向の収縮量をΔL、焼結及び時効
処理前の成型体の長さをLとした場合、配向収縮率は以下の式により求めることができる。結果を表3に示す。
収縮率=ΔL/L
【0033】
実施例
実施例1で調製した試料1及び試料1aの混合比を、表2に示すとおり代えた以外は実施例1と同様にして永久磁石を調製し、各磁気特性等を測定した。結果を表3に示す。
【0034】
実施例
合金組成がNd 34.0質量%、Dy 1.0質量%、B 1.00質量%、Al 0.20質量%、Co1.0質量%及び残部鉄になるようにした以外は、実施例1における試料1と同様な方法により、原料合金(A)である試料2を調製した。この合金の三元共晶点は約640℃である。鋳造中の鋳片の熱履歴は試料1とほぼ同じであった。
また合金の組成がNd 31.5質量%、Dy 1.0質量%、B 1.0質量%、Al 0.20質量%、Co 1.0質量%及び残部鉄になるようにした以外は、実施例1における試料1aと同様な方法により、原料合金(B)である試料2aを調製した。この合金の三元共晶点は約640℃である。鋳造中の鋳片の熱履歴は試料1aとほぼ同じであった。得られた試料2及び試料2aについて、実施例1における試料1と同様な分析を行った。結果を表1及び2に示す。
更に、試料2及び試料2aを2:8の質量比で混合した以外は実施例1と同様な方法により永久磁石を調製し、磁気特性等を測定した。結果を表3に示す。
【0035】
比較例
実施例1で調製した試料1aのみを用いた以外は実施例1と同様に永久磁石を調製し、磁気特性等を測定した。結果を表3に示す。
【0036】
比較例
合金組成が、Nd 30.5質量%、B 1.11質量%、Al 0.20質量%及び残部鉄になるようにした以外は、実施例1における試料1aと同様に、原料合金(B)としての試料3aを調製した。この合金の三元共晶点は約640℃である。鋳造中の鋳片の熱履歴は試料1aとほぼ同じであった。
また合金組成が、Nd 45.5質量%、Dy 10.0質量%、Al 0.20質量%、Co 10.0質量%及び残部鉄になるようにし、熱履歴を以下のようにした以外は、実施例1における試料1aと同様な方法により、原料合金(A)及び(B)とは異なる試料4aを得た。この際、ロールに接する直前の溶湯の温度は約1450〜1500℃で、ロールから剥離した直後の鋳片の温度は約550℃であった。ロール上での冷却時間は約1.8秒であった。更に、ロール剥離後の鋳片を回転ドラム式の水冷装置により冷却し、40分経過後に回収した。水冷装置に鋳片を移動した直後の鋳片温度は約400℃、取り出し直後の鋳片温度は約55℃であった。試料3a及び試料4aの鋳片厚みはいずれも約0.4mmであった。
試料3aについて、実施例1における試料1と同様な分析を行った。結果を表1及び2に示す。
また、得られた試料3a及び試料4aを9:1の質量比で混合した以外は実施例1と同様に永久磁石を調製し、磁気特性等を測定した。結果を表3に示す。
【0037】
【表1】

Figure 2004214390
【0038】
【表2】
Figure 2004214390
【0039】
【表3】
Figure 2004214390
【0040】
【発明の効果】
本発明の希土類磁石の製造法では、特に、本発明の原料合金(A)や本発明の希土類磁石原料合金を、原料合金(B)と混合して用いるので、製造時における焼結温度管理が、従来の単一の合金を使用して希土類磁石を製造する方法より緩和され、更に、従来の2合金法におけるR成分の酸化問題や歩留の悪さが改善される。しかも、得られる希土類磁石は、焼結温度のばらつきによる磁気特性の低下、並びに縮率のばらつきがなく、従来の2合金法により調製した永久磁石より、磁気特性に優れる。
また本発明の希土類磁石用原料合金(A)及びその粉末は、特定の組成及び組織を有するので、高磁気特性の希土類磁石を安定して容易に得るための製造法に有用であり、特に、本発明の前記製造法に有用である。
【図面の簡単な説明】
【図1】
実施例1で調製した試料1及び試料1aの製造時の熱履歴を表すグラフである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides a method for manufacturing a rare earth magnet which can easily and stably obtain a rare earth magnet having excellent magnet properties including a rare earth element, boron and iron, by moderate management of sintering heat treatment conditions. The present invention relates to raw material alloys and powders for rare earth magnets that can be mainly used in production methods.
[0002]
[Prior art]
In recent years, demand for rare-earth magnets has been increasing along with miniaturization and high performance of electronic devices. In particular, the production of relatively inexpensive R-Fe-B rare earth magnets having high magnetic properties continues to increase, and with the expansion of applications, further higher properties and strict control of properties are required. Is coming. The internal structure of the R—Fe—B based rare earth magnet includes a ferromagnetic R2Fe14There is a B phase and a nonmagnetic R-rich phase having a relatively low melting point and containing a large amount of rare earth elements. Particularly, high-performance magnets require that the R-rich phase be finely dispersed. .
There are roughly two methods for producing a rare earth magnet having such a structure. One is R2Fe14This is a method in which the B phase and the R-rich phase are supplied from different alloys, and is generally called a two-alloy method. In the two-alloy method, since the R-rich phase which becomes a liquid phase during sintering and promotes the densification of the magnet can be adjusted independently, it is necessary to produce an alloy having a structure in which the R-rich phase is finely dispersed. A sinterable temperature range can be widened (for example, see Patent Document 1).
Another method is to use a single alloy cast by a strip casting method. In the strip casting method, since the cooling rate of the alloy is high, the entire structure is refined, and the R-rich phase in the alloy is finely dispersed. Therefore, the dispersibility of the R-rich phase after pulverization and sintering is also improved, and high characteristics of the magnet can be realized (for example, see Patent Document 2).
[0003]
In the case of the two-alloy method, the alloy supplying the R-rich phase is extremely active against oxygen because the R content is usually as high as about 40 to 60% by mass. This causes a decrease in magnetic properties such as magnetic flux density. In some cases, ignition may be caused even in the magnet manufacturing process after the pulverization, which poses a problem of danger to workers and a reduction in product yield. In order to prevent oxidation and ignition, strict control of the atmosphere in each step is attempted with expensive equipment, but this is not sufficient. In addition, the alloy that supplies the R-rich phase has a high R content during pulverization, and a low-strength portion is selectively and abnormally pulverized and discharged to the outside of the pulverization chamber. Yield decreases. Further, the composition of the fine powder to be recovered deviates from the composition of the preparation, and it is difficult to obtain the desired magnetic force characteristics. For this reason, a large amount of R is charged in anticipation of a composition shift due to oxidation and ultrafine powdering. However, such an operation of charging a large amount of R does not solve the problem of oxidation and the problem of reduction in yield, even if the composition deviation can be eliminated.
When a single alloy cast by the strip casting method is used, the optimum temperature range in which sintering for producing a magnet having a structure in which the R-rich phase is finely dispersed is high and narrow, so As a result, very strict accuracy is required for temperature control during aging treatment. However, in practice, since there is a temperature distribution in the furnace during sintering and aging, variations in the alloy temperature of several degrees Celsius are unavoidable, and therefore the magnetic properties and shrinkage of the obtained rare earth magnets vary. . If the variation of the shrinkage ratio is large, the forming yield is deteriorated, so that the amount of offcuts generated during the processing of the rare earth magnet increases.
[0004]
[Patent Document 1]
Japanese Patent Publication No. Hei 6-21324
[Patent Document 2]
Japanese Patent No. 2639609
[0005]
[Problems to be solved by the invention]
An object of the present invention is to improve the oxidization of R component and the poor yield of R component in the two-alloy method, widen the sintering temperature range in the conventional method using a single alloy, and obtain a rare earth element having high magnetic properties. It is an object of the present invention to provide a method for manufacturing a rare earth magnet, which can easily and stably supply a magnet and can reduce the amount of offcuts generated during processing of the rare earth magnet.
Another object of the present invention is to provide a rare earth magnet raw material alloy and powder thereof which are useful for a production method for stably supplying a rare earth magnet having high magnetic properties.
[0006]
[Means for Solving the Problems]
According to the present invention, R 27.6 to 35.0% by mass of at least one selected from rare earth metal elements including yttrium, 0.94 to 1.30% by mass of boron, and the balance M including iron Having a composition consisting of2Fe14B phase as main phase, R phase2Fe14The content ratio of the B phase is 77% by volume or more, the content ratio of the R-rich phase is 15 to 23% by volume,2Fe1490% by volume or more of the B phase is composed of crystal grains having a particle diameter in the short axis direction of 0.1 to 50 μm and a particle diameter in the long axis direction of 30 to 500 μm.2Fe14A raw material alloy (A) in which the c-axis lattice constant of the B phase is 0.3 to 1% larger than the equilibrium state, and R 27.6 to 35.0% by mass of at least one selected from rare earth metal elements including yttrium. And a composition consisting of 0.94 to 1.30 mass% of boron and the balance M containing iron.2Fe14A preparation step of preparing a raw material alloy (B) having a B phase content of 85% by volume or more and an R-rich phase content of less than 15% by volume, and pulverizing the material alloys (A) and (B) A crushing step, a molding step of molding the obtained crushed powder, a sintering step of sintering the obtained molded article, and a heat treatment step of aging the obtained sintered article. A method for manufacturing a rare earth magnet is provided.
Further, according to the present invention, there is provided the raw alloy (A) for a rare earth magnet.
Further, according to the present invention, the powder obtained by subjecting the raw material alloy (A) to hydrogen absorption and collapse contains at least 50% by mass of a powder having a particle size of 355 to 850 μm and a weight average particle size of 300 to 800 μm. A raw material alloy powder for a rare earth magnet is provided.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in more detail.
The rare-earth magnet raw material alloy (A) of the present invention is an alloy mainly useful for the production method of the present invention described below, but its use is not necessarily limited to the production method of the present invention as long as it is for a rare-earth magnet. . The composition of the raw material alloy (A) is such that R 27.6 to 35.0 mass% of at least one selected from rare earth metal elements including yttrium, boron 0.94 to 1.30 mass%, and iron And the balance of M.
[0008]
The rare earth metal element of R is not particularly limited, but lanthanum, cerium, praseodymium, neodymium, yttrium, dysprosium and the like are preferable. If the content of R is less than 27.6% by mass, a large amount of α-Fe phase precipitates and the magnetic properties deteriorate, and if it exceeds 35.0% by mass, the ratio of the R-rich phase inside the sintered body is high. And the corrosion resistance is reduced.
If the boron content is less than 0.94% by mass, R2Fe17Phase precipitates and R2Fe14When the proportion of the B phase decreases, the residual magnetic flux density decreases. When the proportion exceeds 1.30% by mass, the proportion of the B-rich phase increases, and both the magnetic properties and the corrosion resistance decrease.
The iron content in the balance M is usually at least 50% by mass, preferably at least 60% by mass. The remainder M can include, in addition to iron, transition metals such as cobalt, aluminum, chromium, manganese, magnesium, copper, tin, tungsten, niobium, and gallium, carbon, silicon, and two or more of these. Further, the raw material alloy (A) may further contain unavoidable impurities in industrial production such as oxygen and nitrogen.
[0009]
The structure of the raw material alloy (A) of the present invention is R2Fe14B phase as main phase, R phase2Fe1490% by volume or more of the B phase is composed of crystal grains having a particle diameter in the short axis direction of 0.1 to 50 μm and a particle diameter in the long axis direction of 30 to 500 μm. Raw material alloy (A) is R2Fe14The B phase contains 77% by volume or more, preferably 77 to 85% by volume, and the R-rich phase contains 15 to 23% by volume, preferably 18 to 23% by volume. The R-rich phase is the R-rich phase.2Fe14It is preferable that the fine particles are finely dispersed so as to surround crystal grains having the B phase as a main phase. Part of the R-rich phase is R2Fe14It exists finely dispersed in the B phase crystal grains. When the content of the R-rich phase is less than 15% by volume, the effect of expanding the sintering temperature range is small when used in the production method of the present invention described below, and when it exceeds 23% by volume, the residual magnetic flux density decreases.
The particle diameters of the crystal grains in the short axis direction and the long axis direction of the raw material alloy (A) can be measured from a photograph of a cross-sectional structure of the raw material alloy (A) such as a flake taken by an optical microscope. The volume fraction of each crystal phase can be determined by EPMA image analysis.
In the present invention, a Comp image of a cross section in the center in the thickness direction of the alloy slab is photographed using JXA8800 manufactured by JEOL Ltd. Analysis was performed to determine the area ratio of each phase, which was defined as the volume ratio. Since the value obtained here is a value obtained by analyzing the alloy cross section in two dimensions, the value may be different from the actual volume ratio.
[0010]
R of raw alloy (A)2Fe14The c-axis lattice constant of the B phase is larger than the equilibrium state described later by 0.3 to 1%, preferably 0.3 to 0.8%. The c-axis lattice constant was obtained by pulverizing the alloy to 25 μm or less and using a powder X-ray diffraction method. The raw material alloy (A) exhibits such physical properties because of R2Fe14This is presumably because R atoms penetrate into the crystal lattice of the B phase and the crystal lattice is distorted.
When the increase in the c-axis lattice constant is less than 0.3% as compared with the c-axis lattice constant in the equilibrium state, the volume ratio of the R-rich phase is small, and2Fe14Since few R atoms penetrate into the B-phase lattice, the R-rich phase and R2Fe14The R component discharged from the B phase is small, and the liquid phase described later is not sufficiently supplied. Therefore, the sinterability is reduced and the holding power is reduced. Further, when used in the production method of the present invention described below, the effect of expanding the sintering temperature range is small, and the variation in the magnetic properties and shrinkage of the obtained rare earth magnet cannot be reduced. On the other hand, it is difficult to produce an alloy whose c-axis lattice constant exceeds 1% as compared with the c-axis lattice constant in an equilibrium state.
[0011]
The alloy in the equilibrium state refers to an alloy obtained by heat-treating an alloy at 600 to 800 ° C. for 40 hours or more, and then gradually cooling the alloy at a cooling rate of 1 ° C./min or less.
[0012]
The raw material alloy (A) has a higher volume ratio of the R-rich phase than the raw material alloy cast by a conventional strip casting method, and the R-rich phase exists in a state of being very finely dispersed. The R-rich phase is considered to be in a state in which more Fe and B are present as compared to the R-rich phase of the raw material alloy cast by the conventional strip casting method. The raw material alloy (A) having such a composition and crystal structure can be used in the production method of the present invention described below, so that the R-rich phase and the R-rich phase2Fe14The R atoms penetrating into the crystal lattice of the B phase create a liquid phase like the grain boundary phase alloy that supplies the R-rich phase in the conventional two-alloy method. R-rich phase in which R is finely dispersed;2Fe14Since the liquid phase is uniformly discharged, only the required amount of the liquid phase is more uniformly supplied to the portion required for sintering as compared with the grain boundary phase alloy of the conventional two-alloy method. . Further, since the raw material alloy (A) has a smaller amount of R as compared with the grain boundary phase alloy in the two-alloy method, the R-rich phase, which is a non-magnetic phase, is not generated more than necessary, and the residual magnetic flux density does not decrease.
[0013]
The raw material alloy (A) is desirably a flake having a plate thickness of 0.03 to 2.00 mm, preferably 0.10 to 1.0 mm.
The raw material alloy (A) has an R2Fe14When the hydrogen storage amount of the B phase is2Fe14It is 3 to 22% larger than the hydrogen storage amount of phase B, preferably 12 to 22% larger. Further, the hydrogen storage amount of the R-rich phase is 10 to 60% smaller, preferably 10 to 30% smaller than the hydrogen storage amount of the R-rich phase in an equilibrium state. Hereinafter, + is described when the hydrogen storage amount is larger than the equilibrium state, and-is shown when the hydrogen storage amount is smaller than the equilibrium state.
Such a hydrogen storage property is based on the R of the raw material alloy (A).2Fe14This is considered to be due to the characteristics of the compositions of the B phase and the R-rich phase. R of raw alloy (A)2Fe14The B phase contains more R components than usual and has good hydrogen storage properties, and the R-rich phase contains components other than R (Fe, B, etc.) more than usual, and these components are relatively hydrogen storage properties with R. Is considered to be low, and as a result, although the volume fraction of the R-rich phase is high, the hydrogen storage capacity is relatively low.
R2Fe14When the hydrogen storage amount of the B phase is2Fe14When the hydrogen storage capacity of the B phase is smaller than + 3.0% and the hydrogen storage capacity of the R-rich phase is larger than the hydrogen storage capacity of the equilibrium R-rich phase by -10%, R2Fe14It is not preferable because the B phase becomes coarse, and the sinterability may be reduced and the coercive force may be reduced. R2Fe14When the hydrogen storage amount of the B phase is2Fe14If the hydrogen storage capacity of the B-phase is greater than + 22% and the hydrogen storage capacity of the R-rich phase is smaller than -60% as compared with the hydrogen storage capacity of the equilibrium R-rich phase, Is difficult to manufacture.
Here, the equilibrium state is as described above, and the hydrogen storage amount can be measured by a PCT device as follows.
[0014]
First, the alloy to be measured is put into a cell having a constant capacity, and the pressure is evacuated to 1 to 3 Pa. The temperature is kept at 40 ° C. in a reduced pressure atmosphere, and a hydrogen atmosphere of 4 atm is set. Next, the hydrogen pressure at the time when the hydrogen absorption of the alloy is stopped is measured. At this time, if the hydrogen pressure at the time of stopping the hydrogen storage is 1 atm or less, the hydrogen atmosphere is again placed at 4 atm. This is repeated until the pressure at the time of stopping hydrogen storage becomes 1 atm or more. The hydrogen storage amount of the alloy can be determined from the sum of these hydrogen pressure fluctuations, and the hydrogen storage amount per unit weight can be determined from the weight of the alloy charged into the cell.
Next, the above measurement is also performed on alloy samples obtained under the same casting conditions and having different amounts of R addition, and a graph of the R addition amount on the horizontal axis and the hydrogen storage amount on the vertical axis is created. From the approximate curve of the graph, R2Fe14The hydrogen storage amount at the R amount (26.7% by mass) of the stoichiometric composition of the B phase was determined, and this was calculated as R2Fe14The hydrogen storage amount of B phase. Hydrogen storage amount and R of the whole alloy in each composition2Fe14The hydrogen storage amount of the R-rich phase can be determined from the difference from the hydrogen storage amount of the B phase.
R of equilibrium alloy2Fe14The hydrogen storage amount of the B phase and the hydrogen storage amount of the R-rich phase can be determined by the same method.
[0015]
In the raw material alloy (A), the volume ratio (Rx) of the R-rich phase is represented by Rx = Rc × X (where Rc is the volume ratio of the R-rich phase in an equilibrium state). Is preferably 2.2 to 5.0, particularly preferably 3.0 to 5.0. The volume ratio (Rx) of the R-rich phase and the volume ratio (Rc) of the R-rich phase in an equilibrium state can be determined by EPMA image analysis.
When X exceeds 5.0, the volume ratio of the R-rich phase increases, and the residual magnetic flux density of the obtained magnet may decrease. When X is less than 2.2, the liquid phase is sufficiently supplied as described above. This is not preferable because the sinterability may decrease and the coercive force may decrease.
[0016]
The raw alloy powder for a rare earth magnet of the present invention is a powder obtained by subjecting the above-described raw material alloy (A) of the present invention to hydrogen absorption and collapse, and is an alloy powder useful for the production method of the present invention described below. If it is for a rare earth magnet, its use is not necessarily limited to the production method of the present invention.
The raw material alloy powder for a rare earth magnet of the present invention is a powder that contains 50% by mass or more of a powder having a particle size of 355 to 850 µm and a weight average particle size of 300 to 800 µm, preferably 300 to 500 µm.
The hydrogen storage decay is performed, for example, by allowing the raw material alloy (A) to store hydrogen for 30 minutes or more in an atmosphere at a hydrogen pressure of 0.1 to 0.4 MPa and a normal temperature to 100 ° C. The evacuation can be performed by evacuation until an atmosphere is obtained, and the like.
The raw alloy powder for a rare earth magnet of the present invention obtained by hydrogen absorption and disintegration has a small amount of extremely fine powder, suppresses oxidation, has a good yield of R, and has a very small amount of extremely coarse pulverized powder. The pulverizing step can be performed efficiently.
[0017]
The raw material alloy (A) of the present invention can be prepared, for example, by the following method.
First, a raw material metal or a master alloy of R, boron, and M adjusted to the composition of the above-mentioned raw material alloy (A) is melted by a high-frequency melting method in an inert gas atmosphere, and the molten material is rolled into a single roll or twin roll. It is continuously solidified by a strip casting method using a roll or a disk. At that time, the average cooling rate from the melting point of the alloy to the roll peeling can be performed at 50 to 3000 ° C./sec (primary cooling step). By the primary cooling step, R2Fe14The particle diameter of the B phase in the short axis direction and the long axis direction, R2Fe14Volume ratio of B phase and R-rich phase, R2Fe14The approximate c-axis lattice constant of the B phase is determined.
If the average cooling rate is too high, chill crystals are generated, and the particle diameters R and R in the specified short axis direction and long axis direction are determined.2Fe14Crystal grains having the B phase as the main phase cannot have a prescribed volume ratio, and the residual magnetic flux density decreases. If it is too late, R2Fe14The c-axis lattice constant of the B phase does not fall within the specified range, and R2Fe14The B phase coarsens, the dispersibility of the R-rich phase decreases, and the coercive force decreases.
[0018]
Further, by controlling the cooling process of the slab after the roll is peeled, R2Fe14An alloy in which the c-axis lattice constant and hydrogen storage amount of the B phase are preferably controlled can be uniformly produced. For example, after the primary cooling step, the slab is cooled to a temperature of ternary eutectic point + 30 ° C. at an average cooling rate of 30 ° C./sec or more (secondary cooling step), and a ternary eutectic temperature of ± 30 ° C. A method of cooling the range within 30 seconds (a tertiary cooling step) is exemplified. The tertiary cooling step is preferably performed within 5 seconds. This step can be preferably performed to control the precipitated phase in the R-rich phase to control the hydrogen storage characteristics. In the third cooling step, if the holding time in the range of ternary eutectic temperature ± 30 ° C. is too long, R2Fe14There is a possibility that the B phase becomes coarse, segregation of the R-rich phase occurs, and the coercive force decreases. Thereafter, the raw material alloy (A) of the present invention can be obtained by cooling to preferably 100 ° C. or lower at 5 to 30 ° C./min (fourth cooling step).
The temperature control in the production of the raw material alloy (A) can be appropriately performed by selecting a member of a casting apparatus to be brought into contact with the cast slab after the roll is detached, a temperature control apparatus having a heating mechanism or a cooling mechanism, or the like.
[0019]
The method for producing a rare earth magnet according to the present invention is characterized in that the raw material alloy (A) and R 27.6 to 35.0% by mass of at least one selected from rare earth metal elements including yttrium, and boron 0.94 to 1 30% by mass and the balance M containing iron, and R as a main phase2Fe14A preparation step of preparing a raw material alloy (B) having a B phase content of 85% by volume or more and an R-rich phase content of 15% by volume or less, and pulverizing the material alloys (A) and (B) The method includes a pulverizing step, a molding step of molding the obtained pulverized powder, a sintering step of sintering the obtained molded article, and a heat treatment step of aging the obtained sintered article.
[0020]
As the material alloy (A) used in the preparation step, the above-described material alloy (A) can be used, and as the material alloy (A), the above-described material alloy powder for a rare earth magnet of the present invention can also be used.
The composition range of the raw material alloy (B) used in the preparation step is the same as that of the raw material alloy (A), and the same elements as the raw material alloy (A) described above can be used for the elements that may be contained as necessary. Therefore, the compositions of the raw material alloys (A) and (B) may be the same or different in the specified composition range.
[0021]
R of raw material alloy (B)2Fe14It is sufficient that the volume ratio of the B phase is 85% or more, and the volume ratio can be obtained by the same method as described above.
The crystal structure of the material alloy (B) may be the same or different except that the content ratio of the R-rich phase is different from that of the material alloy (A). The content ratio of the R-rich phase in the raw material alloy (B) is 15% by volume or less, preferably 3 to 10% by volume. When the content ratio of the R-rich phase of the raw material alloy (B) exceeds 15% by volume, the residual magnetic flux density decreases.
[0022]
As described above, the raw material alloy (A) prepared in the preparation step supplies the liquid phase under the optimum condition,2Fe14B phase is also supplied. On the other hand, the raw material alloy (B) is mainly composed of R, like the main phase alloy in the conventional two-alloy method.2Fe14It plays the role of supplying the B phase. Since the raw alloys (A) and (B) do not use alloys having a high R content unlike the conventional two-alloy method, oxidation of R is suppressed, and the yield of R is good. The effect of the raw material alloy (A) can widen the optimum sintering temperature range as compared with the case where a single alloy is used, so that variations in the magnetic properties and shrinkage of the obtained rare earth magnet can be suppressed.
[0023]
In the preparation step, the mixing ratio of the raw material alloys (A) and (B) can be appropriately selected according to the magnetic properties of the rare earth magnet, the characteristics of the raw material alloy (A), and the characteristics of the raw material alloy (B). The ratio of the raw material alloy (A) :( B) = 1: 1 to 30 is preferable. As the material alloy (B), those having an appropriate composition or crystal structure within a specified range can be used. For example, when obtaining a permanent magnet having a high residual magnetic flux density, it is preferable to use an alloy having an R content of 28.1 to 30.0% by mass as the raw material alloy (B). With such an R content, the volume fraction of the main phase is increased, and the residual magnetic flux density is improved. When an alloy having an R content of 30.0 to 33.0% by mass is used, R2Fe14If the average particle diameter in the minor axis direction of the B phase is 5 μm or more, the ratio of two or more main phases having different crystal orientations in the pulverized powder is reduced when pulverized in the manufacturing process. Is obtained.
When a permanent magnet having a high coercive force is obtained, it is preferable to use an alloy having an R content of 31 to 35% by mass as the raw material alloy (B). With such an R content, as the R content increases, the volume ratio of the R-rich phase increases, the sinterability improves, and the coercive force improves. Even if the R content of the raw material alloy (B) is less than 31% by mass, R2Fe14When the average particle size of the B phase in the uniaxial direction is 4.0 μm or less and the content ratio of the R-rich phase is about 15% by volume, the sinterability is improved and a high coercive force is obtained. When such a raw material alloy (B) is used, the mixing ratio of the raw material alloy (A) is preferably 50% by mass or less based on all the raw material alloys.
[0024]
In the preparation step, the raw material alloy (A) can be obtained by the above-described method or the like, while the raw material alloy (B) can also be obtained by appropriately changing the manufacturing conditions. For example, it can be obtained by changing the composition or controlling the cooling rate including the temperature raising and holding steps in the cooling step.
The raw material alloys (A) and (B) may be in the form of a flake obtained by a strip casting method, or in the form of a coarsely pulverized powder obtained by coarsely pulverizing a flake. The raw material alloy powder for a rare earth magnet of the present invention is exemplified. Further, as long as the raw material alloy (B) falls within the above-specified range, it may be in the form of coarsely pulverized powder obtained by coarsely pulverizing an ingot obtained by die casting.
[0025]
Next, in the production method of the present invention, a pulverizing step is performed. In the pulverization step, usually, after hydrogenation pulverization, the raw material alloys (A) and (B) are pulverized to an average particle size of about 3 to 6 μm using a pulverizer such as a jet mill. The pulverization is preferably performed in a state where the raw material alloys (A) and (B) are mixed from the viewpoint of workability or suppressing oxidation. However, it is also possible to mix the crushed powders after crushing each.
[0026]
In the production method of the present invention, the obtained pulverized powder is then molded into a desired shape and size. The molding can be performed by a known method employed in the manufacture of rare earth magnets, for example, by a method of molding by applying pressure in a magnetic field. Usually, 0.5 to 3.0 t / cm in a magnetic field of 15 to 30 kOe.2Mold under pressure.
[0027]
In the manufacturing method of the present invention, a sintering step for sintering the molded product is performed. The sintering temperature in the sintering step can be appropriately selected from the range of usually 1000 to 1100 ° C, and the sintering time can also be appropriately selected from the range of usually 1 to 5 hours. The sintering temperature range in the above uses the above-mentioned raw material alloy (A), so that the magnetic characteristics and shrinkage of the rare earth magnet can be obtained even when set in a wider range as compared with the case of using a conventional single alloy. Variation can be reduced. Therefore, the sintering temperature control is eased as compared with the case of using the conventional single alloy.
[0028]
In the manufacturing method of the present invention, a heat treatment step of aging the sintered product is performed. The aging treatment can also be performed by appropriately selecting conditions from known methods to obtain a desired rare earth magnet. The aging treatment can be performed by, for example, a method of lowering the temperature in a temperature range of 450 to 950 ° C. twice or more and maintaining the temperature for a desired time.
[0029]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
Example 1
(Preparation of raw material alloy (A))
Nd 32.0% by mass, Dy 1.0% by mass, B 1.00% by mass, Al 0.20% by mass, Co 1.0% by mass, Neodymium metal, Dysprosium metal, Ferroboron, Aluminum, cobalt, and iron were blended and melted in a high-frequency melting furnace using an alumina crucible in an argon gas atmosphere. Next, the obtained molten alloy was cast by a strip casting method using a water-cooled copper single-roll casting apparatus to obtain a slab having a thickness of about 0.2 mm. The ternary eutectic point of this alloy is about 640 ° C. The temperature of the molten metal immediately before coming into contact with the roll of the alloy was about 1350 to 1400 ° C, and the temperature of the slab immediately after peeling off the roll was about 600 ° C when measured with an infrared thermal image measurement device. The cooling time on the roll was about 0.6 seconds.
Next, the cast slab after the roll peeling was cooled by a rotating drum type water cooling device, and recovered after 40 minutes to obtain Sample 1 as a raw material alloy (A). The time required to enter the water cooling device after the roll was peeled was about 0.8 seconds. The slab temperature immediately after the slab was moved to the water cooling device was about 450 ° C., and the slab temperature immediately after the removal was about 60 ° C.
[0030]
The cross-sectional structure of the obtained cast slab (sample 1) was photographed with an optical microscope.2Fe14The average particle diameter of the B phase in the short axis direction and the average particle diameter in the long axis direction were measured, and the respective average particle diameters were determined.2Fe14The volume ratio of the B phase and the volume ratio of the R-rich phase were determined. The volume fraction of crystal grains (X) having an average particle diameter in the short axis direction of 0.1 to 50 μm and an average particle diameter in the long axis direction of 30 to 500 μm was determined. The particle diameter in the short axis direction is 3.3 μm, the particle diameter in the long axis direction is 74 μm, R2Fe14The volume ratio of the B phase was 82% by volume, the volume ratio of the crystal grains (X) was 95% by volume, and the volume ratio of the R-rich phase was 18% by volume. After the slab was ground to about 25 μm,2Fe14The c-axis lattice constant of the B phase was measured and found to be 12.34 °.
The obtained slab is hydrogenated in a hydrogen atmosphere of 30 ° C. and 0.1 MPa for 1 hour, and then dehydrogenated at 400 ° C. to perform hydrogen pulverization, and the obtained pulverized powder is subjected to a low tap standard sieve shaker. As a result, the powder having a particle diameter of 355 to 850 μm was about 74% by mass, and the average particle diameter of the powder was about 450 μm. Further, the amount of hydrogen occlusion determined by a PCT apparatus was 0.393% by mass. From the amount of occlusion, R2Fe14When the hydrogen storage amounts of the B phase and the R-rich phase were determined, about 0.278% by mass was occluded in the main phase and 0.115% by mass was occluded in the R-rich phase.
The obtained slab was heat-treated at 800 ° C. for 40 hours to be in an equilibrium state, cooled at a cooling rate of 1 ° C./min or less, and analyzed by the above-mentioned method.2Fe14The c-axis lattice constant of the B phase is 12.25 °, the hydrogen absorption is 0.408% by mass, the hydrogen absorption of the main phase is 0.237% by mass, the hydrogen absorption of the R-rich phase is 0.171% by mass, The volume fraction of the R-rich phase was about 4%.
Tables 1 and 2 show the above measurement results.
[0031]
(Adjustment of raw material alloy (B))
Nd 32.0% by mass, Dy 1.0% by mass, B 1.00% by mass, Al 0.20% by mass, Co 1.0% by mass, and the balance iron so that neodymium metal, dysprosium metal, ferroboron, Aluminum, cobalt, and iron were blended and melted in an argon gas atmosphere using an alumina crucible in a high-frequency melting furnace. Next, it was cast by a strip casting method using a water-cooled copper single-roll casting apparatus to obtain a slab having a thickness of about 0.4 mm. The temperature of the molten metal immediately before coming into contact with the roll was 1300 to 1350 ° C, and the temperature of the slab immediately after peeling from the roll was about 800 ° C when measured with an infrared thermal image measurement device. The cooling time on the roll was about 1.2 seconds.
Next, the slab after the roll peeling was collected in a steel container, the container was sealed, taken out into the atmosphere and allowed to cool, and collected after 1500 minutes to obtain a sample 1a as a material alloy (B). . The temperature of the slab in the container was about 665 ° C. immediately after the collection, about 615 ° C. after 80 minutes from the collection, and about 90 ° C. when the slab was taken out after 1500 minutes. Also, the time required to enter the steel container after the roll was peeled was about 0.8 seconds. Sample 1a was analyzed in the same manner as Sample 1 described above. The results are shown in Tables 1 and 2. FIG. 1 is a graph showing the thermal history at the time of manufacturing the samples 1 and 1a.
[0032]
(Method of manufacturing permanent magnets)
Sample 1 and sample 1a prepared above were introduced into a drum mixer at a mass ratio of 5: 5 and mixed. After hydrogenation at 30 ° C. and a hydrogen atmosphere of 0.1 MPa for 1 hour, hydrogen pulverization was performed by dehydrogenation at 400 ° C. Next, pulverization was performed by a jet mill so that the average particle diameter became 5.0 μm.
Then, in a magnetic field of 15 kOe, 2.5 ton / cm2, And the obtained molded body was sintered in a vacuum for 4 hours. At that time, the sintering temperature was changed to 1055 ° C, 1060 ° C and 1065 ° C. After sintering, the first stage heat treatment was performed at 900 ° C. for 1 hour, and the second stage heat treatment was performed at 500 ° C. for 2 hours to perform aging treatment. The magnetic properties of the obtained permanent magnet were measured by a conventional method. Table 3 shows the results.
The orientation shrinkage of the obtained permanent magnet was measured according to the following definition. Generally, in the case of an R—Fe—B based sintered magnet, press molding is performed while orienting particles in a magnetic field in order to magnetically anisotropy. Accordingly, the amount of shrinkage during sintering differs between the particle orientation direction (c-axis direction) and the a-axis direction perpendicular thereto. ΔL for shrinkage in orientation direction, sintering and aging
The length of the molded body before processing is L0In this case, the orientation shrinkage can be determined by the following equation. Table 3 shows the results.
Shrinkage = ΔL / L0
[0033]
Example 2 ~ 4
A permanent magnet was prepared in the same manner as in Example 1 except that the mixing ratio of Sample 1 and Sample 1a prepared in Example 1 was changed as shown in Table 2, and each magnetic property and the like were measured. Table 3 shows the results.
[0034]
Example 5
Example 1 except that the alloy composition was 34.0% by mass of Nd, 1.0% by mass of Dy, 1.00% by mass of B, 0.20% by mass of Al, 1.0% by mass of Co and the balance iron. In the same manner as in Sample 1, a sample 2 as a raw material alloy (A) was prepared. The ternary eutectic point of this alloy is about 640 ° C. The heat history of the slab during casting was almost the same as that of Sample 1.
Also, except that the composition of the alloy was 31.5% by mass of Nd, 1.0% by mass of Dy, 1.0% by mass of B, 0.20% by mass of Al, 1.0% by mass of Co and the balance iron. A sample 2a, which is a raw material alloy (B), was prepared in the same manner as the sample 1a in Example 1. The ternary eutectic point of this alloy is about 640 ° C. The heat history of the slab during casting was almost the same as that of sample 1a. The same analysis as Sample 1 in Example 1 was performed on the obtained Sample 2 and Sample 2a. The results are shown in Tables 1 and 2.
Further, a permanent magnet was prepared in the same manner as in Example 1 except that Sample 2 and Sample 2a were mixed at a mass ratio of 2: 8, and the magnetic properties and the like were measured. Table 3 shows the results.
[0035]
Comparative example 1
A permanent magnet was prepared in the same manner as in Example 1 except that only the sample 1a prepared in Example 1 was used, and the magnetic properties and the like were measured. Table 3 shows the results.
[0036]
Comparative example 2
Except that the alloy composition was 30.5% by mass of Nd, 1.11% by mass of B, 0.20% by mass of Al, and the balance iron, the raw material alloy (B) was similar to the sample 1a in Example 1. Was prepared as sample 3a. The ternary eutectic point of this alloy is about 640 ° C. The heat history of the slab during casting was almost the same as that of sample 1a.
Also, except that the alloy composition was Nd 45.5% by mass, Dy 10.0% by mass, Al 0.20% by mass, Co 10.0% by mass, and the balance iron, and the heat history was as follows. A sample 4a different from the material alloys (A) and (B) was obtained in the same manner as the sample 1a in Example 1. At this time, the temperature of the molten metal immediately before coming into contact with the roll was about 1450 to 1500 ° C, and the temperature of the cast piece immediately after being peeled off the roll was about 550 ° C. The cooling time on the roll was about 1.8 seconds. Further, the slab after the roll peeling was cooled by a rotating drum type water cooling device, and was recovered after a lapse of 40 minutes. The slab temperature immediately after the slab was moved to the water cooling device was about 400 ° C., and the slab temperature immediately after the removal was about 55 ° C. The slab thickness of each of Sample 3a and Sample 4a was about 0.4 mm.
For sample 3a, the same analysis as for sample 1 in Example 1 was performed. The results are shown in Tables 1 and 2.
Further, a permanent magnet was prepared in the same manner as in Example 1 except that the obtained sample 3a and sample 4a were mixed at a mass ratio of 9: 1, and magnetic properties and the like were measured. Table 3 shows the results.
[0037]
[Table 1]
Figure 2004214390
[0038]
[Table 2]
Figure 2004214390
[0039]
[Table 3]
Figure 2004214390
[0040]
【The invention's effect】
In the method for producing a rare earth magnet of the present invention, particularly, the raw material alloy (A) of the present invention or the rare earth magnet raw material alloy of the present invention is used in combination with the raw material alloy (B). Therefore, the conventional method of manufacturing a rare earth magnet using a single alloy is alleviated, and the problem of oxidation of the R component and the poor yield in the conventional two alloy method are improved. Moreover, the obtained rare-earth magnet does not have a decrease in magnetic properties due to a variation in sintering temperature and a variation in shrinkage, and is superior in magnetic properties to a permanent magnet prepared by a conventional two-alloy method.
Further, since the raw material alloy (A) for rare earth magnets and the powder thereof of the present invention have a specific composition and structure, they are useful for a production method for stably and easily obtaining rare earth magnets having high magnetic properties. It is useful for the production method of the present invention.
[Brief description of the drawings]
FIG.
3 is a graph showing the thermal history of Sample 1 and Sample 1a prepared in Example 1 during manufacture.

Claims (7)

イットリウムを含む希土類金属元素から選ばれる少なくとも1種からなるR 27.6〜35.0質量%と、ボロン0.94〜1.30質量%と、鉄を含む残部Mとからなる組成を有し、RFe14B相を主相とし、RFe14B相の含有割合が77体積%以上、R−rich相の含有割合が15〜23体積%であり、RFe14B相の90体積%以上が、短軸方向の粒径が0.1〜50μm、長軸方向の粒径が30〜500μmの結晶粒からなり、RFe14B相のc軸格子定数が、平衡状態より0.3〜1%大きい原料合金(A)及び、
イットリウムを含む希土類金属元素から選ばれる少なくとも1種からなるR 27.6〜35.0質量%と、ボロン0.94〜1.30質量%と、鉄を含む残部Mとからなる組成を有し、主相としてのRFe14B相の含有割合が85体積%以上、R−rich相の含有割合が15体積%未満である原料合金(B)とを準備する準備工程と、
原料合金(A)及び(B)を粉砕する粉砕工程と、
得られた粉砕粉末を成型する成型工程と、
得られた成型物を焼結する焼結工程と、
得られた焼結物を熱処理する熱処理工程とを含むことを特徴とする希土類磁石の製造法。
R 27.6 to 35.0% by mass of at least one selected from rare earth metal elements containing yttrium, 0.94 to 1.30% by mass of boron, and a balance of iron-containing balance M , R 2 Fe 14 B phase as the main phase, the content ratio of the R 2 Fe 14 B phase is 77% by volume or more, the content ratio of the R-rich phase is 15 to 23% by volume, and the R 2 Fe 14 B phase 90% by volume or more is composed of crystal grains having a particle diameter in the short axis direction of 0.1 to 50 μm and a particle diameter in the long axis direction of 30 to 500 μm, and the c-axis lattice constant of the R 2 Fe 14 B phase is in an equilibrium state. 0.3 to 1% larger raw material alloy (A) and
R 27.6 to 35.0% by mass of at least one selected from rare earth metal elements containing yttrium, 0.94 to 1.30% by mass of boron, and a balance of iron-containing balance M A preparation step of preparing a raw material alloy (B) in which the content of the R 2 Fe 14 B phase as the main phase is 85% by volume or more and the content of the R-rich phase is less than 15% by volume,
A crushing step of crushing the raw material alloys (A) and (B);
A molding step of molding the obtained ground powder,
A sintering step of sintering the obtained molded product,
And a heat treatment step of heat-treating the obtained sintered product.
イットリウムを含む希土類金属元素から選ばれる少なくとも1種からなるR 27.6〜35.0質量%と、ボロン0.94〜1.30質量%と、鉄を含む残部Mとからなる組成を有し、RFe14B相を主相とし、RFe14B相の含有割合が77体積%以上、R−rich相の含有割合が15〜23体積%であり、RFe14B相の90体積%以上が、短軸方向の粒径が0.1〜50μm、長軸方向の粒径が30〜500μmの結晶粒からなり、RFe14B相のc軸格子定数が、平衡状態より0.3〜1%大きいことを特徴とする希土類磁石用原料合金(A)。R 27.6 to 35.0% by mass of at least one selected from rare earth metal elements containing yttrium, 0.94 to 1.30% by mass of boron, and a balance of iron-containing balance M , R 2 Fe 14 B phase as the main phase, the content ratio of the R 2 Fe 14 B phase is 77% by volume or more, the content ratio of the R-rich phase is 15 to 23% by volume, and the R 2 Fe 14 B phase 90% by volume or more is composed of crystal grains having a particle diameter in the short axis direction of 0.1 to 50 μm and a particle diameter in the long axis direction of 30 to 500 μm, and the c-axis lattice constant of the R 2 Fe 14 B phase is in an equilibrium state. A raw material alloy for rare earth magnets (A), which is 0.3 to 1% larger than the alloy. 残部Mが、鉄以外の遷移金属元素、珪素及び炭素からなる群より選択される少なくとも1種を含む請求項2記載の原料合金(A)。The raw material alloy (A) according to claim 2, wherein the balance M includes at least one selected from the group consisting of transition metal elements other than iron, silicon, and carbon. 形態が、板厚0.03〜2.0mmの薄片である請求項2又は3記載の原料合金(A)。The raw material alloy (A) according to claim 2 or 3, wherein the form is a flake having a thickness of 0.03 to 2.0 mm. 合金単位質量当りのRFe14B相の水素吸蔵量が、平衡状態のRFe14B相の水素吸蔵量より3.0〜22%大きく、合金単位質量当りのR−rich相の水素吸蔵量が、平衡状態のR−rich相の水素吸蔵量より10〜60%小さいことを特徴とする請求項2〜4のいずれか1項記載の原料合金(A)。Hydrogen storage capacity of the R 2 Fe 14 B phase per alloy unit mass, 3.0 to 22% than the hydrogen storage capacity of the R 2 Fe 14 B phase in equilibrium increases, hydrogen R-rich phase per alloy unit mass The raw material alloy (A) according to any one of claims 2 to 4, wherein the storage amount is 10 to 60% smaller than the hydrogen storage amount of the R-rich phase in an equilibrium state. R−rich相の体積率(Rx)を、Rx=Rc×X(ここで、Rcは平衡状態でのR−rich相の体積率である)と表した際のXが2.2〜5.0である請求項1〜5のいずれか1項記載の原料合金(A)。When the volume ratio (Rx) of the R-rich phase is expressed as Rx = Rc × X (where Rc is the volume ratio of the R-rich phase in an equilibrium state), X is 2.2 to 5.x. The raw material alloy (A) according to any one of claims 1 to 5, which is 0. 請求項2〜6のいずれか1項記載の原料合金(A)を水素吸蔵崩壊して得た粉末であって、粒径355〜850μmの粉末を50質量%以上含み、重量平均粒径が300〜800μmであることを特徴とする希土類磁石用原料合金粉末。A powder obtained by subjecting the raw material alloy (A) according to any one of claims 2 to 6 to hydrogen absorption and disintegration, comprising a powder having a particle size of 355 to 850 µm in an amount of 50% by mass or more, and having a weight average particle size of 300. A raw material alloy powder for rare earth magnets, which has a thickness of from 800 to 800 µm.
JP2002381779A 2002-12-27 2002-12-27 Rare earth magnet manufacturing method, rare earth magnet raw material alloy and powder Expired - Lifetime JP4133315B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002381779A JP4133315B2 (en) 2002-12-27 2002-12-27 Rare earth magnet manufacturing method, rare earth magnet raw material alloy and powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002381779A JP4133315B2 (en) 2002-12-27 2002-12-27 Rare earth magnet manufacturing method, rare earth magnet raw material alloy and powder

Publications (2)

Publication Number Publication Date
JP2004214390A true JP2004214390A (en) 2004-07-29
JP4133315B2 JP4133315B2 (en) 2008-08-13

Family

ID=32817601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002381779A Expired - Lifetime JP4133315B2 (en) 2002-12-27 2002-12-27 Rare earth magnet manufacturing method, rare earth magnet raw material alloy and powder

Country Status (1)

Country Link
JP (1) JP4133315B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006265609A (en) * 2005-03-23 2006-10-05 Tdk Corp Raw alloy for r-t-b-based sintered magnet, and method for manufacturing r-t-b-based sintered magnet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006265609A (en) * 2005-03-23 2006-10-05 Tdk Corp Raw alloy for r-t-b-based sintered magnet, and method for manufacturing r-t-b-based sintered magnet

Also Published As

Publication number Publication date
JP4133315B2 (en) 2008-08-13

Similar Documents

Publication Publication Date Title
EP0753867B1 (en) Rare earth permanent magnet and method for producing the same
EP0886284B1 (en) Cast alloy used for production of rare earth magnet and method for producing cast alloy and magnet
CN1958824B (en) R-T-B type alloy, production method of r-t-b type alloy flake, permanent magnet, and fine powder for manufacturing the same
US6506265B2 (en) R-Fe-B base permanent magnet materials
JP3267133B2 (en) Alloy for rare earth magnet, method for producing the same, and method for producing permanent magnet
EP1479787B1 (en) Sinter magnet made from rare earth-iron-boron alloy powder for magnet
US7846273B2 (en) R-T-B type alloy, production method of R-T-B type alloy flake, fine powder for R-T-B type rare earth permanent magnet, and R-T-B type rare earth permanent magnet
US8157927B2 (en) Raw material alloy for R-T-B system sintered magnet, R-T-B system sintered magnet and production method thereof
JPH1036949A (en) Alloy for rare earth magnet and its production
JP2004111481A (en) Rare earth sintered magnet and its manufacturing method
JP4479944B2 (en) Alloy flake for rare earth magnet and method for producing the same
JPH08167515A (en) Manufacturing for material of r-f-b-based permanent magnet
JP4955217B2 (en) Raw material alloy for RTB-based sintered magnet and method for manufacturing RTB-based sintered magnet
JP4276541B2 (en) Alloy for Sm-Co magnet, method for producing the same, sintered magnet, and bonded magnet
JP3712595B2 (en) Alloy ribbon for permanent magnet and sintered permanent magnet
JP3474684B2 (en) High performance R-Fe-BC system magnet material with excellent corrosion resistance
JP2004143595A (en) Raw material alloy for rare earth magnet, production method therefor, and alloy powder for rare earth magnet
JP4133315B2 (en) Rare earth magnet manufacturing method, rare earth magnet raw material alloy and powder
JP2005288493A (en) Method and apparatus for producing alloy strip, and method for producing alloy powder
JPH0745412A (en) R-fe-b permanent magnet material
JP6773150B2 (en) RTB-based rare earth sintered magnet alloy, RTB-based rare earth sintered magnet
JP2004149851A (en) Permanent magnet alloy
JPH0582319A (en) Permanent magnet
JPH0778710A (en) Manufacture of r-fe-b permanent magnet material
JPH0778709A (en) Manufacture of r-fe-b permanent magnet material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080602

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4133315

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term