JPH0745412A - R-fe-b permanent magnet material - Google Patents

R-fe-b permanent magnet material

Info

Publication number
JPH0745412A
JPH0745412A JP5207192A JP20719293A JPH0745412A JP H0745412 A JPH0745412 A JP H0745412A JP 5207192 A JP5207192 A JP 5207192A JP 20719293 A JP20719293 A JP 20719293A JP H0745412 A JPH0745412 A JP H0745412A
Authority
JP
Japan
Prior art keywords
magnetic field
alloy
atomic
powder
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5207192A
Other languages
Japanese (ja)
Inventor
Yuji Kaneko
裕治 金子
Naoyuki Ishigaki
尚幸 石垣
Hiroki Tokuhara
宏樹 徳原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP5207192A priority Critical patent/JPH0745412A/en
Priority to DE69318147T priority patent/DE69318147T2/en
Priority to EP93308184A priority patent/EP0633581B1/en
Priority to AT93308184T priority patent/ATE165477T1/en
Priority to RU93049098A priority patent/RU2113742C1/en
Priority to KR93021615A priority patent/KR0131060B1/en
Priority to CN93115008A priority patent/CN1076115C/en
Priority to TW082108554A priority patent/TW272293B/zh
Publication of JPH0745412A publication Critical patent/JPH0745412A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To enable effective fine grinding and to acquire good oxidation resistance by containing R2Fe14B and specifying average grain diameter, apparent density, orientation degree and magnetic characteristic. CONSTITUTION:A casting piece of fine and uniform structure is manufactured, which is comprised of R (R is at least one kind of rare earth elements including Y) of 12 to 16 atomic %, B of 4 to 8 atomic %, O3 of 5000ppm or less and a remaining part of Fe (Fe is partially displaced with one or two kinds of Ni) and inevitable impurities and contains a main phase of R2Fe14B of 90% or more. After the casting piece is hydrogen occluded, fine powder 7 which is obtained by finely grinding alloy powder stabilized by de-H2 treatment is orientated by a pulse coil 6 to realize average grain diameter of 10mum or less, apparent density of 7.45g/cm<3> or more and orientation degree of 85% or more. Thereafter, it is molded and sintered to acquire a total of (BH)max value and iHc value of 59 or more and angularity {(Br<2>/4)/(BH)max} of 1.01 to 1.045.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、R(但しRはYを含
む希土類元素のうち、少なくとも1種を含有)、Fe、
Bを主成分とするR−Fe−B系永久磁石材料に係り、
R、Fe、Bを主成分とする合金溶湯を単ロール法ある
いは双ロール法等のストリップキャスティング法にて特
定板厚のRリッチ相が微細に分離した均質組織を有する
鋳片を得、これをR含有Fe合金のH2吸蔵性を利用し
て鋳片を自然崩壊させ、さらに脱H2処理して安定化さ
せて、効率よい微粉砕を可能にし、さらにパルス磁界中
で微粉末を配向後、成形、焼結、時効処理して製造し、
最大エネルギー積値(BH)max(MGOe);Aと
保磁力iHc(kOe)の特性値;Bの合計値A+Bが
59以上の値を有し、角型性{(Br2/4)/(B
H)max}が1.01〜1.045の値を示す高性能
R−Fe−B系永久磁石に関する。
The present invention relates to R (provided that R contains at least one rare earth element including Y), Fe,
Regarding the R-Fe-B based permanent magnet material containing B as a main component,
A molten alloy containing R, Fe, and B as main components is obtained by a strip casting method such as a single roll method or a twin roll method to obtain a slab having a homogeneous structure in which an R-rich phase having a specific plate thickness is finely separated. The H 2 occlusion property of the R-containing Fe alloy is used to spontaneously disintegrate the slab and further de-H 2 treatment for stabilization, enabling efficient pulverization, and further after orienting the fine powder in a pulsed magnetic field. Manufactured by molding, sintering, aging treatment,
Characteristic values of A and coercive force iHc (kOe);; maximum energy product value (BH) max (MGOe) have a total value A + B of 59 or more values B, squareness {(Br 2/4) / ( B
H) max} relates to a high performance R-Fe-B based permanent magnet showing a value of 1.01 to 1.045.

【0002】[0002]

【従来の技術】今日、高性能永久磁石として代表的なR
−Fe−B系永久磁石(特開昭59−46008号)
は、三元系正方晶化合物の主相とRリッチ相を有する組
織にて高い磁石特性が得られ、一般家庭の各種電器製品
から大型コンピュータの周辺機器まで幅広い分野で使用
され、用途に応じた種々の磁石特性を発揮するよう種々
の組成のR−Fe−B系永久磁石が提案されている。し
かしながら、電気、電子機器の小型、軽量化ならびに高
機能化の要求は強く、R−Fe−B系永久磁石のより一
層の高性能化とコストダウンが要求されている。
2. Description of the Related Art Today, R is a typical high-performance permanent magnet.
-Fe-B system permanent magnet (JP-A-59-46008)
Has high magnet characteristics due to the structure of the ternary tetragonal compound having the main phase and the R-rich phase, and is used in a wide range of fields from various household electrical appliances to large computer peripherals, depending on the application. R-Fe-B based permanent magnets of various compositions have been proposed so as to exhibit various magnet characteristics. However, there are strong demands for smaller and lighter electric and electronic devices as well as higher functionality, and further higher performance and cost reduction of R—Fe—B permanent magnets are required.

【0003】一般にR−Fe−B系焼結磁石の残留磁束
密度(Br)は以下の(1)式で表すことができる。 Br ∝ (Is ・β) ・ f ・ {ρ / ρ0 ・ (1 − α)}2/3 (1)式 但し、Is: 飽和磁化 β: 飽和磁化の温度依存性 f: 配向度 ρ: 焼結体の密度 ρ0: 理論密度 α: 粒界相(非磁性相の体積割合) 従って、R−Fe−B系焼結磁石の残留磁束密度(B
r)を高めるためには、1)強磁性相であり、主相のR
2Fe14B相の存在量を多くすること、2)焼結体の密
度を主相の理論密度まで高めること、3)さらに主相結
晶粒の、磁化容易軸方向の配向度を高めることが要求さ
れる。
Generally, the residual magnetic flux density (Br) of an R-Fe-B system sintered magnet can be expressed by the following equation (1). Br ∝ (Is · β) · f · {ρ / ρ 0 · (1-α)} 2/3 Equation (1) where Is: Saturation magnetization β: Temperature dependence of saturation magnetization f: Orientation degree ρ: Burning Consistency density ρ 0 : Theoretical density α: Grain boundary phase (volume ratio of non-magnetic phase) Therefore, the residual magnetic flux density (B
In order to increase r), 1) the ferromagnetic phase and R of the main phase
2 To increase the abundance of the Fe 14 B phase, 2) to increase the density of the sintered body to the theoretical density of the main phase, and 3) to further increase the degree of orientation of the main phase crystal grains in the easy axis direction of magnetization. Required.

【0004】すなわち、前記1)項の達成のためには、
磁石の組成を上記R2Fe14Bの化学量論的組成に近づ
けることが重要であるが、上記組成の合金を溶解し、鋳
型に鋳造した合金塊を、出発原料としてR−Fe−B系
焼結磁石を作製しようとすると、合金塊に晶出したα−
Feや、Rリッチ相が局部的に遍在していることなどか
ら、特に微粉砕時に粉砕が困難となり、組成ずれを生ず
る等の問題があった。詳述すると、前記合金塊をH2
蔵、脱H2処理して機械的微粉砕をおこなう場合(特開
昭60−63304号、特開昭63−33505号)、
合金塊に晶出したα−Feはそのまま粉砕時に残留し、
その展延性の性質のために粉砕を妨げ、又局部的に遍在
したRリッチ相はH2吸蔵処理によって、水素化物を生
成し、微細な粉末となるため、機械的な微粉砕時に酸化
が促進されたり、またジェットミルを用いた粉砕では優
生的に飛散することにより組成ずれを生ずる。
That is, in order to achieve the above item 1),
It is important to bring the composition of the magnet close to the stoichiometric composition of the above R 2 Fe 14 B, but the alloy ingot having the above composition melted and cast in a mold is used as a starting material in the R—Fe—B system. When trying to make a sintered magnet, α-
Since Fe and R-rich phases are locally ubiquitous, there is a problem that it becomes difficult to pulverize particularly during fine pulverization and compositional deviation occurs. More specifically, when the alloy ingot is occluded with H 2 and dehydrogenated with H 2 to perform mechanical pulverization (JP-A-60-63304, JP-A-63-33505),
The α-Fe crystallized in the alloy lump remains as it is during grinding,
Owing to its spreading property, it hinders crushing, and the locally ubiquitous R-rich phase produces hydrides by H 2 storage treatment and becomes a fine powder, so that oxidation during mechanical crushing occurs. Acceleration, and in the pulverization using a jet mill, compositional deviation occurs due to scattering in a dominant manner.

【0005】また、前記1)項の達成のためR2Fe14
Bの化学量論的組成に近づけた合金粉末を用いて焼結体
を作製しようとすると、焼結体の作製工程において不可
避な酸化により、液相焼結を引き起こすためのNdリッ
チ相が酸化物を生成するため消費されて焼結できなかっ
たり、上記R2Fe14B相の存在量を増加によって必然
的に、Ndリッチ相やBリッチ相の存在量が減少するの
で、焼結体の製造をより一層困難なものにしていた。さ
らに、永久磁石材料の安定性を示す指標の1つであり、
かつ、重要な性質の1つである保磁力(iHc)が低下
してしまうことになった。さらに、前記3)項について
は、通常R−Fe−B系永久磁石の製造方法において、
主相結晶粒の磁化容易軸方向を揃えるために、磁界中で
プレス成形する方法が採用されている。その際、磁界の
印加方向とプレス加圧する方向とによって、残留磁束密
度(Br)値並びに角型性{(Br2/4)/(BH)
max}の値が変化したり、また、印加磁界の強度によ
っても影響を受けることが知られている。
Further, in order to achieve the above item 1), R 2 Fe 14
When an attempt is made to produce a sintered body by using an alloy powder having a stoichiometric composition of B, the Nd-rich phase for causing liquid phase sintering is an oxide due to inevitable oxidation in the production process of the sintered body. Since it is consumed and cannot be sintered or the amount of the R 2 Fe 14 B phase is increased, the amount of the Nd-rich phase or the B-rich phase is inevitably decreased. Was made even more difficult. Furthermore, it is one of the indexes showing the stability of the permanent magnet material,
In addition, the coercive force (iHc), which is one of the important properties, is reduced. Further, regarding the above item 3), in the method for producing an R-Fe-B based permanent magnet,
In order to align the easy-axis directions of the main phase crystal grains, a method of press molding in a magnetic field is adopted. At that time, by the direction of pressure application direction and press-magnetic field, the residual magnetic flux density (Br) value and the squareness {(Br 2/4) / (BH)
It is known that the value of max} changes and is also affected by the strength of the applied magnetic field.

【0006】[0006]

【発明が解決しようとする課題】最近、鋳塊粉砕法によ
るR−Fe−B系合金粉末の欠点たる結晶粒の粗大化、
α−Feの残留、偏析を防止するために、R−Fe−B
系合金溶湯を双ロール法により、特定板の鋳片となし、
前記鋳片を通常の粉末冶金法に従って、鋳片をスタンン
プミル・ジョークラッシャーなどで粗粉砕後、さらにデ
ィスクミル、ボールミル、アトライター、ジェットミル
など機械的粉砕法により平均粒径が3〜5μmの粉末に
微粉砕後、磁場中プレス、焼結時効処理する製造方法が
提案(特開昭63−317643号公報)されている。
しかし、前記方法では従来の鋳型に鋳造した鋳塊粉砕法
の場合に比し、微粉砕時の粉砕能率の飛躍的な向上は望
めず、また微粉砕時、粒界粉砕のみならず、粒内粉砕も
起こるため、磁気特性の大幅の向上も達成できず、ま
た、Rリッチ相が酸化に対して安定なRH2相になって
いないため、また、Rリッチ相が微細で表面積が大きい
ため、耐酸化性に劣り、工程中に酸化が進行し、高特性
を得ることができない。最近益々、R−Fe−B系永久
磁石材料に対するコストダウンの要求が強く、効率よく
高性能永久磁石を製造することが、極めて重要になって
いる。このため、極限に近い特性を引き出すための製造
条件の改良が必要となっている。
Recently, coarsening of crystal grains, which is a defect of the R-Fe-B alloy powder by the ingot crushing method,
In order to prevent α-Fe from remaining and segregating, R-Fe-B
The molten alloy is made into a slab of a specific plate by the twin roll method,
The slab is roughly pulverized by a standard powder metallurgical method by a slump pump, jaw crusher or the like, and then mechanically pulverized by a disc mill, a ball mill, an attritor, a jet mill or the like to obtain a powder having an average particle diameter of 3 to 5 μm. In Japanese Patent Application Laid-Open No. 63-317643, there is proposed a manufacturing method in which after pulverization, pressing in a magnetic field and sintering aging treatment are performed.
However, in the above method, compared with the case of the ingot crushing method of casting in a conventional mold, it is not possible to expect a dramatic improvement in the pulverization efficiency during fine pulverization, and during fine pulverization, not only grain boundary pulverization but also intragranular Since crushing also occurs, it is not possible to achieve a significant improvement in magnetic properties, and because the R-rich phase is not a stable RH 2 phase against oxidation, and because the R-rich phase is fine and has a large surface area, It is inferior in oxidation resistance, oxidation progresses during the process, and high characteristics cannot be obtained. Recently, there is a strong demand for cost reduction of R-Fe-B based permanent magnet materials, and it has become extremely important to efficiently produce high-performance permanent magnets. Therefore, it is necessary to improve the manufacturing conditions to bring out the characteristics that are close to the limit.

【0007】この発明は、上述したR−Fe−B系永久
磁石材料の製造方法における問題点を解消し、効率よい
微粉砕を可能にし、かつ耐酸化性に優れ、しかも磁石の
結晶粒の微細化により高いiHcを発現し、さらに各結
晶粒の磁化容易方向の配向度を高めて、(BH)max
値(MGOe);Aと、iHc値(kOe);Bの合計
値、A+B≧59の値を有し、角型性{(Br2/4)
/(BH)max}が1.01〜1.045の値を示す
高性能R−Fe−B系永久磁石材料の提供を目的として
いる。
The present invention solves the above-mentioned problems in the method for producing an R-Fe-B system permanent magnet material, enables efficient fine pulverization, is excellent in oxidation resistance, and has fine crystal grains of the magnet. By increasing the degree of iHc, and further increasing the degree of orientation of each crystal grain in the easy magnetization direction, (BH) max
Value (MGOe); and A, iHc value (kOe); the sum of B, has a value of A + B ≧ 59, squareness {(Br 2/4)
The objective is to provide a high-performance R-Fe-B based permanent magnet material exhibiting a value of / (BH) max} of 1.01 to 1.045.

【0008】[0008]

【課題を解決するための手段】発明者らは、まずR−F
e−B系合金を出発原料として微粉砕能率の向上、かつ
耐酸化性にすぐれ、磁石合金の磁気特性、特にiHcの
向上を目的に、粉砕方法について種々検討した結果、組
織が微細かつ均等なR−Fe−B系鋳片をストリップキ
ャスティング法にて製造し、水素吸蔵させた後、脱H2
処理して安定化させた合金粉末を微粉砕した場合、微粉
砕能は従来の約2倍にも向上し、且つ微粉末にパルス磁
界をかけて配向させた後、成形して焼結することによ
り、(BH)max値とiHc値の合計値が59以上の
値を有し、角型性{(Br2/4)/(BH)max}
が1.01〜1.045の値を示しかつ焼結磁石のiH
cが向上することを知見した。すなわち、ストリップキ
ャスティングされた特定厚みのRリッチ相が微細に分離
した組織を有する特定組成のR−Fe−B系合金にH2
吸蔵させると、微細に分散されたRリッチ相が水素化物
を生成して体積膨張することにより、前記合金を自然崩
壊させることができ、その結果、微粉砕により、合金塊
を構成している結晶粒を細分化することが可能となり、
粒度分布が均一な粉末を作製することができる。
The inventors of the present invention firstly investigated the R-F.
As a result of various studies on the pulverization method using the e-B alloy as the starting material, the fine pulverization efficiency was improved, the oxidation resistance was excellent, and the magnetic properties of the magnet alloy, particularly iHc, were studied. the R-Fe-B cast piece produced by the strip casting method, after hydrogen occlusion, de H 2
When the treated and stabilized alloy powder is finely pulverized, the fine pulverizing ability is improved about twice as much as the conventional one, and the fine powder is oriented by applying a pulse magnetic field, and then shaped and sintered. by, (BH) sum of max value and iHc value has 59 or more values, squareness {(Br 2/4) / (BH) max}
Shows a value of 1.01 to 1.045 and the iH of the sintered magnet is
It was found that c was improved. That is, H 2 is added to an R-Fe-B based alloy having a specific composition having a structure in which an R-rich phase having a specific thickness that has been strip cast is finely separated.
When occluded, the finely dispersed R-rich phase forms a hydride and volume-expands, so that the alloy can spontaneously disintegrate, and as a result, finely pulverized crystals forming an alloy lump. It becomes possible to subdivide the grains,
A powder having a uniform particle size distribution can be produced.

【0009】特に、この際Rリッチ相が微細に分散さ
れ、しかもR2Fe14B相が微細であることが重要であ
る。しかも通常の鋳型を用いて合金塊を溶製する方法で
は、合金組成をR2Fe14Bの化学量論的組成に近づけ
た場合、Fe初晶の晶出が避け難く、次工程の微粉砕能
を大きく低下させる要因になってしまう。そのため、合
金塊を均質化させる目的で熱処理を加えて、α−Feを
消失させる手段がとられるが、主相結晶粒の粗大化と、
Rリッチ相の偏析も進むため、焼結磁石のiHc向上を
図ることが困難となる。また、主相結晶粒の磁化容易軸
方向を揃える、すなわち、配向度を高めることも高Br
化、角型性の向上を達成するための必須条件であり、そ
のため、粉末を磁界中でプレスする方式が採られてい
る。
In this case, it is particularly important that the R-rich phase is finely dispersed and the R 2 Fe 14 B phase is fine. Moreover, in the method of smelting an alloy ingot by using an ordinary mold, when the alloy composition is brought close to the stoichiometric composition of R 2 Fe 14 B, crystallization of Fe primary crystal is difficult to avoid and fine pulverization in the next step is performed. It becomes a factor that greatly reduces the performance. Therefore, heat treatment is applied for the purpose of homogenizing the alloy ingot, and a means for eliminating α-Fe is taken, but with the coarsening of the main phase crystal grains,
Since segregation of the R-rich phase also progresses, it is difficult to improve the iHc of the sintered magnet. In addition, it is also possible to align the easy magnetization axis directions of the main phase crystal grains, that is, to increase the degree of orientation with high Br
It is an indispensable condition for attaining the improvement of the flatness and the squareness, and therefore the method of pressing the powder in the magnetic field is adopted.

【0010】しかしながら、磁界を発生させるために通
常のプレス装置(油圧プレス、機械プレス)に配置され
ているコイルおよび電源では、高々10kOe〜20k
Oeの磁界しか発生することしかできず、角型性{(B
2/4)/(BH)max}も1.05以上の値にな
ってしまい、Br値から期待される理論的な(BH)m
ax値(この場合、上記角型性{(Br2/4)/(B
H)max}は1.00)への到達は困難であった。そ
こでより高い磁界中で成形することを試みたが、より高
い磁界を発生させるためには、コイルの巻数を多くする
必要があり、また高い電源を必要とするための装置の大
型化を必要とする。本発明者らは、プレス時の磁界強度
と焼結体のBrとの関係を解析したところ、磁界強度を
高くすればする程、高Br化でき、角型性が向上し、瞬
間的に強磁界を発生させることの可能なパルス磁界を用
いることによって、より一層高Br化、高角型性化でき
ることを知見した。さらに、パルス磁界を用いる方法に
おいては、一旦パルス磁界で瞬間的に配向させることが
重要で、さらに、粉末を静水圧プレスによって成形する
ことが可能であり、パルス磁界と電磁石による静磁界と
の組み合せによって、磁界中プレス成形することも可能
であることを知見した。
However, the coil and the power source arranged in a usual press device (hydraulic press, mechanical press) for generating a magnetic field have a maximum of 10 kOe to 20 k.
Only the magnetic field of Oe can be generated, and the squareness {(B
r 2/4) / (BH ) max} also becomes 1.05 or more values, theoretical expected from Br value (BH) m
ax value (in this case, the squareness of {(Br 2/4) / (B
It was difficult to reach H) max} of 1.00). Therefore, we tried molding in a higher magnetic field, but in order to generate a higher magnetic field, it is necessary to increase the number of turns of the coil, and it is also necessary to increase the size of the device that requires a high power supply. To do. The present inventors analyzed the relationship between the magnetic field strength during pressing and Br of the sintered body. The higher the magnetic field strength, the higher the Br value, the higher the squareness, and the momentarily strong. It has been found that by using a pulsed magnetic field capable of generating a magnetic field, higher Br and higher squareness can be achieved. Furthermore, in the method using a pulsed magnetic field, it is important to momentarily orientate once with the pulsed magnetic field, and it is possible to shape the powder by a hydrostatic press, and the combination of the pulsed magnetic field and the static magnetic field by an electromagnet can be combined. It was found that it is also possible to perform press molding in a magnetic field.

【0011】この発明は、R(但しRはYを含む希土類
元素のうち少なくとも1種)12原子%〜16原子%、
B4原子%〜8原子%、O2 5000ppm以下、残
部Fe(但しFeの一部をCo、Niの1種または2種
にて置換できる)及び不可避的不純物からなり、主相の
2Fe14Bを90%以上含み、平均粒径10μm以
下、見掛け密度が7.45g/cm3以上の値を有し、
配向度が85%以上を有し、(BH)max値;A(M
GOe)とiHc値;B(kOe)の合計値A+Bが5
9以上の値を有し、角型性{(Br2/4)/(BH)
max}が1.01〜1.045の値を有することを特
徴とするR−Fe−B系永久磁石材料である。
According to the present invention, R (provided that R is at least one of rare earth elements including Y) is 12 atom% to 16 atom%,
B4 atomic% to 8 atomic%, O 2 5000 ppm or less, balance Fe (however, a part of Fe can be replaced by one or two kinds of Co and Ni) and unavoidable impurities, and R 2 Fe 14 of the main phase 90% or more of B, having an average particle size of 10 μm or less and an apparent density of 7.45 g / cm 3 or more,
Orientation degree is 85% or more, (BH) max value; A (M
GOe) and iHc value; sum of B (kOe) A + B is 5
Have 9 or more, squareness {(Br 2/4) / (BH)
max} has a value of 1.01 to 1.045, which is an R-Fe-B based permanent magnet material.

【0012】この発明のR−Fe−B系永久磁石の磁気
特性は、最大エネルギー積(BH)max値;A(MG
Oe)と保磁力iHc値(kOe);Bの合計値をA+
Bが59以上を有し、BH(max)が50MGOe以
上の場合は、iHcは9kOe以上であり、又BH(m
ax)が45MGOe以上の場合は、iHcは14kO
e以上で、角型性{(Br2/4)/(BH)max}
の値1.01〜1.045、組成、製造条件等を適宜選
択することにより所要の磁気特性を得ることができる。
The magnetic characteristics of the R-Fe-B system permanent magnet of the present invention are as follows: maximum energy product (BH) max value; A (MG
Oe) and coercive force iHc value (kOe);
When B has 59 or more and BH (max) is 50 MGOe or more, iHc is 9 kOe or more, and BH (m
iHc is 14 kO when ax) is 45 MGOe or more.
above e, squareness {(Br 2/4) / (BH) max}
The required magnetic characteristics can be obtained by appropriately selecting the values of 1.01 to 1.045, the composition, the manufacturing conditions, and the like.

【0013】この発明において、特定組成のRリッチ相
が微細に分離した組織を有する磁石材料の鋳片は、特定
組成の合金溶湯を単ロール法、あるいは双ロール法によ
るストリップキャスティング法にて製造される。得られ
た鋳片は板厚が0.03mm〜10mmの薄板材であ
り、所望の鋳片板厚により、単ロール法と双ロール法を
使い分けるが、板厚が厚い場合は双ロール法を、また板
厚が薄い場合は単ロール法を採用したほうが好ましい。
鋳片の板厚を0.03mm〜10mmに限定した理由
は、0.03mm未満では急冷効果が大となり、結晶粒
径が1μmより小となり、粉末化した際に酸化しやすく
なるため、磁気特性の劣化を招来するので好ましくな
く、また10mmを超えると、冷却速度が遅くなり、α
−Feが晶出しやすく、結晶粒径が大となり、Ndリッ
チ相の偏在も生じるため、磁気特性が低下するので好ま
しくないことによる。
In the present invention, the cast slab of the magnetic material having the structure in which the R-rich phase of the specific composition is finely separated is manufactured by the alloy casting of the specific composition by the single-roll method or the strip-casting method by the twin-roll method. It The obtained slab is a thin plate material having a plate thickness of 0.03 mm to 10 mm, and the single roll method and the twin roll method are used properly depending on the desired slab plate thickness, but when the plate thickness is thick, the twin roll method is used. Further, when the plate thickness is thin, it is preferable to adopt the single roll method.
The reason for limiting the plate thickness of the cast slab to 0.03 mm to 10 mm is that if it is less than 0.03 mm, the quenching effect becomes large, the crystal grain size becomes smaller than 1 μm, and it easily oxidizes when pulverized. Is not preferable, and if it exceeds 10 mm, the cooling rate becomes slow, and α
This is because —Fe is likely to crystallize, the crystal grain size becomes large, and the Nd-rich phase is unevenly distributed, which deteriorates the magnetic properties, which is not preferable.

【0014】この発明において、ストリップキャスティ
ング法により得られた特定組成のR−Fe−B系合金の
断面組織は主相のR2Fe14B結晶が従来の鋳型に鋳造
して得られた鋳塊のものに比べて、約1/10以上も微
細であり、例えば、その短軸方向の寸法は0.1μm〜
50μm、長軸方向は5μm〜200μmの微細結晶で
あり、かつその主相結晶粒を取り囲むようにRリッチ相
が微細に分散されており、局部に遍在している領域にお
いても、その大きさは20μm以下である。Rリッチ相
が5μm以下に微細に分離することによって、H2吸蔵
処理時にRリッチ相が水素化物を生成した際の体積膨張
が均一に発生して細分化されるため、微粉砕にて主相の
結晶粒が細分化されて粒度分布が均一な微粉末が得られ
る。
In the present invention, the cross-sectional structure of the R-Fe-B type alloy having a specific composition obtained by the strip casting method is an ingot obtained by casting the main phase R 2 Fe 14 B crystal in a conventional mold. The size is about 1/10 or more finer than that of, for example, the dimension in the minor axis direction is 0.1 μm to
It is a fine crystal of 50 μm and 5 μm to 200 μm in the long axis direction, and the R-rich phase is finely dispersed so as to surround the main phase crystal grains, and the size thereof is even in a region ubiquitous in a local area. Is 20 μm or less. By finely separating the R-rich phase to 5 μm or less, volume expansion when the R-rich phase forms a hydride during the H 2 occlusion treatment is uniformly generated and fragmented. The crystal grains are subdivided to obtain a fine powder having a uniform particle size distribution.

【0015】H2吸蔵処理には、例えば、所定大きさに
破断した0.03mm〜10mm厚みの鋳片を原料ケー
ス内に挿入し、原料ケースを蓋を締めて密閉できる容器
内に装入して密閉した後、容器内を真空排気した後、2
00Torr〜50kg/cm2の圧力のH2ガスを供給
して、該鋳片にH2を吸蔵させる。このH2吸蔵反応は、
発熱反応であるため、容器の外周には冷却水を供給する
冷却配管が周設して容器内の昇温を防止しながら、所定
圧力のH2ガスを一定時間供給することにより、H2ガス
が吸収されて該鋳片は自然崩壊して粉化する。さらに、
粉化した合金を冷却したのち、真空中で脱H2ガス処理
する。前記処理の合金粉末は粒内に微細亀裂が内在する
ので、ポール・ミル、ジェットミル等で短時間で微粉砕
され、1μm〜80μmの所要粒度の合金粉末を得るこ
とができる。H2ガス圧力は量産性からは2kg/cm2
〜10kg/cm2が好ましい。 この発明において、H2
吸蔵による粉化の処理時間は、前記密閉容器の大きさ、
破断塊の大きさ、H2ガス圧力により変動するが、5分
以上は必要である。
H2For the occlusion process, for example,
A broken piece of 0.03 mm to 10 mm thick slab is used as the raw material case.
A container that can be inserted into the container and the raw material case can be closed by closing the lid.
After charging the inside of the container and sealing it, after evacuating the inside of the container, 2
00 Torr-50kg / cm2H of pressure2Gas supply
And add H to the slab.2To store. This H2The occlusion reaction is
Since it is an exothermic reaction, cooling water is supplied to the outer circumference of the container.
Cooling pipes are installed around the container to prevent temperature rise in the container
H of pressure2By supplying gas for a certain period of time, H2gas
Are absorbed and the slab naturally disintegrates and is pulverized. further,
After cooling the powdered alloy, de-H removal in vacuum2Gas treatment
To do. The alloy powder of the above treatment has fine cracks in the grains.
Therefore, it is finely pulverized in a short time with a pole mill, jet mill, etc.
To obtain alloy powder having a required particle size of 1 μm to 80 μm.
You can H2Gas pressure is 2kg / cm for mass production2
-10kg / cm2Is preferred. In this invention, H2
The processing time for pulverization by occlusion is the size of the closed container,
Size of fracture mass, H25 minutes depending on gas pressure
The above is necessary.

【0016】H2吸蔵により粉化した合金粉末を冷却
後、真空中で1次の脱H2ガス処理する。さらに、真空
中またはアルゴンガス中において、粉化合金を100℃
〜750℃に加熱し、0.5時間以上の2次脱H2ガス
処理すると、粉化合金中のH2ガスは完全に除去できる
とともに、長期保存に伴う粉末あるいはプレス成形体の
酸化を防止して、得られる永久磁石の磁気特性の低下を
防止できる。上記の脱水素処理における加熱温度は、1
00℃未満では崩壊合金粉内に残存するH2を除去する
のに長時間を要して量産的でない。また、750℃を超
える温度では液相が出現し、粉末が固化してしまうた
め、微粉砕が困難になったり、プレス時の成形性を悪化
させるので、焼結磁石の製造の場合には好ましくない。
また、焼結磁石の焼結性を考慮すると、好ましい脱水素
処理温度は200℃〜600℃である。また、処理時間
は処理量によって変動するが0.5時間以上は必要であ
る。
After cooling the alloy powder pulverized by the H 2 occlusion, the primary H 2 degassing treatment is performed in a vacuum. Further, the powdered alloy is heated to 100 ° C. in vacuum or argon gas.
Was heated to to 750 ° C., preventing the two Tsugida' H 2 gas treatment over 0.5 hours, with H 2 gas in the pulverized alloy can be completely removed, the oxidation of the powder or pressed bodies due to long-term storage As a result, it is possible to prevent deterioration of the magnetic properties of the obtained permanent magnet. The heating temperature in the above dehydrogenation treatment is 1
If the temperature is lower than 00 ° C, it takes a long time to remove H 2 remaining in the disintegrated alloy powder, which is not mass-productive. Further, at a temperature of higher than 750 ° C., a liquid phase appears and the powder is solidified, which makes fine pulverization difficult and deteriorates the formability at the time of pressing. Therefore, it is preferable in the case of producing a sintered magnet. Absent.
Further, considering the sinterability of the sintered magnet, the preferable dehydrogenation treatment temperature is 200 ° C to 600 ° C. Further, the treatment time varies depending on the treatment amount, but 0.5 hours or more is required.

【0017】次に微粉砕には、不活性ガス(例えば、N
2、Ar)によるジェット・ミルにて微粉砕を行う。勿
論、有機溶媒(例えば、ベンゼンやトルエン等)を用い
たボールミルや、アトライター粉砕を用いることも可能
である。微粉砕での粉末の平均粒度は、1μm〜10μ
mが好ましい。
Next, for fine pulverization, an inert gas (for example, N 2
2. Fine pulverize with a jet mill using Ar). Of course, it is also possible to use a ball mill using an organic solvent (for example, benzene, toluene, etc.) or attritor grinding. The average particle size of the finely pulverized powder is 1 μm to 10 μm.
m is preferred.

【0018】磁界を用いたプレスには、つぎの方法を提
案する。微粉砕した粉末を不活性ガス雰囲気中でモール
ドに充填する。モールドは、非磁性の金属、酸化物から
作製したもののほか、プラスチックやゴム等の有機化合
物でも良い。粉末の充填密度は、その粉末の静止状態の
嵩密度(充填密度1.4g/cm3)から、タッピング
後の固め嵩密度(充填密度3.0g/cm3)の範囲が
好ましい。従って充填密度は1.4〜3.0g/cm3
に限定する。これを、空心コイル、コンデンサー電源に
よるパルス磁界を加えて粉末の配向を行う。配向の際、
上下パンチを用いて圧縮を行いながら、繰り返し、パル
ス磁界を加えてもよい。パルス磁界の強度は大きければ
大きい程良く、最低10kOe以上は必要とする。この
発明におけるパルス磁界の波形は、図2に示す如く、パ
ルス磁界の1波形の横軸の時間(Time)は好ましく
は5μsec〜100msecで、かけるパルス磁界の
回数は1〜10回、好ましくは1〜5回である。配向後
の粉末は、静水圧プレスによって固めることができる。
この際、可塑性のあるモールドを使用した場合には、そ
のまま、静水圧プレスを行うことが可能である。また、
パルス磁界による配向とプレスとを連続的に行うために
は、ダイス内部にパルス磁界を発生させるコイルを埋め
込み、パルス磁界を用いて配向させた後、通常の磁界中
プレス方法で成形することも可能である。
For pressing using a magnetic field, the following method is proposed. The finely pulverized powder is filled in a mold in an inert gas atmosphere. The mold may be made of non-magnetic metal or oxide, or may be an organic compound such as plastic or rubber. The packing density of the powder is preferably in the range of the bulk density of the powder in a static state (packing density 1.4 g / cm 3 ) to the solidified bulk density after tapping (packing density 3.0 g / cm 3 ). Therefore, the packing density is 1.4 to 3.0 g / cm 3.
Limited to The powder is oriented by applying a pulsed magnetic field from an air-core coil or a condenser power supply. During orientation,
A pulse magnetic field may be repeatedly applied while performing compression using the upper and lower punches. The higher the strength of the pulsed magnetic field, the better, and at least 10 kOe or more is required. As for the waveform of the pulse magnetic field in the present invention, as shown in FIG. 2, the time (Time) of one waveform of the pulse magnetic field is preferably 5 μsec to 100 msec, and the number of pulse magnetic fields applied is 1 to 10 times, preferably 1 time. ~ 5 times. The powder after orientation can be hardened by isostatic pressing.
At this time, when a plastic mold is used, the isostatic pressing can be performed as it is. Also,
In order to continuously perform orientation and pressing with a pulsed magnetic field, it is possible to embed a coil that generates a pulsed magnetic field inside the die, orient using the pulsed magnetic field, and then perform molding using a normal magnetic field pressing method. Is.

【0019】以下に、この発明における希土類・ボロン
・鉄系永久磁石合金用鋳塊の組成の限定理由を説明す
る。この発明の永久磁石合金用鋳塊に含有される希土類
元素Rはイットリウム(Y)を包含し、軽希土類及び重
希土類を包含する希土類元素である。Rとしては、軽希
土類をもって足り、特にNd,Prが好ましい。また通
常Rのうち1種もって足りるが、実用上は2種以上の混
合物(ミッシユメタル、ジジム等)を入手上の便宜等の
理由により用いることができ、Sm,Y,La,Ce,
Gd等は他のR、特にNd,Pr等との混合物として用
いることができる。なお、このRは純希土類元素でなく
てもよく、工業上入手可能な範囲で製造上不可避な不純
物を含有するものでも差し支えない。Rは、R−Fe−
B系永久磁石を製造する合金鋳塊の必須元素であって、
12原子%未満では高磁気特性、特に高保磁力が得られ
ず、16原子%を越えると残留磁束密度(Br)が低下
して、すぐれた特性の永久磁石が得られない。よって、
Rは12原子%〜16原子%の範囲とするが、最適のR
の範囲は12.5原子%〜14原子%である。
The reasons for limiting the composition of the ingot for rare earth / boron / iron-based permanent magnet alloy in the present invention will be described below. The rare earth element R contained in the ingot for permanent magnet alloy of the present invention is a rare earth element including yttrium (Y) and including light rare earth and heavy rare earth. As R, a light rare earth element is sufficient, and Nd and Pr are particularly preferable. Usually, one kind of R is sufficient, but in practice, a mixture of two or more kinds (Missille metal, didymium, etc.) can be used for the reason of convenience of acquisition, and Sm, Y, La, Ce,
Gd and the like can be used as a mixture with other R, especially Nd and Pr. It should be noted that this R does not have to be a pure rare earth element, and may contain impurities that are unavoidable in production within the industrially available range. R is R-Fe-
Is an essential element of the alloy ingot for producing the B-based permanent magnet,
If it is less than 12 atom%, high magnetic properties, particularly high coercive force, cannot be obtained, and if it exceeds 16 atom%, the residual magnetic flux density (Br) is lowered and a permanent magnet having excellent characteristics cannot be obtained. Therefore,
R is in the range of 12 atom% to 16 atom%, but the optimum R
The range is 12.5 atomic% to 14 atomic%.

【0020】Bは、R−Fe−B系永久磁石を製造する
合金鋳塊の必須元素であって、4原子%未満では高い保
磁力(iHc)は得られず、8%原子を越えると残留磁
束密度(Br)が低下するため、すぐれた永久磁石が得
られない。よって、Bは4原子%〜8原子%とするが、
最適のBの範囲は5.8原子%〜7原子%である。
B is an essential element of the alloy ingot for producing the R-Fe-B system permanent magnet. If it is less than 4 atom%, a high coercive force (iHc) cannot be obtained, and if it exceeds 8% atom, it remains. Since the magnetic flux density (Br) decreases, an excellent permanent magnet cannot be obtained. Therefore, B is 4 atom% to 8 atom%,
The optimum range of B is 5.8 atom% to 7 atom%.

【0021】Feは76原子%未満では残理磁束密度
(Br)が低下し、84原子%を超えると高い保磁力が
得られないため、Feは76〜84原子%に限定する。
また、Feの一部をCo、Niの1種又は2種で置換す
る理由は、永久磁石の温度特性を向上させる効果及び耐
食性を向上させる効果が得られるためであるが、Co、
Niの1種又は2種はFeの50%を越えると高い保磁
力が得られず、すぐれた永久磁石が得られない。よっ
て、Co、NiはFeの50%を上限とする。
When Fe is less than 76 atomic%, the residual magnetic flux density (Br) is lowered, and when it exceeds 84 atomic%, a high coercive force cannot be obtained. Therefore, Fe is limited to 76 to 84 atomic%.
The reason for substituting a part of Fe with one or two of Co and Ni is that the effect of improving the temperature characteristics of the permanent magnet and the effect of improving corrosion resistance can be obtained.
When one or two kinds of Ni exceeds 50% of Fe, a high coercive force cannot be obtained, and an excellent permanent magnet cannot be obtained. Therefore, the upper limit of Co and Ni is 50% of Fe.

【0022】O2を5000ppm以下に限定した理由
は、5000ppmを越えるとRリッチ相が酸化し、焼
結時に十分な液相を生成できなくなり、密度が低下して
しまうため、高い磁束密度が得られなくなり、耐候性も
劣化するので好ましくなく、O2の最適範囲は200〜
3000ppmである。また、永久磁石材料の見かけ密
度が7.45g/cm2未満では高い磁束密度が得られ
ず、本発明の特徴たる(BH)max値;A(MGO
e)とiHc値;B(kOe)の合計値A+Bが59以
上の磁石材料が得られないので好ましくない。
The reason why O 2 is limited to 5000 ppm or less is that when it exceeds 5000 ppm, the R-rich phase is oxidized and a sufficient liquid phase cannot be generated during sintering, and the density is lowered, so that a high magnetic flux density is obtained. Is not preferable and the weather resistance is deteriorated, so that the optimum range of O 2 is 200 to
It is 3000 ppm. Further, when the apparent density of the permanent magnet material is less than 7.45 g / cm 2 , a high magnetic flux density cannot be obtained, and the (BH) max value, which is a feature of the present invention; A (MGO
e) and iHc value; B (kOe) total value A + B is not preferable because a magnetic material having 59 or more cannot be obtained.

【0023】また、本発明における出発原料粉末として
は磁石組成の原料粉末の他に、R量、B量及びFe量を
磁石組成に調整するために、例えばR量が16原子%以
上含まれるR2Fe14B相を主相とするR−Fe−B系
合金粉末とR量が12原子%以下のR2Fe17相を含む
R−Fe−B系合金粉末を配合混合して使用することも
可能である。また、B量についても、B量が8原子%以
上含まれる主相系のR−Fe−B系合金粉末とB量が4
原子%以下のR2Fe17相を含む調整用R−Fe−B系
合金粉末、あるいはBを含まないR2Fe17相を含む調
整用R−Fe系合金粉末を配合混合して、磁石組成を調
整することもできる。さらに、R−Co金属間化合物
(Nd3−Co,Nd−Co2等)を含む調整用R−Co
(Feで置換可能)合金粉末を配合混合して、磁石組成
を調整することもできる。
Further, as the starting raw material powder in the present invention, in addition to the raw material powder of the magnet composition, in order to adjust the R content, the B content and the Fe content to the magnet composition, for example, the R content is 16 atomic% or more. 2 Fe 14 to R-Fe-B alloy powder and R amount B phase as the main phase is used by blending mixing the R-Fe-B alloy powder containing 12 atomic% or less of R 2 Fe 17 phase Is also possible. Regarding the B content, the main phase R-Fe-B alloy powder containing 8 atomic% or more of the B content and the B content of 4
R-Fe-B based alloy powder for adjustment containing R 2 Fe 17 phase of atomic% or less, or R-Fe based alloy powder for adjustment containing R 2 Fe 17 phase not containing B is mixed and mixed to obtain a magnet composition. Can also be adjusted. Furthermore, R-Co intermetallic compound (Nd 3 -Co, Nd-Co 2 and the like) for adjusting R-Co containing
The magnet composition can be adjusted by mixing and mixing alloy powder (which can be replaced by Fe).

【0024】また、この発明による合金鋳塊は、R、
B、Feの他、工業的生産上不可避的不純物の存在を許
容できるが、Bの一部を4.0原子%以下のC、3.5
原子%以下のP、2.5原子%以下のS、3.5原子%
以下のCuのうち少なくとも1種、合計量で4.0原子
%以下で置換することにより、磁石合金の製造性改善、
低価格化が可能である。さらに、前記R、B、Fe合金
あるいはCoを含有するR−Fe−B合金に、9.5原
子%以下のAl、4.5原子%以下のTi、9.5原子
%以下のV、8.5原子%以下のCr、8.0原子%以
下のMn、5原子%以下のBi、12.5原子%以下の
Nb、10.5原子%以下のTa、9.5原子%以下の
Mo、9.5原子%以下のW、2.5原子%以下のS
b、7原子%以下のGe、35原子%以下のSn、5.
5原子%以下のZr、5.5原子%以下のHfのうち少
なくとも1種添加含有させることにより、永久磁石合金
の高保磁力が可能になる。
The alloy ingot according to the present invention has R,
In addition to B and Fe, the presence of impurities that are unavoidable in industrial production can be tolerated, but a part of B is 4.0 atomic% or less of C and 3.5.
P of atomic% or less, S of 2.5 atomic% or less, 3.5 atomic%
Improving the manufacturability of a magnet alloy by substituting at least one of the following Cu with a total amount of 4.0 atomic% or less
The price can be reduced. Further, in the R, B, Fe alloy or the R-Fe-B alloy containing Co, 9.5 atomic% or less of Al, 4.5 atomic% or less of Ti, 9.5 atomic% or less of V, 8 0.5 atomic% or less Cr, 8.0 atomic% or less Mn, 5 atomic% or less Bi, 12.5 atomic% or less Nb, 10.5 atomic% or less Ta, and 9.5 atomic% or less Mo. , W of 9.5 atomic% or less, S of 2.5 atomic% or less
b, Ge of 7 atomic% or less, Sn of 35 atomic% or less, 5.
By adding at least one of Zr of 5 atomic% or less and Hf of 5.5 atomic% or less, a high coercive force of the permanent magnet alloy becomes possible.

【0025】この発明のR−B−Fe系永久磁石におい
て、結晶相の主相のR2Fe14B相が90%以上存在す
ることが不可欠である。現在大量生産されているR−F
e−B系焼結磁石は前記R2Fe14B相が最高で90%
であり、90%未満では本発明のA+B値が59以上の
高磁気特性は得られない。この発明の磁石の配向度は前
記1)式から算出したものであり、磁石の配向度が85
%以上有することが、A+B値を59以上保持するため
に必須であり、配向度が85未満では減磁曲線の角型性
が低下して、高い残留磁束密度(Br)が低下するた
め、(BH)max値は低下するので好ましくない。好
ましい配向度は92%以上である。また、角型性{(B
2/4)/(BH)max}は理論的な場合1.00
の値を示すものであるが、実際の永久磁石材料において
は、上述の配向度の乱れが必然的に生じるため、従来、
種々の改善を実施しても1.05まで到達するのが限界
であったが、前述した特定の製造方法にて得られたこの
発明の永久磁石材料は、角型性の値が1.01〜1.0
45となる。
In the R—B—Fe system permanent magnet of the present invention, it is essential that 90% or more of the main phase of the crystal phase, R 2 Fe 14 B phase, is present. Currently mass-produced R-F
In the eB sintered magnet, the R 2 Fe 14 B phase is 90% at maximum.
If it is less than 90%, the high magnetic property of A + B value of 59 or more of the present invention cannot be obtained. The orientation degree of the magnet of the present invention is calculated from the above equation 1), and the orientation degree of the magnet is 85.
% Is essential for maintaining the A + B value of 59 or more, and if the degree of orientation is less than 85, the squareness of the demagnetization curve decreases, and the high residual magnetic flux density (Br) decreases. The BH) max value decreases, which is not preferable. The preferred degree of orientation is 92% or more. In addition, squareness {(B
If r 2/4) / (BH ) max} is theoretical 1.00
However, in the actual permanent magnet material, since the above-mentioned disorder of the orientation degree is inevitably generated,
Even if various improvements were carried out, the limit was that it reached 1.05, but the permanent magnet material of the present invention obtained by the above-mentioned specific manufacturing method has a squareness value of 1.01. ~ 1.0
It becomes 45.

【0026】[0026]

【作用】この発明は、ストリップキャスティングされた
特定板厚の特定組成を有するR−Fe−B系合金にH2
吸蔵させることにより、微細に分散されたRリッチ相が
水素化物を生成して体積膨張させて前記合金を自然崩壊
させ、その後微粉砕にて合金塊を構成している主相の結
晶粒を細分化することが可能となり、粒度分布が均一な
粉末を作製することができ、この際Rリッチ相が微細に
分散され、かつR2Fe14B相も微細化され、脱H2処理
して安定化させた合金粉末を微粉砕した場合、微粉砕能
は従来の約2倍にも向上するため、製造効率が大幅に向
上するともに、パルス磁界を用いて配向すると共にプレ
スすることにより、Br、BH(max)及びiHcを
著しく改善向上し、角型性も理論状態に可能な限り近づ
けた1.01〜1.04の値を有するR−Fe−B系永
久磁石が得られる。
According to the present invention, H 2 is added to an R-Fe-B type alloy having a specific composition with a specific plate thickness which has been strip cast.
By the occlusion, the finely dispersed R-rich phase produces a hydride and volume-expands to spontaneously collapse the alloy, and then finely pulverizes the crystal grains of the main phase constituting the alloy lump to subdivide them. It is possible to produce a powder having a uniform particle size distribution, in which case the R-rich phase is finely dispersed, and the R 2 Fe 14 B phase is also finely divided, and stable after de-H 2 treatment. When finely pulverized alloyed alloy powder is finely pulverized, the fine pulverization ability is about twice as high as that of the conventional one. Therefore, the production efficiency is significantly improved, and by aligning and pressing with a pulse magnetic field, Br, It is possible to obtain an R-Fe-B based permanent magnet having a value of 1.01 to 1.04 in which BH (max) and iHc are remarkably improved and improved, and the squareness is as close as possible to the theoretical state.

【0027】[0027]

【実施例】【Example】

実施例1 高周波溶解炉にて溶解して得られたNd13.0−B
6.0−Fe81組成の合金溶湯を直径200mmの銅
製ロール2本を併設した双ロール式ストリップキャスタ
ーを用い、板厚約1mmの薄板状鋳片を得た。前記鋳片
内の結晶粒径は短軸方向の寸法0.5μm〜15μm、
長軸方向寸法は5μm〜80μmであり、Rリッチ相は
主相を取り囲むように3μm程度に微細に分離して存在
する。また、含有O2量は300ppmであった。前記
鋳片を50mm角以下に破断後、前記破断片1000g
を吸排気可能な密閉容器内に収容し、前記容器内にN2
ガスを30分間流入して、空気と置換した後、該容器内
に3kg/cm2のH2ガスを2時間供給してH2吸臓に
より鋳片を自然崩壊させて、その後真空中で500℃に
5時間保持して脱H2処理した後、室温まで冷却し、さ
らに100メッシュまで粗粉砕した。次いで、前記粗粉
砕を採取した800gをジェットミルで粉砕して平均粒
度3.5μmの合金粉末を得た。得られた合金粉末を用
いて、ゴム質のモールドに原料粉末を充填し、パルス磁
界60kOeを瞬間的に付加して、配向させた後、静水
圧プレス装置にて2.5T/cm2の圧力で静水圧プレ
スした。モールドから取り出した成形体を1090℃で
3時間の条件にて焼結し、600℃で1時間の時効処理
を行って、永久磁石を得た。得られた永久磁石の磁石特
性及び密度、結晶粒径、配向度、角型性、主相量、含有
2量を表1に表す。
Example 1 Nd13.0-B obtained by melting in a high frequency melting furnace
Using a twin roll type strip caster provided with two copper rolls having a diameter of 200 mm, an alloy melt having a composition of 6.0-Fe81 was used to obtain a thin plate-shaped slab having a plate thickness of about 1 mm. The crystal grain size in the slab is 0.5 μm to 15 μm in the minor axis direction,
The dimension in the major axis direction is 5 μm to 80 μm, and the R-rich phase is present in a finely separated state of about 3 μm so as to surround the main phase. Further, the contained O 2 amount was 300 ppm. After breaking the slab to 50 mm square or less, the broken piece 1000 g
Is housed in a closed container capable of sucking and exhausting N 2, and
The gas was allowed to flow for 30 minutes to replace the air, and then 3 kg / cm 2 of H 2 gas was supplied into the container for 2 hours to spontaneously collapse the slab by the H 2 sucker, and then 500 in vacuum. The mixture was kept at ℃ for 5 hours to remove H 2 and then cooled to room temperature and further pulverized to 100 mesh. Next, 800 g of the coarsely pulverized sample was pulverized with a jet mill to obtain an alloy powder having an average particle size of 3.5 μm. Using the obtained alloy powder, a raw material powder was filled in a rubber mold, and a pulsed magnetic field of 60 kOe was momentarily applied and oriented, and then a pressure of 2.5 T / cm 2 was applied by a hydrostatic press machine. It was hydrostatically pressed. The molded body taken out of the mold was sintered at 1090 ° C. for 3 hours and was aged at 600 ° C. for 1 hour to obtain a permanent magnet. Table 1 shows the magnetic properties and density, the crystal grain size, the degree of orientation, the squareness, the amount of main phase, and the amount of O 2 contained in the obtained permanent magnet.

【0028】実施例2 実施例1と同一組成の合金溶湯をストリップキャスティ
ングして板厚約0.5μm薄板状鋳片を得た。前記鋳片
内の結晶粒径は短軸方向の寸法0.3μm〜12μm、
長軸方向5μm〜70μmであり、Rリッチ相は主相を
取り囲むように3μm程度に微細に分離して存在してい
た。前記鋳片を実施例1と同一条件にてジェットミル粉
砕まで行い、平均粒度約3.4μmの合金粉末を得た。
この粉末を図1に示す如く、上下パンチ1,2の外周部
に静磁界用コイル3,4を配置し、ダイス5内にパルス
磁界用コイル6を配設して、原料粉末7にパルス磁界と
通常の静磁界とを併用して作用させることができるプレ
ス装置を用いて、まず、約30kOeのパルス磁界で配
向させた後、約12kOeの磁界中でプレス成形した。
その後、成形体は実施例1と同一の条件で、焼結、時効
処理を行った。得られた永久磁石の磁石特性及び密度、
結晶粒径、配向度、角型性、主相量、含有O2量、密度
を表1に示す。
Example 2 A molten alloy having the same composition as in Example 1 was strip cast to obtain a thin plate-shaped cast piece having a plate thickness of about 0.5 μm. The crystal grain size in the cast piece is 0.3 μm to 12 μm in the minor axis direction,
The major axis direction was 5 μm to 70 μm, and the R-rich phase was finely separated to about 3 μm so as to surround the main phase. The slab was subjected to jet mill pulverization under the same conditions as in Example 1 to obtain an alloy powder having an average particle size of about 3.4 μm.
As shown in FIG. 1, the static magnetic field coils 3 and 4 are arranged on the outer peripheral portions of the upper and lower punches 1 and 2, and the pulse magnetic field coil 6 is arranged in the die 5 so that the raw material powder 7 is supplied with the pulse magnetic field. Using a pressing device that can be used in combination with and a normal static magnetic field, first, orientation was performed with a pulse magnetic field of about 30 kOe, and then press molding was performed in a magnetic field of about 12 kOe.
Thereafter, the molded body was sintered and aged under the same conditions as in Example 1. The magnet characteristics and density of the obtained permanent magnet,
Table 1 shows the crystal grain size, orientation degree, squareness, main phase amount, O 2 content, and density.

【0029】実施例3 実施例1と同様にNd13.5−Dy0.5−B6.5
−Co1.0−Fe78.5の合金をストリップキャス
ティングし、薄板状鋳片を得た。これを50mm角以下
に破断後、1000gを実施例1と同様にH2吸蔵によ
り自然崩壊させた後、真空中で6時間の脱H2処理し
た。これを粗粉砕後、ジェットミル粉砕して、平均粒度
3.5μmの粉末を得た。得られた粉末を実施例1と同
様にパルス磁界配向、静水圧プレスして、成形体を作製
し、同様に焼結熱処理を行った。得られた永久磁石の磁
石特性及び密度、結晶粒径、配向度、角型性、主相量、
含有O2量を表1に示した。
Example 3 As in Example 1, Nd13.5-Dy0.5-B6.5
An alloy of -Co1.0-Fe78.5 was strip-cast to obtain a thin plate-shaped cast piece. After breaking this to 50 mm square or less, 1000 g was spontaneously disintegrated by H 2 occlusion in the same manner as in Example 1 and then subjected to H 2 removal treatment in vacuum for 6 hours. This was roughly pulverized and then jet mill pulverized to obtain a powder having an average particle size of 3.5 μm. The obtained powder was subjected to pulse magnetic field orientation and hydrostatic pressing in the same manner as in Example 1 to prepare a molded body, and similarly sintered and heat treated. Magnetic properties and density of the obtained permanent magnet, crystal grain size, orientation degree, squareness, main phase amount,
The amount of O 2 contained is shown in Table 1.

【0030】比較例1 実施例1と同一条件にて得られた粉末を乾式状態にて通
常の磁界中プレス装置にて約12kOeの磁界中でプレ
ス成形し、その後、実施例1と同一条件で、焼結、時効
処理を行った。しかし、プレスなどの工程中に酸化を生
じ、十分な焼結密度まで緻密化させることができず、磁
石特性を測定することが不可能であったため、密度と含
有O2量を測定するにとどめた。
Comparative Example 1 Powder obtained under the same conditions as in Example 1 was press-molded in a dry state in a magnetic field of about 12 kOe in a normal magnetic field press machine, and then under the same conditions as in Example 1. , Sintering, and aging treatment. However, it was impossible to densify to a sufficient sintered density due to oxidation during the process such as pressing, and it was impossible to measure the magnet characteristics. Therefore, it was only necessary to measure the density and the O 2 content. It was

【0031】比較例2 実施例1と同一条件に得られた粗粉砕粉をトルエンを溶
媒としてボールミル粉砕し、平均粒径3.5μmの微粉
末を作製し、さらにその粉末を湿式状態にて通常の磁界
中プレス装置で約12kOeの磁界中でプレス成形し、
その後、実施例1と同一条件で焼結、時効処理を行っ
た。得られた永久磁石の磁石特性及び密度、結晶粒径、
配向度、角型性、主相量、含有O2量を表1に示した。
Comparative Example 2 The coarsely pulverized powder obtained under the same conditions as in Example 1 was ball-milled using toluene as a solvent to prepare a fine powder having an average particle size of 3.5 μm. Press molding in a magnetic field of about 12 kOe with
Then, sintering and aging treatment were performed under the same conditions as in Example 1. Magnetic properties and density of the obtained permanent magnet, crystal grain size,
Table 1 shows the orientation degree, the squareness, the amount of main phase, and the amount of O 2 contained.

【0032】比較例3 高周波溶解炉にて溶解して得られたNd14−B6.0
−Fe80組成の合金溶湯を鉄製鋳型に鋳造した。得ら
れた合金塊の組織を観察したところ、初晶Feの晶出が
認められたため、1050℃で10時間熱処理して均質
化処理を行った。鋳塊の結晶粒径は、短軸方向30〜1
50μm、長軸方向100〜数mmにもなり、Rリッチ
相が局部的150μm程度の大きさで偏析していた。こ
の合金塊を粗砕後、実施例1と同様の方法でH2吸蔵処
理、脱H2処理して、粗粉末を得た。さらに、実施例1
と同一の条件でジェットミル粉砕し、平均粒径約3.7
μmの合金で得られた粉末を約12kOeの磁界中でプ
レス成形し、実施例1と同一条件で、焼結、熱処理を行
った。得られた永久磁石の特性及び密度、結晶粒径、配
向度、角型性、主相量、含有O2量を表1に示す。
Comparative Example 3 Nd14-B6.0 obtained by melting in a high frequency melting furnace
A molten alloy of —Fe80 composition was cast in an iron mold. As a result of observing the structure of the obtained alloy ingot, crystallization of primary crystal Fe was recognized, so that heat treatment was performed at 1050 ° C. for 10 hours to perform homogenization treatment. The crystal grain size of the ingot is 30 to 1 in the minor axis direction.
The thickness was 50 μm and 100 to several mm in the major axis direction, and the R-rich phase was locally segregated with a size of about 150 μm. After this alloy ingot was crushed, H 2 occlusion treatment and H 2 removal treatment were carried out in the same manner as in Example 1 to obtain a coarse powder. Furthermore, Example 1
Jet mill crushed under the same conditions as above, average particle size of about 3.7
The powder obtained from the alloy of μm was press-molded in a magnetic field of about 12 kOe, and sintered and heat-treated under the same conditions as in Example 1. Table 1 shows the properties and density of the obtained permanent magnet, the crystal grain size, the degree of orientation, the squareness, the amount of main phase, and the amount of O 2 contained.

【0033】比較例4 実施例1と同一組成、同一板厚のストリップキャスティ
ング鋳片を50mm以下に粗粉砕後、H2吸蔵処理、脱
2処理することなく、前記粗粉砕粉1000gをスタ
ンプミルにて1時間粉砕して100メッシュの粗粉砕粉
となした後、ジェットミル粉砕し、平均粒径約3.8μ
mの合金粉末を得た。前記合金粉末を約12kOe磁界
中での磁界中プレス、焼結、時効処理を行って永久磁石
を得た。得られた永久磁石の磁気特性及び密度、結晶粒
径、配向度、角型性、主相量、含有O2量、密度を表1
に表す。
Comparative Example 4 A strip casting slab having the same composition and the same plate thickness as in Example 1 was roughly crushed to 50 mm or less, and then 1000 g of the roughly crushed powder was stamp-milled without H 2 occlusion treatment and de-H 2 treatment. After crushing for 1 hour to make 100 mesh coarse crushed powder, crushed by jet mill, average particle diameter of about 3.8μ
m alloy powder was obtained. The alloy powder was pressed in a magnetic field in a magnetic field of about 12 kOe, sintered, and aged to obtain a permanent magnet. Table 1 shows the magnetic properties and density, crystal grain size, orientation degree, squareness, main phase content, O 2 content, and density of the obtained permanent magnet.
Represent.

【0034】比較例5 Nd13.5−Dy0.5−B6.5−Co1.0−F
e78.5の組成の合金を比較例3と同様の手法で鋳造
した。得られた合金塊には、Fe初晶が晶出していたた
め、1050℃×6Hrの熱処理を行った。この合金塊
を粗粉砕後、実施例1と同様にH2吸蔵処理し、真空中
で脱H2処理を行った。これを粗粉砕後、ジェットミル
粉砕して、平均粒径約3.7μmの粉末を得た。さら
に、約12kOeの磁界中で磁界中プレスした後、実施
例1と同一条件で、焼結・熱処理を行った。得られた永
久磁石の磁気特性及び密度、結晶粒径、配向度、角型
性、主相量、含有O2量を表1に表す。
Comparative Example 5 Nd13.5-Dy0.5-B6.5-Co1.0-F
An alloy having a composition of e78.5 was cast by the same method as in Comparative Example 3. Since primary Fe crystals had crystallized in the obtained alloy ingot, heat treatment was performed at 1050 ° C. × 6 Hr. After this alloy ingot coarsely pulverized similarly H 2 occlusion treatment as in Example 1, it was subjected to de-H 2 treatment in vacuum. This was roughly crushed and then crushed with a jet mill to obtain a powder having an average particle size of about 3.7 μm. Furthermore, after pressing in a magnetic field in a magnetic field of about 12 kOe, sintering and heat treatment were performed under the same conditions as in Example 1. Table 1 shows the magnetic properties and density, crystal grain size, orientation degree, squareness, main phase amount, and O 2 content of the obtained permanent magnet.

【0035】比較例6 Nd16.5−B7−Fe76.5の組成の合金を比較
例3と同様に鋳塊を鋳造後、溶体化処理することなく、
前記鋳塊を粗粉砕後、比較例4と同様にスタンプミルに
て粗粉砕後、ジェットミルにて平均粒径約3.7μmの
微粉末を得た。さらに、約12kOeの磁界中で磁場中
プレスした後、実施例1と同一条件にて、焼結、時効処
理を行い、得られた永久磁石の磁石特性及び密度、結晶
粒径、配向度、角型性、主相量、含有O2量を表1に示
す。
Comparative Example 6 An alloy having the composition of Nd16.5-B7-Fe76.5 was cast in the same manner as in Comparative Example 3 after casting an ingot, and without subjecting to solution treatment.
After roughly crushing the ingot, coarse crushing was performed by a stamp mill in the same manner as in Comparative Example 4, and then fine powder having an average particle size of about 3.7 μm was obtained by a jet mill. Further, after pressing in a magnetic field in a magnetic field of about 12 kOe, sintering and aging treatment were performed under the same conditions as in Example 1 to obtain the magnet characteristics and density, crystal grain size, orientation degree and angle of the obtained permanent magnet. Table 1 shows the moldability, the amount of main phase, and the amount of O 2 contained.

【0036】[0036]

【表1】 [Table 1]

【0037】[0037]

【発明の効果】この発明による製造方法は、特定組成を
有するR−Fe−B系合金溶湯をストリップキャスティ
ングにて特定板厚の鋳片となし、この鋳片にH2吸蔵さ
せて自然崩壊させることにより、その後、脱H2処理し
て安定化させた合金粉末を微粉砕にて合金塊を構成して
いる主相の結晶粒を細分化することが可能となり、粒度
分布が均一な粉末を、従来の約2倍程度の効率で作製す
ることができ、粉砕時にRリッチ相とR2Fe14B相も
微細化され、パルス磁界を用いて配向後プレスすること
により、磁石化すると耐酸化性にすぐれ、磁石合金の磁
気特性、特に最大エネルギー積値(BH)max(MG
Oe);Aと保磁力iHc(kOe)の特性値;Bの合
計値A+Bが59以上の値を有し、角型性{(Br2
4)/(BH)max}が1.01〜1.045の値を
示す高性能R−Fe−B系永久磁石が得られる。
According to the manufacturing method of the present invention, an R-Fe-B alloy melt having a specific composition is formed into a slab having a specific plate thickness by strip casting, and the slab is allowed to occlude H 2 and spontaneously disintegrate. by, then, it becomes possible to subdivide the crystal grains of the main phase constituting an alloy ingot alloy powder was stabilized by removing H 2 treated with finely ground, particle size distribution uniform powder , The R-rich phase and the R 2 Fe 14 B phase are also miniaturized at the time of pulverization, and can be made to be resistant to oxidation when magnetized by pressing after orientation using a pulsed magnetic field. Magnetic properties of magnet alloys, especially maximum energy product value (BH) max (MG
Oe); characteristic value of A and coercive force iHc (kOe); total value of A + B has a value of 59 or more, and squareness {(Br 2 /
4) / (BH) max} is 1.01 to 1.045, and a high performance R-Fe-B system permanent magnet is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】パルス磁界と通常の静磁界とを併用して作用さ
せることができるプレス装置の説明図である。
FIG. 1 is an explanatory diagram of a press device that can act by using a pulse magnetic field and a normal static magnetic field together.

【図2】パルス磁界の時間と磁界強さとの関係を示すグ
ラフである。
FIG. 2 is a graph showing a relationship between time of a pulsed magnetic field and magnetic field strength.

【符号の説明】[Explanation of symbols]

1,2 パンチ 3,4 静磁界用コイル 5 ダイス 6 パルス磁界用コイル 7 原料粉末 1, 2 Punch 3, 4 Static magnetic field coil 5 Die 6 Pulse magnetic field coil 7 Raw material powder

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 R(但しRはYを含む希土類元素のうち
少なくとも1種)12原子%〜16原子%、B4原子%
〜8原子%、O2 5000ppm以下、残部Fe(但
しFeの一部をCo、Niの1種または2種にて置換で
きる)及び不可避的不純物からなり、主相のR2Fe14
Bを90%以上含み、平均粒径10μm以下、見掛け密
度が7.45g/cm3以上の値を有し、配向度が85
%以上を有し、(BH)max値;A(MGOe)とi
Hc値;B(kOe)の合計値A+Bが59以上の値を
有し、角型性{(Br2/4)/(BH)max}が
1.01〜1.045の値を有することを特徴とするR
−Fe−B系永久磁石材料。
1. R (where R is at least one of rare earth elements including Y) 12 atom% to 16 atom%, B4 atom%
.About.8 atomic%, O 2 5000 ppm or less, balance Fe (however, a part of Fe can be replaced by one or two kinds of Co and Ni) and inevitable impurities, and R 2 Fe 14 of the main phase
90% or more of B, an average particle size of 10 μm or less, an apparent density of 7.45 g / cm 3 or more, and an orientation degree of 85
% Or more, (BH) max value; A (MGOe) and i
Hc value; B have a total value A + B of 59 or more values (kOe), squareness {(Br 2/4) / (BH) max} is that it has a value of from 1.01 to 1.045 Characteristic R
-Fe-B based permanent magnet material.
JP5207192A 1993-07-06 1993-07-28 R-fe-b permanent magnet material Pending JPH0745412A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP5207192A JPH0745412A (en) 1993-07-28 1993-07-28 R-fe-b permanent magnet material
DE69318147T DE69318147T2 (en) 1993-07-06 1993-10-14 R-Fe-B permanent magnet materials and their manufacturing processes
EP93308184A EP0633581B1 (en) 1993-07-06 1993-10-14 R-Fe-B permanent magnet materials and process of producing the same
AT93308184T ATE165477T1 (en) 1993-07-06 1993-10-14 R-FE-B PERMANENT MAGNET MATERIALS AND THEIR PRODUCTION PROCESSES
RU93049098A RU2113742C1 (en) 1993-07-06 1993-10-14 Permanent-magnet materials and their manufacturing processes
KR93021615A KR0131060B1 (en) 1993-07-06 1993-10-15 R-fe-b permanent magnet material & processing method
CN93115008A CN1076115C (en) 1993-07-06 1993-10-15 R-Fe-B permanent magnet materials and process of producing the same
TW082108554A TW272293B (en) 1993-07-06 1993-10-15

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5207192A JPH0745412A (en) 1993-07-28 1993-07-28 R-fe-b permanent magnet material

Publications (1)

Publication Number Publication Date
JPH0745412A true JPH0745412A (en) 1995-02-14

Family

ID=16535776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5207192A Pending JPH0745412A (en) 1993-07-06 1993-07-28 R-fe-b permanent magnet material

Country Status (1)

Country Link
JP (1) JPH0745412A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004013872A1 (en) * 2002-08-05 2004-02-12 Santoku Corporation Permanent magnet and process for producing the same
JP2017531912A (en) * 2014-07-30 2017-10-26 シアメン タングステン カンパニー リミテッド Quenched alloy for rare earth magnet and method for producing rare earth magnet
US10115507B2 (en) 2013-11-27 2018-10-30 Xiamen Tungsten Co., Ltd. Low-B bare earth magnet
US10381139B2 (en) 2014-03-31 2019-08-13 Xiamen Tungsten Co., Ltd. W-containing R—Fe—B—Cu sintered magnet and quenching alloy

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004013872A1 (en) * 2002-08-05 2004-02-12 Santoku Corporation Permanent magnet and process for producing the same
US10115507B2 (en) 2013-11-27 2018-10-30 Xiamen Tungsten Co., Ltd. Low-B bare earth magnet
US10381139B2 (en) 2014-03-31 2019-08-13 Xiamen Tungsten Co., Ltd. W-containing R—Fe—B—Cu sintered magnet and quenching alloy
JP2017531912A (en) * 2014-07-30 2017-10-26 シアメン タングステン カンパニー リミテッド Quenched alloy for rare earth magnet and method for producing rare earth magnet
US10096413B2 (en) 2014-07-30 2018-10-09 Xiamen Tungsten Co., Ltd. Quenched alloy for rare earth magnet and a manufacturing method of rare earth magnet

Similar Documents

Publication Publication Date Title
EP0633581B1 (en) R-Fe-B permanent magnet materials and process of producing the same
US5788782A (en) R-FE-B permanent magnet materials and process of producing the same
WO2002099823A1 (en) Method of making sintered compact for rare earth magnet
JPH0340082B2 (en)
WO2007063969A1 (en) Rare earth sintered magnet and method for producing same
JP3777199B2 (en) Method for producing high performance R-Fe-B permanent magnet material
JP2665590B2 (en) Rare earth-iron-boron based alloy thin plate for magnetic anisotropic sintered permanent magnet raw material, alloy powder for magnetic anisotropic sintered permanent magnet raw material, and magnetic anisotropic sintered permanent magnet
JP3148581B2 (en) Method for producing R-Fe-BC-based permanent magnet material having excellent corrosion resistance
JP3415208B2 (en) Method for producing R-Fe-B permanent magnet material
JP3474684B2 (en) High performance R-Fe-BC system magnet material with excellent corrosion resistance
JP3611870B2 (en) Method for producing R-Fe-B permanent magnet material
JP3157661B2 (en) Method for producing R-Fe-B permanent magnet material
JPH0745412A (en) R-fe-b permanent magnet material
JP2005197301A (en) Rare earth sintered magnet and manufacturing method thereof
JP2745042B2 (en) Rare earth-iron-boron alloy thin plate, alloy powder and method for producing permanent magnet
JP3383448B2 (en) Method for producing R-Fe-B permanent magnet material
JP3157660B2 (en) Method for producing R-Fe-B permanent magnet material
JPH08111307A (en) Production of material powder for r-fe-b based permanent magnet
JPH0920953A (en) Production of r-fe-b-c permanent magnet material excellent in corrosion resistance
JP3815983B2 (en) Rare earth magnet and manufacturing method thereof
JP2004244702A (en) Method of producing rare earth permanent magnet
JPH0617535B2 (en) Method of manufacturing permanent magnet material
JP3300570B2 (en) Method for producing R-Fe-BC-based permanent magnet material having excellent corrosion resistance
JP3474683B2 (en) High performance R-Fe-BC system magnet material with excellent corrosion resistance
JP3148573B2 (en) Method for producing R-Fe-BC-based permanent magnet material having excellent corrosion resistance