JP3415208B2 - Method for producing R-Fe-B permanent magnet material - Google Patents

Method for producing R-Fe-B permanent magnet material

Info

Publication number
JP3415208B2
JP3415208B2 JP19288693A JP19288693A JP3415208B2 JP 3415208 B2 JP3415208 B2 JP 3415208B2 JP 19288693 A JP19288693 A JP 19288693A JP 19288693 A JP19288693 A JP 19288693A JP 3415208 B2 JP3415208 B2 JP 3415208B2
Authority
JP
Japan
Prior art keywords
alloy
magnetic field
powder
permanent magnet
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19288693A
Other languages
Japanese (ja)
Other versions
JPH0718366A (en
Inventor
裕治 金子
尚幸 石垣
宏樹 徳原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16298620&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3415208(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP19288693A priority Critical patent/JP3415208B2/en
Priority to EP93308184A priority patent/EP0633581B1/en
Priority to DE69318147T priority patent/DE69318147T2/en
Priority to AT93308184T priority patent/ATE165477T1/en
Priority to RU93049098A priority patent/RU2113742C1/en
Priority to KR93021615A priority patent/KR0131060B1/en
Priority to CN93115008A priority patent/CN1076115C/en
Priority to TW082108554A priority patent/TW272293B/zh
Publication of JPH0718366A publication Critical patent/JPH0718366A/en
Publication of JP3415208B2 publication Critical patent/JP3415208B2/en
Application granted granted Critical
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、R(但しRはYを含む希
土類元素のうち、少なくとも1種を含有)、Fe、Bを主成
分とする永久磁石材料の製造方法に係り、R、Fe、Bを主
成分とする合金溶湯を単ロール法あるいは双ロール法等
のストリップキャスティング法にて特定板厚のRリッチ
相が微細に分離した均質組織を有する鋳片を得、これを
R含有Fe合金のH2吸蔵性を利用して鋳片を自然崩壊さ
せ、さらに脱H2処理して安定化させて、効率よい微粉砕
を可能にし、微粉末にパルス磁界をかけて配向させた
後、成形して焼結することにより、磁石特性の1つであ
る最大エネルギー積値(BH)max(MGOe);Aと保磁力iHc(kO
e)の特性値;Bの合計値A+Bが59以上の値を示す高性能R-F
e-B系永久磁石を得る製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a permanent magnet material containing R (where R is at least one of rare earth elements including Y), Fe and B as main components. A cast alloy having a homogeneous structure in which the R-rich phase of a specific plate thickness is finely separated is obtained by strip casting method such as single roll method or twin roll method using molten alloy mainly composed of Fe and B.
The H 2 occlusion property of the R-containing Fe alloy is used to spontaneously collapse the slab, and further de-H 2 treatment is performed to stabilize it, enabling efficient pulverization and applying a pulse magnetic field to the fine powder for orientation. Then, by molding and sintering, one of the magnet characteristics is the maximum energy product value (BH) max (MGOe); A and the coercive force iHc (kO
e) Characteristic value; High-performance RF showing a total value of A + B of 59 or more
The present invention relates to a manufacturing method for obtaining an eB-based permanent magnet.

【0002】[0002]

【従来の技術】今日、高性能永久磁石として代表的なR-
Fe-B系永久磁石(特開昭59-46008号)は、三元系正方晶化
合物の主相とRリッチ相を有する組織にて高い磁石特性
が得られ、一般家庭の各種電器製品から大型コンピュー
タの周辺機器まで幅広い分野で使用され、用途に応じた
種々の磁石特性を発揮するよう種々の組成のR-Fe-B系永
久磁石が提案されている。しかしながら、電気・電子機
器の小型・軽量化ならびに高機能化の要求は強く、R-Fe
-B系永久磁石のより一層の高性能化とコストダウンが要
求されている。
2. Description of the Related Art Today, R- is a typical high-performance permanent magnet.
The Fe-B system permanent magnet (Japanese Patent Laid-Open No. 59-46008) has high magnet characteristics due to the structure having the main phase of the ternary tetragonal compound and the R-rich phase. R-Fe-B based permanent magnets of various compositions have been proposed to be used in a wide range of fields from computer peripherals to exhibit various magnet characteristics according to the application. However, there is a strong demand for smaller and lighter electrical and electronic devices and higher functionality, and R-Fe
-It is required to further improve the performance and reduce the cost of B type permanent magnets.

【0003】R-Fe-B系焼結磁石の残留磁束密度(Br)を高
めるためには、1)強磁性相であり、主相のR2Fe14B相の
存在量を多くすること、2)焼結体の密度を主相の理論密
度まで高めること、3)さらに主相結晶粒の、磁化容易軸
方向の配向度を高めることが要求される。すなわち、前
記1)項の達成のためには、磁石の組成を上記R2Fe14Bの
化学量論的組成に近づけることが重要であるが、上記組
成の合金を溶解し、鋳型に鋳造した合金塊を、出発原料
としてR-Fe-B系焼結磁石を作製しようとすると、合金塊
に晶出したα-Feや、R-rich相が局部的に遍在している
ことなどから、特に微粉砕時に粉砕が困難となり、組成
ずれを生ずる等の問題があった。
In order to increase the residual magnetic flux density (Br) of the R-Fe-B system sintered magnet, 1) increase the abundance of the R 2 Fe 14 B phase, which is a ferromagnetic phase, as the main phase, 2) It is required to increase the density of the sintered body to the theoretical density of the main phase, and 3) to further increase the degree of orientation of the main phase crystal grains in the easy magnetization axis direction. That is, in order to achieve the above item 1), it is important to bring the composition of the magnet close to the stoichiometric composition of the R 2 Fe 14 B, but the alloy having the above composition was melted and cast in a mold. When an R-Fe-B based sintered magnet is produced using an alloy lump as a starting material, α-Fe crystallized in the alloy lump and the R-rich phase are locally ubiquitous. In particular, there is a problem that pulverization becomes difficult during fine pulverization and compositional deviation occurs.

【0004】詳述すると、前記合金塊をH2吸蔵、脱H2
理して機械的微粉砕をおこなう場合(特開昭60-63304
号、特開昭63-33505号)、合金塊に晶出したα-Feはその
まま粉砕時に残留し、その展延性の性質のために粉砕を
妨げ、又局部的に遍在したR-rich相はH2吸蔵処理によっ
て、水素化物を生成し、微細な粉末となるため、機械的
な微粉砕時に酸化が促進されたり、またジェットミルを
用いた粉砕では優生的に飛散することにより組成ずれを
生ずる。
More specifically, in the case where the alloy ingot is subjected to H 2 occlusion and H 2 removal treatment and mechanical pulverization is performed (Japanese Patent Laid-Open No. 60-63304).
, JP-A-63-33505), α-Fe crystallized in the alloy lump remains as it is at the time of crushing, and because of its spreadability, it hinders crushing, and the locally ubiquitous R-rich phase some H 2 occlusion processing, to generate a hydride, to become a fine powder, or is accelerated oxidation during mechanical milling, also the composition shift by scattering in eugenics manner in grinding using a jet mill Occurs.

【0005】また、前記1)項の達成のためR2Fe14Bの化
学量論的組成に近づけた合金粉末を用いて焼結体を作製
しようとすると、焼結体の作製工程において不可避な酸
化により、液相焼結を引き起こすためのNd-rich相が酸
化物を生成するため消費されて焼結できなかったり、上
記R2Fe14B相の存在量を増加によって必然的に、Nd-rich
相やB-rich相の存在量が減少するので、焼結体の製造を
より一層困難なものにしていた。さらに、前記3)項につ
いては、通常R-Fe-B系永久磁石の製造方法において、主
相結晶粒の磁化容易軸方向を揃えるために、磁界中でプ
レス成形する方法が採用されている。その際、磁界の印
加方向とプレス加圧する方向とによって、残留磁束密度
(Br)値が変化したり、また、印加磁界の強度によっても
影響を受けることが知られている。
Further, if an attempt is made to produce a sintered body by using an alloy powder having a stoichiometric composition of R 2 Fe 14 B in order to achieve the above item 1), it is inevitable in the production process of the sintered body. Due to the oxidation, the Nd-rich phase for causing liquid-phase sintering is consumed because it forms an oxide and cannot be sintered, or the amount of the R 2 Fe 14 B phase is increased, which inevitably leads to Nd-rich phase. rich
Since the abundance of the B-rich phase and the B-rich phase is reduced, it has become more difficult to manufacture a sintered body. Further, as for the above item 3), in the method of manufacturing an R-Fe-B system permanent magnet, a method of press molding in a magnetic field is adopted in order to align the easy-axis directions of the main phase crystal grains. At that time, the residual magnetic flux density depends on the direction in which the magnetic field is applied and the direction in which the press is applied.
It is known that the (Br) value changes and is also affected by the strength of the applied magnetic field.

【0006】[0006]

【発明が解決しようとする課題】最近、鋳塊粉砕法によ
るR-Fe-B系合金粉末の欠点たる結晶粒の粗大化、α-Fe
の残留、偏析を防止するために、R-Fe-B系合金溶湯を双
ロール法により、特定板の鋳片となし、前記鋳片を通常
の粉末冶金法に従って、鋳片をスタンンプミル・ジョー
クラッシャーなどで粗粉砕後、さらにディスクミル、ボ
ールミル、アトライター、ジェットミルなど機械的粉砕
法により平均粒径が3〜5μmの粉末に微粉砕後、磁場中
プレス、焼結時効処理する製造方法が提案(特開昭63-31
7643号公報)されている。
Recently, coarsening of crystal grains, which is a defect of R-Fe-B alloy powder by the ingot crushing method, α-Fe
In order to prevent the residual and segregation of the R-Fe-B alloy melt by the twin roll method, it is made into a slab of a specific plate, and the slab is stamped according to the usual powder metallurgy method. Proposal of a manufacturing method in which after coarsely pulverizing with, etc., further finely pulverizing into powder with an average particle diameter of 3 to 5 μm by a mechanical pulverizing method such as a disc mill, a ball mill, an attritor, a jet mill, pressing in a magnetic field, and sintering aging treatment (JP-A-63-31
No. 7643).

【0007】しかし、前記方法では従来の鋳型に鋳造し
た鋳塊粉砕法の場合に比し、微粉砕時の粉砕能率の飛躍
的な向上は望めず、また微粉砕時、粒界粉砕のみなら
ず、粒内粉砕も起こるため、磁気特性の大幅の向上も達
成できなかった。また、R-rich相が酸化に対して安定な
RH2になっていないため、さらにR-rich相の微細で表面
積が大きいために耐酸化性に劣り、工程中に酸化が進み
高磁石特性が得られない。また、R-Fe-B系永久磁石材料
に対するコストダウンの要求が強く、効率よく高性能永
久磁石を製造することが、極めて重要になっている。こ
のため、極限に近い特性を引き出すための製造条件の改
良が必要となっている。
However, in the above-mentioned method, it is not possible to expect a drastic improvement in the pulverization efficiency in the fine pulverization, as compared with the case of the conventional ingot pulverization method in which it is cast in a mold, and in addition to the grain boundary pulverization in the fine pulverization. However, since intra-particle pulverization also occurred, it was not possible to achieve a significant improvement in magnetic properties. In addition, the R-rich phase is stable against oxidation.
Since it is not RH 2 , it is further inferior in oxidation resistance due to the fine and large surface area of the R-rich phase, and oxidation progresses during the process, and high magnet characteristics cannot be obtained. Further, there is a strong demand for cost reduction of R-Fe-B based permanent magnet materials, and it is extremely important to efficiently manufacture high-performance permanent magnets. Therefore, it is necessary to improve the manufacturing conditions to bring out the characteristics that are close to the limit.

【0008】この発明は、上述したR-Fe-B系永久磁石材
料の製造方法における問題点を解消し、効率よい微粉砕
を可能にし、かつ耐酸化性に優れ、しかも磁石の結晶粒
の微細化により高いiHcを発現し、さらに各結晶粒の磁
化容易方向の配向度を高めて、(BH)max値(MGOe);Aと、i
Hc値(kOe);Bの合計値、A+B≧59の値を示す高性能R-Fe-B
系永久磁石材料の製造方法の提供を目的としている。
The present invention solves the above-mentioned problems in the method for producing an R-Fe-B system permanent magnet material, enables efficient fine pulverization, is excellent in oxidation resistance, and has a fine crystal grain of the magnet. By expressing a high iHc, further increasing the degree of orientation of each crystal grain in the easy magnetization direction, (BH) max value (MGOe); A and i
High-performance R-Fe-B showing Hc value (kOe); B total value, A + B ≧ 59 value
An object of the present invention is to provide a method for manufacturing a permanent magnet material.

【0009】[0009]

【課題を解決するための手段】発明者らは、まずR-Fe-B
系合金を出発原料として微粉砕能率の向上、かつ耐酸化
性にすぐれ、磁石合金の磁気特性、特にiHcの向上を目
的に、粉砕方法について種々検討した結果、組織が微細
かつ均等なR-Fe-B系合金を水素吸蔵させた後、脱H2処理
して安定化させた合金粉末を微粉砕した場合、微粉砕能
は従来の約2倍にも向上し、且つ微粉末にパルス磁界を
かけて配向させた後、成形して焼結することにより、(B
H)max値とiHc値の合計値が59以上の値を有し、かつ焼結
磁石のiHcが向上することを知見した。
[Means for Solving the Problems] First, the inventors
Based on the results of various studies on the pulverization method with the aim of improving the fine pulverization efficiency using a base alloy as a starting material, and having excellent oxidation resistance, and improving the magnetic properties of the magnet alloy, especially iHc, a fine and uniform R-Fe structure was obtained. -When hydrogen-absorbing the B-based alloy and then pulverizing the stabilized alloy powder by de-H 2 treatment, the pulverizing ability is improved to about twice that of the conventional one, and the pulsed magnetic field is applied to the fine powder. (B)
It was found that the sum of (H) max value and iHc value has a value of 59 or more, and the iHc of the sintered magnet is improved.

【0010】すなわち、ストリップキャスティングされ
た特定板厚のRリッチ相が微細に分離した組織を有する
特定組成のR-Fe-B系合金にH2吸蔵させると、微細に分散
されたRリッチ相が水素化物を生成して体積膨張するこ
とにより、前記合金を自然崩壊させることができ、その
結果、微粉砕により、合金塊を構成している主相の結晶
粒を細分化することが可能となり、粒度分布が均一な粉
末を作製することができる。
That is, when H 2 is occluded in an R-Fe-B alloy having a specific composition having a structure in which the strip-cast R-rich phase of a specific plate thickness is finely separated, the finely dispersed R-rich phase is formed. By generating a hydride and expanding in volume, the alloy can be naturally disintegrated, and as a result, by fine pulverization, it becomes possible to subdivide the crystal grains of the main phase constituting the alloy block, A powder having a uniform particle size distribution can be produced.

【0011】特に、この際Rリッチ相が微細に分散さ
れ、しかもR2Fe14B相が微細であることが重要である。
しかも通常の鋳型を用いて合金塊を溶製する方法では、
合金組成をR2Fe14Bの化学量論的組成に近づけた場合、F
e初晶の晶出が避け難く、次工程の微粉砕能を大きく低
下させる要因になってしまう。そのため、合金塊を均質
化させる目的で熱処理を加えて、α-Feを消失させる手
段がとられるが、主相結晶粒の粗大化と、Rリッチ相の
偏析も進むため、焼結磁石のiHc向上を図ることが困難
となる。また、主相結晶粒の磁化容易軸方向を揃える、
すなわち、配向度を高めることも高Br化を達成するため
の必須条件である。そのため、粉末冶金的手法で製造さ
れる永久磁石材料、たとえば、ハードフェライト磁石、
Sm-Co磁石ならびにR-Fe-B磁石では、その粉末を磁界中
でプレスする方式が採られている。
In this case, it is particularly important that the R-rich phase is finely dispersed and the R 2 Fe 14 B phase is fine.
Moreover, in the method of melting an alloy lump using a normal mold,
When the alloy composition is brought close to the stoichiometric composition of R 2 Fe 14 B, F
e Crystallization of primary crystals is unavoidable, and this becomes a factor that greatly reduces the fine pulverization ability in the next step. Therefore, heat treatment is applied for the purpose of homogenizing the alloy ingot to eliminate α-Fe, but coarsening of the main phase crystal grains and segregation of the R-rich phase also proceed, so that the iHc of the sintered magnet is increased. It will be difficult to improve. Also, the easy-axis directions of the main phase crystal grains are aligned,
That is, increasing the degree of orientation is also an essential condition for achieving high Br. Therefore, permanent magnet materials manufactured by powder metallurgical methods, such as hard ferrite magnets,
Sm-Co magnets and R-Fe-B magnets employ a method of pressing the powder in a magnetic field.

【0012】しかしながら、磁界を発生させるために通
常のプレス装置(油圧プレス、機械プレス)に配置されて
いるコイルおよび電源では、高々10kOe〜20kOeの磁界し
か発生することしかできず、より高い磁界を発生させる
ためには、コイルの巻数を多くする必要があり、また高
い電源を必要とするための装置の大型化を必要とする。
However, a coil and a power source arranged in a usual press device (hydraulic press, mechanical press) for generating a magnetic field can generate only a magnetic field of 10 kOe to 20 kOe at most, and a higher magnetic field is generated. In order to generate it, it is necessary to increase the number of turns of the coil, and it is necessary to increase the size of the device that requires a high power supply.

【0013】本発明者らは、プレス時の磁界強度と焼結
体のBrとの関係を解析したところ、磁界強度を高くすれ
ばする程、高Br化でき、瞬間的に強磁界を発生させるこ
との可能なパルス磁界を用いることによって、より一層
高Br化できることを知見した。さらに、パルス磁界を用
いる方法においては、一旦パルス磁界で瞬間的に配向さ
せることが重要で、さらに、粉末を静水圧プレスによっ
て成形することが可能であり、パルス磁界と電磁石によ
る静磁界との組み合せによって、磁界中プレス成形する
ことも可能であることを知見した。
The present inventors analyzed the relationship between the magnetic field strength during pressing and Br of the sintered body. The higher the magnetic field strength, the higher the Br value and the instantaneous generation of a strong magnetic field. It was found that even higher Br can be achieved by using a pulsed magnetic field capable of achieving this. Furthermore, in the method using a pulsed magnetic field, it is important to momentarily orientate once with the pulsed magnetic field, and it is possible to shape the powder by a hydrostatic press, and the combination of the pulsed magnetic field and the static magnetic field by an electromagnet can be combined. It was found that it is also possible to perform press molding in a magnetic field.

【0014】この発明は、R(但しRはYを含む希土類
元素のうち、少なくとも1種)10at%〜30at
%、B2at%〜28at%、残部Fe(但しFeの
部をCo、Niの種または種にて置換できる)及び
不可避的不純物からなる合金溶湯をストリップキャステ
ィング法にて板厚0.03mm〜10mmの薄板で、主
相のR 2 Fe 14 B相の短軸方向の寸法が0.1μm〜5
0μm、長軸方向の寸法が5μm〜200μmであり、
かつその主相結晶粒を取り囲むようにRリッチ相が5μ
m以下に微細に分した組織を有する鋳片に鋳造後、例
えば、前記鋳片を吸排気可能な容器に収容し、該容器内
の空気をH2ガスにて置換した後、該容器内に200T
orr〜50kg/mm2のH2ガスを供給して水素吸蔵
により得られた崩壊合金粉を、例えば、100℃〜75
0℃に加熱して脱H2処理した後、不活性ガス気流中で
微粉砕して得た平均粒径が1〜10μmの微粉末をモー
ルド内に充填密度1.4〜3.0g/cm3に充填し、
瞬間的に10kOe以上のパルス磁界をかけて配向させ
た後、成形し、焼結、時効処理することを特徴とするR
−Fe−B系永久磁石材料の製造方法である。
According to the present invention, R (where R is at least one of rare earth elements including Y) is 10 at% to 30 at.
%, The plate at B2at% ~28at%, remainder Fe (except be substituted one <br/> portion of Fe Co, at one or or two of Ni) and a molten alloy consisting of unavoidable impurities strip casting Mainly a thin plate with a thickness of 0.03 mm to 10 mm
The dimension of the R 2 Fe 14 B phase in the minor axis direction is 0.1 μm to 5
0 μm, the dimension in the long axis direction is 5 μm to 200 μm,
And the R-rich phase is 5μ so as to surround the main phase crystal grains.
After casting the cast piece having m was finely distributed in the following tissues, for example, the slab is accommodated in the intake and exhaust can container, after replacing the air in said vessel at a H 2 gas, said vessel To 200T
or 2 to 50 kg / mm 2 of H 2 gas to absorb hydrogen to obtain a collapsed alloy powder, for example, 100 ° C. to 75 ° C.
A fine powder having an average particle size of 1 to 10 μm obtained by pulverizing in an inert gas stream after heating to 0 ° C. to remove H 2 and filling density in the mold is 1.4 to 3.0 g / cm 3. Fill 3
R is characterized in that after instantaneously applying a pulse magnetic field of 10 kOe or more for orientation, forming, sintering, and aging treatment
It is a manufacturing method of a -Fe-B system permanent magnet material.

【0015】この発明によるR-Fe-B系永久磁石の磁気特
性は、BH(max)が50MGOe以上の場合は、iHcは10kOe以上
であり、又BH(max)が45MGOe以上の場合は、iHcは15kOe
以上で、組成、製造条件等を適宜選択することにより所
要の磁気特性を得ることができる。
The magnetic characteristics of the R-Fe-B system permanent magnet according to the present invention have iHc of 10 kOe or more when BH (max) is 50 MGOe or more, and iHc when BH (max) is 45 MGOe or more. Is 15 kOe
As described above, desired magnetic characteristics can be obtained by appropriately selecting the composition, manufacturing conditions, and the like.

【0016】この発明の特定組成のRリッチ相が微細に
分離した組織を有する磁石材料の鋳片は、特定組成の合
金溶湯を単ロール法、あるいは双ロール法によるストリ
ップキャスティング法にて製造される。得られた鋳片は
板厚が0.03mm〜10mmの薄板材であり、所望の鋳片板厚に
より、単ロール法と双ロール法を使い分けるが、板厚が
厚い場合は双ロール法を、また板厚が薄い場合は単ロー
ル法を採用したほうが好ましい。
The slab of the magnetic material having the structure in which the R-rich phase of the specific composition is finely separated according to the present invention is produced by the alloy casting of the specific composition by the single-roll method or the strip-casting method by the twin-roll method. . The obtained slab is a thin plate material having a plate thickness of 0.03 mm to 10 mm, and depending on the desired slab plate thickness, the single roll method and the twin roll method are used separately, but if the plate thickness is thick, the twin roll method is used. When the plate thickness is thin, it is preferable to adopt the single roll method.

【0017】鋳片の板厚を0.03mm〜10mmに限定した理由
は、0.03mm未満では急冷効果が大となり、結晶粒径が3
μmより小となり、粉末化した際に酸化しやすくなるた
め、磁気特性の劣化を招来するので好ましくなく、また
10mmを超えると、冷却速度が遅くなり、α-Feが晶出し
やすく、結晶粒径が大となり、Ndリッチ相の偏在も生じ
るため、磁気特性が低下するので好ましくないことによ
る。
The reason for limiting the plate thickness of the cast slab to 0.03 mm to 10 mm is that if the thickness is less than 0.03 mm, the quenching effect becomes large and the crystal grain size becomes 3
It becomes smaller than μm and is easily oxidized when pulverized, which causes deterioration of magnetic characteristics, which is not preferable.
If it exceeds 10 mm, the cooling rate becomes slow, α-Fe is easily crystallized, the crystal grain size becomes large, and the Nd-rich phase is unevenly distributed, which deteriorates the magnetic properties, which is not preferable.

【0018】この発明のストリップキャスティング法に
より得られた特定組成のR-Fe-B系合金の断面組織は主相
のR2Fe14B結晶が従来の鋳型に鋳造して得られた鋳塊の
ものに比べて、約1/10以上も微細であり、例えば、その
短軸方向の寸法は0.1μm〜50μm、長軸方向は5μm〜200
μmの微細結晶であり、かつその主相結晶粒を取り囲む
ようにRリッチ相が微細に分散されており、局部に遍在
している領域においても、その大きさは20μm以下であ
る。
The cross-sectional structure of the R-Fe-B alloy having a specific composition obtained by the strip casting method of the present invention is the ingot obtained by casting the main phase R 2 Fe 14 B crystal in a conventional mold. Compared to the ones, it is about 1/10 or more finer, for example, the dimension in the minor axis direction is 0.1 μm to 50 μm, and the major axis direction is 5 μm to 200 μm.
The R-rich phase is finely dispersed so as to surround the main-phase crystal grains, and the size is 20 μm or less even in a locally ubiquitous region.

【0019】Rリッチ相が5μm以下に微細に分離するこ
とによって、H2吸蔵処理時にRリッチ相が水素化物を生
成した際の体積膨張が均一に発生して細分化されるた
め、微粉砕にて主相の結晶粒が細分化されて粒度分布が
均一な微粉末が得られる。前記鋳片はそのままでH2吸蔵
処理してもよいが、所要の大きさに破断して、金属面を
露出させてH2吸蔵処理したほうが好ましい。
By finely separating the R-rich phase to 5 μm or less, volume expansion when the R-rich phase produces a hydride during the H 2 occlusion treatment is uniformly generated and finely divided, so that the R-rich phase is finely pulverized. As a result, the crystal grains of the main phase are subdivided to obtain a fine powder having a uniform particle size distribution. The slab may be subjected to H 2 occlusion treatment as it is, but it is preferable to break it to a required size and expose the metal surface for H 2 occlusion treatment.

【0020】H2吸蔵処理には、例えば、所定大きさに破
断した0.03mm〜10mm厚みの鋳片を原料ケース内に挿入
し、上記原料ケースを蓋を締めて密閉できる容器内に装
入して密閉したのち、容器内を十分に真空引きした後、
200Torr〜50kg/cm2の圧力のH2ガスを供給して、該鋳片
にH2を吸蔵させる。
For the H 2 occlusion treatment, for example, a slab of 0.03 mm to 10 mm thickness broken to a predetermined size is inserted into the raw material case, and the raw material case is placed in a container that can be closed by closing the lid. After sealing with a vacuum, evacuate the inside of the container sufficiently,
H 2 gas having a pressure of 200 Torr to 50 kg / cm 2 is supplied to cause the slab to occlude H 2 .

【0021】このH2吸蔵反応は、発熱反応であるため、
容器の外周には冷却水を供給する冷却配管が周設して容
器内の昇温を防止しながら、所定圧力のH2ガスを一定時
間供給することにより、H2ガスが吸収されて該鋳片は自
然崩壊して粉化する。さらに、粉化した合金を冷却した
のち、真空中で脱H2ガス処理する。前記処理の合金粉末
は粒内に微細亀裂が内在するので、ール・ミル、ジェ
ットミル等で短時間で微粉砕され、1μm〜80μmの所要
粒度の合金粉末を得ることができる。
Since this H 2 storage reaction is an exothermic reaction,
While cooling pipes for supplying cooling water are provided around the outer periphery of the container to prevent temperature rise in the container, by supplying H 2 gas at a predetermined pressure for a certain period of time, the H 2 gas is absorbed and the casting is performed. The pieces spontaneously disintegrate and powder. Further, after cooling the powdered alloy, H 2 gas treatment is performed in vacuum. Since the alloy powder of the process inherent fine cracks in the grains, ball Lumpur mill, milled in a short time in a jet mill or the like, it is possible to obtain an alloy powder of the required particle size of 1Myuemu~80myuemu.

【0022】この発明において、上記処理容器内を予め
不活性ガスで空気を置換し、その後H2ガスで不活性ガス
を置換してもよい。また、鋳塊の破断大きさは、小さい
ほど、H2粉砕の圧力を小さくでき、また、H2ガス圧力
は、減圧下でも破断した鋳塊はH2吸収し粉化されるが、
圧力が大気圧より高くなるほど、粉化されやすくなる。
しかし、200Torr未満では粉化性が悪くなり、50kg/cm2
を超えるとH2吸収による粉化の点では好ましいが、装置
や作業の安全性からは好ましくないため、H2ガス圧力は
200Torr〜50kg/cm2とする。量産性からは、2kg/cm2〜10
kg/cm2が好ましい。この発明において、H2吸蔵による粉
化の処理時間は、前記密閉容器の大きさ、破断塊の大き
さ、H2ガス圧力により変動するが、5分以上は必要であ
る。
In the present invention, the inside of the processing container may be replaced with air beforehand by an inert gas, and then the inert gas may be replaced by a H 2 gas. Further, the fracture size of the ingot, the smaller the H 2 crushing pressure can be made smaller, and the H 2 gas pressure is such that the fractured ingot is H 2 absorbed and powdered even under reduced pressure,
The higher the pressure is higher than the atmospheric pressure, the easier the powder is to be pulverized.
However, if it is less than 200 Torr, the powdering property becomes poor and 50 kg / cm 2
Although preferred in view of powdering by weight, the H 2 absorption and not preferable from the safety of equipment and work, H 2 gas pressure
200 Torr to 50 kg / cm 2 2 kg / cm 2 to 10 for mass production
kg / cm 2 is preferred. In the present invention, the processing time for pulverization by H 2 occlusion varies depending on the size of the closed container, the size of the crushed lump, and the H 2 gas pressure, but 5 minutes or more is required.

【0023】H2吸蔵により粉化した合金粉末を冷却後、
真空中で1次の脱H2ガス処理する。さらに、真空中また
はアルゴンガス中において、粉化合金を100℃〜750℃に
加熱し、0.5時間以上の2次脱H2ガス処理すると、粉化合
金中のH2ガスは完全に除去できるとともに、長期保存に
伴う粉末あるいはプレス成形体の酸化を防止して、得ら
れる永久磁石の磁気特性の低下を防止できる。
After cooling the alloy powder pulverized by H 2 occlusion,
The primary de-H 2 gas treatment is performed in vacuum. Moreover, in a vacuum or in argon gas, heating the powdered alloy to 100 ° C. to 750 ° C., when 2 Tsugida' H 2 gas treatment over 0.5 hours, with H 2 gas in the pulverized alloy can be completely removed It is possible to prevent the powder or the press-molded body from being oxidized due to long-term storage and prevent the magnetic properties of the obtained permanent magnet from being deteriorated.

【0024】この発明による100℃以上に加熱する脱水
素処理は、すぐれた脱水素効果を有しているために上記
の真空中での1次脱水素処理を省略し、崩壊粉を直接100
℃以上の真空中またはアルゴンガス雰囲気中で脱水素処
理してもよい。すなわち、前述したH2吸蔵反応用容器内
でH2吸蔵・崩壊反応させた後、得られた崩壊粉を続いて
同容器の雰囲気中で100℃以上に加熱する脱水素処理を
行うことができる。あるいは、真空中での脱水素処理
後、処理容器から取り出して崩壊粉を微粉砕したのち、
再度処理容器で100℃以上に加熱するこの発明の脱水素
処理を施してもよい。
Since the dehydrogenation treatment by heating to 100 ° C. or higher according to the present invention has an excellent dehydrogenation effect, the above-mentioned primary dehydrogenation treatment in vacuum is omitted and the disintegrated powder is directly treated with 100
The dehydrogenation treatment may be performed in a vacuum at a temperature of not less than 0 ° C or in an argon gas atmosphere. That can be done with H 2 After absorption and degradation reactions, dehydrogenation treatment which subsequently resulting collapse powder is heated to above 100 ° C. in an atmosphere of the container in the container for H 2 occlusion reaction described above . Alternatively, after dehydrogenation treatment in vacuum, after taking out from the treatment container and finely crushing the disintegrated powder,
The dehydrogenation treatment of the present invention in which the treatment container is heated to 100 ° C. or higher may be performed again.

【0025】上記の脱水素処理における加熱温度は、10
0℃未満では崩壊合金粉内に残存するH2を除去するのに
長時間を要して量産的でない。また、750℃を超える温
度では液相が出現し、粉末が固化してしまうため、微粉
砕が困難になったり、プレス時の成形性を悪化させるの
で、焼結磁石の製造の場合には好ましくない。また、焼
結磁石の焼結性を考慮すると、好ましい脱水素処理温度
は200℃〜600℃である。また、処理時間は処理量によっ
て変動するが0.5時間以上は必要である。
The heating temperature in the above dehydrogenation treatment is 10
If the temperature is lower than 0 ° C, it takes a long time to remove the H 2 remaining in the disintegrated alloy powder, which is not mass production. Further, at a temperature exceeding 750 ° C., a liquid phase appears and the powder is solidified, which makes it difficult to finely pulverize or deteriorates the formability at the time of pressing, which is preferable in the case of producing a sintered magnet. Absent. Further, considering the sinterability of the sintered magnet, the preferable dehydrogenation treatment temperature is 200 ° C to 600 ° C. Further, the treatment time varies depending on the treatment amount, but 0.5 hours or more is required.

【0026】次に微粉砕には、不活性ガス(例えば、
N2、Ar)によるジェット・ミルにて微粉砕を行う。勿
論、有機溶媒(例えば、ベンゼンやトルエン等)を用いた
ボールミルや、アトライター粉砕を用いることも可能で
ある。微粉砕での粉末の平均粒度は、1μm〜10μmが好
ましい。1μm未満になると粉砕した粉末が極めて活性と
なり著しく酸化されやすく、発火等の恐れが生ずる。ま
た、10μmを超えると粉砕されない粗大粒子が残存し、
保磁力が低下したり、焼結の進行が遅く密度の低下を引
き起こすことになる。より好ましくは、2〜4μmの平均
粒度の微粉末にすることである。
Next, for fine pulverization, an inert gas (for example,
Fine pulverization with a jet mill using N 2 , Ar). Of course, it is also possible to use a ball mill using an organic solvent (for example, benzene, toluene, etc.) or attritor grinding. The average particle size of the finely pulverized powder is preferably 1 μm to 10 μm. If it is less than 1 μm, the pulverized powder becomes extremely active and is prone to be easily oxidized, which may cause ignition. Further, if it exceeds 10 μm, coarse particles that are not crushed remain,
The coercive force will decrease, or the progress of sintering will be slow and the density will decrease. More preferably, it is a fine powder having an average particle size of 2 to 4 μm.

【0027】磁界を用いたプレスには、つぎの方法を提
案する。微粉砕した粉末を不活性ガス雰囲気中でモール
ドに充填する。モールドは、非磁性の金属、酸化物から
作製したもののほか、プラスチックやゴム等の有機化合
物でも良い。粉末の充填密度は、その粉末の静止状態の
嵩密度(充填密度1.4g/cm3)から、タッピング後の固め嵩
密度(充填密度3.0g/cm3)の範囲が好ましい。従って充填
密度は1.4〜3.0g/cm3に限定する。
The following method is proposed for pressing using a magnetic field. The finely pulverized powder is filled in a mold in an inert gas atmosphere. The mold may be made of non-magnetic metal or oxide, or may be an organic compound such as plastic or rubber. The packing density of the powder is preferably in the range of the bulk density of the powder in a static state (packing density 1.4 g / cm 3 ) to the solidified bulk density after tapping (packing density 3.0 g / cm 3 ). Therefore, the packing density is limited to 1.4 to 3.0 g / cm 3 .

【0028】これを、空心コイル、コンデンサー電源に
よるパルス磁界を加えて粉末の配向を行う。配向の際、
上下パンチを用いて圧縮を行いながら、繰り返し、パル
ス磁界を加えてもよい。パルス磁界の強度は大きければ
大きい程良く、最低10kOe以上は必要とする。パルス磁
界の時間は、図2の時間と磁界強さのグラフに示す如
く、1μmsec〜10secが好ましく、さらには5μmsec〜100
mmsecが好ましく、パルス磁界の印加回数は1〜10回、さ
らに、好ましくは1〜5回である。
The powder is oriented by applying a pulsed magnetic field from an air-core coil or a condenser power source. During orientation,
A pulse magnetic field may be repeatedly applied while performing compression using the upper and lower punches. The higher the strength of the pulse magnetic field, the better, and at least 10 kOe or more is required. The time of the pulsed magnetic field is preferably 1 μmsec to 10 sec, further 5 μmsec to 100 as shown in the graph of time and magnetic field strength in FIG.
mmsec is preferred, and the pulsed magnetic field is applied 1 to 10 times, more preferably 1 to 5 times.

【0029】配向後の粉末は、静水圧プレスによって固
めることができる。この際、可塑性のあるモールドを使
用した場合には、そのまま、静水圧プレスを行うことが
可能である。また、パルス磁界による配向とプレスとを
連続的に行うためには、ダイス内部にパルス磁界を発生
させるコイルを埋め込み、パルス磁界を用いて配向させ
た後、通常の磁界中プレス方法で成形することも可能で
ある。
The oriented powder can be solidified by isostatic pressing. At this time, when a plastic mold is used, the isostatic pressing can be performed as it is. In order to continuously perform the orientation and the pressing by the pulsed magnetic field, a coil for generating the pulsed magnetic field is embedded in the die, the orientation is performed by using the pulsed magnetic field, and then the ordinary magnetic field pressing method is used for molding. Is also possible.

【0030】以下に、この発明における、希土類・ボロ
ン・鉄系永久磁石合金用鋳塊の組成限定理由を説明す
る。この発明の永久磁石合金用鋳塊に含有される希土類
元素Rはイットリウム(Y)を包含し、軽希土類及び重希土
類を包含する希土類元素である。Rとしては、軽希土類
をもって足り、特にNd,Prが好ましい。また通常Rのうち
1種もって足りるが、実用上は2種以上の混合物(ミッシ
ユメタル、ジジム等)を入手上の便宜等の理由により用
いることができ、Sm,Y,La,Ce,Gd等は他のR、特にNd,Pr
等との混合物として用いることができる。なお、このR
は純希土類元素でなくてもよく、工業上入手可能な範囲
で製造上不可避な不純物を含有するものでも差し支えな
い。
The reasons for limiting the composition of the ingot for rare earth / boron / iron-based permanent magnet alloy in the present invention will be described below. The rare earth element R contained in the ingot for permanent magnet alloy of the present invention is a rare earth element including yttrium (Y) and including light rare earth and heavy rare earth. As R, a light rare earth element is sufficient, and Nd and Pr are particularly preferable. Also usually out of R
It is sufficient to have one kind, but in practice, a mixture of two or more kinds (Missille metal, didymium, etc.) can be used for reasons such as convenience in obtaining, Sm, Y, La, Ce, Gd etc. are other R, especially Nd, Pr
Etc. can be used as a mixture. In addition, this R
Does not have to be a pure rare earth element, and may contain impurities that are unavoidable in production within a range that is industrially available.

【0031】Rは、R-Fe-B系永久磁石を製造する合金鋳
塊の必須元素であって、10原子%未満では高磁気特性、
特に高保磁力が得られず、30原子%を越えると残留磁束
密度(Br)が低下して、すぐれた特性の永久磁石が得られ
ない。よって、Rは10原子%〜30原子%の範囲とし、特に
好ましい範囲はRは12〜15at%である。
R is an essential element of the alloy ingot for producing the R-Fe-B system permanent magnet, and if less than 10 atomic%, it has high magnetic properties,
In particular, a high coercive force cannot be obtained, and if it exceeds 30 atomic%, the residual magnetic flux density (Br) decreases, and a permanent magnet with excellent characteristics cannot be obtained. Therefore, R is in the range of 10 atom% to 30 atom%, and a particularly preferable range of R is 12 to 15 at%.

【0032】Bは、R-Fe-B系永久磁石を製造する合金鋳
塊の必須元素であって、2原子%未満では高い保磁力(iH
c)は得られず、28%原子を越えると残留磁束密度(Br)が
低下するため、すぐれた永久磁石が得られない。よっ
て、Bは2原子%〜28原子%の範囲と特に好ましい範囲は4
〜8at%である。
B is an essential element of the alloy ingot for producing the R-Fe-B system permanent magnet, and a coercive force (iH
c) cannot be obtained, and if the content exceeds 28%, the residual magnetic flux density (Br) decreases, so an excellent permanent magnet cannot be obtained. Therefore, B is in the range of 2 atom% to 28 atom% and a particularly preferred range is 4
It is ~ 8at%.

【0033】Feは42原子%未満では残理磁束密度(Br)が
低下し、88原子を超えると高い保磁力が得られないた
め、Feは77〜84at%が好ましく。さらに好ましくはFe77
原子%〜84原子%である。また、Feの一部をCo、Niの1種
又は2種で置換する理由は、永久磁石の温度特性を向上
させる効果及び耐食性を向上させる効果が得られるため
であるが、Co、Niの1種又は2種はFeの50%を越えると高
い保磁力が得られず、すぐれた永久磁石が得られない。
よって、CoはFeの50%を上限とする。
If the Fe content is less than 42 atomic%, the residual magnetic flux density (Br) is lowered, and if it exceeds 88 atom, a high coercive force cannot be obtained. Therefore, the Fe content is preferably 77 to 84 at%. More preferably Fe77
It is from atomic% to 84 atomic%. The reason for substituting a part of Fe with one or two of Co and Ni is that the effect of improving the temperature characteristics of the permanent magnet and the effect of improving corrosion resistance can be obtained. When 50% or more of Fe is contained in the seeds or the two, a high coercive force cannot be obtained, and an excellent permanent magnet cannot be obtained.
Therefore, Co has an upper limit of 50% of Fe.

【0034】この発明の合金鋳塊において、高い残留磁
束密度と高い保磁力を共に有するすぐれた永久磁石を得
るためには、R12原子%〜15原子%、B4原子%〜8原子%、Fe
77原子%〜84原子%が好ましい。また、この発明による合
金鋳塊は、R、B、Feの他、工業的生産上不可避的不純物
の存在を許容できるが、Bの一部を4.0原子%以下のC、3.
5原子%以下のP、2.5原子%以下のS、3.5原子%以下のCuの
うち少なくとも1種、合計量で4.0原子%以下で置換する
ことにより、磁石合金の製造性改善、低価格化が可能で
ある。
In order to obtain an excellent permanent magnet having both a high residual magnetic flux density and a high coercive force in the alloy ingot of the present invention, R12 atom% to 15 atom%, B4 atom% to 8 atom%, Fe
77 atom% to 84 atom% is preferable. Further, the alloy ingot according to the present invention, R, B, other than Fe, it is possible to allow the presence of impurities unavoidable in industrial production, but part of B is 4.0 atomic% or less C, 3.
By substituting at least one of P of 5 atomic% or less, S of 2.5 atomic% or less, and Cu of 3.5 atomic% or less with a total amount of 4.0 atomic% or less, it is possible to improve the manufacturability of the magnet alloy and reduce the cost. It is possible.

【0035】さらに、前記R、B、Fe合金あるいはCoを含
有するR-Fe-B合金に、9.5原子%以下のAl、4.5原子%以下
のTi、9.5原子%以下のV、8.5原子%以下のCr、8.0原子%
以下のMn、5原子%以下のBi、12.5原子%以下のNb、10.5
原子%以下のTa、9.5原子%以下のMo、9.5原子%以下のW、
2.5原子%以下のSb、7原子%以下のGe、35原子%以下のS
n、5.5原子%以下のZr、5.5原子%以下のHfのうち少なく
とも1種添加含有させることにより、永久磁石合金の高
保磁力が可能になる。この発明のR-B-Fe系永久磁石にお
いて、結晶相は主相が正方晶であることが不可欠であ
り、特に、微細で均一な合金粉末を得て、すぐれた磁気
特性を有する焼結永久磁石を作成するのに効果的であ
る。
Further, in the above R, B, Fe alloy or R-Fe-B alloy containing Co, 9.5 atomic% or less Al, 4.5 atomic% or less Ti, 9.5 atomic% or less V, 8.5 atomic% or less Cr, 8.0 atom%
Mn below, Bi below 5 atomic%, Nb below 12.5 atomic%, 10.5
Atomic% or less Ta, 9.5 atomic% or less Mo, 9.5 atomic% or less W,
2.5 atomic% or less Sb, 7 atomic% or less Ge, 35 atomic% or less Sb
By adding at least one of n, 5.5 at% or less of Zr and 5.5 at% or less of Hf, a high coercive force of the permanent magnet alloy becomes possible. In the RB-Fe based permanent magnet of the present invention, it is essential that the main phase of the crystal phase is a tetragonal crystal, and in particular, a fine and uniform alloy powder is obtained to obtain a sintered permanent magnet having excellent magnetic properties. Effective to create.

【0036】この発明による合金の微粉砕粉末の粒度
は、平均粒度80μmを越えると、永久磁石の作成時にす
ぐれた磁気特性、とりわけ高い保磁力が得られず、ま
た、平均粒度が1μm未満では、焼結磁石とした場合の製
作工程、すなわち、プレス成形、焼結、時効処理工程に
おける酸化が著しく、すぐれた磁気特性が得られないた
め、1〜80μmの平均粒度とする。さらに、すぐれた磁気
特性を得るには、平均粒度2〜10μmの合金粉末が最も望
ましい。
If the average particle size of the finely pulverized powder of the alloy according to the present invention exceeds 80 μm, excellent magnetic properties, especially high coercive force, cannot be obtained at the time of producing a permanent magnet, and if the average particle size is less than 1 μm, The average particle size is set to 1 to 80 μm because oxidation in the manufacturing process of the sintered magnet, that is, press molding, sintering, and aging treatment is significant and excellent magnetic properties cannot be obtained. Furthermore, alloy powder having an average particle size of 2 to 10 μm is most desirable for obtaining excellent magnetic properties.

【0037】[0037]

【作用】この発明は、ストリップキャスティングされた
特定板厚の特定組成を有するR-Fe-B系合金にH2吸蔵させ
ることにより、微細に分散されたRリッチ相が水素化物
を生成して体積膨張させて前記合金を自然崩壊させ、そ
の後微粉砕にて合金塊を構成している主相の結晶粒を細
分化することが可能となり、粒度分布が均一な粉末を作
製することができ、この際Rリッチ相が微細に分散さ
れ、かつR2Fe14B相も微細化され、脱H2処理して安定化
させた合金粉末を微粉砕した場合、微粉砕能は従来の約
2倍にも向上するため、製造効率が大幅に向上するとも
に、パルス磁界を用いて瞬間的に配向した後、プレス成
形、焼結することにより、Br、BH(max)及びiHcを著しく
改善向上したR-Fe-B系永久磁石が得られる。
The present invention is characterized in that strip-cast R-Fe-B based alloy having a specific composition with a specific plate thickness is allowed to occlude H 2 so that the finely dispersed R-rich phase forms a hydride to generate a volume. The alloy is allowed to expand to spontaneously disintegrate, and then it is possible to finely pulverize the crystal grains of the main phase constituting the alloy ingot, and to produce a powder with a uniform particle size distribution. When the R-rich phase is finely dispersed and the R 2 Fe 14 B phase is also finely pulverized, and the alloy powder stabilized by de-H 2 treatment is pulverized, the pulverization ability is about
Since it is doubled, manufacturing efficiency is greatly improved, and Br, BH (max) and iHc are significantly improved by instantaneously orienting using a pulsed magnetic field, followed by press molding and sintering. The obtained R-Fe-B system permanent magnet is obtained.

【0038】[0038]

【実施例】実施例1 高周波溶解炉にて溶解して得られたNd13.4-B6.0-Fe80.6
組成の合金溶湯を直径200mmの銅製ロール2本を併設した
双ロール式ストリップキャスターを用い、板厚約1mmの
薄板状鋳片を得た。前記鋳片内の結晶粒径は短軸方向の
寸法0.5μm〜15μm、長軸方向寸法は5μm〜80μmであ
り、Rリッチ相は主相を取り囲むように3μm程度に微細
に分離して存在する。
[Example] Example 1 Nd13.4-B6.0-Fe80.6 obtained by melting in a high frequency melting furnace
Using a twin roll type strip caster provided with two copper rolls having a diameter of 200 mm, the molten alloy having the composition was used to obtain a thin plate cast piece having a plate thickness of about 1 mm. The crystal grain size in the slab is 0.5 μm to 15 μm in the minor axis direction, 5 μm to 80 μm in the major axis direction, and the R-rich phase is present in a finely separated state of about 3 μm so as to surround the main phase. .

【0039】前記鋳片を50mm角以下に破断後、前記破断
片1000gを吸排気可能な密閉容器内に収容し、前記容器
内にN2ガスを30分間流入して、空気と置換した後、該容
器内に3kg/cm2のH2ガスを2時間供給してH2吸臓により鋳
片を自然崩壊させて、その後真空中で500℃に5時間保持
して脱H2処理した後、室温まで冷却し、さらに100メッ
シュまで粗粉砕した。
After the slab was broken into 50 mm square or less, 1000 g of the broken piece was housed in a closed container capable of sucking and exhausting, and N 2 gas was flowed into the container for 30 minutes to replace with air, H 2 gas of 3 kg / cm 2 was supplied into the container for 2 hours to spontaneously disintegrate the slab by the H 2 sucker, and after that, it was held at 500 ° C. in vacuum for 5 hours to remove H 2 and then, The mixture was cooled to room temperature and further pulverized to 100 mesh.

【0040】次いで、前記粗粉砕を採取した800gをジェ
ットミルで粉砕して平均粒度3.5μmの合金粉末を得た。
得られた合金粉末を用いて、ゴム質のモールドに原料粉
末を充填し、パルス磁界60kOeを瞬間的に付加して、配
向させた後、静水圧プレス装置にて2.5T/cm2の圧力で静
水圧プレスした。モールドから取り出した成形体を1090
℃で3時間の条件にて焼結し、600℃で1時間の時効処理
を行って、永久磁石を得た。得られた永久磁石の磁石特
性を表1に表す。
Next, 800 g of the coarsely pulverized sample was pulverized by a jet mill to obtain an alloy powder having an average particle size of 3.5 μm.
Using the obtained alloy powder, a raw material powder was filled in a rubber mold, and a pulsed magnetic field of 60 kOe was momentarily added and oriented, and then at a pressure of 2.5 T / cm 2 in a hydrostatic pressing device. It was hydrostatically pressed. The molded body taken out from the mold is 1090
Sintering was performed for 3 hours at ℃, and aging treatment was performed at 600 ℃ for 1 hour to obtain a permanent magnet. Table 1 shows the magnetic properties of the obtained permanent magnets.

【0041】実施例2 実施例1で得られた粉末を、図1に示す如く、上下パンチ
1,2の外周部に静磁界用コイル3,4を配置し、ダイス5内
にパルス磁界用コイル6を配設して、原料粉末7にパルス
磁界と通常の静磁界とを併用して作用させることができ
るプレス装置を用いて、まず、約30kOeのパルス磁界で
配向させた後、約12kOeの磁界中でプレス成形した。そ
の後、成形体は実施例1と同一の条件で、焼結、時効処
理を行った。得られた永久磁石の磁石特性を第1表に示
す。
Example 2 The powder obtained in Example 1 was punched up and down as shown in FIG.
The static magnetic field coils 3 and 4 are arranged on the outer peripheral portions of 1 and 2, the pulse magnetic field coil 6 is arranged inside the die 5, and the raw material powder 7 is operated by using both the pulse magnetic field and the normal static magnetic field in combination. Using a press machine capable of performing the above, firstly, it was oriented in a pulsed magnetic field of about 30 kOe and then press-molded in a magnetic field of about 12 kOe. Thereafter, the molded body was sintered and aged under the same conditions as in Example 1. Table 1 shows the magnetic properties of the obtained permanent magnets.

【0042】実施例3 実施例1と同様にNd13.0-Dy0.5-B6.5-Co1.0-Fe7の合金を
ストリップキャスティングし、薄板状鋳片を得た。これ
を50mm角以下に破断後、1000gを実施例1と同様にH2吸蔵
により自然崩壊させた後、真空中で6時間の脱H2処理し
た。これを粗粉砕後、ジェットミル粉砕して、平均粒度
3.5μmの粉末を得た。得られた粉末を実施例1と同様に
パルス磁界配向、静水圧プレスして、成形体を作製し、
同様に焼結熱処理を行った。得られた永久磁石の磁石特
性を表1に示した。
Example 3 An alloy of Nd13.0-Dy0.5-B6.5-Co1.0-Fe7 was strip cast in the same manner as in Example 1 to obtain a thin plate-shaped cast piece. After breaking this to 50 mm square or less, 1000 g was allowed to spontaneously disintegrate by H 2 occlusion in the same manner as in Example 1, and then subjected to H 2 removal treatment in vacuum for 6 hours. After coarsely crushing this, crush it with a jet mill to obtain an average particle size.
A 3.5 μm powder was obtained. The obtained powder is subjected to pulse magnetic field orientation and isostatic pressing in the same manner as in Example 1, to prepare a molded body,
Similarly, the sintering heat treatment was performed. Table 1 shows the magnetic properties of the obtained permanent magnets.

【0043】比較例1 実施例1で得られた粉末を通常の磁界中プレス装置で約1
2kOeの磁界中でプレス成形し、その後、実施例1と同一
条件で焼結・時効処理を行った。得られた永久磁石の磁
石特性を表1に示した。
COMPARATIVE EXAMPLE 1 The powder obtained in Example 1 was used in a conventional magnetic field press to obtain about 1
Press molding was performed in a magnetic field of 2 kOe, and thereafter, sintering and aging treatment were performed under the same conditions as in Example 1. Table 1 shows the magnetic properties of the obtained permanent magnets.

【0044】比較例2 高周波溶解炉にて溶解して得られたNd13.4-B6.0-Fe80.6
組成の合金溶湯を鉄製鋳型に鋳造した。得られた合金塊
の組織を観察したところ、初晶Feの晶出が認められたた
め、1050℃で10時間熱処理して均質化処理を行った。鋳
塊の結晶粒径は、短軸方向30〜150μm、長軸方向100〜
数mmにもなり、R-リッチ相が局部的150μm程度の大きさ
で偏析していた。
Comparative Example 2 Nd13.4-B6.0-Fe80.6 obtained by melting in a high frequency melting furnace
A molten alloy having the composition was cast in an iron mold. As a result of observing the structure of the obtained alloy ingot, crystallization of primary crystal Fe was observed, so heat treatment was performed at 1050 ° C. for 10 hours to perform homogenization treatment. The crystal grain size of the ingot is 30 to 150 μm in the short axis direction, 100 to 100 in the long axis direction.
It became several mm, and the R-rich phase was locally segregated with a size of about 150 μm.

【0045】この合金塊を粗砕後、実施例1と同様の方
法でH2吸蔵処理、脱H2処理して、粗粉末を得た。さら
に、実施例1と同一の条件でジエットミル粉砕し、平均
粒径約3.7μmの合金で得られた粉末を約12kOeの磁界中
でプレス成形し、実施例1と同一の条件で、焼結、熱処
理を行った。得られた永久磁石の特性を表1に示す。
[0045] The alloy ingot crude after grinding, H 2 adsorption treatment in the same manner as in Example 1, and removing H 2 treatment to obtain a crude powder. Furthermore, a jet mill was pulverized under the same conditions as in Example 1, the powder obtained with an alloy having an average particle size of about 3.7 μm was press-molded in a magnetic field of about 12 kOe, and sintered under the same conditions as in Example 1, Heat treatment was performed. The properties of the obtained permanent magnet are shown in Table 1.

【0046】比較例3 実施例1と同一組成、同一板厚のストリップキャスティ
ング鋳片を50mm以下に粗粉砕後、H2吸蔵処理、脱H2処理
することなく、前記粗粉砕粉1000gをスタンプミルにて1
時間粉砕して100メッシュの粗粉砕粉となした後、ジェ
ットミル粉砕し、平均粒径約3.8μmの合金粉末を得た。
前記合金粉末を約12kOe磁界中での磁界中プレス、焼
結、時効処理を行って永久磁石を得た。得られた永久磁
石の磁気特性を表1に表す。
Comparative Example 3 A strip-cast casting slab having the same composition and the same plate thickness as in Example 1 was roughly crushed to 50 mm or less, and then 1000 g of the roughly crushed powder was stamp-milled without H 2 occlusion treatment and de-H 2 treatment. At 1
After pulverizing for a time to obtain a coarsely pulverized powder of 100 mesh, it was pulverized by a jet mill to obtain an alloy powder having an average particle diameter of about 3.8 μm.
The alloy powder was pressed in a magnetic field in a magnetic field of about 12 kOe, sintered, and aged to obtain a permanent magnet. Table 1 shows the magnetic properties of the obtained permanent magnets.

【0047】比較例4 Nd13.0-Dy0.5-B6.5-Co1.0-Fe79の組成の合金を比較例2
と同様の手法で鋳造した。得られた合金塊には、Fe初晶
が晶出していたため、1050℃×6Hrの熱処理を行った。
この合金塊を粗粉砕後、実施例1と同時にH2吸蔵処理
し、真空中で脱H2処理を行った。これを粗粉砕後、ジェ
ットミル粉砕して、平均粒径約3.7μmの粉末を得た。さ
らに、約12kOeの磁界中で磁界中プレスした後、実施例1
と同一条件で、焼結・熱処理を行った。得られた永久磁
石の磁気特性を表1に表す。
Comparative Example 4 An alloy having a composition of Nd13.0-Dy0.5-B6.5-Co1.0-Fe79 was used as Comparative Example 2.
It was cast by the same method as. Since the obtained alloy ingot had Fe primary crystals crystallized, it was heat-treated at 1050 ° C. × 6 Hr.
After roughly crushing this alloy lump, H 2 occluding treatment was performed at the same time as in Example 1, and H 2 removal treatment was performed in vacuum. This was roughly pulverized and then jet mill pulverized to obtain a powder having an average particle size of about 3.7 μm. Further, after pressing in a magnetic field in a magnetic field of about 12 kOe, Example 1
Sintering and heat treatment were performed under the same conditions as above. Table 1 shows the magnetic properties of the obtained permanent magnets.

【0048】[0048]

【表1】 [Table 1]

【0049】[0049]

【発明の効果】この発明による製造方法は、特定組成を
有するR-Fe-B系合金溶湯をストリップキャスティングに
て特定板厚の鋳片となし、この鋳片にH2吸蔵させて自然
崩壊させることにより、その後、脱H2処理して安定化さ
せた合金粉末を微粉砕にて合金塊を構成している主相の
結晶粒を細分化することが可能となり、粒度分布が均一
な粉末を、従来の約2倍程度の効率で作製することがで
き、粉砕時にRリッチ相とR2Fe14B相も微細化され、パル
ス磁界を用いてプレスすることにより、磁石化すると耐
酸化性にすぐれ、磁石合金の磁気特性、特に最大エネル
ギー積値(BH)max(MGOe);Aと保磁力iHc(kOe)の特性値;B
の合計値A+Bが59以上の値を示す高性能R-Fe-B系永久磁
石が得られる。
EFFECTS OF THE INVENTION According to the production method of the present invention, an R-Fe-B alloy melt having a specific composition is formed into a slab with a specific plate thickness by strip casting, and this slab is allowed to occlude H 2 and spontaneously disintegrate. by, then, it becomes possible to subdivide the crystal grains of the main phase constituting an alloy ingot alloy powder was stabilized by removing H 2 treated with finely ground, particle size distribution uniform powder , R-rich phase and R 2 Fe 14 B phase are also miniaturized at the time of crushing, and can be made with about twice the efficiency of conventional ones, and by pressing with a pulse magnetic field, it becomes oxidation resistant when magnetized. Excellent magnetic properties of magnet alloys, especially maximum energy product value (BH) max (MGOe); A and coercive force iHc (kOe) characteristic value; B
A high-performance R-Fe-B system permanent magnet having a total value A + B of 59 or more is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】パルス磁界と通常の静磁界とを併用して作用さ
せることができるプレス装置の説明図である。
FIG. 1 is an explanatory diagram of a press device that can act by using a pulse magnetic field and a normal static magnetic field together.

【図2】パルス磁界の時間と磁界強さとの関係を示すグ
ラフである。
FIG. 2 is a graph showing a relationship between time of a pulsed magnetic field and magnetic field strength.

【符号の説明】[Explanation of symbols]

1,2 パンチ 3,4 静磁界用コイル 5 ダイス 6 パルス磁界用コイル 7 原料粉末 1,2 punch 3,4 Static magnetic field coil 5 dice 6 Pulse magnetic field coil 7 Raw powder

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−222304(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 33/02 C22C 38/00 303 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-3-222304 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C22C 33/02 C22C 38/00 303

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 R(但しRはYを含む希土類元素のう
ち、少なくとも1種)10at%〜30at%、B2a
t%〜28at%、残部Fe(但しFeの部をCo、
Niの種または種にて置換できる)及び不可避的不
純物からなる合金溶湯をストリップキャスティング法に
て板厚0.03mm〜10mmの薄板で、主相のR 2
14 B相の短軸方向の寸法が0.1μm〜50μm、長
軸方向の寸法が5μm〜200μmであり、かつその主
相結晶粒を取り囲むようにRリッチ相が5μm以下に微
細に分した組織を有する鋳片に鋳造後、前記鋳片を容
器に収容して200Torr〜50kg/mm2のH2
スを供給して崩壊合金粉を得、該合金粉を脱H2処理し
た後、不活性ガス気流中で微粉砕して得た平均粒径が1
〜10μmの微粉末をモールド内に充填密度1.4〜
3.0g/cm3に充填し、10kOe以上のパルス磁
界をかけて配向させた後、成形し、焼結、時効処理する
ことを特徴とするR−Fe−B系永久磁石材料の製造方
法。
1. R (provided that R is at least one of rare earth elements including Y) 10 at% to 30 at%, B2a
t% ~28at%, a part of the remainder Fe (except Fe Co,
The molten alloy consisting of substituted possible) and unavoidable impurities in one kind or two kinds of Ni by the strip casting method of a thin plate having a thickness 0.03Mm~10mm, the main phase R 2 F
e 14 B phase dimension in the minor axis direction is 0.1 μm to 50 μm, long
The axial dimension is 5 μm to 200 μm, and its main
After casting the cast piece having a phase crystal grains so as to surround the R-rich phase is finely distributed in the 5μm or less tissue, the cast pieces were accommodated in a container supplying a H 2 gas of 200Torr~50kg / mm 2 To obtain a disintegrated alloy powder, which is subjected to H 2 removal treatment and then finely pulverized in an inert gas stream to obtain an average particle size of 1
Packing density of fine powder of -10 μm in mold is 1.4-
A method for producing an R-Fe-B based permanent magnet material, which comprises filling to 3.0 g / cm 3 and orienting by applying a pulse magnetic field of 10 kOe or more, followed by shaping, sintering and aging treatment.
【請求項2】 水素吸蔵により得られた崩壊合金粉末を
100℃〜750℃に加熱して脱H2処理することを特
徴とする請求項1に記載のR−Fe−B系永久磁石材料
の製造方法。
2. The R—Fe—B based permanent magnet material according to claim 1, wherein the decay alloy powder obtained by hydrogen storage is heated to 100 ° C. to 750 ° C. for de-H 2 treatment. Production method.
JP19288693A 1993-07-06 1993-07-06 Method for producing R-Fe-B permanent magnet material Expired - Lifetime JP3415208B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP19288693A JP3415208B2 (en) 1993-07-06 1993-07-06 Method for producing R-Fe-B permanent magnet material
RU93049098A RU2113742C1 (en) 1993-07-06 1993-10-14 Permanent-magnet materials and their manufacturing processes
DE69318147T DE69318147T2 (en) 1993-07-06 1993-10-14 R-Fe-B permanent magnet materials and their manufacturing processes
AT93308184T ATE165477T1 (en) 1993-07-06 1993-10-14 R-FE-B PERMANENT MAGNET MATERIALS AND THEIR PRODUCTION PROCESSES
EP93308184A EP0633581B1 (en) 1993-07-06 1993-10-14 R-Fe-B permanent magnet materials and process of producing the same
KR93021615A KR0131060B1 (en) 1993-07-06 1993-10-15 R-fe-b permanent magnet material & processing method
CN93115008A CN1076115C (en) 1993-07-06 1993-10-15 R-Fe-B permanent magnet materials and process of producing the same
TW082108554A TW272293B (en) 1993-07-06 1993-10-15

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19288693A JP3415208B2 (en) 1993-07-06 1993-07-06 Method for producing R-Fe-B permanent magnet material

Publications (2)

Publication Number Publication Date
JPH0718366A JPH0718366A (en) 1995-01-20
JP3415208B2 true JP3415208B2 (en) 2003-06-09

Family

ID=16298620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19288693A Expired - Lifetime JP3415208B2 (en) 1993-07-06 1993-07-06 Method for producing R-Fe-B permanent magnet material

Country Status (1)

Country Link
JP (1) JP3415208B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6482353B1 (en) 1999-11-12 2002-11-19 Sumitomo Special Metals Co., Ltd. Method for manufacturing rare earth magnet
US6511631B2 (en) * 2000-04-21 2003-01-28 Sumitomo Special Metals Co., Ltd. Powder compacting apparatus and method of producing a rare-earth magnet using the same
CN1182548C (en) 2000-07-10 2004-12-29 株式会社新王磁材 Rear-earth magnet and its producing method
JP3294841B2 (en) 2000-09-19 2002-06-24 住友特殊金属株式会社 Rare earth magnet and manufacturing method thereof
JP2006108591A (en) * 2004-10-08 2006-04-20 Tdk Corp Rare-earth sintered magnet and manufacturing method therefor
CN102956337B (en) * 2012-11-09 2016-05-25 厦门钨业股份有限公司 A kind of preparation method of saving operation of sintered Nd-Fe-B based magnet

Also Published As

Publication number Publication date
JPH0718366A (en) 1995-01-20

Similar Documents

Publication Publication Date Title
EP0633581B1 (en) R-Fe-B permanent magnet materials and process of producing the same
US5788782A (en) R-FE-B permanent magnet materials and process of producing the same
JPH0340082B2 (en)
JP3777199B2 (en) Method for producing high performance R-Fe-B permanent magnet material
JPH0424401B2 (en)
JPH0617481B2 (en) Alloy powder for rare earth magnets and method for producing the same
JP3415208B2 (en) Method for producing R-Fe-B permanent magnet material
JP3148581B2 (en) Method for producing R-Fe-BC-based permanent magnet material having excellent corrosion resistance
JPH0768561B2 (en) Method for producing rare earth-Fe-B alloy magnet powder
JPH06128610A (en) Production of anisotropic rare-earth alloy powder for permanent magnet
JP3611870B2 (en) Method for producing R-Fe-B permanent magnet material
JPH0682575B2 (en) Rare earth-Fe-B alloy magnet powder
JP3157661B2 (en) Method for producing R-Fe-B permanent magnet material
JP3474684B2 (en) High performance R-Fe-BC system magnet material with excellent corrosion resistance
JP3383448B2 (en) Method for producing R-Fe-B permanent magnet material
JPH0745412A (en) R-fe-b permanent magnet material
JPH08111307A (en) Production of material powder for r-fe-b based permanent magnet
JPH0920953A (en) Production of r-fe-b-c permanent magnet material excellent in corrosion resistance
JP2745042B2 (en) Rare earth-iron-boron alloy thin plate, alloy powder and method for producing permanent magnet
JP3815983B2 (en) Rare earth magnet and manufacturing method thereof
JP3157660B2 (en) Method for producing R-Fe-B permanent magnet material
JPH06349618A (en) Manufacture of r-fe-b permanent magnet material
JP3148573B2 (en) Method for producing R-Fe-BC-based permanent magnet material having excellent corrosion resistance
JP3300570B2 (en) Method for producing R-Fe-BC-based permanent magnet material having excellent corrosion resistance
JP3474683B2 (en) High performance R-Fe-BC system magnet material with excellent corrosion resistance

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080404

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090404

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100404

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140404

Year of fee payment: 11

EXPY Cancellation because of completion of term