JP3623571B2 - Method for producing RTB-based anisotropic bonded magnet - Google Patents
Method for producing RTB-based anisotropic bonded magnet Download PDFInfo
- Publication number
- JP3623571B2 JP3623571B2 JP32662095A JP32662095A JP3623571B2 JP 3623571 B2 JP3623571 B2 JP 3623571B2 JP 32662095 A JP32662095 A JP 32662095A JP 32662095 A JP32662095 A JP 32662095A JP 3623571 B2 JP3623571 B2 JP 3623571B2
- Authority
- JP
- Japan
- Prior art keywords
- hydrogenation
- recrystallization
- bonded magnet
- less
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/057—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
- H01F1/0571—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
- H01F1/0573—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes obtained by reduction or by hydrogen decrepitation or embrittlement
Landscapes
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Hard Magnetic Materials (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Powder Metallurgy (AREA)
Description
【0001】
【発明の属する技術分野】
この発明は、各種モーター、アクチュエーター等に用いることが可能な異方性R(希土類元素)−T(鉄属元素)−B系ボンド磁石の製造方法に係り、R−T−B系合金鋳塊を水素吸蔵崩壊法により粗粉砕粉とし、該粗粉砕粉を成形後、得られた成形体に水素化・再結晶処理し、さらに結合用の樹脂でボンド化処理することにより、良好な滅磁曲線の角型性と磁気特性の経時変化の少ないR−T−B系異方性ボンド磁石を得る製造方法に関する。
【0002】
【従来の技術】
R−T−(M)−B系異方性ボンド磁石粉末の製造方法には、水素化・再結晶処理による製造方法として、例えば特開平1−132106号公報に開示されている。
すなわち、かかる水素化・再結晶処理法とは、R−T−(M)−B系原料合金鋳塊または粉末を、H2ガス雰囲気またはH2ガスと不活性ガスの混合雰囲気中で温度500℃〜1000℃に保持して上記合金の鋳塊または粉末にH2を吸蔵させた後、H2ガス圧力13Pa(1×10−1Torr)以下の真空雰囲気、又はH2ガス分圧13Pa(1×10−1Torr)以下の不活性ガス雰囲気になるまで温度500℃〜1000℃で脱H2処理し、ついで冷却する工程を言い、該公報には水素化・再結晶処理で得られた粉末を粉砕後に樹脂配合して成形してR−T−B系ボンド磁石を得ることが開示されている。
【0003】
このような水素化・再結晶処理法で製造されたR−T−B系合金磁石は、大きな保磁力と磁気異方性を有する。これは上記処理によって、非常に微細な再結晶粒径、実質的には0.1μm〜1μmの平均再結晶粒径を持つ組織となり、磁気的には正方晶Nd2Fe14B系化合物の単磁区臨界粒径に近い結晶粒径となっており、なおかつこれらの極微細結晶がある程度結晶方位を揃えて再結晶しているためである。この結晶方位は原料合金粉末と同じ方位を水素化・再結晶処理後も継承していることが考えられる。
【0004】
【発明が解決しようとする課題】
ところが、水素化・再結晶処理法で製造した粉末を原料とするR−T−B系ボンド磁石は、処理に用いる合金鋳塊の組織と粉砕方法によって、水素化・再結晶処理法で製造した粉末の磁化が低下してしまうという欠点があった。
【0005】
また、上記水素化・再結晶処理法で製造した粉末を原料として製造したボンド磁石の磁気特性は、保磁力が大きいために着磁性が悪く、成形時の配向に20k0e程度の大きな磁界が必要となる。そしてその中でもボンド磁石の中で大きな割合を占めるラジアル配向では、成形時にこのような大きな配向磁界が得られないために磁気特性レベルが等方性のものと変わらないという欠点があった。
【0006】
このようにボンド磁石の配向が不充分であると、ボンド磁石の減磁曲線の角型性が悪く、不可逆熱減磁率が大きくなり、実際にモーターなどに組み込んだ時に必要な磁束が得られずにモーターとして機能しないという欠点があった。そこで、発明者らは、水素化・再結晶処理法の前に、いわゆる水素粉砕を行うことで磁化の低下を防止する方法を提案(特願平6−95791号)した。
【0007】
しかしながら、この水素粉砕と水素化・再結晶処理法を組み合わせた製造方法において、得られた粉末の磁化の低下は防止できても、粉末を原料として製造したボンド磁石の着磁が困難なために配向度が低下し、それによって磁気特性レベルが向上しないという欠点は改善できなかった。
【0008】
さらに、前記公報に開示されている水素化・再結晶処理法で得た粉末から製造したボンド磁石は、磁気特性の経時変化が大きく、使用環境によっては磁石としての耐用期間が著しく短くなってしまうという欠点があった。これは、成形時の樹脂との混練やプレスによって粉末が破壊されるために、該水素化・再結晶処理法で製造したときに生じる粉末表面の強固な酸化層が破壊されるためであると考えられる。
【0009】
この対策として、特開平6−342707号公報には、水素化・再結晶処理法で得られた粉末を200℃〜500℃の真空もしくは不活性雰囲気中で熱処理することで耐熱性を向上させる方法が開示されている。しかしながらこの方法も、粉末を熱処理後に成形体とするために成形体中の粉末が破壊してしまい、磁気特性の経時変化が大きくなることを避けることができない。
【0010】
この発明は、R−T−B系異方性ボンド磁石を水素化・再結晶処理法により製造する方法において、磁気特性の経時変化を改善し、良好な滅磁曲線の角型性を有するR−T−B系異方性ボンド磁石を得る製造方法の提供を目的としている。
【0011】
【課題を解決するための手段】
発明者らは、R−T−B系合金鋳塊片でそのまま水素化・再結晶処理を行うと、水素雰囲気で昇温するために、昇温中に水素吸蔵崩壊法、いわゆる水素粉砕によって処理前後で合金形状が変わってしまうが、これを水素粉砕法で粉砕した合金粉末の成形体とすることで形状の変化を回避できることを知見した。
【0012】
また、R−T−B系合金粉末を成形体となした後、得られた成形体に該水素化・再結晶処理を施すことによって、従来よりもより一層磁気特性の経時変化が改善されることを見い出した。
さらに、配向度、より具体的には減磁曲線の角型性を改善する方法として、R−T−B系合金粉末を水素化・再結晶処理前の保磁力がごく小さい原料粉末を磁界中で成形すると、水素化・再結晶処理後の大きな保磁力を持つ粉末を磁界中成形した場合に較べてはるかに配向度の良い成形体が得られ、これに水素化・再結晶処理を施すことで処理前に成形体に付加された良好な配向度は処理後も変わらないため、従来よりも一層減磁曲線の角型性が良好なR−T−B系異方性ボンド磁石が製造できることを知見し、この発明を完成した。
【0013】
すなわち、この発明は、R−T−B系合金鋳塊を水素吸蔵崩壊法により平均粒度50μm〜500μmに粗粉砕し、この粗粉砕粉を所定形状に成形した後、得られた成形体に水素化・再結晶処理を施し、その後冷却して得られる成形体に結合用樹脂を含浸又は該樹脂に浸漬し、これをボンド化処理するR−T−B系異方性ボンド磁石の製造方法である。
また、上記の製造方法において、成形を磁界中で行うR−T−B系異方性ボンド磁石の製造方法を併せて提案する。
【0014】
また、この発明は、上記の製造方法において、R−T−B系合金鋳塊が、R:10〜20at%(R:Yを含む希土類元素の少なくとも1種で、かつPrまたはNdの1種または2種をRのうち50%以上含有)、T:67〜85at%(T:FeまたはFeの一部を50%以下のCoで置換)、B:4〜10at%、あるいはさらにM:10at%以下(M:Al、Ti、V、Cr、Ni、Ga、Zr、Nb、Mo、ln、Sn、Hf、Ta、Wのうち1種または2種以上)からなるR−T−B系異方性ボンド磁石の製造方法を併せて提案する。
【0015】
この発明による製造方法を詳述すると、上記組成の合金鋳塊を10k〜1000kPaの水素ガス中で、600℃以下、15分〜100時間保持する水素吸蔵崩壊法にて平均粒度50μm〜500μmに粗粉砕し、成形圧力1〜10t/cm2の圧力にて成形体とし、前記成形体を10k〜1000kPaのH2ガス中で、600℃〜750℃の温度域を昇温速度10℃/min〜200℃/minで昇温し、さらに750℃〜900℃に15分〜8時間加熱保持し、組織をR水素化物、T−B化合物、T相、R2T14B化合物の少なくとも4相の混合組織とした後、さらに、ArガスまたはHeガスによる絶対圧10Pa〜50kPaの減圧気流中にて、700℃〜900℃に5分〜8時間の保持をする再結晶処理を行い、ついで冷却して得られる前記成形体に、結合用樹脂を含浸もしくはこれに浸漬してボンド化処理することにより、良好な磁気特性の経時変化を持つR−T−B系異方性ボンド磁石を得ることができる。
【0016】
また、この発明は、上記の成形を0.1〜1.0MA/mの磁界中で行うことにより、良好な磁気特性の経時変化と配向度の良好なR−T−B系異方性ボンド磁石を得ることができる。
【0017】
【発明の実施の形態】
この発明に使用する原料合金に用いるRすなわち希土類元素は、Y、La、Ce、Pr、Nd、Sm、Gd、Tb、Dy、Ho、Er、Tm、Luが包括され、このうち少なくとも2種以上で、Pr、Ndのうち少なくとも1種または2種をRのうち50at%以上含有する必要がある。Rの50at%以上をPr、Ndの1種または2種以上とするのは50at%未満では充分な磁化が得られないためである。
【0018】
Rは、10at%未満ではα−Fe相の析出により保磁力が低下し、また20at%を超えると、目的とする正方晶Nd2Fe14B型化合物以外に、Rリッチの第2相が多く析出し、この第2相が多すぎると合金の磁化が低下する。従ってRの範囲は10〜20at%とする
【0019】
Tは鉄族元素であって、Fe、Coを包含する。Tは、67at%未満では低保磁力、低磁化の第2相が析出して磁気的特性が低下し、85at%を超えるとα−Fe相の析出により保磁力、角型性が低下するため、67〜85at%とする。
また、Feのみでも必要な磁気的性質は得られるが、Coの添加は、キュリー温度の向上、すなわち耐熱性の向上に有用であり、必要に応じて添加できる。FeとCoの原子比において、Feが50%以下となるとNd2Fe14B型化合物の飽和磁化そのものの減少量が大きくなってしまうため、Tのうち原子比でFeを50%以上とした。
【0020】
Bは、正方晶Nd2Fe14B型結晶構造を安定して析出させるためには必須である。添加量は、4at%以下ではR2T17相が析出して保磁力を低下させ、また滅磁曲線の角型性が著しく損なわれる。また、10at%を超えて添加した場合は、磁化の小さい第2相が析出して粉末の磁化を低下させる。従って、Bは、4〜10at%とした。
【0021】
また、このほかの添加元素としては、水素化・再結晶処理後も磁気特性を向上させる目的で異方性とするには水素化時に母相の分解反応を完全に終了させずに、母相、すなわちR2T14B相を安定化して故意に残存させるのに有効な元素が望まれる。特に顕著な効果を持つものとして、Al、Ti、V、Cr、Ni、Ga、Zr、Nb、Mo、ln、Sn、Hf、Ta、Wがある。
前記添加元素は、全く添加しなくてもよいが、添加する場合は10at%を超えると強磁性でない第2相が析出して磁化を低下させるため、添加量は10at%以下とする。
【0022】
水素吸蔵崩壊法とは、合金中のR2Fe14B相や粒界相であるR−Co相などに水素を吸蔵もしくは化合させることでR2Fe14BHx相やRH2 ■ 3相等を生成する際の体積膨張に伴って自然に崩壊する現象を利用したものである。よって、この発明における水素化・再結晶処理とは全く異なる工程である。
【0023】
この発明の粉砕方法を、水素吸蔵による自然崩壊法と限定したのは、R−T−B系の合金鋳塊及び合金粉末を水素化・再結晶処理すると、水素中で加熱されるために昇温中に自然崩壊も同時進行し、水素化・再結晶処理後の成形体が崩壊してしまう恐れがある。そのため、この発明で提案しているような成形体を水素化・再結晶処理後も存続させようとすると、処理中に体積膨張がほとんど起こらないこと、つまり事前に水素吸蔵で合金の体積が膨張していることが必要である。よって合金鋳塊の粉砕方法は水素吸蔵による自然崩壊法とする。
【0024】
水素吸蔵自然崩壊法に用いる水素の圧力を10k〜1000kPaとしたのは、10kPa未満では崩壊が充分に進行せず、また、1000kPaを越えると処理設備が大きくなりすぎ、工業的にコスト面また安全面で好ましくない。よって圧力範囲を10k〜1000kPaとした。
【0025】
この発明において、水素吸蔵させる温度を600℃以下としたのは、600℃を超えるとR2Fe14B相がRH2 ■ 3、α−Fe、Fe2B等に分解する反応が進行してしまい、自然崩壊が充分起こらず、粉砕工程としての意味を失ってしまう。従って、600℃以下とする。しかし、0℃未満では自然崩壊させるための反応、すなわち、R2Fe14BHx相やRH2 ■ 3相等への反応が進行し難いので0℃以上とする。
【0026】
水素ガス中で保持する時間については、水素吸蔵に伴う自然崩壊には数分〜15分程度の反応潜伏時間があるため、反応(自然崩壊)を十分に行わせるためには15分以上必要である。また、このような水素吸蔵による自然崩壊工程を100時間以上行っても実質的な効果がなくコスト高になるため、15分〜100時間の保持とする。
【0027】
この発明の粗粉砕粉の平均粒度を50μm〜500μmに限定したのは、平均粒度が50μm未満では粉末の酸化による磁気特性の劣化の恐れや、成形体の密度が向上し難くなり、ボンド磁石とした後の磁化が低下するためである。また、平均粒度が500μmを越えると、粒度が大きすぎて成形時の取り扱いが困難になる。よって粗粉砕粉の平均粒度を50μm〜500μmとする。さらに好ましい平均粒度は70μm〜300μmである。
【0028】
この発明における成形は、通常の圧縮成形でよく、その成形圧力は1〜10ton/cm2が望ましい。1ton/cm2未満では成形体の強度が低く取り扱いが困難な上に成形体の密度が低いため、水素化・再結晶処理後の磁化が低くなってしまう。また、成形圧力が高いと高いほど成形体の密度が向上するが、10ton/cm2を越えると密度の向上はほとんどない上に設備が大がかりになり、製造コストの増大を招き好ましくない。従って、成形圧力は1〜10ton/cm2とする。
【0029】
また、成形を磁界中で行うことで、ボンド磁石の磁気特性は著しく向上するが、成形を磁界中で行う場合の磁界強度は、0.1〜1.0MA/mが望ましい。0.1MA/m未満では配向が不充分で磁界中成形する意味がなく、また、1.0MA/mを越えると成形体の配向度が飽和し、さらに設備が大がかりになるため、製造コストの増大を招き好ましくない。よって、0.1〜1.0MA/mとする。
【0030】
この発明の水素化・再結晶処理とは、正方晶Nd2Fe14B型化合物に対し、高温、実際上は600〜900℃の温度範囲でH2ガスと反応させると、RH2 ■ 3、α−Fe、Fe2B等に相分離し、さらに同温度域でH2ガスを再結晶処理により除去すると、再度正方晶Nd2Fe14B型化合物の再結晶組織が得られるというものである。
【0031】
しかしながら、現実には、水素化処理条件によって分解生成物の結晶粒径、反応の度合いが異なり、水素化状態の金属組織は、水素化温度750℃未満と750℃以上で明らかに異なる。この金属組織上の違いが、再結晶処理を行った後の磁石粉末の磁気的性質、特に磁気異方性に大きく影響する。
【0032】
さらに、再結晶処理条件によって、正方晶Nd2Fe14B型化合物の再結晶状態が大きく影響を受け、水素化・再結晶処理法によって作製した磁石粉末の磁気的性質、特に保磁力に大きく影響する。さらに、水素化・再結晶処理の、正方晶Nd2Fe14B型化合物をH2ガス中で加熱する工程において、希土類元素によってRH2 ■ 3、α−Fe、Fe2Bなどに相分離する反応が、水素分圧によっては反応が進行しない領域が存在し、Rは元素によって水素圧力が磁気特性、特に角型性と保磁力に大きく影響する。
【0033】
この発明において、H2ガス中での加熱に際し、H2ガス圧力を10k〜1000kPaとする理由は、10kPa未満では前述の分解反応が充分に進行せず、また、1000kPaを超えると処理設備が大きくなりすぎ、工業的にコスト面、また、安全面で好ましくないため、圧力範囲を10k〜1000kPaとした。さらに好ましい圧力範囲は100k〜350kPaである。
【0034】
H2ガス中での加熱処理温度は、750〜900℃が望ましい。600℃未満ではRH2 ■ 3、α−Fe、Fe2Bなどへの分解反応が起こらず、また、600℃〜750℃の温度範囲では分解反応がほぼ完全に進行してしまい、分解生成物中に適量のR2Fe14B相が残存せず、再結晶処理後に磁気的、また、結晶方位的に充分な異方性が得られないため、750℃以上の加熱が必要である。また、900℃を超えるとRH2 ■ 3が不安定となり、かつ生成物が粒成長して正方晶Nd2Fe14B型化合物極微細結晶組織を得ることが困難になる。
【0035】
水素化の温度範囲が750℃〜900℃の領域であれば、脱水素時の再結晶反応の核となるR2Fe14B相が分散して適量残存するため、再結晶後のR2T14B相の結晶方位が残存R2Fe14B相によって決定され、結果的に再結晶組織の結晶方位が原料鋳塊の結晶方位と一致し、大きな異方性を示すことになる。そのため水素化処理の温度範囲を750℃〜900℃とする。
【0036】
また、加熱処理保持時間については、上記の分解反応を充分に行わせるためには15分以上必要であり、また8時間を越えると残存R2Fe14B相が減少して再結晶処理後の磁気異方性が低下するため好ましくない。従って15分〜8時間の加熱保持とする。
【0037】
H2ガス中での昇温速度は、10〜200℃/minが望ましい。10℃/min未満であると、昇温過程で600〜750℃の温度域を、分解反応が進行しながら通過するために、完全に分解して母相、すなわちR2Fe14B相が残存せず、脱水素処理後の磁気的及び結晶方位的異方性がほとんど失われてしまう。昇温速度を10℃/min以上にすれば、600〜750℃の領域で反応が充分に進行せず、母相を残存したまま750〜900℃の水素化温度域に達するため、再結晶処理後に磁気的および結晶方位的に大きな異方性を持った粉末を得ることができる。従って、昇温速度は、750℃以下の温度域において、10℃/min以上とする必要がある。また、200℃/minを超える昇温速度は赤外炉等を用いても実質的に実現困難であり、また可能であっても設備費が増大し好ましくない。よって昇温速度を10〜200℃/minとする。
【0038】
この発明の再結晶処理は、不活性ガス、具体的にはArガスまたはHeガス雰囲気の減圧下で行うが、これによって原料の周囲の実質的なH2分圧はほぼ平衡水素圧、例えば850℃にて1kPa程度となり、再結晶反応は徐々に進行する。
不活性ガスとしてArまたはHeに限定したのは、コスト面ではArが使い良く、また、H2ガスの置換性や温度制御性の点からはHeガスが優れているためである。その他の希ガスは、性能面でのメリットがない上、コスト的に問題がある。また、一般に不活性ガスとして取り扱われるN2ガスは、希土類系化合物と反応して窒化物を形成するため不適当である。
【0039】
雰囲気の絶対圧力が10Pa未満では、再結晶反応が急激に起こり、化学反応による温度低下が大きい。さらに、再結晶反応が急激すぎるために、冷却後の磁石粉末の組織に粗大な結晶粒が混在してしまい、そのために保磁力が大きく低下する。一方、雰囲気の絶対圧力が50kPaを越えると、再結晶反応に時間がかかりすぎて製造コストなどの実用的には問題となる。そこで、雰囲気の絶対圧力は、10Pa〜50kPaとした。
【0040】
また、再結晶処理時に減圧気流中で行うのは、再結晶反応によって原料から放出されるH2ガスによって、炉内圧力が上昇するのを防止するためである。実用上は、一方から不活性ガスを導入しつつ、他方から真空ポンプで排気し、圧力の制御は供給口、排気口それぞれに取り付けられた流量調整弁を用いて行う。
【0041】
この発明において、再結晶処理の温度が700℃未満では、RH2 ■ 3相からのH2の離脱が起こらないか、あるいは正方晶Nd2Fe14B型化合物の再結晶が充分進行せず、また、900℃を超えると正方晶Nd2Fe14B型化合物は生成するが、再結晶粒が粗大に成長し、高い保磁力が得られないため、再結晶処理の温度範囲は700℃〜900℃とする。
【0042】
また、加熱処理保持時間は、処理設備の排気能力にもよるが、上記の再結晶反応を充分に行わせるためには少なくとも5分以上保持する必要がある。しかし、一方では、2次的な再結晶反応によって結晶が粗大化すれば保磁力の低下を招くので、できる限り短時間の方が好ましい。そのため、5分〜8時間の加熱保持で充分である。
【0043】
なお、再結晶処理は、原料の酸化防止の観点から、また処理設備の熱効率の観点で、水素化処理に引き続いて行うのがよいが、水素化処理後、一旦原料を冷却して、再び改めて再結晶の為の熱処理を行っても良い。
【0044】
この発明におけるボンド化処理は、結合用樹脂の合浸もしくは該樹脂に浸漬後に樹脂を硬化することを示す。樹脂の含浸は真空雰囲気における真空合浸、もしくは樹脂中に成形体を浸漬する方法など成形体の形状目的や樹脂の種類などに応じて選択すればよい。
【0045】
また、ボンド化処理に用いる結合用樹脂は浸漬及び含浸できるエポキシ樹脂やフェノール樹脂、アクリル樹脂等が望ましい。また、磁気特性を向上させるためや成形性を良くするために成形時にポリビニルアルコール、ポリビニルブチラール、カルボキシメチルセルロース、ポリエチレングリコール、パラフィン、リノール酸、オレイン酸などの成形助剤を用いても良い。
【0046】
樹脂の硬化は、用いた樹脂の硬化温度で1時間程度の熱処理を行う。これは用いた樹脂の硬化条件に従って選択すれば良い。また、硬化を行う雰囲気は、硬化中の酸化を防ぐために真空もしくはAr、窒素などの不活性雰囲気中が望ましい。
【0047】
【実施例】
実施例1
高周波誘導溶解法によって溶製して得られた表1の組成の鋳塊を、1100℃、24時間、Ar雰囲気中で焼鈍した。この鋳塊を圧力容器中に入れ、1Pa以下にまで真空排気した。その後、純度99.999%以上の水素ガスを導入して容器内の圧力を200kPaとし、10時間、100℃で保持した。さらに、Arガス雰囲気中(O2濃度0.1%以下)で平均粒度100μmに整粒した後、この粗粉砕粉を10mm角に7ton/cm2の圧力で、表2の配向条件に従って、配向磁界をかけないか、もしくは1.2MA/mの直角磁化中で成形した。
【0048】
得られた成形体は管状炉に入れ、1Pa以下にまで真空排気した。その後、純度99.999%以上のH2ガスを導入しつつ、表2に示す水素化処理条件で水素化処理を行った。こうして得た水素化原料を、引き続き表2に示す再結晶処理条件に従って再結晶処理を行った。排気には、ロータリーポンプを用いた。冷却後、原料温度が50℃以下となったところで試料を取り出した。このときの成形体の存続結果を表2に示す。
処理した成形体にエポキシ樹脂を真空舎浸させ、150℃、1時間、Ar雰囲気中(O2濃度0.1%以下)で硬化させた。このときのボンド磁石の磁気特性を表2に、表2中のNo.14の試料の100℃大気中での磁気特性の経時変化を図1に示す。
【0049】
比較例1
高周波誘導溶解法によって溶製して得られた表1の組成の鋳塊を、1100℃、24時間、Ar雰囲気中で焼鈍した。この鋳塊をArガス雰囲気中(O2濃度0.1%以下)でスタンプミルを用いて平均粒度100μmに粗粉砕した後、この粗粉砕粉を10mm角に7ton/cm2の圧力で表3の配向条件に従って、配向磁界をかけないか、もしくは1.2MA/mの直角磁化中で成形した。
【0050】
得られた成形体は管状炉に入れ、IPa以下にまで真空排気した。その後、純度99.999%以上のH2ガスを導入しつつ、表3に示す水素化処理条件で水素化処理を行った。こうして得た水素化原料を、引き続き表3に示す再結晶処理条件に従って再結晶処理を行った。排気には、ロータリーポンプを用いた。冷却後、原料温度が50℃以下となったところで試料を取り出した。このときの成形体の存続の可否を表3に示した。
【0051】
比較例2
高周波誘導溶解法によって溶製して得られた表1の組成の鋳塊を、1100℃、24時間、Ar雰囲気中で焼鈍した。この鋳塊を圧力容器中に入れ1Pa以下にまで真空排気した。その後、純度99.999%以上の水素ガスを導入し容器内の圧力を200kPaとし10時間100℃で保持した。さらに、Arガス雰囲気中(O2濃度0.1%以下)で平均粒度100μmに整粒した後、管状炉に入れ、1Pa以下にまで真空排気した。その後、純度99.9999%以上のH2ガスを導入しつつ、表4に示す水素化処理条件で水素化処理を行った。こうして得た水素化原料を、引き続き表4に示す再結晶処理条件に従って再結晶処理を行った。
【0052】
排気には、ロータリーポンプを用いた。冷却後、原料温度が50℃以下となったところで試料を取り出した。得られた粉末は、10mm角に7ton/cm2の圧力で表4の配向条件に従って、配向磁界をかけないか、もしくは1.2MA/mの直角磁化中で成形した。成形後、エポキシ樹脂を真空舎浸させ、150℃、1時間、Ar雰囲気中(O2濃度0.1%以下)で硬化させた。このときのボンド磁石の磁気特性を表4に示す。また、表4中のNo.14の試料の100℃大気中での磁気特性の経時変化を図1に示す。図1は、時間経過とともに変化する(BH)maxの低下率を示したもので、水素化・再結晶処理前に成形したこの発明の場合を○印実線で示し、水素化・再結晶処理後に成形した比較例の場合を●印一点鎖線で示す。
【0053】
【表1】
【0054】
【表2】
【0055】
【表3】
【0056】
【表4】
【0057】
【発明の効果】
この発明は、R−T−B系ボンド磁石を水素化・再結晶処理法により製造する方法において、水素粉砕で得られた粉末を成形もしくは磁界中で成形後に、得られた成形体に水素化・再結晶処理し、該処理後も成形体を存続させ、該成形体に結合用樹脂を含浸もしくは浸漬させることでボンド化することを特徴とし、水素化・再結晶処理後も成形体を存続させることができ、磁気特性の経時変化が少なく、配向性にすぐれ、良好な滅磁曲線の角型性を有するR−T−B系異方性ボンド磁石を得ることができる。
【図面の簡単な説明】
【図1】時間経過と(BH)maxの低下率との関係を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing an anisotropic R (rare earth element) -T (iron group element) -B-based bonded magnet that can be used for various motors, actuators, etc., and an R-T-B alloy ingot. After the coarsely pulverized powder is formed into a coarsely pulverized powder by the hydrogen storage / disintegration methodThe obtained molded bodyR-T-B system anisotropic bonded magnet with less demagnetization curve squareness and magnetic property change with time by hydrogenating / recrystallizing and bonding with resin for bonding The present invention relates to a manufacturing method for obtaining
[0002]
[Prior art]
The manufacturing method of RT- (M) -B-based anisotropic bonded magnet powder is disclosed, for example, in JP-A-1-132106 as a manufacturing method by hydrogenation / recrystallization treatment.
That is, the hydrogenation / recrystallization treatment method is an R-T- (M) -B-based material alloy ingot or powder,2Gas atmosphere or H2In a mixed atmosphere of gas and inert gas, the temperature is maintained at 500 ° C. to 1000 ° C.2After occlusion of H2Gas pressure 13Pa (1 × 10-1Torr) The following vacuum atmosphere or H2Gas partial pressure 13 Pa (1 × 10-1Torr) Degassing at a temperature of 500 ° C. to 1000 ° C. until the following inert gas atmosphere is reached2This process discloses a process of cooling and then cooling, and this publication discloses that powder obtained by hydrogenation / recrystallization treatment is pulverized and compounded with a resin to form an RTB bond magnet. Yes.
[0003]
The RTB-based alloy magnet manufactured by such a hydrogenation / recrystallization treatment method has a large coercive force and magnetic anisotropy. This results in a structure having a very fine recrystallized grain size, substantially an average recrystallized grain size of 0.1 μm to 1 μm by the above treatment, and is magnetically tetragonal Nd.2Fe14This is because the crystal grain size is close to the single-domain critical grain size of the B-based compound, and these ultrafine crystals are recrystallized with a certain degree of crystal orientation. It is considered that this crystal orientation is the same as that of the raw material alloy powder even after the hydrogenation / recrystallization treatment.
[0004]
[Problems to be solved by the invention]
However, an R-T-B type bonded magnet made from powder produced by the hydrogenation / recrystallization treatment method is produced by the hydrogenation / recrystallization treatment method depending on the structure of the alloy ingot used for the treatment and the grinding method. There was a drawback that the magnetization of the powder would decrease.
[0005]
In addition, the magnetic properties of the bonded magnet manufactured using the powder manufactured by the hydrogenation / recrystallization process as a raw material are poorly magnetized due to the large coercive force, and a large magnetic field of about 20 k0e is required for the orientation during molding. Become. Among them, radial orientation, which accounts for a large proportion of bonded magnets, has a disadvantage that the magnetic property level is not different from that of isotropic because such a large orientation magnetic field cannot be obtained during molding.
[0006]
If the orientation of the bond magnet is insufficient in this way, the squareness of the demagnetization curve of the bond magnet will be poor, the irreversible thermal demagnetization rate will increase, and the required magnetic flux will not be obtained when it is actually incorporated in a motor or the like. However, it did not function as a motor. Therefore, the inventors have proposed a method for preventing a decrease in magnetization by performing so-called hydrogen pulverization before the hydrogenation / recrystallization treatment method (Japanese Patent Application No. 6-95791).
[0007]
However, in the manufacturing method combining this hydrogen pulverization and the hydrogenation / recrystallization treatment method, it is difficult to magnetize the bonded magnet manufactured using the powder as a raw material, even though the decrease in magnetization of the obtained powder can be prevented. The disadvantage that the degree of orientation was lowered and the magnetic property level was not improved thereby could not be improved.
[0008]
Furthermore, the bond magnet manufactured from the powder obtained by the hydrogenation / recrystallization treatment method disclosed in the above publication has a large change over time in the magnetic properties, and depending on the usage environment, the useful life as a magnet is significantly shortened. There was a drawback. This is because the powder is destroyed by kneading and pressing with the resin at the time of molding, so that a strong oxide layer on the powder surface produced when produced by the hydrogenation / recrystallization treatment method is destroyed. Conceivable.
[0009]
As a countermeasure, JP-A-6-342707 discloses a method for improving heat resistance by heat-treating a powder obtained by a hydrogenation / recrystallization treatment method in a vacuum of 200 ° C. to 500 ° C. or in an inert atmosphere. Is disclosed. However, this method cannot prevent the powder in the molded body from being destroyed because the powder is formed into a molded body after heat treatment, and the change in magnetic properties with time is increased.
[0010]
The present invention provides an R-T-B type anisotropic bonded magnet manufactured by a hydrogenation / recrystallization treatment method, which improves the change over time in magnetic characteristics and has a good demagnetization curve squareness. The object is to provide a production method for obtaining a -T-B type anisotropic bonded magnet.
[0011]
[Means for Solving the Problems]
When the inventors perform hydrogenation / recrystallization treatment on an R-T-B alloy ingot as it is, the temperature rises in a hydrogen atmosphere. Although the alloy shape changed before and after, it was found that the change in shape can be avoided by forming a compact of the alloy powder pulverized by the hydrogen pulverization method.
[0012]
In addition, after forming the RTB-based alloy powder into a compact,In the obtained molded bodyIt has been found that by performing the hydrogenation / recrystallization treatment, the temporal change of the magnetic properties is further improved as compared with the prior art.
Furthermore, as a method for improving the degree of orientation, more specifically, the squareness of the demagnetization curve, the raw powder having a very small coercive force before hydrogenation / recrystallization treatment is applied to the RTB-based alloy powder in the magnetic field. When molded with, a compact with a much higher degree of orientation is obtained than when a powder with a large coercive force after hydrogenation / recrystallization treatment is molded in a magnetic field, and this is subjected to hydrogenation / recrystallization treatment. Since the good degree of orientation added to the molded body before the treatment does not change after the treatment, it is possible to manufacture an R-T-B type anisotropic bonded magnet having a better demagnetization curve squareness than before. As a result, the present invention was completed.
[0013]
That is, the present invention is obtained by roughly pulverizing an RTB-based alloy ingot to an average particle size of 50 μm to 500 μm by a hydrogen storage and collapse method, and forming the coarsely pulverized powder into a predetermined shape.In the obtained molded bodyA method for producing an R-T-B type anisotropic bonded magnet in which a molded product obtained by performing hydrogenation / recrystallization treatment and then cooling is impregnated with or immersed in a bonding resin, and this is bonded. It is.
In addition, in the above manufacturing method, a manufacturing method of an RTB-based anisotropic bonded magnet in which molding is performed in a magnetic field is also proposed.
[0014]
Further, according to the present invention, in the above manufacturing method, the RTB-based alloy ingot is R: 10 to 20 at% (R: a rare earth element including Y, and one kind of Pr or Nd) Or 2 types are contained in 50% or more of R), T: 67 to 85 at% (T: Fe or a part of Fe is substituted with 50% or less Co), B: 4 to 10 at%, or M: 10 at % Of R-T-B system consisting of 1% or more (M: Al, Ti, V, Cr, Ni, Ga, Zr, Nb, Mo, In, Sn, Hf, Ta, W) We also propose a method for manufacturing anisotropic bonded magnets.
[0015]
The production method according to the present invention will be described in detail. The alloy ingot having the above composition is roughly coarsened to an average particle size of 50 μm to 500 μm by a hydrogen occlusion / disintegration method in which the ingot is held in hydrogen gas of 10 k to 1000 kPa at 600 ° C. or less for 15 minutes to 100 hours. Crushed, molding pressure 1-10t / cm2The molded body is made into a molded body at a pressure of 10 k to 1000 kPa.2In gas, a temperature range of 600 ° C. to 750 ° C. is heated at a rate of temperature increase of 10 ° C./min to 200 ° C./min, and further heated and held at 750 ° C. to 900 ° C. for 15 minutes to 8 hours. Compound, TB compound, T phase, R2T14After making a mixed structure of at least four phases of the B compound, recrystallization is further performed at 700 ° C. to 900 ° C. for 5 minutes to 8 hours in a reduced pressure air flow with Ar gas or He gas at an absolute pressure of 10 Pa to 50 kPa. Obtained by processing and then coolingSaidAn R-T-B type anisotropic bonded magnet having a good change in magnetic properties with time can be obtained by impregnating the molded article with a bonding resin or by immersing it in the bonding resin to bond it.
[0016]
In addition, the present invention performs the above molding in a magnetic field of 0.1 to 1.0 MA / m, so that an R—T—B system anisotropic bond having a good change in magnetic properties with time and a good degree of orientation. A magnet can be obtained.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
R, that is, a rare earth element used in the raw material alloy used in the present invention includes Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, and Lu, and at least two of these are included. Therefore, it is necessary to contain at least one or two of Pr and Nd in an amount of 50 at% or more of R. The reason why 50 at% or more of R is one or more of Pr and Nd is that sufficient magnetization cannot be obtained if it is less than 50 at%.
[0018]
When R is less than 10 at%, the coercive force decreases due to precipitation of the α-Fe phase, and when it exceeds 20 at%, the desired tetragonal Nd2Fe14In addition to the B-type compound, many R-rich second phases are precipitated, and if this second phase is too much, the magnetization of the alloy decreases. Accordingly, the range of R is 10 to 20 at%.
[0019]
T is an iron group element and includes Fe and Co. When T is less than 67 at%, a low coercive force and low magnetization second phase precipitates and the magnetic properties are deteriorated, and when it exceeds 85 at%, coercivity and squareness are reduced due to precipitation of α-Fe phase. 67 to 85 at%.
Further, the necessary magnetic properties can be obtained with Fe alone, but the addition of Co is useful for improving the Curie temperature, that is, improving the heat resistance, and can be added as necessary. If the atomic ratio of Fe to Co is 50% or less, Nd2Fe14Since the amount of decrease in the saturation magnetization itself of the B-type compound becomes large, the atomic ratio of Fe is set to 50% or more.
[0020]
B is tetragonal Nd2Fe14It is essential for stably depositing the B-type crystal structure. Addition amount is R at 4at% or less2T17A phase precipitates to reduce the coercive force, and the squareness of the demagnetization curve is significantly impaired. Moreover, when added exceeding 10 at%, the 2nd phase with small magnetization precipitates and the magnetization of powder is reduced. Therefore, B is 4 to 10 at%.
[0021]
In addition, as other additive elements, in order to make anisotropy for the purpose of improving magnetic properties even after hydrogenation / recrystallization treatment, the decomposition reaction of the parent phase is not completely terminated during hydrogenation. I.e. R2T14An element effective for stabilizing the B phase and intentionally remaining is desired. Examples of particularly remarkable effects include Al, Ti, V, Cr, Ni, Ga, Zr, Nb, Mo, In, Sn, Hf, Ta, and W.
The additive element does not have to be added at all. However, if it exceeds 10 at%, a non-ferromagnetic second phase precipitates and lowers the magnetization, so the addition amount is set to 10 at% or less.
[0022]
The hydrogen storage decay method is the R in the alloy2Fe14By storing or combining hydrogen into the B phase or the R-Co phase which is the grain boundary phase, R2Fe14BHxPhase and RH2 ■ 3It utilizes the phenomenon of spontaneous decay with volume expansion when generating phases and the like. Therefore, it is a completely different process from the hydrogenation / recrystallization process in the present invention.
[0023]
The pulverization method of the present invention is limited to the natural decay method by hydrogen storage because the R-T-B type alloy ingot and alloy powder are heated in hydrogen when hydrogenated and recrystallized. There is a possibility that spontaneous collapse will proceed simultaneously during warming, and the molded body after hydrogenation / recrystallization treatment may collapse. For this reason, if a molded body as proposed in the present invention is allowed to survive after the hydrogenation / recrystallization treatment, there is almost no volume expansion during the treatment, that is, the volume of the alloy is expanded by hydrogen storage in advance. It is necessary to do. Therefore, the method of crushing the alloy ingot is a natural decay method using hydrogen storage.
[0024]
The hydrogen pressure used in the hydrogen storage natural decay method was set to 10 k to 1000 kPa because the breakdown did not proceed sufficiently if it was less than 10 kPa, and if it exceeded 1000 kPa, the treatment facility became too large, and it was industrially costly and safe. It is not preferable in terms of the aspect. Therefore, the pressure range was 10 k to 1000 kPa.
[0025]
In the present invention, the temperature at which hydrogen is occluded is set to 600 ° C. or lower.2Fe14B phase is RH2 ■ 3, Α-Fe, Fe2The reaction of decomposing into B or the like proceeds, the natural decay does not occur sufficiently, and the meaning as the pulverization process is lost. Therefore, it shall be 600 degrees C or less. However, at a temperature lower than 0 ° C., a reaction for spontaneous decay, that is, R2Fe14BHxPhase and RH2 ■ 3Since the reaction to the phase does not proceed easily, the temperature is set to 0 ° C. or higher.
[0026]
About the time to hold in hydrogen gas, since there is a reaction latency of several minutes to 15 minutes in the natural decay accompanying hydrogen occlusion, it takes 15 minutes or more to allow the reaction (natural decay) to take place sufficiently. is there. Moreover, even if such a natural decay process by occlusion of hydrogen is performed for 100 hours or more, there is no substantial effect and the cost is increased. Therefore, the retention time is 15 minutes to 100 hours.
[0027]
The reason why the average particle size of the coarsely pulverized powder of this invention is limited to 50 μm to 500 μm is that if the average particle size is less than 50 μm, the magnetic properties may be deteriorated due to oxidation of the powder, and the density of the molded body is difficult to improve. This is because the magnetization after it is lowered. On the other hand, when the average particle size exceeds 500 μm, the particle size is too large and handling during molding becomes difficult. Therefore, the average particle size of the coarsely pulverized powder is set to 50 μm to 500 μm. A more preferable average particle size is 70 μm to 300 μm.
[0028]
The molding in the present invention may be ordinary compression molding, and the molding pressure is 1 to 10 ton / cm.2Is desirable. 1 ton / cm2If it is less than 1, the strength of the molded body is low and difficult to handle, and the density of the molded body is low, so that the magnetization after the hydrogenation / recrystallization treatment is lowered. Further, the higher the molding pressure, the higher the density of the molded body, but 10 ton / cm.2Exceeding the density is not preferable because the density is hardly improved and the equipment becomes large, resulting in an increase in manufacturing cost. Therefore, the molding pressure is 1 to 10 ton / cm.2And
[0029]
Further, although the magnetic properties of the bonded magnet are remarkably improved by forming in a magnetic field, the magnetic field strength when forming in a magnetic field is preferably 0.1 to 1.0 MA / m. If it is less than 0.1 MA / m, the orientation is insufficient and there is no meaning in forming in a magnetic field, and if it exceeds 1.0 MA / m, the degree of orientation of the molded body is saturated and the equipment becomes large. This is undesirable because it increases. Therefore, it is set to 0.1-1.0 MA / m.
[0030]
The hydrogenation / recrystallization treatment of the present invention is tetragonal Nd.2Fe14Compared to the B-type compound, it is H at a high temperature, actually in the temperature range of 600-900 ° C.2RH when reacted with gas2 ■ 3, Α-Fe, Fe2Phase separation into B, etc., and H in the same temperature range2When the gas is removed by recrystallization, tetragonal Nd again2Fe14A recrystallized structure of the B-type compound is obtained.
[0031]
However, in reality, the crystal grain size of the decomposition product and the degree of reaction differ depending on the hydrotreating conditions, and the metal structure in the hydrogenated state is clearly different between a hydrogenation temperature of less than 750 ° C. and a temperature of 750 ° C. or more. This difference in metal structure greatly affects the magnetic properties of the magnet powder after the recrystallization treatment, particularly the magnetic anisotropy.
[0032]
Furthermore, depending on the recrystallization treatment conditions, tetragonal Nd2Fe14The recrystallization state of the B-type compound is greatly affected, and greatly affects the magnetic properties, particularly the coercive force, of the magnet powder produced by the hydrogenation / recrystallization treatment method. Furthermore, tetragonal Nd of hydrogenation and recrystallization treatment2Fe14B type compound to H2In the process of heating in gas, RH is added by a rare earth element.2 ■ 3, Α-Fe, Fe2There is a region where the phase separation reaction such as B does not proceed depending on the hydrogen partial pressure, and for R, the hydrogen pressure greatly affects the magnetic properties, particularly the squareness and coercive force, depending on the element.
[0033]
In this invention, H2When heating in gas, H2The reason why the gas pressure is set to 10 kPa to 1000 kPa is that the above-described decomposition reaction does not proceed sufficiently if the pressure is less than 10 kPa, and if it exceeds 1000 kPa, the treatment facility becomes too large, which is industrially preferable in terms of cost and safety. Therefore, the pressure range was set to 10 k to 1000 kPa. A more preferable pressure range is 100 k to 350 kPa.
[0034]
H2As for the heat processing temperature in gas, 750-900 degreeC is desirable. RH below 600 ° C2 ■ 3, Α-Fe, Fe2The decomposition reaction into B does not occur, and the decomposition reaction proceeds almost completely in the temperature range of 600 ° C. to 750 ° C., and an appropriate amount of R is contained in the decomposition product.2Fe14Since the B phase does not remain and sufficient anisotropy is not obtained magnetically and crystallographically after the recrystallization treatment, heating at 750 ° C. or higher is necessary. Moreover, when it exceeds 900 degreeC, RH2 ■ 3Becomes unstable and the product grows to form tetragonal Nd2Fe14It becomes difficult to obtain a B-type compound ultrafine crystal structure.
[0035]
If the temperature range of hydrogenation is in the range of 750 ° C. to 900 ° C., R, which is the nucleus of the recrystallization reaction during dehydrogenation2Fe14Since B phase is dispersed and remains in an appropriate amount, R after recrystallization2T14B phase crystal orientation remains R2Fe14As a result, the crystal orientation of the recrystallized structure coincides with the crystal orientation of the raw material ingot and shows a large anisotropy. Therefore, the temperature range of the hydrotreatment is set to 750 ° C to 900 ° C.
[0036]
Further, the heat treatment holding time is required to be 15 minutes or longer in order to sufficiently perform the above decomposition reaction.2Fe14This is not preferable because the B phase decreases and the magnetic anisotropy after the recrystallization treatment decreases. Accordingly, the heating and holding is performed for 15 minutes to 8 hours.
[0037]
H2As for the temperature increase rate in gas, 10-200 degreeC / min is desirable. If it is less than 10 ° C./min, it passes through a temperature range of 600 to 750 ° C. during the temperature rising process while the decomposition reaction proceeds, so that it is completely decomposed and thus the parent phase, ie, R2Fe14The B phase does not remain, and the magnetic and crystal orientation anisotropy after the dehydrogenation process is almost lost. If the rate of temperature rise is 10 ° C./min or more, the reaction does not proceed sufficiently in the region of 600 to 750 ° C., and the hydrogenation temperature region of 750 to 900 ° C. is reached with the parent phase remaining. Later, a powder having a large anisotropy in magnetic and crystal orientation can be obtained. Therefore, the temperature rising rate needs to be 10 ° C./min or more in the temperature range of 750 ° C. or less. Further, a temperature increase rate exceeding 200 ° C./min is practically difficult even if an infrared furnace or the like is used, and even if possible, the equipment cost increases, which is not preferable. Therefore, the rate of temperature rise is set to 10 to 200 ° C./min.
[0038]
The recrystallization process of the present invention is performed under a reduced pressure of an inert gas, specifically, an Ar gas or He gas atmosphere.2The partial pressure is approximately the equilibrium hydrogen pressure, for example, about 1 kPa at 850 ° C., and the recrystallization reaction proceeds gradually.
The reason why the inert gas is limited to Ar or He is that Ar is easy to use in terms of cost.2This is because He gas is superior in terms of gas substitutability and temperature controllability. Other noble gases have no performance advantage and are costly. In general, N treated as an inert gas2Gases are unsuitable because they react with rare earth compounds to form nitrides.
[0039]
When the absolute pressure of the atmosphere is less than 10 Pa, the recrystallization reaction occurs rapidly, and the temperature drop due to the chemical reaction is large. Furthermore, since the recrystallization reaction is too rapid, coarse crystal grains are mixed in the structure of the magnet powder after cooling, and the coercive force is greatly reduced. On the other hand, when the absolute pressure of the atmosphere exceeds 50 kPa, it takes too much time for the recrystallization reaction, which causes practical problems such as production costs. Therefore, the absolute pressure of the atmosphere was set to 10 Pa to 50 kPa.
[0040]
Also, what is performed in a reduced-pressure air flow during the recrystallization process is H released from the raw material by the recrystallization reaction.2This is for preventing the furnace pressure from being increased by the gas. In practice, an inert gas is introduced from one side and exhausted by a vacuum pump from the other side, and the pressure is controlled using flow rate adjusting valves attached to the supply port and the exhaust port, respectively.
[0041]
In the present invention, when the recrystallization temperature is less than 700 ° C., RH2 ■ 3H from the phase2Does not occur or tetragonal Nd2Fe14Recrystallization of the B-type compound does not proceed sufficiently, and if it exceeds 900 ° C., tetragonal Nd2Fe14Although the B-type compound is produced, the recrystallized grains grow coarsely and a high coercive force cannot be obtained, so the temperature range of the recrystallization treatment is set to 700 ° C to 900 ° C.
[0042]
In addition, the heat treatment holding time depends on the exhaust capacity of the processing equipment, but it is necessary to hold the heat treatment for at least 5 minutes in order to sufficiently perform the recrystallization reaction. However, on the other hand, if the crystal is coarsened by a secondary recrystallization reaction, the coercive force is lowered, so that a shorter time is preferable. Therefore, heating and holding for 5 minutes to 8 hours is sufficient.
[0043]
The recrystallization treatment is preferably performed subsequent to the hydrogenation treatment from the viewpoint of preventing oxidation of the raw material and from the viewpoint of the thermal efficiency of the processing equipment, but after the hydrogenation treatment, the raw material is once cooled and then again. Heat treatment for recrystallization may be performed.
[0044]
The bonding treatment in the present invention indicates that the resin is cured after the immersion of the bonding resin or the immersion of the resin. The impregnation of the resin may be selected according to the shape of the molded body, the type of the resin, etc., such as vacuum soaking in a vacuum atmosphere or a method of immersing the molded body in the resin.
[0045]
The bonding resin used for the bonding process is preferably an epoxy resin, a phenol resin, an acrylic resin or the like that can be immersed and impregnated. In order to improve magnetic properties and improve moldability, polyvinyl alcohol and polyBiMolding aids such as nilbutyral, carboxymethylcellulose, polyethylene glycol, paraffin, linoleic acid, and oleic acid may be used.
[0046]
The resin is cured,Perform heat treatment for about 1 hour at the curing temperature of the resin used.U. This may be selected according to the curing conditions of the resin used. The atmosphere for curing is preferably a vacuum or an inert atmosphere such as Ar or nitrogen in order to prevent oxidation during curing.
[0047]
【Example】
Example 1
An ingot of the composition shown in Table 1 obtained by melting by high frequency induction melting was annealed in an Ar atmosphere at 1100 ° C. for 24 hours. This ingot was put in a pressure vessel and evacuated to 1 Pa or less. Thereafter, hydrogen gas having a purity of 99.999% or more was introduced, the pressure in the container was set to 200 kPa, and the temperature was maintained at 100 ° C. for 10 hours. Further, in an Ar gas atmosphere (O2The particle size is adjusted to an average particle size of 100 μm at a concentration of 0.1% or less, and the coarsely pulverized powder is 10 mm square to 7 ton / cm.2According to the orientation conditions in Table 2, no orientation magnetic field was applied or molding was performed in a perpendicular magnetization of 1.2 MA / m.
[0048]
The obtained molded body was put in a tubular furnace and evacuated to 1 Pa or less. After that, H with a purity of 99.999% or more2While introducing the gas, the hydrogenation treatment was performed under the hydrotreatment conditions shown in Table 2. The hydrogenation raw material thus obtained was subsequently recrystallized according to the recrystallization conditions shown in Table 2. A rotary pump was used for exhaust. After cooling, the sample was taken out when the raw material temperature became 50 ° C. or lower. Table 2 shows the survival results of the molded body at this time.
An epoxy resin is immersed in the processed molded body in a vacuum chamber, and the atmosphere is 150 ° C. for 1 hour in an Ar atmosphere (O2The concentration was 0.1% or less. Table 2 shows the magnetic characteristics of the bonded magnet at this time. FIG. 1 shows the change over time in the magnetic properties of the 14 samples in the 100 ° C. atmosphere.
[0049]
Comparative Example 1
An ingot of the composition shown in Table 1 obtained by melting by high frequency induction melting was annealed in an Ar atmosphere at 1100 ° C. for 24 hours. This ingot is placed in an Ar gas atmosphere (O2After roughly pulverizing to an average particle size of 100 μm using a stamp mill at a concentration of 0.1% or less, the coarsely pulverized powder was 10 to 10 square mm and 7 ton / cm.2According to the orientation conditions shown in Table 3 at a pressure of 5 ° C., an orientation magnetic field was not applied, or molding was performed in a perpendicular magnetization of 1.2 MA / m.
[0050]
The obtained molded body was put in a tubular furnace and evacuated to IPa or lower. After that, H with a purity of 99.999% or more2While introducing the gas, the hydrogenation treatment was performed under the hydrotreatment conditions shown in Table 3. The hydrogenation raw material thus obtained was subsequently recrystallized according to the recrystallization conditions shown in Table 3. A rotary pump was used for exhaust. After cooling, the sample was taken out when the raw material temperature became 50 ° C. or lower. Table 3 shows whether or not the molded body can be continued at this time.
[0051]
Comparative Example 2
The ingot having the composition shown in Table 1 obtained by melting by the high frequency induction melting method was annealed in an Ar atmosphere at 1100 ° C. for 24 hours. This ingot was put in a pressure vessel and evacuated to 1 Pa or less. Thereafter, hydrogen gas having a purity of 99.999% or more was introduced, the pressure in the container was set to 200 kPa, and the temperature was maintained at 100 ° C. for 10 hours. Further, in an Ar gas atmosphere (O2After adjusting the average particle size to 100 μm at a concentration of 0.1% or less, it was put into a tubular furnace and evacuated to 1 Pa or less. Thereafter, H with a purity of 99.9999% or more2While introducing the gas, the hydrogenation treatment was performed under the hydrotreatment conditions shown in Table 4. The hydrogenation raw material thus obtained was subsequently recrystallized according to the recrystallization conditions shown in Table 4.
[0052]
A rotary pump was used for exhaust. After cooling, the sample was taken out when the raw material temperature became 50 ° C. or lower. The obtained powder was 7 ton / cm in a 10 mm square.2According to the orientation conditions shown in Table 4 at a pressure of 5 ° C., no orientation magnetic field was applied, or molding was performed in a perpendicular magnetization of 1.2 MA / m. After molding, the epoxy resin is immersed in a vacuum chamber at 150 ° C. for 1 hour in an Ar atmosphere (O2The concentration was 0.1% or less. Table 4 shows the magnetic properties of the bonded magnet at this time. In Table 4, No. FIG. 1 shows the changes over time in the magnetic properties of the 14 samples in the 100 ° C. atmosphere. FIG. 1 shows the rate of decrease in (BH) max that changes with time. The case of the present invention molded before hydrogenation / recrystallization treatment is indicated by a solid line, and after hydrogenation / recrystallization treatment. The case of the molded comparative example is indicated by a dot-dash line.
[0053]
[Table 1]
[0054]
[Table 2]
[0055]
[Table 3]
[0056]
[Table 4]
[0057]
【The invention's effect】
The present invention relates to a method for producing an R-T-B bond magnet by a hydrogenation / recrystallization treatment method, after molding a powder obtained by hydrogen pulverization or molding in a magnetic field,In the obtained molded bodyHydrogenated and recrystallized, and after the treatment, the molded body is continued,In the molded bodyIt is characterized by being bonded by impregnating or immersing the bonding resin, and the molded body can be maintained even after hydrogenation and recrystallization treatment. An RTB-based anisotropic bonded magnet having a squareness of a demagnetizing curve can be obtained.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the passage of time and the rate of decrease in (BH) max.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32662095A JP3623571B2 (en) | 1995-11-20 | 1995-11-20 | Method for producing RTB-based anisotropic bonded magnet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32662095A JP3623571B2 (en) | 1995-11-20 | 1995-11-20 | Method for producing RTB-based anisotropic bonded magnet |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09148163A JPH09148163A (en) | 1997-06-06 |
JP3623571B2 true JP3623571B2 (en) | 2005-02-23 |
Family
ID=18189843
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP32662095A Expired - Lifetime JP3623571B2 (en) | 1995-11-20 | 1995-11-20 | Method for producing RTB-based anisotropic bonded magnet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3623571B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4873008B2 (en) * | 2006-05-18 | 2012-02-08 | 日立金属株式会社 | R-Fe-B porous magnet and method for producing the same |
EP2043114B1 (en) * | 2006-11-30 | 2019-01-02 | Hitachi Metals, Ltd. | R-fe-b microcrystalline high-density magnet and process for production thereof |
JP4872887B2 (en) * | 2007-11-15 | 2012-02-08 | 日立金属株式会社 | Porous material for R-Fe-B permanent magnet and method for producing the same |
JP4835758B2 (en) * | 2009-03-30 | 2011-12-14 | Tdk株式会社 | Rare earth magnet manufacturing method |
JP5906874B2 (en) * | 2011-03-28 | 2016-04-20 | 日立金属株式会社 | Manufacturing method of RTB-based permanent magnet |
JP5906876B2 (en) * | 2011-03-29 | 2016-04-20 | 日立金属株式会社 | Manufacturing method of RTB-based permanent magnet |
CN102982936B (en) * | 2012-11-09 | 2015-09-23 | 厦门钨业股份有限公司 | The manufacture method saving operation of sintered Nd-Fe-B based magnet |
JP6160180B2 (en) * | 2013-03-29 | 2017-07-12 | 愛知製鋼株式会社 | Magnet powder recovery method from rare earth bonded magnet |
-
1995
- 1995-11-20 JP JP32662095A patent/JP3623571B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH09148163A (en) | 1997-06-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0411571B1 (en) | Rare earth permanent magnet powder, method for producing same and bonded magnet | |
US5565043A (en) | Rare earth cast alloy permanent magnets and methods of preparation | |
JP4543940B2 (en) | Method for producing RTB-based sintered magnet | |
JP3623571B2 (en) | Method for producing RTB-based anisotropic bonded magnet | |
JPH04245403A (en) | Rare earth-fe-co-b-based anisotropic magnet | |
JP3368295B2 (en) | Method for producing anisotropic rare earth alloy powder for permanent magnet | |
JP3368294B2 (en) | Method for producing anisotropic rare earth alloy powder for permanent magnet | |
JP3597615B2 (en) | Method for producing RTB based anisotropic bonded magnet | |
JP4702522B2 (en) | R-T-B system sintered magnet and manufacturing method thereof | |
JP3634565B2 (en) | Method for producing anisotropic rare earth alloy powder for permanent magnet | |
JP2001085256A (en) | PRODUCTION OF RARE-EARTH-Fe-Co-B MAGNET | |
JP3667783B2 (en) | Method for producing raw powder for anisotropic bonded magnet | |
JP4753024B2 (en) | Raw material alloy for RTB-based sintered magnet, RTB-based sintered magnet, and manufacturing method thereof | |
JP3423965B2 (en) | Method for producing anisotropic rare earth alloy powder for permanent magnet | |
JPH0837122A (en) | Production of r-t-m-n anisotropic bonded magnet | |
JPS6077959A (en) | Permanent magnet material and its manufacture | |
JP2927987B2 (en) | Manufacturing method of permanent magnet powder | |
JPS6230846A (en) | Production of permanent magnet material | |
JP3481653B2 (en) | Method for producing anisotropic rare earth alloy powder for permanent magnet | |
JPH07278615A (en) | Production of anisotropic rare-earth alloy powder for permanent magnet | |
JPH04143221A (en) | Production of permanent magnet | |
JP2978004B2 (en) | Method for producing rare earth composite magnet having magnetic anisotropy | |
JPH04246803A (en) | Rare earth-fe-b anisotropic magnet | |
JPH0532459B2 (en) | ||
JP3078633B2 (en) | Manufacturing method of sintered anisotropic magnet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040712 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040715 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040910 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20041104 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20041125 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071203 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081203 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091203 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101203 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101203 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111203 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121203 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131203 Year of fee payment: 9 |
|
EXPY | Cancellation because of completion of term |