JP2001085256A - PRODUCTION OF RARE-EARTH-Fe-Co-B MAGNET - Google Patents

PRODUCTION OF RARE-EARTH-Fe-Co-B MAGNET

Info

Publication number
JP2001085256A
JP2001085256A JP25884699A JP25884699A JP2001085256A JP 2001085256 A JP2001085256 A JP 2001085256A JP 25884699 A JP25884699 A JP 25884699A JP 25884699 A JP25884699 A JP 25884699A JP 2001085256 A JP2001085256 A JP 2001085256A
Authority
JP
Japan
Prior art keywords
hydrogen
magnet
based alloy
temperature
alloy powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25884699A
Other languages
Japanese (ja)
Other versions
JP3969691B2 (en
Inventor
Katsuhiko Mori
克彦 森
Koichiro Morimoto
耕一郎 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP25884699A priority Critical patent/JP3969691B2/en
Publication of JP2001085256A publication Critical patent/JP2001085256A/en
Application granted granted Critical
Publication of JP3969691B2 publication Critical patent/JP3969691B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0573Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes obtained by reduction or by hydrogen decrepitation or embrittlement

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for produce a rare-earth-Fe-Co-B magnet having a superior magnetic characteristic without providing a demagnetizing step. SOLUTION: An R-Fe-Co-B alloy powder with a weak coersive force and residual hydrogen (R: at least one kind of rare-earth element including Y) which has a residual hydrogen of 0.01 to 0.5 wt.% and a coersive force of 0.01 to 8 kOe is oriented in a magnetic field, and it is molded by a press to form a green compact. Then the green compact is dehydrogenized at 700 to 900 deg.C in a vacuum atmosphere of 1 Torr or lower, and it is hot-pressed to form a rare-earth-Fe-Co-B magnet.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、R(ただし、R
はYを含む少なくとも1種の希土類元素)と、FeとC
oとBを主成分とし、さらに必要に応じてGa,Zr,
Hfのうちの少なくとも1種を含有し、さらに必要に応
じてAl,Siのうちの少なくとも1種を含有する組成
を有し一層優れた磁気特性を有する希土類−Fe−Co
−B系磁石の製造方法に関するものである。
BACKGROUND OF THE INVENTION
Is at least one rare earth element containing Y), Fe and C
o and B as main components, and Ga, Zr,
Rare earth-Fe-Co having a composition containing at least one of Hf and, if necessary, at least one of Al and Si and having more excellent magnetic properties.
The present invention relates to a method for producing a B-based magnet.

【0002】[0002]

【従来の技術】図4は従来の希土類−Fe−Co−B系
磁石の製造方法を説明するための説明図であり、従来、
希土類−Fe−Co−B系磁石を製造するには、まず、
均質化処理しまたは均質化処理しないR−Fe−Co−
B系合金インゴットを用意し、このR−Fe−Co−B
系合金インゴットに、図4に示されるように、水素雰囲
気中、温度:700〜900℃に昇温保持して水素を吸
蔵させる処理(以下、水素吸蔵処理という)を施こす。こ
の水素吸蔵処理中にR2 (Fe,Co)14B相はR
2 ,Feおよび(Fe,Co)2 Bの3相に相変態
し、引き続いて同じ温度領域で1Torr以下の真空雰
囲気になるまで吸引し保持して脱水素処理を行うと、前
記水素吸蔵処理により発生したRH2 ,Feおよび(F
e,Co)2 Bの3相はR2 (Fe,Co)14B相に再
変態し、微細なR2 (Fe,Co)14B金属間化合物の
再結晶集合組織となり、優れた磁気特性を示すようにな
ると言われている[特開平3−129702号公報、日
本金属学会秋季大会一般講演概要(1989,P36
7)などを参照]。この製法は、R2 Fe14B金属間化
合物相の水素化(Hydrogenation )、相分解(Decompos
ition )、脱水素化(Desorption)および再結合(Reco
mbination )の工程からなるところからHDDR処理法
と呼ばれている。
2. Description of the Related Art FIG. 4 is an explanatory view for explaining a method of manufacturing a conventional rare earth-Fe-Co-B-based magnet.
To manufacture a rare earth-Fe-Co-B based magnet, first,
R-Fe-Co- with or without homogenization
A B-based alloy ingot was prepared and this R-Fe-Co-B
As shown in FIG. 4, the system alloy ingot is subjected to a process of storing hydrogen by raising the temperature to 700 to 900 ° C. in a hydrogen atmosphere to store hydrogen (hereinafter, referred to as hydrogen storage process). During this hydrogen storage treatment, the R 2 (Fe, Co) 14 B phase becomes R
When the phase is transformed into three phases of H 2 , Fe and (Fe, Co) 2 B and subsequently dehydrogenated by sucking and holding it in a vacuum atmosphere of 1 Torr or less in the same temperature range, the hydrogen storage treatment is performed. RH generated by 2, Fe and (F
The three phases of e, Co) 2 B are re-transformed into R 2 (Fe, Co) 14 B phase to form a fine recrystallized texture of R 2 (Fe, Co) 14 B intermetallic compound, and have excellent magnetic properties. [Japanese Unexamined Patent Publication (Kokai) No. 3-129702, Summary of General Lectures of the Autumn Meeting of the Japan Institute of Metals (1989, p. 36).
7) etc.]. This production method comprises the steps of hydrogenating and decomposing R 2 Fe 14 B intermetallic compound phase.
ition), dehydrogenation (Desorption) and recombination (Reco
mbination) is called the HDDR processing method.

【0003】また、前記R−Fe−Co−B系合金の組
成として、(い)原子%で、R:10〜20%、Co:
0.1〜50%、B:3〜20%を含有し、残りがFe
および不可避不純物からなる組成、(ろ)原子%で、
R:10〜20%、Co:0.1〜50%、B:3〜2
0%を含有し、さらにGa,Zr,Hfの内の1種また
は2種以上の合計:0.001〜5.0%を含有し、残
りがFeおよび不可避不純物からなる組成、(は)前記
(い)または(ろ)記載の合金にさらにAl,Siの内の
1種または2種を合計で0.01〜2.0%含有し、残
りがFeおよび不可避不純物からなる組成を有するR−
Fe−Co−B系合金であることが好ましいことも知ら
れている。
[0003] The composition of the R-Fe-Co-B-based alloy is as follows:
0.1 to 50%, B: 3 to 20%, the balance being Fe
And the composition consisting of unavoidable impurities,
R: 10 to 20%, Co: 0.1 to 50%, B: 3 to 2
0%, and further contains one or more of Ga, Zr, and Hf: 0.001 to 5.0%, with the balance being Fe and unavoidable impurities. The alloy according to (i) or (b) further contains one or two of Al and Si in a total amount of 0.01 to 2.0%, and the remainder has a composition of Fe and unavoidable impurities.
It is also known that a Fe-Co-B alloy is preferable.

【0004】これら組成を有するR−Fe−Co−B系
合金をHDDR処理して得られた希土類−Fe−Co−
B系磁石粉末は、図4に示されるように、金型に充填し
磁場中配向させながらプレス成形して圧粉体を作製し、
この圧粉体を脱磁処理したのち金型から取り出し、その
後ホットプレスして希土類−Fe−Co−B系磁石を製
造する方法も知られている。
A rare earth-Fe-Co- alloy obtained by subjecting an R-Fe-Co-B alloy having these compositions to HDDR treatment.
As shown in FIG. 4, the B-based magnet powder is filled in a metal mold and press-formed while being oriented in a magnetic field to produce a green compact.
There is also known a method of manufacturing a rare earth-Fe-Co-B-based magnet by subjecting the compact to demagnetization treatment, removing the compact from a mold, and thereafter performing hot pressing.

【0005】[0005]

【発明が解決しようとする課題】前記従来の方法で製造
した希土類−Fe−Co−B系磁石は、確かに優れた磁
気特性を有するものの、さらに優れた磁気特性を有する
希土類−Fe−Co−B系磁石が求められている。
The rare-earth-Fe-Co-B-based magnet manufactured by the above-mentioned conventional method has excellent magnetic properties, but rare-earth-Fe-Co-B magnets having more excellent magnetic properties. There is a need for B-based magnets.

【0006】[0006]

【課題を解決するための手段】そこで、本発明者等は、
一層優れた磁気特性を有する希土類−Fe−Co−B系
磁石を得るべく研究を行っていたところ、希土類−Fe
−Co−B系磁石粉末の製造工程において、R−Fe−
Co−B系合金インゴットに水素吸蔵処理して得られた
希土類−Fe−Co−B系合金粉末を不充分な脱水素処
理を行うことにより0.01〜0.5wt%水素が残留
し保磁力:0.01〜8kOeを有する弱保磁力水素残
留R−Fe−Co−B系合金粉末を作製し、この弱保磁
力水素残留R−Fe−Co−B系合金粉末を磁場中配向
させながらプレス成形して作製した圧粉体を脱水素処理
したのちホットプレスすることにより得られた希土類−
Fe−Co−B系磁石は、磁気特性が従来よりも一層向
上する、という研究結果が得られたのである。
Means for Solving the Problems Accordingly, the present inventors have
Research was conducted to obtain a rare earth-Fe-Co-B-based magnet having more excellent magnetic properties.
-In the manufacturing process of the Co-B based magnet powder, R-Fe-
Rare earth-Fe-Co-B-based alloy powder obtained by hydrogen-absorbing treatment in a Co-B-based alloy ingot is subjected to insufficient dehydrogenation treatment so that 0.01-0.5 wt% hydrogen remains and coercive force : Weak coercive force hydrogen-remaining R-Fe-Co-B-based alloy powder having 0.01 to 8 kOe was prepared and pressed while orienting this weak coercive force hydrogen-retained R-Fe-Co-B-based alloy powder in a magnetic field. Rare earths obtained by hot pressing after dehydrogenation of molded green compact-
Research results have shown that the magnetic properties of the Fe-Co-B-based magnet are further improved than before.

【0007】この発明は、かかる研究結果に基づいてな
されたものであって、(1)水素:0.01〜0.5重
量%を残留し保磁力:0.01〜8kOeを有する弱保
磁力水素残留R−Fe−Co−B系合金粉末を作製し、
この保磁力の弱い弱保磁力水素残留R−Fe−Co−B
系合金粉末を磁場中配向させながらプレス成形して圧粉
体を作製し、この圧粉体を温度:700〜900℃、1
Torr以下の真空雰囲気になるまで保持する脱水素処
理を行った後、ホットプレスする希土類−Fe−Co−
B系磁石の製造方法、に特徴を有するものである。
The present invention has been made on the basis of the above research results, and (1) a weak coercive force having hydrogen: 0.01 to 0.5% by weight and a coercive force: 0.01 to 8 kOe. Producing hydrogen residual R-Fe-Co-B-based alloy powder,
Weak coercive force with low coercive force Hydrogen residual R-Fe-Co-B
The green alloy powder is press-formed while being oriented in a magnetic field to produce a green compact.
After performing a dehydrogenation treatment of maintaining a vacuum atmosphere equal to or lower than Torr, hot-pressing rare earth -Fe-Co-
The method is characterized by a method for manufacturing a B-based magnet.

【0008】前記水素:0.01〜0.5重量%を残留
し保磁力:0.01〜8kOeを有する弱保磁力水素残
留R−Fe−Co−B系合金粉末は、水素吸蔵処理した
R−Fe−Co−B系合金粉末を不活性ガス雰囲気中に
長時間(0.5〜5時間)保持し冷却するとR−Fe−
Co−B系合金粉末の水素含有量を0.01〜0.5重
量%まで下げることができる。したがって、この発明
は、(2)R−Fe−Co−B系合金インゴットに、水
素または水素と不活性ガスの混合雰囲気中、温度:70
0〜900℃に昇温し保持することによりR−Fe−C
o−B系合金インゴットに水素吸蔵処理を施し、引き続
いて不活性ガスを長時間導入して室温まで冷却すること
により水素:0.01〜0.5重量%を残留し保磁力:
0.01〜8kOeを有する弱保磁力水素残留R−Fe
−Co−B系合金粉末を作製し、この弱保磁力水素残留
R−Fe−Co−B系合金粉末を磁場中配向させながら
プレス成形して圧粉体を作製し、この圧粉体を温度:7
00〜900℃、1Torr以下の真空雰囲気になるま
で保持する脱水素処理を行った後、ホットプレスする希
土類−Fe−Co−B系磁石の製造方法、に特徴を有す
るものである。
The weak coercive force hydrogen residual R—Fe—Co—B alloy powder having 0.01 to 0.5% by weight of coercive force and 0.01 to 0.5 kOe of hydrogen is retained in the hydrogen-absorbed R-Fe—Co—B alloy powder. When the Fe-Co-B-based alloy powder is kept in an inert gas atmosphere for a long time (0.5 to 5 hours) and cooled, R-Fe-
The hydrogen content of the Co-B-based alloy powder can be reduced to 0.01 to 0.5% by weight. Therefore, the present invention provides (2) an R-Fe-Co-B-based alloy ingot in a mixed atmosphere of hydrogen or hydrogen and an inert gas at a temperature of 70:
By raising the temperature to 0 to 900 ° C and holding it, R-Fe-C
The o-B-based alloy ingot is subjected to a hydrogen storage treatment, followed by introducing an inert gas for a long time and cooling to room temperature to leave 0.01 to 0.5% by weight of hydrogen and coercive force:
Weak coercivity hydrogen residual R-Fe with 0.01-8 kOe
-Co-B-based alloy powder is produced, and this weak coercive force hydrogen-remaining R-Fe-Co-B-based alloy powder is press-formed while being oriented in a magnetic field to produce a green compact. : 7
The method is characterized by a method for producing a rare earth-Fe-Co-B-based magnet which is subjected to a dehydrogenation treatment at a temperature of 00 to 900 ° C and a vacuum atmosphere of 1 Torr or less and then hot pressed.

【0009】また、水素:0.01〜0.5重量%を残
留し保磁力:0.01〜8kOeを有する弱保磁力水素
残留R−Fe−Co−B系合金粉末は、前記水素吸蔵処
理したR−Fe−Co−B系合金粉末に温度:700〜
900℃、1Torrを越え100Torr以下の真空
雰囲気になるまで吸引保持する不完全脱水素処理を施し
たのち不活性ガスを導入して室温まで冷却することによ
り作製することができる。したがって、この発明は、
(3)R−Fe−Co−B系合金インゴットに、水素ま
たは水素と不活性ガスの混合雰囲気中、温度:700〜
900℃に昇温し保持することによりR−Fe−Co−
B系合金インゴットに水素を吸蔵させる水素吸蔵処理を
施してR−Fe−Co−B系合金粉末を作製し、引き続
いて水素吸蔵処理したR−Fe−Co−B系合金粉末を
温度:700〜900℃、1Torrを越え100To
rr以下の真空雰囲気になるまで吸引保持する不完全脱
水素処理を施したのち不活性ガスを導入して室温まで冷
却することにより水素:0.01〜0.5重量%を残留
し保磁力:0.01〜8kOeを有する弱保磁力水素残
留R−Fe−Co−B系合金粉末を作製し、この弱保磁
力水素残留R−Fe−Co−B系合金粉末を磁場中配向
させながらプレス成形して圧粉体を作製し、この圧粉体
を温度:700〜900℃、1Torr以下の真空雰囲
気になるまで脱水素処理を行った後、ホットプレスする
希土類−Fe−Co−B系磁石の製造方法、に特徴を有
するものである。
The weak coercive force hydrogen-remaining R-Fe-Co-B alloy powder having 0.01 to 0.5% by weight of hydrogen and having a coercive force of 0.01 to 8 kOe is subjected to the hydrogen absorbing treatment. Temperature of the obtained R-Fe-Co-B-based alloy powder: 700-
It can be manufactured by performing incomplete dehydrogenation treatment at 900 ° C. by suction and holding until a vacuum atmosphere of more than 1 Torr and not more than 100 Torr and then introducing an inert gas and cooling to room temperature. Therefore, the present invention
(3) In an R-Fe-Co-B-based alloy ingot, in a mixed atmosphere of hydrogen or hydrogen and an inert gas, at a temperature of 700 to
By raising the temperature to 900 ° C. and holding it, R-Fe-Co-
The R-Fe-Co-B-based alloy powder is prepared by subjecting the B-based alloy ingot to a hydrogen-absorbing treatment for absorbing hydrogen, and then the hydrogen-absorbed R-Fe-Co-B-based alloy powder is heated to a temperature of 700 to 900 ℃, over 1 Torr and 100 To
After performing an incomplete dehydrogenation treatment of suction and holding until a vacuum atmosphere of rr or less, an inert gas is introduced and cooled to room temperature to leave 0.01 to 0.5% by weight of hydrogen and coercive force: A weak coercive force hydrogen-remaining R-Fe-Co-B-based alloy powder having 0.01 to 8 kOe is prepared, and press-forming while orienting the weak coercive force hydrogen-remaining R-Fe-Co-B-based alloy powder in a magnetic field. A green compact is prepared by subjecting the green compact to dehydrogenation treatment to a vacuum atmosphere at a temperature of 700 to 900 ° C. and 1 Torr or less, and then hot-pressing a rare-earth-Fe—Co—B-based magnet. Manufacturing method.

【0010】さらに、前記水素:0.01〜0.5重量
%を残留し保磁力:0.01〜8kOeを有する弱保磁
力水素残留R−Fe−Co−B系合金粉末は、水素吸蔵
処理したR−Fe−Co−B系合金粉末を温度:700
〜900℃、1Torr以下の真空雰囲気になるまで吸
引保持することにより脱水素処理して十分脱水素したの
ち不活性ガスを導入して室温まで冷却し、ついで室温〜
400℃の水素雰囲気中に保持する低温水素吸収処理を
行って作製することができる。したがって、この発明
は、(4)R−Fe−Co−B系合金インゴットに、水
素または水素と不活性ガスの混合雰囲気中、温度:70
0〜900℃に昇温し保持することによりR−Fe−C
o−B系合金インゴットに水素を吸蔵させる水素吸蔵処
理を施してR−Fe−Co−B系合金粉末を作製し、引
き続いてこの水素吸蔵処理したR−Fe−Co−B系合
金粉末を温度:700〜900℃、1Torr以下の真
空雰囲気になるまで吸引保持する脱水素処理を施したの
ち不活性ガスを導入して室温まで冷却することによりR
−Fe−Co−B系合金磁石粉末を作製し、このR−F
e−Co−B系合金磁石粉末を、室温〜400℃の水素
雰囲気中に保持する低温水素吸収処理を行って水素:
0.01〜0.5重量%を残留し保磁力:0.01〜8
kOeを有する弱保磁力水素残留R−Fe−Co−B系
合金粉末を作製し、この弱保磁力水素残留R−Fe−C
o−B系合金粉末を磁場中配向させながらプレス成形し
て圧粉体を作製し、この圧粉体を温度:700〜900
℃、1Torr以下の真空雰囲気になるまで脱水素処理
を行った後、ホットプレスする希土類−Fe−Co−B
系磁石の製造方法、に特徴を有するものである。
Further, the weak residual coercive force hydrogen-retained R-Fe-Co-B alloy powder having 0.01 to 0.5% by weight of coercive force and 0.01 to 0.5 kOe of hydrogen remaining therein is subjected to a hydrogen absorbing treatment. The obtained R-Fe-Co-B alloy powder was heated to a temperature of 700.
900900 ° C., dehydrogenation treatment by suction-holding until a vacuum atmosphere of 1 Torr or less, sufficiently dehydrogenation, introduction of an inert gas, cooling to room temperature, and then room temperature
It can be manufactured by performing low-temperature hydrogen absorption treatment in a hydrogen atmosphere at 400 ° C. Therefore, the present invention provides (4) an R—Fe—Co—B-based alloy ingot in a mixed atmosphere of hydrogen or hydrogen and an inert gas at a temperature of 70:
By raising the temperature to 0 to 900 ° C and holding it, R-Fe-C
The o-B-based alloy ingot is subjected to a hydrogen-absorbing treatment for absorbing hydrogen to produce an R-Fe-Co-B-based alloy powder, and then the hydrogen-absorbed R-Fe-Co-B-based alloy powder is heated to a temperature. : At 700 to 900 ° C., a dehydrogenation process of suction and holding until a vacuum atmosphere of 1 Torr or less is performed, and then an inert gas is introduced and cooled to room temperature.
-Fe-Co-B-based alloy magnet powder was prepared and this RF
The e-Co-B-based alloy magnet powder is subjected to a low-temperature hydrogen absorption treatment in which the magnet powder is kept in a hydrogen atmosphere at room temperature to 400 ° C. to obtain hydrogen:
Coercive force: 0.01 to 0.5% by weight remaining: 0.01 to 8
A weak coercive hydrogen residual R-Fe-Co-B-based alloy powder having kOe is prepared, and the weak coercive hydrogen residual R-Fe-C
The OB alloy powder is press-formed while being oriented in a magnetic field to produce a green compact, and the green compact is heated at a temperature of 700 to 900.
C. After performing dehydrogenation treatment until a vacuum atmosphere of 1 Torr or less is reached, hot-pressed rare earth-Fe-Co-B
The method is characterized by a method of manufacturing a system magnet.

【0011】この発明で使用するR−Fe−Co−B系
合金インゴットは、水素吸蔵処理する前に、真空または
Ar雰囲気中、温度:600〜1200℃に保持するこ
とにより均質化処理することが一層好ましい。したがっ
て、この発明は、(5)前記R−Fe−Co−B系合金
インゴットは、真空またはAr雰囲気中、温度:600
〜1200℃に保持することにより均質化処理すること
を特徴とする前記(2)、(3)または(4)記載の希
土類−Fe−Co−B系磁石の製造方法、に特徴を有す
るものである。
The R-Fe-Co-B alloy ingot used in the present invention can be subjected to a homogenization treatment by maintaining the temperature in a vacuum or an Ar atmosphere at a temperature of 600 to 1200 ° C. before hydrogen absorption treatment. More preferred. Therefore, the present invention provides (5) the above-mentioned R-Fe-Co-B-based alloy ingot, which is prepared in a vacuum or Ar atmosphere at a temperature of 600;
The method for producing a rare-earth-Fe-Co-B-based magnet according to the above (2), (3) or (4), wherein the homogenization treatment is performed by maintaining the temperature at -1200 ° C. is there.

【0012】前記(い)〜(は)に示される成分組成の
合金であることが好ましい。したがって、この発明は、
(6)前記R−Fe−Co−B系合金は、原子%で、
R:10〜20%、Co:0.1〜50%、B:3〜2
0%を含有し、残りがFeおよび不可避不純物からなる
組成を有する前記(1)、(2)、(3)、(4)また
は(5)記載の希土類−Fe−Co−B系磁石の製造方
法、(7)前記R−Fe−Co−B系合金は、原子%
で、R:10〜20%、Co:0.1〜50%、B:3
〜20%を含有し、さらにGa,Zr,Hfの内の1種
または2種以上の合計:0.001〜5.0%を含有
し、残りがFeおよび不可避不純物からなる組成を有す
る前記(1)、(2)、(3)、(4)または(5)記
載の希土類−Fe−Co−B系磁石の製造方法、(8)
前記R−Fe−Co−B系合金は、原子%で、R:10
〜20%、Co:0.1〜50%、B:3〜20%を含
有し、さらにGa,Zr,Hfの内の1種または2種以
上の合計:0.001〜5.0%を含有し、さらにA
l,Siの内の1種または2種を合計で0.01〜2.
0%含有し、残りがFeおよび不可避不純物からなる組
成を有する前記(1)、(2)、(3)、(4)または
(5)記載の希土類−Fe−Co−B系磁石の製造方
法、(9)前記R−Fe−Co−B系合金は、原子%
で、R:10〜20%、Co:0.1〜50%、B:3
〜20%を含有し、さらにAl,Siの内の1種または
2種を合計で0.01〜2.0%含有し、残りがFeお
よび不可避不純物からなる組成を有する前記(1)、
(2)、(3)、(4)または(5)記載の希土類−F
e−Co−B系磁石の製造方法、に特徴を有するもので
ある。
It is preferable that the alloy has the component composition shown in (i) to (). Therefore, the present invention
(6) The R-Fe-Co-B-based alloy is expressed in atomic%,
R: 10 to 20%, Co: 0.1 to 50%, B: 3 to 2
Production of the rare earth-Fe-Co-B-based magnet according to the above (1), (2), (3), (4) or (5), wherein the magnet contains 0% and the balance consists of Fe and unavoidable impurities. Method, (7) the R-Fe-Co-B-based alloy contains
R: 10 to 20%, Co: 0.1 to 50%, B: 3
-20%, and further contains one or more of Ga, Zr, and Hf: 0.001-5.0%, with the balance having a composition consisting of Fe and unavoidable impurities. 1), (2), (3), (4) or (5), the method for producing a rare earth-Fe-Co-B-based magnet, (8)
The R-Fe-Co-B alloy has an atomic percentage of R: 10
-20%, Co: 0.1-50%, B: 3-20%, and one or more of Ga, Zr, and Hf: 0.001-5.0%. Containing, and A
1, or two of Si, from 0.01 to 2.
(1), (2), (3), (4) or (5), wherein the rare-earth-Fe-Co-B-based magnet has a composition of 0% and the balance of Fe and unavoidable impurities. (9) The R-Fe-Co-B-based alloy has an atomic percentage of
R: 10 to 20%, Co: 0.1 to 50%, B: 3
(1) having a composition containing 0.01 to 2.0% in total of one or two of Al and Si, and a balance of Fe and unavoidable impurities.
Rare earth-F described in (2), (3), (4) or (5)
a method of manufacturing an e-Co-B-based magnet.

【0013】上述のように、この発明の希土類−Fe−
Co−B系磁石の製造方法によると、従来よりも一層優
れた希土類−Fe−Co−B系磁石を製造することがで
きるのであるが、さらにこの発明の希土類−Fe−Co
−B系磁石の製造方法によると下記の優れた効果を有す
るものである。すなわち、従来の希土類−Fe−Co−
B系磁石粉末は、極めて大きな保磁力を有するために、
前記磁場中配向させながらプレス成形して作製した圧粉
体を脱磁するには大規模な脱磁装置を必要とし、そのた
めの設備費用がかかってコストが高くなり、コストを安
くするために容量の低い脱磁装置を使用して脱磁を不充
分に行うと、圧粉体を金型から取り出すために多大の労
力を必要とし、最悪の場合は成形した圧粉体を取り出し
作業中に破壊するなどのトラブルが発生することがあっ
たが、この発明の希土類−Fe−Co−B系磁石の製造
方法によると、まず、R−Fe−Co−B系合金インゴ
ットに水素吸蔵処理して得られた希土類−Fe−Co−
B系合金粉末を不充分な脱水素処理を行うことにより
0.01〜0.5wt%水素が残留し保磁力:0.01
〜8kOeを有する弱保磁力水素残留R−Fe−Co−
B系合金粉末を作製し、この弱保磁力水素残留R−Fe
−Co−B系合金粉末を使用すると、この弱保磁力水素
残留R−Fe−Co−B系合金粉末は保磁力が弱いとこ
ろからそれほど大きくない磁場(15kOe程度)でも
十分に配向することができ、この弱保磁力水素残留R−
Fe−Co−B系合金粉末を磁場中配向させながらプレ
ス成形して作製した圧粉体は脱磁処理することなく金型
から簡単に取り出すことができ、したがって脱磁処理工
程を省くことができるので一層効率良く磁気特性の優れ
た希土類−Fe−Co−B系磁石を製造することができ
る。
As described above, the rare earth-Fe-
According to the method of manufacturing a Co-B based magnet, it is possible to manufacture a rare earth-Fe-Co-B based magnet which is more excellent than the conventional one.
According to the method for producing a -B-based magnet, the magnet has the following excellent effects. That is, the conventional rare earth -Fe-Co-
B-based magnet powder has an extremely large coercive force,
In order to demagnetize the green compact produced by press molding while orienting in the magnetic field, a large-scale demagnetizing device is required, and the equipment cost is high, and the cost is high. Insufficient demagnetization using a low demagnetizer requires a great deal of effort to remove the green compact from the mold, and in the worst case, breaks the molded green compact during removal work However, according to the method for manufacturing a rare earth-Fe-Co-B-based magnet of the present invention, first, an R-Fe-Co-B-based alloy ingot is obtained by performing a hydrogen storage treatment. Rare earth -Fe-Co-
Insufficient dehydrogenation treatment of the B-based alloy powder leaves 0.01-0.5 wt% hydrogen, and the coercive force: 0.01
Coercivity Hydrogen Residual R-Fe-Co- with ~ 8 kOe
A B-based alloy powder is prepared, and this weak coercive force hydrogen residual R-Fe
When the -Co-B-based alloy powder is used, this weak coercive force hydrogen-remaining R-Fe-Co-B-based alloy powder can be sufficiently oriented even in a not so large magnetic field (about 15 kOe) from a place where the coercive force is weak. , This weak coercive force hydrogen residual R-
A green compact produced by press-forming the Fe-Co-B-based alloy powder while orienting it in a magnetic field can be easily taken out of the mold without demagnetizing treatment, and therefore, the demagnetizing treatment step can be omitted. Therefore, a rare-earth-Fe-Co-B-based magnet having excellent magnetic properties can be manufactured more efficiently.

【0014】つぎに、この発明の希土類−Fe−Co−
B系磁石の製造工程を図面に基づいて具体的に説明す
る。図1は、この発明の前記(2)の希土類−Fe−C
o−B系磁石の製造方法を示す説明図である。 均質化
処理しまたは均質化処理しないR−Fe−Co−B系合
金インゴットを、水素または水素と不活性ガスの混合雰
囲気中、温度:700〜900℃に昇温し保持すること
によりR−Fe−Co−B系合金インゴットに水素を吸
蔵させる水素吸蔵処理を施してR−Fe−Co−B系合
金粉末を作製し、この水素吸蔵処理したR−Fe−Co
−B系合金粉末を長時間不活性ガス雰囲気中に保持して
室温まで冷却すると、冷却中に脱水素され、水素:0.
01〜0.5重量%を残留し保磁力:0.01〜8kO
eを有する弱保磁力水素残留R−Fe−Co−B系合金
粉末が生成する。図1では、脱水素処理を不活性ガス
(好ましくはArガス)を導入することにより行うので、
不活性ガス導入を長時間(0.5〜5時間)行う必要が
ある。このようにして得られた保磁力の弱い弱保磁力水
素残留R−Fe−Co−B系合金粉末を金型に充填し、
磁場中配向させながらプレス成形して圧粉体を作製し、
次いで、この圧粉体を金型から取り出す。この時、圧粉
体の保磁力は弱いので脱磁しなくても簡単に圧粉体を金
型から取り出すことができる。この圧粉体を温度:70
0〜900℃、1Torr以下の真空雰囲気になるまで
吸引保持して脱水素処理を行った後、ホットプレスする
ことにより優れた磁気特性を有するR−Fe−Co−B
系磁石を作ることができる。
Next, the rare earth-Fe-Co-
The manufacturing process of the B-based magnet will be specifically described with reference to the drawings. FIG. 1 shows the rare earth-Fe-C of (2) of the present invention.
It is explanatory drawing which shows the manufacturing method of an oB system magnet. The R-Fe-Co-B alloy ingot subjected to homogenization treatment or not homogenization treatment is heated to a temperature of 700 to 900 ° C in an atmosphere of hydrogen or a mixed atmosphere of hydrogen and an inert gas to thereby maintain the R-Fe. -Co-B-based alloy ingot is subjected to a hydrogen-absorbing treatment for absorbing hydrogen to produce an R-Fe-Co-B-based alloy powder, and the hydrogen-absorbed R-Fe-Co
When the -B-based alloy powder is kept in an inert gas atmosphere for a long time and cooled to room temperature, it is dehydrogenated during cooling, and hydrogen: 0.
Coercive force: 0.01 to 8 kO with 01 to 0.5% by weight remaining
e, a weak coercive force hydrogen residual R-Fe-Co-B-based alloy powder is generated. In FIG. 1, the dehydrogenation treatment is performed with an inert gas
(Preferably Ar gas),
It is necessary to introduce the inert gas for a long time (0.5 to 5 hours). The thus obtained weak coercive force hydrogen residual R-Fe-Co-B-based alloy powder having a low coercive force is filled in a mold,
Press molding while orientation in a magnetic field to produce a green compact,
Next, the green compact is removed from the mold. At this time, since the coercive force of the green compact is weak, the green compact can be easily removed from the mold without demagnetization. The green compact is heated at a temperature of 70
R-Fe-Co-B having excellent magnetic properties is obtained by performing hot-pressing after performing dehydrogenation by suction-holding until a vacuum atmosphere of 0 to 900 ° C and 1 Torr or less is obtained.
A system magnet can be made.

【0015】図2は、この発明の前記(3)の希土類−
Fe−Co−B系磁石の製造方法を示す説明図である。
均質化処理しまたは均質化処理しないR−Fe−Co−
B系合金インゴットを、水素または水素と不活性ガスの
混合雰囲気中、温度:700〜900℃に昇温し保持す
ることによりR−Fe−Co−B系合金インゴットに水
素を吸蔵させる水素吸蔵処理を施したのち、引き続いて
温度:700〜900℃、1Torrを越え100To
rr以下の真空雰囲気になるまで吸引保持する不完全な
脱水素処理を施したのち不活性ガスを導入して室温まで
冷却することにより、水素:0.01〜0.5重量%を
残留し保磁力:0.01〜8kOeを有する弱保磁力水
素残留R−Fe−Co−B系合金粉末が得られる。
FIG. 2 shows the rare earth of the above (3) of the present invention.
It is explanatory drawing which shows the manufacturing method of a Fe-Co-B type magnet.
R-Fe-Co- with or without homogenization
A hydrogen storage treatment in which the R-Fe-Co-B-based alloy ingot stores hydrogen by raising the temperature of the B-based alloy ingot to 700 to 900 ° C in an atmosphere of hydrogen or a mixture of hydrogen and an inert gas. And then continuously at a temperature of 700 to 900 ° C., exceeding 1 Torr and 100 To
After performing incomplete dehydrogenation treatment by suction and holding until a vacuum atmosphere of rr or less is reached, by introducing an inert gas and cooling to room temperature, 0.01 to 0.5% by weight of hydrogen is retained and retained. A weak coercive force hydrogen residual R-Fe-Co-B-based alloy powder having a magnetic force of 0.01 to 8 kOe is obtained.

【0016】図2では、1Torrを越え100Tor
r以下の真空雰囲気になるまで吸引保持する不完全な脱
水素処理を行うので図1よりも効率良く水素:0.01
〜0.5重量%を残留し保磁力:0.01〜8kOeを
有する弱保磁力水素残留R−Fe−Co−B系合金粉末
が得られる。このようにして得られた弱保磁力水素残留
R−Fe−Co−B系合金粉末を金型に充填し、磁場中
配向させながらプレス成形して圧粉体を作製し、次いで
この圧粉体を金型から取り出す。この時、圧粉体の保磁
力は弱いので脱磁しなくても簡単に圧粉体を金型から取
り出すことができる。この圧粉体を温度:700〜90
0℃、1Torr以下の真空雰囲気に吸引保持して脱水
素処理を行った後、ホットプレスすることにより優れた
磁気特性を有するR−Fe−Co−B系磁石を作ること
ができる。
In FIG. 2, more than 1 Torr and 100 Torr
Since the incomplete dehydrogenation process of suction and holding is performed until the vacuum atmosphere becomes equal to or less than r, hydrogen: 0.01 more efficiently than in FIG.
A weak coercive force hydrogen residual R-Fe-Co-B-based alloy powder having a coercive force of 0.01 to 8 kOe remaining with a content of about 0.5% by weight is obtained. The thus obtained weak coercive force hydrogen-remaining R-Fe-Co-B-based alloy powder is filled in a mold, and press-formed while being oriented in a magnetic field to produce a green compact. Is removed from the mold. At this time, since the coercive force of the green compact is weak, the green compact can be easily removed from the mold without demagnetization. The green compact is heated at a temperature of 700 to 90.
After performing dehydrogenation treatment by suction and holding in a vacuum atmosphere at 0 ° C. and 1 Torr or less, an R—Fe—Co—B-based magnet having excellent magnetic properties can be produced by hot pressing.

【0017】図3は、この発明の前記(4)の希土類−
Fe−Co−B系磁石の製造方法を示す説明図である。
均質化処理しまたは均質化処理しないR−Fe−Co
−B系合金インゴットを、水素または水素と不活性ガス
の混合雰囲気中、温度:700〜900℃に昇温し保持
することによりR−Fe−Co−B系合金インゴットに
水素吸蔵処理を施し、引き続いて温度:700〜900
℃、1Torr以下の真空雰囲気になるまで吸引保持し
て十分に脱水素処理を施し、ついで不活性ガスを導入し
て室温まで冷却し、その後、室温〜400℃の範囲内の
温度に保持して少量の水素を吸収させる低温水素吸収処
理を行うことにより、水素:0.01〜0.5重量%を
残留し保磁力:0.01〜8kOeを有する弱保磁力水
素残留R−Fe−Co−B系合金粉末を作製する。
FIG. 3 shows the rare earth of (4) of the present invention.
It is explanatory drawing which shows the manufacturing method of a Fe-Co-B type magnet.
R-Fe-Co with or without homogenization
The R-Fe-Co-B-based alloy ingot is subjected to a hydrogen occlusion treatment by raising and maintaining the temperature of the B-based alloy ingot to 700 to 900 ° C in a mixed atmosphere of hydrogen or hydrogen and an inert gas, Then temperature: 700-900
C., and sufficiently dehydrogenated by suction and holding until a vacuum atmosphere of 1 Torr or less is obtained. Then, an inert gas is introduced and cooled to room temperature, and then maintained at a temperature in the range of room temperature to 400 ° C. By performing a low-temperature hydrogen absorption treatment for absorbing a small amount of hydrogen, a weak coercive force hydrogen residual R-Fe-Co- having 0.01 to 0.5% by weight of hydrogen and having a coercive force of 0.01 to 8 kOe remains. A B-based alloy powder is produced.

【0018】前記図3では、水素吸蔵処理したのち温
度:700〜900℃、1Torr以下の真空雰囲気に
なるまで吸引保持して十分に脱水素処理を施し、ついで
不活性ガスを導入して室温まで冷却する。このようにし
て得られたR−Fe−Co−B系合金粉末は、十分に脱
水素されているので保磁力が大きく、このR−Fe−C
o−B系合金粉末を金型に充填し、磁場中配向させなが
らプレス成形して圧粉体を作製すると、この圧粉体を金
型から取り出す際に大きな力を必要とするので好ましく
ない。したがって、この発明では脱水素処理したR−F
e−Co−B系合金粉末を、さらに水素雰囲気中、室温
〜400℃の範囲内の温度に保持する低温水素吸収処理
を行って保磁力を低下させる。前記低温水素吸収処理
は、R2 (Fe,Co)14B相をRH2 ,Feおよび
(Fe,Co)2 Bの3相に相変態させることのないよ
うに、室温〜400℃の範囲内の温度に保持する必要が
ある。このようにして得られた弱保磁力水素残留R−F
e−Co−B系合金粉末を磁場中配向させながら圧粉体
を作製し、次いでこの圧粉体を金型から取り出す。この
時、圧粉体の保磁力は弱いので脱磁しなくても簡単に圧
粉体を金型から取り出すことができる。この圧粉体を温
度:700〜900℃、1Torr以下の真空雰囲気に
吸引保持して十分に脱水素処理を行った後、ホットプレ
スすることにより優れた磁気特性を有するR−Fe−C
o−B系磁石を作ることができる。前記ホットプレスの
温度は600〜900℃が好ましい。
In FIG. 3, after the hydrogen storage treatment, the temperature is maintained at 700 to 900 ° C. and the atmosphere is reduced to a vacuum atmosphere of 1 Torr or less, and the dehydrogenation treatment is sufficiently performed. Cooling. The R-Fe-Co-B-based alloy powder thus obtained has a large coercive force since it has been sufficiently dehydrogenated.
It is not preferable to fill the mold with the o-B-based alloy powder and press-mold it while orienting it in a magnetic field to produce a green compact because a large force is required when removing the green compact from the mold. Therefore, in the present invention, the dehydrogenated RF
The e-Co-B-based alloy powder is further subjected to a low-temperature hydrogen absorption treatment in a hydrogen atmosphere at a temperature in the range of room temperature to 400 ° C. to lower the coercive force. The low-temperature hydrogen absorption treatment is performed at room temperature to 400 ° C. so that the R 2 (Fe, Co) 14 B phase is not transformed into the three phases of RH 2 , Fe and (Fe, Co) 2 B. Temperature must be maintained. The thus obtained weak coercive force hydrogen residual RF
A green compact is prepared while orienting the e-Co-B-based alloy powder in a magnetic field, and then the green compact is removed from the mold. At this time, since the coercive force of the green compact is weak, the green compact can be easily removed from the mold without demagnetization. This green compact is suction-held in a vacuum atmosphere at a temperature of 700 to 900 ° C. and 1 Torr or less to sufficiently perform dehydrogenation treatment, and then hot pressed to obtain R-Fe—C having excellent magnetic properties.
An oB-based magnet can be made. The temperature of the hot press is preferably from 600 to 900C.

【0019】つぎに、この発明のR−Fe−Co−B系
異方性磁石の成分組成を上記の如く限定した理由につい
て説明する。 (a)R Rは、Nd,Pr,Tb,Dy,La,Ce,Ho,E
r,Eu,Sm,Gd,Tm,Yb,LuおよびYのう
ち1種または2種以上であり、一般にNdを主体とし、
これにその他の希土類元素を添加して用いられるが、特
にDyおよびPrは保磁力iHcを向上させる効果があ
る。Rの含有量が10%より低くても、また20%より
高くても異方性磁石の保磁力が低下し、優れた磁気特性
が得られない。したがって、Rの含有量は10〜20%
に定めた。
Next, the reason why the component composition of the R-Fe-Co-B based anisotropic magnet of the present invention is limited as described above will be described. (A) RR is Nd, Pr, Tb, Dy, La, Ce, Ho, E
one or more of r, Eu, Sm, Gd, Tm, Yb, Lu, and Y, generally mainly Nd;
Although other rare earth elements are added to this, Dy and Pr have the effect of improving the coercive force iHc. If the R content is lower than 10% or higher than 20%, the coercive force of the anisotropic magnet is reduced, and excellent magnetic properties cannot be obtained. Therefore, the content of R is 10 to 20%.
Determined.

【0020】(b)B Bの含有量が3%より低くても、また20%より高くて
も異方性磁石の保磁力が低下し、優れた磁気特性が得ら
れないので、B含有量は3〜20%と定めた。またBの
一部をC,N,O,Fで置換してもよい。
(B) BB If the B content is less than 3% or more than 20%, the coercive force of the anisotropic magnet is reduced and excellent magnetic properties cannot be obtained. Was determined to be 3 to 20%. A part of B may be replaced with C, N, O, or F.

【0021】(c)Co Coを添加することにより異方性磁石の保磁力および磁
気的温度特性(例えば、キュリー点)が向上し、さらに
耐食性を向上させる効果があるが、その含有量が0.1
%未満では所望の効果が得られず、一方、50%を超え
て含有してもかえって磁気特性が低下するので好ましく
ない。したがって、Coの含有量は0.1〜50%に定
めた。Coの含有量は、0.1〜20%の間では、最も
保磁力が高くなるのでCo:0.1〜20%とするのが
一層好ましい。
(C) Co The addition of Co improves the coercive force and magnetic temperature characteristics (eg, Curie point) of the anisotropic magnet, and further has the effect of improving the corrosion resistance. .1
If the content is less than 50%, the desired effect cannot be obtained. On the other hand, if the content exceeds 50%, the magnetic properties are rather deteriorated. Therefore, the content of Co is set to 0.1 to 50%. When the content of Co is between 0.1 and 20%, the coercive force becomes highest, so that it is more preferable that the content of Co be 0.1 to 20%.

【0022】(d)Ga,ZrおよびHf これらの成分は、R−Fe−Co−B系異方性磁石の成
分として含有し、保磁力を向上させるとともに優れた磁
気的異方性および耐食性を安定的に付与する作用を有す
るので添加するが、GaおよびZrの合計、Gaおよび
Hfの合計、またはGa、ZrおよびHfの合計が0.
001%未満では所望の効果が得られず、一方、5.0
%を超えて含有すると磁気特性が低下する。したがっ
て、GaおよびZrの合計、GaおよびHfの合計、ま
たはGa、ZrおよびHfの合計を0.001〜5.0
%に定めた。
(D) Ga, Zr and Hf These components are contained as components of the R-Fe-Co-B based anisotropic magnet to improve coercive force and to provide excellent magnetic anisotropy and corrosion resistance. It is added because it has a stabilizing effect, but the total of Ga and Zr, the total of Ga and Hf, or the total of Ga, Zr and Hf is 0.1%.
If it is less than 001%, the desired effect cannot be obtained, while 5.0
%, The magnetic properties deteriorate. Therefore, the sum of Ga and Zr, the sum of Ga and Hf, or the sum of Ga, Zr and Hf is 0.001 to 5.0.
%.

【0023】(e)AlおよびSi GaおよびZrの合計、GaおよびHfの合計、または
Ga、ZrおよびHfの合計を0.001〜5.0%含
有するR−Fe−Co−B系合金に、AlおよびSiの
うち1種または2種以上を添加することにより最大エネ
ルギー積を安定して高めることができるので添加する
が、その含有量が0.01%未満では所望の効果が得ら
れず、一方、2.0%を超えて添加しても、磁化の値を
高めることができないので好ましくない。したがって、
AlおよびSiのうち1種または2種以上は合計量で
0.01〜2.0%に定めた。
(E) Al and Si An R-Fe-Co-B-based alloy containing 0.001 to 5.0% of the total of Ga and Zr, the total of Ga and Hf, or the total of Ga, Zr and Hf. , Al and Si are added because the maximum energy product can be stably increased by adding one or more of them. However, if the content is less than 0.01%, the desired effect cannot be obtained. On the other hand, addition of more than 2.0% is not preferred because the value of magnetization cannot be increased. Therefore,
One or more of Al and Si are determined to be 0.01 to 2.0% in total.

【0024】[0024]

【発明の実施の形態】プラズマ溶解鋳造によりR−Fe
−Co−B系合金インゴットを用意し、これら合金イン
ゴットをそれぞれアルゴンガス雰囲気中、温度:112
0℃、40時間保持の条件で均質化処理したのち、約1
0mm角まで砕いて表1に示される成分組成の原料合金
a〜hを作製した。
BEST MODE FOR CARRYING OUT THE INVENTION R-Fe
-Co-B based alloy ingots were prepared, and these alloy ingots were each placed in an argon gas atmosphere at a temperature of 112.
After homogenizing at 0 ° C for 40 hours, about 1 hour
Raw material alloys a to h having the component compositions shown in Table 1 were prepared by crushing to 0 mm square.

【0025】[0025]

【表1】 [Table 1]

【0026】実施例1〜3および従来例1 表1の原料合金aを1気圧の水素雰囲気中で室温から温
度:800℃まで昇温し、この温度で1時間保持するこ
とにより水素吸蔵処理を施し、その後、表2に示される
条件の処理を施した後、乳鉢で軽く解砕することにより
平均粒度50μmのR−Fe−Co−B系合金粉末(以
下、合金粉末という)を作製し、これら合金粉末の水素
濃度および保磁力(iHc)を測定し、その結果を表2
に示した。このようにして得られた合金粉末を金型に充
填し、15kOeの磁場中で配向させながらプレス成形
することにより圧粉体を作製したのち、圧粉体を金型か
ら取り出した。この時、実施例1〜3で作製した合金粉
末の圧粉体は脱磁処理を行うことなく簡単に取り出すこ
とができたが、従来例1で作製した合金粉末の圧粉体は
強力な脱磁処理を行わないと金型から取り出すことがで
きなかった。実施例1〜3で作製した合金粉末の圧粉体
は金型から取り出したのち、Arガス中で800℃に昇
温し、800℃に達したら、0.1Torr以下の真空
雰囲気になるまで吸引保持し、引き続いてArガスを導
入して急冷することにより圧粉体の脱水素処理を行い、
この脱水素処理した圧粉体をArガス雰囲気中、温度:
800℃、1.5Ton/cm2 の条件でホットプレ
スすることにより異方性永久磁石を得た。
Examples 1 to 3 and Conventional Example 1 The raw material alloy a shown in Table 1 was heated from room temperature to a temperature of 800 ° C. in a hydrogen atmosphere at 1 atm and held at this temperature for 1 hour to perform a hydrogen absorbing treatment. After that, after performing the treatment under the conditions shown in Table 2, lightly crushed in a mortar to produce an R-Fe-Co-B-based alloy powder having an average particle size of 50 µm (hereinafter, referred to as alloy powder). The hydrogen concentration and the coercive force (iHc) of these alloy powders were measured.
It was shown to. The alloy powder obtained as described above was filled in a mold, and press-formed while being oriented in a magnetic field of 15 kOe to produce a green compact. The green compact was taken out of the mold. At this time, the green compacts of the alloy powders manufactured in Examples 1 to 3 could be easily taken out without performing the demagnetization treatment. Without magnetic treatment, it could not be removed from the mold. After the green compact of the alloy powder prepared in Examples 1 to 3 was taken out of the mold, the temperature was raised to 800 ° C. in Ar gas, and when the temperature reached 800 ° C., suction was performed until a vacuum atmosphere of 0.1 Torr or less was reached. Hold, followed by the introduction of Ar gas and quenching to dehydrogenate the green compact,
This dehydrogenated green compact is heated in an Ar gas atmosphere at a temperature of:
An anisotropic permanent magnet was obtained by hot pressing at 800 ° C. and 1.5 Ton / cm 2 .

【0027】一方、従来例1で作製した合金粉末の圧粉
体は脱磁処理を行ったのち金型から取り出し、そのまま
Arガス雰囲気中、温度:800℃、1.5Ton/c
2の条件でホットプレスすることにより異方性永久磁
石を得た。
On the other hand, the compact of the alloy powder produced in Conventional Example 1 was demagnetized, taken out of the mold, and kept in an Ar gas atmosphere at a temperature of 800 ° C. and 1.5 Ton / c.
An anisotropic permanent magnet was obtained by hot pressing under the condition of m 2 .

【0028】なお、磁場中成形した圧粉体は配向方向が
ホットプレスの時のプレス方向と一致するように配置し
てホットプレスした。このようにして得られた異方性永
久磁石の密度はすべて7.5〜7.7g/cm3 で十
分に緻密化していた。実施例1〜3および従来例1で得
られた異方性永久磁石の磁気特性を表2に示す。
The green compact compacted in the magnetic field was hot-pressed while being arranged so that the orientation direction coincided with the pressing direction at the time of hot pressing. All of the anisotropic permanent magnets thus obtained had a density of 7.5 to 7.7 g / cm 3 and were sufficiently dense. Table 2 shows the magnetic properties of the anisotropic permanent magnets obtained in Examples 1 to 3 and Conventional Example 1.

【0029】[0029]

【表2】 [Table 2]

【0030】表2に示される結果から、実施例1〜3で
作製した異方性永久磁石は、同じ原料合金aを用いて従
来例1で作製した異方性永久磁石に比べて最大エネルギ
ー積(BHmax)が優れているところから、この発明
の製造方法は、従来よりも一層優れた希土類−Fe−C
o−B系磁石を提供できることがわかる。
From the results shown in Table 2, the anisotropic permanent magnets manufactured in Examples 1 to 3 have a maximum energy product compared to the anisotropic permanent magnet manufactured in Conventional Example 1 using the same raw material alloy a. (BHmax), the production method of the present invention provides a rare earth-Fe-C
It can be seen that an oB-based magnet can be provided.

【0031】実施例4〜6および従来例2 表1の原料合金bを1気圧の水素雰囲気中で室温から温
度:810℃まで昇温し、この温度で1時間保持するこ
とにより水素吸蔵処理を施し、その後、表3に示される
条件の処理を施した後、乳鉢で軽く解砕することにより
平均粒度50μmの合金粉末を作製し、これら合金粉末
の水素濃度および保磁力(iHc)を測定し、その結果
を表3に示した。
Examples 4 to 6 and Conventional Example 2 The raw material alloy b shown in Table 1 was heated from room temperature to a temperature of 810 ° C. in a hydrogen atmosphere of 1 atm and held at this temperature for 1 hour to perform a hydrogen absorbing treatment. After that, the powder was treated under the conditions shown in Table 3 and lightly crushed in a mortar to produce alloy powder having an average particle size of 50 μm. The hydrogen concentration and coercive force (iHc) of these alloy powders were measured. Table 3 shows the results.

【0032】このようにして得られた合金粉末を金型に
充填し、15kOeの磁場中で配向させながらプレス成
形することにより圧粉体を作製したのち、圧粉体を金型
から取り出した。この時、実施例4〜6で作製した合金
粉末の圧粉体は脱磁処理を行うことなく簡単に取り出す
ことができたが、従来例2で作製した合金粉末の圧粉体
は強力な脱磁処理を行わないと金型から取り出すことが
できなかった。実施例4〜6で作製した合金粉末の圧粉
体は金型から取り出したのち、Arガス中で810℃に
昇温し、810℃に達したら、0.1Torr以下の真
空雰囲気になるまで吸引保持し、引き続いてArガスを
導入して急冷することにより圧粉体の脱水素処理を行
い、この脱水素処理した圧粉体をArガス雰囲気中、温
度:810℃、1.5Ton/cm2 の条件でホット
プレスすることにより異方性永久磁石を得た。
The alloy powder obtained as described above was filled in a mold, and press-formed while being oriented in a magnetic field of 15 kOe to produce a green compact. The green compact was taken out of the mold. At this time, the green compacts of the alloy powders manufactured in Examples 4 to 6 could be easily taken out without performing demagnetization treatment. Without magnetic treatment, it could not be removed from the mold. The green compact of the alloy powder produced in Examples 4 to 6 was taken out of the mold, heated to 810 ° C. in Ar gas, and when it reached 810 ° C., sucked until a vacuum atmosphere of 0.1 Torr or less was reached. Then, the compact was dehydrogenated by introducing and quenching Ar gas, and the compact thus dehydrogenated was placed in an Ar gas atmosphere at a temperature of 810 ° C. and 1.5 Ton / cm 2. The anisotropic permanent magnet was obtained by hot pressing under the following conditions.

【0033】一方、従来例2で作製した合金粉末の圧粉
体は脱磁処理を行ったのち金型から取り出し、そのまま
Arガス雰囲気中、温度:810℃、1.5Ton/c
2の条件でホットプレスすることにより異方性永久磁
石を得た。
On the other hand, the green compact of the alloy powder produced in Conventional Example 2 was demagnetized, taken out of the mold, and kept in an Ar gas atmosphere at a temperature of 810 ° C. and 1.5 Ton / c.
An anisotropic permanent magnet was obtained by hot pressing under the condition of m 2 .

【0034】なお、磁場中成形した圧粉体は配向方向が
ホットプレスの時のプレス方向と一致するように配置し
てホットプレスした。このようにして得られた異方性永
久磁石の密度はすべて7.5〜7.7g/cm3 で十
分に緻密化していた。実施例4〜6および従来例2で得
られた異方性永久磁石の磁気特性を表3に示す。
The green compact formed in a magnetic field was hot-pressed by arranging so that the orientation direction coincided with the pressing direction at the time of hot pressing. All of the anisotropic permanent magnets thus obtained had a density of 7.5 to 7.7 g / cm 3 and were sufficiently dense. Table 3 shows the magnetic properties of the anisotropic permanent magnets obtained in Examples 4 to 6 and Conventional Example 2.

【0035】[0035]

【表3】 [Table 3]

【0036】表3に示される結果から、実施例4〜6で
作製した異方性永久磁石は、同じ原料合金bを用いて従
来例2で作製した異方性永久磁石に比べて最大エネルギ
ー積(BHmax)が優れているところから、この発明
の製造方法は、従来よりも一層優れた希土類−Fe−C
o−B系磁石を提供できることがわかる。
From the results shown in Table 3, it can be seen that the anisotropic permanent magnets manufactured in Examples 4 to 6 have a maximum energy product compared to the anisotropic permanent magnet manufactured in Conventional Example 2 using the same raw material alloy b. (BHmax), the production method of the present invention provides a rare earth-Fe-C
It can be seen that an oB-based magnet can be provided.

【0037】実施例7〜9および従来例3 表1の原料合金cを1気圧の水素雰囲気中で室温から温
度:820℃まで昇温し、この温度で3時間保持するこ
とにより水素吸蔵処理を施し、その後、表4に示される
条件の処理を施した後、乳鉢で軽く解砕することにより
平均粒度50μmの合金粉末を作製し、これら合金粉末
の水素濃度および保磁力(iHc)を測定し、その結果
を表4に示した。
Examples 7 to 9 and Conventional Example 3 The raw material alloy c shown in Table 1 was heated from room temperature to a temperature of 820 ° C. in a hydrogen atmosphere of 1 atm and kept at this temperature for 3 hours to perform a hydrogen absorbing treatment. After that, the alloy was treated under the conditions shown in Table 4 and crushed lightly in a mortar to produce alloy powder having an average particle size of 50 μm. The hydrogen concentration and coercive force (iHc) of these alloy powders were measured. Table 4 shows the results.

【0038】このようにして得られた合金粉末を金型に
充填し、15kOeの磁場中で配向させながらプレス成
形することにより圧粉体を作製したのち、圧粉体を金型
から取り出した。この時、実施例7〜9で作製した合金
粉末の圧粉体は脱磁処理を行うことなく簡単に取り出す
ことができたが、従来例3で作製した合金粉末の圧粉体
は強力な脱磁処理を行わないと金型から取り出すことが
できなかった。実施例7〜9で作製した合金粉末の圧粉
体は金型から取り出したのち、Arガス中で820℃に
昇温し、820℃に達したら、0.1Torr以下の真
空雰囲気になるまで吸引保持し、引き続いてArガスを
導入して急冷することにより圧粉体の脱水素処理を行
い、この脱水素処理した圧粉体をArガス雰囲気中、温
度:820℃、1.5Ton/cm2 の条件でホット
プレスすることにより異方性永久磁石を得た。
The alloy powder thus obtained was filled in a metal mold, and press-molded while being oriented in a magnetic field of 15 kOe to produce a green compact. Thereafter, the green compact was taken out of the metal mold. At this time, the green compacts of the alloy powders manufactured in Examples 7 to 9 could be easily taken out without performing demagnetization treatment. Without magnetic treatment, it could not be removed from the mold. The alloy powder compacts prepared in Examples 7 to 9 were taken out of the mold, heated to 820 ° C. in Ar gas, and when the temperature reached 820 ° C., sucked until a vacuum atmosphere of 0.1 Torr or less was reached. Then, the compact was subjected to dehydrogenation treatment by introducing and quenching Ar gas, and the compact thus dehydrogenated was placed in an Ar gas atmosphere at a temperature of 820 ° C. and 1.5 Ton / cm 2. The anisotropic permanent magnet was obtained by hot pressing under the following conditions.

【0039】一方、従来例3で作製した合金粉末の圧粉
体は脱磁処理を行ったのち金型から取り出し、そのまま
Arガス雰囲気中、温度:820℃、1.5Ton/c
2の条件でホットプレスすることにより異方性永久磁
石を得た。
On the other hand, the compact of the alloy powder produced in Conventional Example 3 was demagnetized, taken out of the mold, and kept in an Ar gas atmosphere at a temperature of 820 ° C. and 1.5 Ton / c.
An anisotropic permanent magnet was obtained by hot pressing under the condition of m 2 .

【0040】なお、磁場中成形した圧粉体は配向方向が
ホットプレスの時のプレス方向と一致するように配置し
てホットプレスした。このようにして得られた異方性永
久磁石の密度はすべて7.5〜7.7g/cm3 で十
分に緻密化していた。実施例7〜9および従来例3で得
られた異方性永久磁石の磁気特性を表4に示す。
The green compact compacted in the magnetic field was hot-pressed while being arranged so that the orientation direction coincided with the pressing direction at the time of hot pressing. All of the anisotropic permanent magnets thus obtained had a density of 7.5 to 7.7 g / cm 3 and were sufficiently dense. Table 4 shows the magnetic properties of the anisotropic permanent magnets obtained in Examples 7 to 9 and Conventional Example 3.

【0041】[0041]

【表4】 [Table 4]

【0042】表4に示される結果から、実施例7〜9で
作製した異方性永久磁石は、同じ原料合金cを用いて従
来例3で作製した異方性永久磁石に比べて最大エネルギ
ー積(BHmax)が優れているところから、この発明
の製造方法は、従来よりも一層優れた希土類−Fe−C
o−B系磁石を提供できることがわかる。
From the results shown in Table 4, it can be seen that the anisotropic permanent magnets manufactured in Examples 7 to 9 have the maximum energy product compared with the anisotropic permanent magnet manufactured in Conventional Example 3 using the same raw material alloy c. (BHmax), the production method of the present invention provides a rare earth-Fe-C
It can be seen that an oB-based magnet can be provided.

【0043】実施例10〜12および従来例4 表1の原料合金dを1気圧の水素雰囲気中で室温から温
度:820℃まで昇温し、この温度で3時間保持するこ
とにより水素吸蔵処理を施し、その後、表5に示される
条件の処理を施した後、乳鉢で軽く解砕することにより
平均粒度50μmの合金粉末を作製し、これら合金粉末
の水素濃度および保磁力(iHc)を測定し、その結果
を表5に示した。
Examples 10 to 12 and Conventional Example 4 The raw material alloy d shown in Table 1 was heated from room temperature to a temperature of 820 ° C. in a hydrogen atmosphere of 1 atm and kept at this temperature for 3 hours to perform a hydrogen absorbing treatment. After that, after the treatment under the conditions shown in Table 5, the powder was lightly crushed in a mortar to produce alloy powder having an average particle size of 50 μm, and the hydrogen concentration and coercive force (iHc) of these alloy powders were measured. Table 5 shows the results.

【0044】このようにして得られた合金粉末を金型に
充填し、15kOeの磁場中で配向させながらプレス成
形することにより圧粉体を作製したのち、圧粉体を金型
から取り出した。この時、実施例10〜12で作製した
合金粉末の圧粉体は脱磁処理を行うことなく簡単に取り
出すことができたが、従来例4で作製した合金粉末の圧
粉体は強力な脱磁処理を行わないと金型から取り出すこ
とができなかった。実施例10〜12で作製した合金粉
末の圧粉体は金型から取り出したのち、Arガス中で8
20℃に昇温し、820℃に達したら、0.1Torr
以下の真空雰囲気になるまで吸引保持し、引き続いてA
rガスを導入して急冷することにより圧粉体の脱水素処
理を行い、この脱水素処理した圧粉体をArガス雰囲気
中、温度:820℃、1.5Ton/cm2 の条件で
ホットプレスすることにより異方性永久磁石を得た。
The alloy powder thus obtained was filled in a mold, and press-formed while being oriented in a magnetic field of 15 kOe to produce a green compact. The green compact was taken out of the mold. At this time, the green compact of the alloy powder prepared in Examples 10 to 12 could be easily taken out without performing demagnetization treatment. Without magnetic treatment, it could not be removed from the mold. The green compact of the alloy powder produced in Examples 10 to 12 was taken out of the mold and then placed in Ar gas.
When the temperature rises to 20 ° C and reaches 820 ° C, 0.1 Torr
Hold by suction until the following vacuum atmosphere is reached.
The green compact is dehydrogenated by introducing r gas and rapidly cooled, and the dehydrogenated green compact is hot-pressed in an Ar gas atmosphere at 820 ° C. and 1.5 Ton / cm 2. Thus, an anisotropic permanent magnet was obtained.

【0045】一方、従来例4で作製した合金粉末の圧粉
体は脱磁処理を行ったのち金型から取り出し、そのまま
Arガス雰囲気中、温度:820℃、1.5Ton/c
2の条件でホットプレスすることにより異方性永久磁
石を得た。
On the other hand, the green compact of the alloy powder produced in Conventional Example 4 was demagnetized, taken out of the mold, and kept in an Ar gas atmosphere at a temperature of 820 ° C. and 1.5 Ton / c.
An anisotropic permanent magnet was obtained by hot pressing under the condition of m 2 .

【0046】なお、磁場中成形した圧粉体は配向方向が
ホットプレスの時のプレス方向と一致するように配置し
てホットプレスした。このようにして得られた異方性永
久磁石の密度はすべて7.5〜7.7g/cm3 で十
分に緻密化していた。実施例10〜12および従来例4
で得られた異方性永久磁石の磁気特性を表5に示す。
The green compact formed in a magnetic field was hot-pressed by arranging so that the orientation direction coincided with the pressing direction at the time of hot pressing. All of the anisotropic permanent magnets thus obtained had a density of 7.5 to 7.7 g / cm 3 and were sufficiently dense. Examples 10 to 12 and Conventional Example 4
Table 5 shows the magnetic properties of the anisotropic permanent magnet obtained in the above.

【0047】[0047]

【表5】 [Table 5]

【0048】表5に示される結果から、実施例10〜1
2で作製した異方性永久磁石は、同じ原料合金dを用い
て従来例4で作製した異方性永久磁石に比べて、磁気特
性が優れているところから、この発明の製造方法は、従
来よりも一層優れた希土類−Fe−Co−B系磁石を提
供できることがわかる。
From the results shown in Table 5, Examples 10-1
The anisotropic permanent magnet produced in Example 2 has superior magnetic properties as compared with the anisotropic permanent magnet produced in Conventional Example 4 using the same raw material alloy d. It can be seen that a rare earth-Fe-Co-B-based magnet can be provided that is even better.

【0049】実施例13〜15および従来例5 表1の原料合金eを使用する以外は実施例1〜3および
従来例1と同じ方法で合金粉末を作製し、この合金粉末
を用いて実施例1〜3および従来例1と同じ方法で異方
性永久磁石を作製し、この異方性永久磁石の磁気特性を
測定し、その結果を表6に示した。
Examples 13 to 15 and Conventional Example 5 An alloy powder was prepared in the same manner as in Examples 1 to 3 and Conventional Example 1 except that the raw material alloy e shown in Table 1 was used. Anisotropic permanent magnets were prepared in the same manner as in Examples 1 to 3 and Conventional Example 1, and the magnetic properties of the anisotropic permanent magnets were measured. The results are shown in Table 6.

【0050】[0050]

【表6】 [Table 6]

【0051】表6に示される結果から、実施例13〜1
5で作製した異方性永久磁石は、同じ原料合金eを用い
て従来例5で作製した異方性永久磁石に比べて最大エネ
ルギー積(BHmax)が優れているところから、この
発明の製造方法は従来よりも一層優れた希土類−Fe−
Co−B系磁石を提供できることがわかる。
From the results shown in Table 6, Examples 13-1
5 is superior to the anisotropic permanent magnet manufactured in Conventional Example 5 using the same raw material alloy e in the maximum energy product (BHmax). Is a rare earth -Fe-
It can be seen that a Co-B based magnet can be provided.

【0052】実施例16〜18および従来例6 表1の原料合金fを使用する以外は実施例4〜6および
従来例2と同じ方法で合金粉末を作製し、この合金粉末
を用いて実施例4〜6および従来例2と同じ方法で異方
性永久磁石を作製し、この異方性永久磁石の磁気特性を
測定し、その結果を表7に示した。
Examples 16 to 18 and Conventional Example 6 An alloy powder was prepared in the same manner as in Examples 4 to 6 and Conventional Example 2 except that the raw material alloy f shown in Table 1 was used. Anisotropic permanent magnets were manufactured in the same manner as in Examples 4 to 6 and Conventional Example 2, and the magnetic properties of the anisotropic permanent magnets were measured. The results are shown in Table 7.

【0053】[0053]

【表7】 [Table 7]

【0054】表7に示される結果から、実施例16〜1
8で作製した異方性永久磁石は、同じ原料合金fを用い
て従来例6で作製した異方性永久磁石に比べて最大エネ
ルギー積(BHmax)が優れているところから、この
発明の製造方法は従来よりも一層優れた希土類−Fe−
Co−B系磁石を提供できることがわかる。
From the results shown in Table 7, Examples 16 to 1
8 has a maximum energy product (BHmax) superior to that of the anisotropic permanent magnet manufactured in Conventional Example 6 using the same raw material alloy f. Is a rare earth -Fe-
It can be seen that a Co-B based magnet can be provided.

【0055】実施例19〜21および従来例7 表1の原料合金gを使用する以外は実施例7〜9および
従来例3と同じ方法で合金粉末を作製し、この合金粉末
を用いて実施例7〜9および従来例3と同じ方法で異方
性永久磁石を作製し、この異方性永久磁石の磁気特性を
測定し、その結果を表8に示した。
Examples 19 to 21 and Conventional Example 7 An alloy powder was prepared in the same manner as in Examples 7 to 9 and Conventional Example 3 except that the raw material alloy g shown in Table 1 was used. Anisotropic permanent magnets were prepared in the same manner as in Nos. 7 to 9 and Conventional Example 3, and the magnetic properties of the anisotropic permanent magnets were measured. The results are shown in Table 8.

【0056】[0056]

【表8】 [Table 8]

【0057】表8に示される結果から、実施例19〜2
1で作製した異方性永久磁石は、同じ原料合金gを用い
て従来例7で作製した異方性永久磁石に比べて最大エネ
ルギー積(BHmax)が優れているところから、この
発明の製造方法は従来よりも一層優れた希土類−Fe−
Co−B系磁石を提供できることがわかる。
From the results shown in Table 8, Examples 19 to 2
Since the anisotropic permanent magnet manufactured in 1 has a higher maximum energy product (BHmax) than the anisotropic permanent magnet manufactured in Conventional Example 7 using the same raw material alloy g, the production method of the present invention is Is a rare earth -Fe-
It can be seen that a Co-B based magnet can be provided.

【0058】実施例22〜24および従来例8 表1の原料合金hを使用する以外は実施例10〜12お
よび従来例4と同じ方法で合金粉末を作製し、この合金
粉末を用いて実施例10〜12および従来例4と同じ方
法で異方性永久磁石を作製し、この異方性永久磁石の磁
気特性を測定し、その結果を表9に示した。
Examples 22 to 24 and Conventional Example 8 An alloy powder was prepared in the same manner as in Examples 10 to 12 and Conventional Example 4 except that the raw material alloy h shown in Table 1 was used. Anisotropic permanent magnets were prepared in the same manner as in Examples 10 to 12 and Conventional Example 4, and the magnetic properties of the anisotropic permanent magnets were measured. The results are shown in Table 9.

【0059】[0059]

【表9】 [Table 9]

【0060】表9に示される結果から、実施例22〜2
4で作製した異方性永久磁石は、同じ原料合金hを用い
て従来例8で作製した異方性永久磁石に比べて最大エネ
ルギー積(BHmax)が優れているところから、この
発明の製造方法は従来よりも一層優れた希土類−Fe−
Co−B系磁石を提供できることがわかる。
From the results shown in Table 9, Examples 22 to 2
The anisotropic permanent magnet manufactured in Example 4 is superior in the maximum energy product (BHmax) to the anisotropic permanent magnet manufactured in Conventional Example 8 using the same raw material alloy h. Is a rare earth -Fe-
It can be seen that a Co-B based magnet can be provided.

【0061】[0061]

【発明の効果】上述のように、この発明の希土類−Fe
−Co−B系磁石の製造方法によると、従来よりも一層
優れた希土類−Fe−Co−B系磁石を製造することが
できるとともに保磁力の弱い弱保磁力水素残留R−Fe
−Co−B系合金粉末を使用するところから弱い磁場で
十分配向することができ、脱磁処理を施さずに金型から
簡単に取り出すことができて脱磁処理工程を省くことが
でき、一層効率良く磁気特性の優れた希土類−Fe−C
o−B系磁石を製造することができるなど産業上優れた
効果を奏するものである。
As described above, the rare earth-Fe of the present invention
According to the method for producing a -Co-B-based magnet, a rare-earth-Fe-Co-B-based magnet can be produced which is more excellent than before, and a weak coercive force hydrogen residual R-Fe having a weak coercive force.
-Co-B-based alloy powder can be sufficiently oriented in a weak magnetic field from the place where it is used, can be easily taken out of the mold without being subjected to demagnetization treatment, and the demagnetization treatment step can be omitted. Rare earth-Fe-C with excellent magnetic properties
An industrially superior effect such as production of an o-B based magnet can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の希土類−Fe−Co−B系磁石の製
造方法を説明するための説明図である。
FIG. 1 is an explanatory diagram for explaining a method for manufacturing a rare earth-Fe—Co—B-based magnet according to the present invention.

【図2】この発明の希土類−Fe−Co−B系磁石の製
造方法を説明するための説明図である。
FIG. 2 is an explanatory diagram for explaining a method for manufacturing a rare earth-Fe-Co-B-based magnet of the present invention.

【図3】この発明の希土類−Fe−Co−B系磁石の製
造方法を説明するための説明図である。
FIG. 3 is an explanatory diagram for explaining a method for manufacturing a rare earth-Fe-Co-B-based magnet of the present invention.

【図4】従来の希土類−Fe−Co−B系磁石の製造方
法を説明するための説明図である。
FIG. 4 is an explanatory diagram for explaining a method for manufacturing a conventional rare earth-Fe—Co—B-based magnet.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22C 38/00 303 B22F 3/10 B 38/14 3/14 A H01F 1/053 H01F 1/04 H 1/08 1/08 B Fターム(参考) 4K018 AA11 AA27 BC02 CA04 EA01 KA45 5E040 AA04 AA19 BD01 CA01 HB03 HB06 HB07 HB11 NN01 NN12 NN17 NN18 5E062 CD04 CE04 CF05 CG02 CG03──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22C 38/00 303 B22F 3/10 B 38/14 3/14 A H01F 1/053 H01F 1/04 H 1 / 08 1/08 BF term (reference) 4K018 AA11 AA27 BC02 CA04 EA01 KA45 5E040 AA04 AA19 BD01 CA01 HB03 HB06 HB07 HB11 NN01 NN12 NN17 NN18 5E062 CD04 CE04 CF05 CG02 CG03

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】水素:0.01〜0.5重量%を残留し保
磁力:0.01〜8kOeを有する弱保磁力水素残留R
−Fe−Co−B系合金粉末(ただし、RはYを含む少
なくとも1種の希土類元素を示す。以下同じ)を磁場中
配向させながらプレス成形して圧粉体を作製し、 この圧粉体を温度:700〜900℃、1Torr以下
の真空雰囲気になるまで脱水素処理を行った後、ホット
プレスすることを特徴とする希土類−Fe−Co−B系
磁石の製造方法。
1. A weak coercive force hydrogen residual R having a hydrogen content of 0.01 to 0.5% by weight and a coercive force of 0.01 to 8 kOe.
-Fe-Co-B-based alloy powder (where R represents at least one rare earth element containing Y, the same applies hereinafter) while being oriented in a magnetic field to produce a green compact, and Temperature: 700 to 900 ° C., a dehydrogenation treatment until a vacuum atmosphere of 1 Torr or less is performed, and then hot pressing is performed, wherein a rare earth-Fe—Co—B-based magnet is manufactured.
【請求項2】前記水素:0.01〜0.5重量%を残留
し保磁力:0.01〜8kOeを有する弱保磁力水素残
留R−Fe−Co−B系合金粉末は、R−Fe−Co−
B系合金インゴットを水素または水素と不活性ガスの混
合雰囲気中、温度:700〜900℃に昇温し保持する
ことによりR−Fe−Co−B系合金インゴットに水素
を吸蔵させる処理(以下、水素吸蔵処理という)を施
し、引き続いて長時間不活性ガスを導入して室温まで冷
却すると同時に脱水素することにより作製することを特
徴とする請求項1記載の希土類−Fe−Co−B系磁石
の製造方法。
2. The weak coercive hydrogen residual R-Fe-Co-B-based alloy powder having 0.01 to 0.5% by weight of hydrogen and coercive force of 0.01 to 8 kOe. -Co-
A process of storing hydrogen in the R-Fe-Co-B-based alloy ingot by raising the temperature of the B-based alloy ingot to 700 to 900 ° C in a mixed atmosphere of hydrogen or hydrogen and an inert gas (hereinafter, referred to as “below”). 2. A rare earth-Fe-Co-B magnet according to claim 1, wherein the magnet is manufactured by introducing an inert gas for a long time, cooling to room temperature, and simultaneously dehydrogenating. Manufacturing method.
【請求項3】前記水素:0.01〜0.5重量%を残留
し保磁力:0.01〜8kOeを有する弱保磁力水素残
留R−Fe−Co−B系合金粉末は、R−Fe−Co−
B系合金インゴットに水素吸蔵処理を施し、引き続いて
この水素吸蔵処理したR−Fe−Co−B系合金粉末に
温度:700〜900℃、1Torrを越え100To
rr以下の真空雰囲気になるまで吸引保持する不完全脱
水素処理を施し、引き続いて不活性ガスを導入して室温
まで冷却することにより作製することを特徴とする請求
項1記載の希土類−Fe−Co−B系磁石の製造方法。
3. The weak coercive hydrogen residual R-Fe-Co-B alloy powder having 0.01 to 0.5% by weight of hydrogen and coercive force of 0.01 to 8 kOe. -Co-
The B-based alloy ingot is subjected to a hydrogen absorbing treatment, and subsequently, the hydrogen-absorbed R-Fe-Co-B-based alloy powder is subjected to a temperature of 700 to 900 ° C, exceeding 1 Torr and exceeding 100 Ton.
The rare-earth element according to claim 1, wherein the rare-earth element is produced by performing incomplete dehydrogenation treatment by suction and holding until a vacuum atmosphere of rr or less is reached, and subsequently cooling the mixture to room temperature by introducing an inert gas. A method for producing a Co-B based magnet.
【請求項4】前記水素:0.01〜0.5重量%を残留
し保磁力:0.01〜8kOeを有する弱保磁力水素残
留R−Fe−Co−B系合金粉末は、R−Fe−Co−
B系合金インゴットに水素吸蔵処理を施し、引き続いて
この水素吸蔵処理したR−Fe−Co−B系合金粉末に
温度:700〜900℃、1Torr以下の真空雰囲気
になるまで吸引保持する脱水素処理を施し、引き続いて
不活性ガスを導入して室温まで冷却し、次いで室温〜4
00℃の水素雰囲気中に保持する低温水素吸収処理を施
すことにより作製することを特徴とする請求項1記載の
希土類−Fe−Co−B系磁石の製造方法。
4. A weak coercive hydrogen-remaining R-Fe-Co-B-based alloy powder having 0.01 to 0.5% by weight of hydrogen and coercive force of 0.01 to 8 kOe. -Co-
Dehydrogenation treatment in which a B-based alloy ingot is subjected to a hydrogen storage treatment, and subsequently, the hydrogen-absorbed R-Fe-Co-B-based alloy powder is suction-held at a temperature of 700 to 900 ° C and a vacuum atmosphere of 1 Torr or less. , Followed by the introduction of an inert gas and cooling to room temperature.
The method for producing a rare-earth-Fe-Co-B-based magnet according to claim 1, wherein the magnet is produced by performing a low-temperature hydrogen absorption treatment in a hydrogen atmosphere at 00 ° C.
【請求項5】前記R−Fe−Co−B系合金インゴット
は、真空またはAr雰囲気中、温度:600〜1200
℃に保持することにより均質化処理したR−Fe−Co
−B系合金インゴットであることを特徴とする請求項
2、3または4記載の希土類−Fe−Co−B系磁石の
製造方法。
5. The R-Fe-Co-B-based alloy ingot is prepared in a vacuum or Ar atmosphere at a temperature of 600 to 1200.
R-Fe-Co homogenized by holding at
The method for producing a rare-earth-Fe-Co-B-based magnet according to claim 2, wherein the magnet is a -B-based alloy ingot.
【請求項6】前記R−Fe−Co−B系合金は、原子%
で、R:10〜20%、Co:0.1〜50%、B:3
〜20%を含有し、残りがFeおよび不可避不純物から
なる組成を有することを特徴とする請求項1、2、3,
4または5記載の希土類−Fe−Co−B系磁石の製造
方法。
6. The R—Fe—Co—B based alloy contains at least
R: 10 to 20%, Co: 0.1 to 50%, B: 3
4. The composition according to claim 1, wherein the composition contains about 20% and the balance is Fe and inevitable impurities.
The method for producing a rare earth-Fe-Co-B-based magnet according to 4 or 5.
【請求項7】前記R−Fe−Co−B系合金は、原子%
で、R:10〜20%、Co:0.1〜50%、B:3
〜20%を含有し、 さらにGa,Zr,Hfの内の1種または2種以上の合
計:0.001〜5.0%を含有し、残りがFeおよび
不可避不純物からなる組成を有することを特徴とする請
求項1、2、3,4または5記載の希土類−Fe−Co
−B系磁石の製造方法。
7. The R-Fe-Co-B-based alloy contains at least
R: 10 to 20%, Co: 0.1 to 50%, B: 3
-20%, and further contains one or more of Ga, Zr, and Hf: 0.001-5.0%, with the balance having a composition consisting of Fe and unavoidable impurities. The rare earth-Fe-Co according to claim 1, 2, 3, 4 or 5.
-A method for producing a B-based magnet.
【請求項8】前記R−Fe−Co−B系合金は、さらに
Al,Siの内の1種または2種を合計で0.01〜
2.0%含有する組成を有することを特徴とする請求項
6または7記載の希土類−Fe−Co−B系磁石の製造
方法。
8. The R-Fe-Co-B-based alloy further comprises one or two of Al and Si in a total amount of 0.01 to 0.2.
The method for producing a rare earth-Fe-Co-B-based magnet according to claim 6 or 7, wherein the magnet has a composition containing 2.0%.
JP25884699A 1999-09-13 1999-09-13 Method for producing rare earth-Fe-Co-B magnet Expired - Fee Related JP3969691B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25884699A JP3969691B2 (en) 1999-09-13 1999-09-13 Method for producing rare earth-Fe-Co-B magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25884699A JP3969691B2 (en) 1999-09-13 1999-09-13 Method for producing rare earth-Fe-Co-B magnet

Publications (2)

Publication Number Publication Date
JP2001085256A true JP2001085256A (en) 2001-03-30
JP3969691B2 JP3969691B2 (en) 2007-09-05

Family

ID=17325853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25884699A Expired - Fee Related JP3969691B2 (en) 1999-09-13 1999-09-13 Method for producing rare earth-Fe-Co-B magnet

Country Status (1)

Country Link
JP (1) JP3969691B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008065903A1 (en) 2006-11-30 2008-06-05 Hitachi Metals, Ltd. R-Fe-B MICROCRYSTALLINE HIGH-DENSITY MAGNET AND PROCESS FOR PRODUCTION THEREOF
JP2009123968A (en) * 2007-11-15 2009-06-04 Hitachi Metals Ltd POROUS MATERIAL FOR R-Fe-B BASED PERMANENT MAGNET, AND MANUFACTURING METHOD THEREOF
JP4873008B2 (en) * 2006-05-18 2012-02-08 日立金属株式会社 R-Fe-B porous magnet and method for producing the same
JP2015220336A (en) * 2014-05-16 2015-12-07 住友電気工業株式会社 Method for manufacturing compact for magnet, compact for magnet and magnetic member
WO2019039235A1 (en) * 2017-08-22 2019-02-28 住友電気工業株式会社 Method for producing rare earth magnet, and rare earth magnet
WO2019049691A1 (en) * 2017-09-05 2019-03-14 住友電気工業株式会社 Method for producing rare earth magnet
CN115132442A (en) * 2022-07-12 2022-09-30 广州大学 Ultrahigh-magnetic-saturation manganese-zinc ferrite magnetic core material and preparation method thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4873008B2 (en) * 2006-05-18 2012-02-08 日立金属株式会社 R-Fe-B porous magnet and method for producing the same
US8268093B2 (en) 2006-05-18 2012-09-18 Hitachi Metals, Ltd. R-Fe-B porous magnet and method for producing the same
WO2008065903A1 (en) 2006-11-30 2008-06-05 Hitachi Metals, Ltd. R-Fe-B MICROCRYSTALLINE HIGH-DENSITY MAGNET AND PROCESS FOR PRODUCTION THEREOF
JPWO2008065903A1 (en) * 2006-11-30 2010-03-04 日立金属株式会社 R-Fe-B fine crystal high-density magnet and method for producing the same
US8128758B2 (en) 2006-11-30 2012-03-06 Hitachi Metals, Ltd. R-Fe-B microcrystalline high-density magnet and process for production thereof
JP4924615B2 (en) * 2006-11-30 2012-04-25 日立金属株式会社 R-Fe-B fine crystal high-density magnet and method for producing the same
JP2012099852A (en) * 2006-11-30 2012-05-24 Hitachi Metals Ltd R-Fe-B-BASED FINE CRYSTAL HIGH-DENSITY MAGNET
JP2009123968A (en) * 2007-11-15 2009-06-04 Hitachi Metals Ltd POROUS MATERIAL FOR R-Fe-B BASED PERMANENT MAGNET, AND MANUFACTURING METHOD THEREOF
JP2015220336A (en) * 2014-05-16 2015-12-07 住友電気工業株式会社 Method for manufacturing compact for magnet, compact for magnet and magnetic member
WO2019039235A1 (en) * 2017-08-22 2019-02-28 住友電気工業株式会社 Method for producing rare earth magnet, and rare earth magnet
WO2019049691A1 (en) * 2017-09-05 2019-03-14 住友電気工業株式会社 Method for producing rare earth magnet
CN115132442A (en) * 2022-07-12 2022-09-30 广州大学 Ultrahigh-magnetic-saturation manganese-zinc ferrite magnetic core material and preparation method thereof

Also Published As

Publication number Publication date
JP3969691B2 (en) 2007-09-05

Similar Documents

Publication Publication Date Title
JP3092672B2 (en) Rare earth-Fe-Co-B anisotropic magnet
JP2576671B2 (en) Rare earth-Fe-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
JP2586198B2 (en) Rare earth-Fe-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
JP2001085256A (en) PRODUCTION OF RARE-EARTH-Fe-Co-B MAGNET
WO2004029999A1 (en) R-t-b based rare earth element permanent magnet
JP3368295B2 (en) Method for producing anisotropic rare earth alloy powder for permanent magnet
JP2576672B2 (en) Rare earth-Fe-Co-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
JPH0320046B2 (en)
JP3623571B2 (en) Method for producing RTB-based anisotropic bonded magnet
JP3368294B2 (en) Method for producing anisotropic rare earth alloy powder for permanent magnet
JPH045740B2 (en)
JP3196224B2 (en) Rare earth-Fe-Co-B anisotropic magnet
JP2003031432A (en) Rare-earth sintered magnet and method of manufacturing the same
JP2586199B2 (en) Rare earth-Fe-Co-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
JPH0547533A (en) Sintered permanent magnet and manufacture thereof
JP3092673B2 (en) Rare earth-Fe-B based anisotropic magnet
JPH045739B2 (en)
JP2927987B2 (en) Manufacturing method of permanent magnet powder
JP4618437B2 (en) Method for producing rare earth permanent magnet and raw material alloy thereof
JPH0617535B2 (en) Method of manufacturing permanent magnet material
JP2003247022A (en) Method for manufacturing r-t-b sintered magnet
JP2773444B2 (en) Rare earth-Fe-B based anisotropic magnet
JP3427765B2 (en) Rare earth-Fe-Co-B based magnet powder, method for producing the same, and bonded magnet using the powder
JP3086334B2 (en) Anisotropic rare earth alloy powder for permanent magnet
JPH06151137A (en) Powder of rare earth magnet material with excellent anisotropy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040929

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060123

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070604

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees