JP2003031432A - Rare-earth sintered magnet and method of manufacturing the same - Google Patents

Rare-earth sintered magnet and method of manufacturing the same

Info

Publication number
JP2003031432A
JP2003031432A JP2001214595A JP2001214595A JP2003031432A JP 2003031432 A JP2003031432 A JP 2003031432A JP 2001214595 A JP2001214595 A JP 2001214595A JP 2001214595 A JP2001214595 A JP 2001214595A JP 2003031432 A JP2003031432 A JP 2003031432A
Authority
JP
Japan
Prior art keywords
rare earth
sintered magnet
magnetic field
alloy
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001214595A
Other languages
Japanese (ja)
Other versions
JP4648586B2 (en
Inventor
Uretake Hosono
宇礼武 細野
Shiro Sasaki
史郎 佐々木
Masato Sagawa
眞人 佐川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intermetallics Co Ltd
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Intermetallics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK, Intermetallics Co Ltd filed Critical Showa Denko KK
Priority to JP2001214595A priority Critical patent/JP4648586B2/en
Publication of JP2003031432A publication Critical patent/JP2003031432A/en
Application granted granted Critical
Publication of JP4648586B2 publication Critical patent/JP4648586B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0557Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a rare-earth sintered magnet by obtaining a mold by isostatic pressing after orientation in a pulse magnetic field, wherein a high-performance magnet is obtained by improving the orientation rate even when a rare-earth magnet alloy having a high coercive force is used. SOLUTION: A rare-earth magnet alloy whose coercive force is made low by occluding hydrogen is pulverized, and the powder is oriented by a pulse magnetic field. Then, a mold is obtained by isostatic pressing. This mold is dehydrogenated, sintered, and subjected to aging to manufacture a rear-earth sintered magnet.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高保磁力の磁石合
金粉末を用いて高配向率の焼結磁石を製造するための粉
末冶金法による希土類焼結磁石の製造方法、および保磁
力が大きく高配向率の希土類焼結磁石に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a rare earth sintered magnet by powder metallurgy for producing a sintered magnet having a high orientation ratio by using a magnet alloy powder having a high coercive force, and a large coercive force. It relates to a rare earth sintered magnet having an orientation ratio.

【0002】[0002]

【従来の技術】R−T−B系(但し、RはYを含む希土
類元素、Tは遷移金属元素)磁石を代表とする希土類元
素を主成分とする希土類磁石は、ハードディスク向けボ
イスコイルモーター(VCM)用、医療用磁気共鳴画像
装置(MRI)用途から、さらにモーター用途の需要が
増大し、それに伴い、高保磁力タイプの磁石の需要がさ
らに伸びつつあるのが現状である。
2. Description of the Related Art R-T-B system (where R is a rare earth element containing Y and T is a transition metal element) magnets, which are mainly composed of rare earth elements, are used for hard disk voice coil motors. In the current situation, the demands for motors from VCM) and medical magnetic resonance imaging (MRI) applications are further increasing, and the demand for high coercive force type magnets is further increasing.

【0003】焼結磁石を製造する工程は、合金を作る工
程、合金を粉砕する工程、粉末を磁場配向させて成形す
る工程、成形体を焼結して焼結体とする工程、さらに加
工および表面処理を行う工程に分けられる。
The steps of manufacturing a sintered magnet include the steps of forming an alloy, crushing an alloy, forming a powder by magnetic field orientation, forming a sintered body into a sintered body, and further processing and It can be divided into the steps of surface treatment.

【0004】一般的には、希土類磁石合金の粉末の磁場
配向は成形時あるいは成形前に行われる。磁場配向の目
的は、合金粉末に強力な磁場を加えることにより、強磁
性体からなる各粉末粒子の磁化容易軸方向を磁場の方向
にそろえることである。この工程により磁石を構成する
粉末粒子の結晶粒の磁化容易軸が所望の方向に整列し、
特定方位に磁気エネルギー積を集中させることが可能と
なる。高性能の焼結磁石を製造するためには、磁場配向
工程で如何に粉末の粒子を配向させ、その配向を如何に
乱さず圧縮(プレス)成形するかが重要となる。
Generally, the magnetic field orientation of the rare earth magnet alloy powder is carried out at the time of molding or before molding. The purpose of magnetic field orientation is to align the easy axis of magnetization of each powder particle made of a ferromagnetic material with the direction of the magnetic field by applying a strong magnetic field to the alloy powder. By this step, the easy axis of magnetization of the crystal grains of the powder particles constituting the magnet are aligned in the desired direction,
It is possible to concentrate the magnetic energy product in a specific direction. In order to manufacture a high-performance sintered magnet, it is important to orient the powder particles in the magnetic field orientation step and perform compression molding without disturbing the orientation.

【0005】粉末の成形方法は、一般的に金型を用いる
一軸プレスによる金型成形と、静水圧プレス(擬似静水
圧プレスを含む)による成形に大別できる。そのうち、
従来から焼結磁石の製造には、生産性に優れる金型成形
の方が多く使用されてきた。
[0005] Generally, the powder molding method can be roughly classified into mold molding by a uniaxial press using a mold and molding by a hydrostatic press (including a pseudo-hydrostatic press). Of which
Conventionally, die molding, which is excellent in productivity, has been used more often in the production of sintered magnets.

【0006】金型成形は、プレス方向と磁場配向の方向
の関係によって、平行磁場プレスと垂直磁場プレスとの
2種類に分類できる。平行磁場プレスではプレス方向と
磁場配向方向とが一致しており、加圧の際に磁場配向に
整列した粉末の方位が乱されることによって磁石の配向
率が低くなる傾向がある。その反面、薄型でなおかつ厚
さ方向に配向しているような磁石を作る場合、ニアネッ
トシェイプで作製可能であり、生産性に優れている。一
方、垂直磁場プレスでは、磁場配向方向に垂直にプレス
を行うため、成形時の粉末の配列は乱されにくく、平行
磁場プレスよりも磁石の配向率は高くなる。しかしなが
ら、厚さ方向に配向した薄型形状とするには、ブロック
を配向方向と垂直に薄板状に切り出す必要があり、切り
しろのロスが大きいため歩留まりが悪く、加工コストも
高い。
Molding can be classified into two types, a parallel magnetic field press and a vertical magnetic field press, depending on the relationship between the pressing direction and the direction of magnetic field orientation. In the parallel magnetic field press, the pressing direction and the magnetic field orientation direction coincide with each other, and the orientation ratio of the magnet tends to be lowered by disturbing the orientation of the powder aligned in the magnetic field orientation during pressing. On the other hand, when a magnet that is thin and oriented in the thickness direction is manufactured, it can be manufactured with a near net shape and is excellent in productivity. On the other hand, in the vertical magnetic field press, since the pressing is performed perpendicularly to the magnetic field orientation direction, the powder arrangement during molding is less likely to be disturbed, and the magnet orientation ratio is higher than in the parallel magnetic field press. However, in order to make a thin shape oriented in the thickness direction, it is necessary to cut the block into a thin plate shape perpendicular to the orientation direction, and the loss of the cutting margin is large, resulting in poor yield and high processing cost.

【0007】一方、静水圧プレスによる成形は、等方的
にプレスを行うことで、プレスに伴う配向の乱れを抑制
するという方法である。静水圧プレスの具体的な方法と
して、粉末を柔軟なモールドに充填して全体を等方的に
圧縮する冷間静水圧プレス(以下、CIP)や、粉末を
特殊なゴムモールドに充填して金型内で上下方向から圧
縮することで、水平方向からも同じようなプレス圧がか
かり、擬似静水圧プレスがなされる方法(以下、RI
P)などが挙げられる。そのうち、特にRIPは、CI
Pの欠点であった生産性の問題を解決し、CIP同様の
高配向率を得ることができるため、高特性磁石の製造方
法として急速に普及してきた。
On the other hand, isostatic pressing is a method in which isotropic pressing is performed to suppress the disorder of the orientation caused by the pressing. As a specific method of isostatic pressing, a cold isostatic pressing (hereinafter, CIP) in which a powder is filled in a flexible mold and isotropically compressed as a whole, or a special rubber mold in which the powder is filled is used. By compressing the mold from above and below in the mold, the same press pressure is applied from the horizontal direction, and a pseudo-hydrostatic press is performed (hereinafter, RI method).
P) and the like. Among them, especially RIP is CI
Since it was possible to solve the problem of productivity, which was a drawback of P, and to obtain a high orientation ratio similar to that of CIP, it has rapidly spread as a method for producing a high-performance magnet.

【0008】従来の金型を用いた一軸プレスによる成形
法では、成形中に圧力が一方向にかかり粉末の方位が乱
れてしまうため、高い配向率を得るためには成形加圧中
は常に静磁界をかけ続ける必要があった。しかし、高い
配向率を得るには大きな磁界が必要となり、そのための
磁場発生装置は極めて大掛りなものとなった。
In the conventional molding method using a uniaxial press using a die, pressure is applied in one direction during molding and the orientation of the powder is disturbed. It was necessary to keep applying the magnetic field. However, a large magnetic field is required to obtain a high orientation rate, and a magnetic field generator for that purpose is extremely large.

【0009】一方、CIPあるいはRIPでは成形中の
圧力はほぼ等方的にかかるため、プレス成形中の配向の
乱れは少ない。そのため、成形前に粉末粒子を磁場配向
させておけば、通常プレス成形中に静磁界をかける必要
はない。さらに、この成形前の磁場配向にはパルス磁場
が利用できる。パルス磁場は、簡単な装置で静磁界では
発生出来ないような大きな磁界を容易に発生できるた
め、配向率を容易に高めることができるという利点があ
る。
On the other hand, in CIP or RIP, since the pressure during molding is almost isotropic, the disorder of orientation during press molding is small. Therefore, if the powder particles are oriented in a magnetic field before molding, it is not usually necessary to apply a static magnetic field during press molding. Furthermore, a pulsed magnetic field can be used for the magnetic field orientation before the shaping. The pulsed magnetic field can easily generate a large magnetic field that cannot be generated by a static magnetic field with a simple device, and thus has an advantage that the orientation rate can be easily increased.

【0010】また、静水圧プレス(CIPあるいはRI
P)で加圧成形中に磁界をかけるためには、非常に大掛
かりな装置が必要となる。そのため、生産性やコスト面
からみて、静水圧プレスで成形する際はパルス磁場で粉
末粒子の磁場配向をし、静磁界をかけずにプレス成形を
行うという手段が好ましい。
Further, a hydrostatic press (CIP or RI
In P), a very large-scale device is required to apply a magnetic field during pressure molding. Therefore, from the viewpoint of productivity and cost, it is preferable to use a means of performing magnetic field orientation of the powder particles with a pulsed magnetic field and performing press molding without applying a static magnetic field when molding by a hydrostatic press.

【0011】磁場配向は、強磁性体粒子の磁化容易軸方
向が、外部磁場の方向に平行となることによってもたら
され、粒子の形状、粒子間の摩擦のような、粒子の回転
を妨げる要素の他に、粒子の磁性によっても左右され
る。強磁性体は外部磁場で磁化されるが、この磁化が大
きいほど、さらには磁気モーメントを磁化容易軸方向に
向けようとする力である異方性磁界が大きいほど、外部
磁場の方向に回転する力が大きくなる。特に異方性磁界
の配向への寄与が大きいことは良く知られている。ま
た、磁場配向の過程で合金粉末の粒子は多少なりとも着
磁される。成形体が大きな磁化を有すると、各粒子の磁
極間の相互作用により、配向を乱して静磁エネルギーを
低くしようとする力が働くようになる。
The magnetic field orientation is brought about by the direction of the easy axis of magnetization of the ferromagnetic particles being parallel to the direction of the external magnetic field, and is an element that impedes the rotation of the particles, such as the shape of the particles and the friction between the particles. In addition, it depends on the magnetism of the particles. The ferromagnet is magnetized by an external magnetic field, and the larger the magnetization, and the larger the anisotropic magnetic field, which is the force that directs the magnetic moment in the easy axis direction, rotate in the direction of the external magnetic field. Power increases. In particular, it is well known that the anisotropic magnetic field greatly contributes to the orientation. Further, the particles of the alloy powder are magnetized to some extent during the magnetic field orientation process. When the compact has a large magnetization, the interaction between the magnetic poles of each particle causes a force to disturb the orientation and lower the magnetostatic energy.

【0012】上述した通り、一般の金型成形では配向に
静磁界が用いられ、成形中も静磁界をかけ続けている。
静磁界中で成形される方法では、たとえ大きな磁化が残
存しても、加圧により高密度の成形体となるまで磁界が
加えられるため、外部磁場がなくなっても各粒子はもは
や動くことはできない。
As described above, the static magnetic field is used for the orientation in the general die molding, and the static magnetic field is continuously applied during the molding.
In the method of molding in a static magnetic field, even if a large amount of magnetization remains, the magnetic field is applied until it becomes a high-density molded body by pressurization, so each particle can no longer move even if the external magnetic field disappears. .

【0013】一方、CIP、RIPでは、配向にパルス
磁場を用いているため、強磁界による配向率の向上が可
能である。しかし、配向にパルス磁場を使用すると、強
力なパルス磁場によって瞬間的に粒子は配向するが、磁
場は短時間しか働かない。CIP、RIPによる成形の
場合、磁場配向した後、磁場のない条件下でプレス成形
を行っている。そのため、粒子に比較的大きな磁化が残
存することにより配向が乱れる可能性がある。
On the other hand, in CIP and RIP, since a pulsed magnetic field is used for orientation, it is possible to improve the orientation rate by a strong magnetic field. However, when a pulsed magnetic field is used for orientation, the particles are oriented instantaneously by the strong pulsed magnetic field, but the magnetic field works only for a short time. In the case of CIP or RIP molding, after magnetic field orientation, press molding is performed under the condition without a magnetic field. Therefore, the orientation may be disturbed by the relatively large magnetization remaining in the particles.

【0014】従来、CIP、RIPのような静水圧プレ
スは、主に高磁化材について行われて来た。CIP、R
IPでは、磁場配向の際の充填密度が材料の真密度に対
して、25%程度以上と比較的高く、粒子の回転、再配
列を妨げる粒子間の摩擦力が大きいため、プレス成形の
際の配向の低下は少なく、従来は配向の乱れは見逃され
ていた。
Conventionally, hydrostatic presses such as CIP and RIP have been mainly performed on highly magnetized materials. CIP, R
In IP, the packing density during magnetic field orientation is relatively high, about 25% or more of the true density of the material, and the frictional force between particles that hinders rotation and rearrangement of particles is large. The deterioration of the orientation was small, and the disorder of the orientation was conventionally overlooked.

【0015】しかし、近年、モーター用途への需要が伸
びていることから、高磁化材だけでなく、高保磁力材に
ついても同様に静水圧プレスによる成形が行われつつあ
る。しかし、静水圧プレスを高保磁力の磁石合金粉末に
用いて磁石を作ると、配向率が金型成形よりも低くなる
ことが判明している。これは、高保磁力材料の希土類磁
石合金粉末の粒子の回転、再配列による配向率の低下が
原因であると考えられる。
However, in recent years, as demand for motors has increased, not only high magnetized materials but also high coercive force materials are being molded by isostatic pressing. However, it has been found that when a hydrostatic press is used for a magnet alloy powder having a high coercive force to make a magnet, the orientation ratio becomes lower than that in die molding. It is considered that this is because the particles of the rare earth magnet alloy powder of the high coercive force material are rotated and rearranged to lower the orientation rate.

【0016】[0016]

【発明が解決しようとする課題】近年、希土類系高保磁
力磁石、特にR-T-B系磁石では、強磁性相の異方性磁
界を高めることにより保磁力を増加している。例えば最
も一般的な希土類元素であるNdの一部をDy或いはT
bと言った重希土類で置換すると、強磁性相のR2T1
4B系磁石合金の異方性磁界が増大し、磁石の保磁力の
増加が可能となる。他にもCu、Al、Ga等の添加元
素も有効で、これらは粒界の微細構造の変化に寄与して
いるが、これらの保磁力増加効果は限界がある。そのた
め実用上用いられる高保磁力R−T−B系磁石は、Dy
或いはTbと言った重希土類を必ず一定量(数質量%)
含有し、R2T14B化合物の異方性磁界が増加してい
る。
In recent years, in rare earth-based high coercive force magnets, especially in R-T-B based magnets, the coercive force is increased by increasing the anisotropic magnetic field of the ferromagnetic phase. For example, a part of Nd, which is the most common rare earth element, is used as Dy or T
Substitution with a heavy rare earth element such as b, R2T1 in the ferromagnetic phase
The anisotropic magnetic field of the 4B magnet alloy increases, and the coercive force of the magnet can be increased. In addition, additive elements such as Cu, Al, and Ga are also effective, and these contribute to the change of the fine structure of the grain boundary, but their coercive force increasing effect is limited. Therefore, the high coercive force R-T-B magnet used in practice is Dy.
Or a certain amount of heavy rare earth such as Tb (several mass%)
The R2T14B compound contained therein has an increased anisotropic magnetic field.

【0017】R2T14B系磁石合金の異方性磁界が増
加すると磁石だけでなく、原料合金の粉末の保磁力も同
様に増大する。粉末の保磁力は磁石と比較すると、大き
くても約300kA/mと極めて小さい。しかし、CI
P、RIPのような静水圧プレスを行う前にパルス磁場
で配向させる際には、この原料合金粉末の約300kA
/m程度の保磁力が大きな問題となる。つまり、粉末自
体の保磁力が増加することによって、粉末の残留磁化が
増大し、粒子の回転、再配列をもたらし、配向率を低下
させる。そのため、高保磁力材は、パルス磁場配向を行
い、静水圧プレスで成形する希土類焼結磁石の製造方法
により製造するのが困難であった。
When the anisotropic magnetic field of the R2T14B magnet alloy increases, not only the magnet but also the coercive force of the powder of the raw material alloy increases. The coercive force of the powder is extremely small, about 300 kA / m at the maximum, as compared with the magnet. But CI
When oriented in a pulsed magnetic field before hydrostatic pressing such as P and RIP, about 300 kA of this raw alloy powder is used.
A coercive force of about / m is a big problem. That is, as the coercive force of the powder itself increases, the remanent magnetization of the powder increases, causing rotation and rearrangement of the particles and lowering the orientation rate. Therefore, it has been difficult to manufacture a high coercive force material by the method for manufacturing a rare earth sintered magnet which is subjected to pulse magnetic field orientation and is molded by a hydrostatic press.

【0018】本発明は、パルス磁場で配向させた後で静
水圧プレスにより成形体を得る希土類焼結磁石の製造方
法において、高保磁力の希土類磁石合金を用いた場合も
配向率を向上させ、高性能の磁石を得ることを目的とす
る。
The present invention is a method for producing a rare earth sintered magnet in which a compact is obtained by hydrostatic pressing after orienting with a pulsed magnetic field. Even when a rare earth magnet alloy with high coercive force is used, the orientation ratio is improved and The purpose is to obtain a high performance magnet.

【0019】[0019]

【課題を解決するための手段】すなわち本発明は (1)水素を吸蔵させて低保磁力化させた希土類磁石合
金を粉末化し、該粉末をパルス磁場によって配向させた
後静水圧プレスにて成形体とし、さらに該成形体を脱水
素処理して、その後成形体の焼結および時効処理を行う
希土類焼結磁石の製造方法。 (2)希土類磁石合金が、合金主相がR2T14B相
(但し、RはYを含む希土類元素、Tは遷移金属元素を
表わす。)からなり、かつR成分中のR’(R’はD
y、Tbのうち少なくとも1種以上を表わす。)の質量
比率R’/Rが5%以上である希土類磁石合金からなる
ことを特徴とする前記(1)に記載の希土類焼結磁石の
製造方法。 (3)合金主相のR成分中のR’の質量比率R’/Rが
10%以上であることを特徴とする前記(2)に記載の
希土類焼結磁石の製造方法。 (4)希土類磁石合金の水素吸蔵量の制御を、希土類磁
石合金に水素を飽和量まで吸蔵させ、その後の脱水素工
程の加熱温度を250℃以下とすることで行うことを特
徴とする前記(1)〜(3)に記載の希土類焼結磁石の
製造方法。 (5)水素を吸蔵させて低保磁力化させた希土類磁石合
金の粉末の保磁力が160kA/m以下であることを特
徴とする前記(1)〜(4)に記載の希土類焼結磁石の
製造方法。 (6)静水圧プレスを、粉末をゴムモールドに充填して
金型内でプレスする擬似静水圧プレス(RIP)で行う
ことを特徴とする前記(1)〜(5)に記載の希土類焼
結磁石の製造方法。 (7)成形体の脱水素処理として、成形体を真空中ある
いは不活性ガスフロー中で700〜900℃の温度で1
時間以上保持する加熱処理を、焼結の前に行うことを特
徴とする前記(1)〜(6)に記載の希土類焼結磁石の
製造方法。である。
Means for Solving the Problems That is, according to the present invention, (1) a rare earth magnet alloy having hydrogen absorbed therein to have a low coercive force is powdered, and the powder is oriented by a pulsed magnetic field and then molded by a hydrostatic press. A method for producing a rare earth sintered magnet, which comprises forming a body, further dehydrogenating the formed body, and then sintering and aging the formed body. (2) In the rare earth magnet alloy, the alloy main phase is composed of the R2T14B phase (provided that R is a rare earth element containing Y and T is a transition metal element), and R'in the R component (R 'is D
Represents at least one or more of y and Tb. The method for producing a rare earth sintered magnet according to (1) above, which comprises a rare earth magnet alloy having a mass ratio R ′ / R of 5) of 5% or more. (3) The method for producing a rare earth sintered magnet according to the above (2), wherein the mass ratio R ′ / R of R ′ in the R component of the alloy main phase is 10% or more. (4) The hydrogen storage amount of the rare earth magnet alloy is controlled by causing the rare earth magnet alloy to store hydrogen up to a saturated amount and then setting the heating temperature in the subsequent dehydrogenation step to 250 ° C. or less. The method for producing a rare earth sintered magnet according to 1) to 3). (5) The rare earth sintered magnet according to any one of (1) to (4) above, wherein the coercive force of the powder of the rare earth magnet alloy that absorbs hydrogen to reduce the coercive force is 160 kA / m or less. Production method. (6) Rare earth sintering according to the above (1) to (5), wherein the isostatic pressing is performed by a pseudo isostatic pressing (RIP) in which powder is filled in a rubber mold and pressed in a mold. Magnet manufacturing method. (7) As a dehydrogenation treatment of the compact, the compact is subjected to 1 at a temperature of 700 to 900 ° C. in vacuum or in an inert gas flow.
The method for producing a rare earth sintered magnet according to any one of (1) to (6) above, characterized in that the heat treatment for holding for a time or more is performed before sintering. Is.

【0020】また、本発明は、 (8)前記(1)〜(7)に記載の製造方法によって得
られた希土類焼結磁石。 (9)配向率が90%以上であることを特徴とする前記
(8)に記載の希土類焼結磁石。 (10)保磁力が950kA/m以上であることを特徴
とする前記(8)または(9)に記載の希土類焼結磁
石。である。
The present invention also provides (8) a rare earth sintered magnet obtained by the manufacturing method according to any one of (1) to (7) above. (9) The rare earth sintered magnet according to the above (8), which has an orientation rate of 90% or more. (10) The rare earth sintered magnet according to (8) or (9), which has a coercive force of 950 kA / m or more. Is.

【0021】[0021]

【発明の実施の形態】本発明者らは、希土類磁石合金の
原料粉末の特性と磁石の配向率の関係を詳細に調査し、
焼結磁石の配向率の低下には磁石の原料合金粉末の保磁
力の影響が大きいことを見出した。そして、鋭意研究の
結果、従来は原料合金粉末の保磁力が高いために、CI
PあるいはRIPのような静水圧プレスにおいて高配向
率が得られなかった高保磁力のR−T−B系合金を用い
た磁石に関し、合金組成、組織を全く変えずに、パルス
磁場配向とプレス成形の間だけ、原料粉末の保磁力を低
下させる方法を見出した。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have investigated in detail the relationship between the characteristics of raw material powders of rare earth magnet alloys and the orientation ratio of magnets,
It has been found that the coercive force of the raw material alloy powder of the magnet has a great influence on the decrease in the orientation ratio of the sintered magnet. As a result of diligent research, since the coercive force of the raw material alloy powder was conventionally high,
A magnet using a high coercive force R-T-B type alloy that could not obtain a high orientation ratio in a hydrostatic press such as P or RIP, pulse magnetic field orientation and press molding without changing the alloy composition and structure at all. Only during the period, a method of reducing the coercive force of the raw material powder was found.

【0022】本発明は静水圧プレスを用いる高配向率を
有する希土類焼結磁石の製造方法において、R−T−B
系合金の原料粉末の保磁力を合金に水素を吸蔵させるこ
とで低下させた後、それの粉末を用いてパルス磁場配向
を行い、さらに静水圧プレスにより成形体を形成するこ
とにより、得られた磁石の配向率の向上をもたらしたも
のである。
The present invention relates to a method for producing a rare earth sintered magnet having a high orientation rate using an isostatic press, which is RTB.
It was obtained by lowering the coercive force of the raw material powder of the system alloy by absorbing hydrogen in the alloy, performing the pulse magnetic field orientation using the powder, and further forming the compact by the hydrostatic pressing. This brings about an improvement in the orientation ratio of the magnet.

【0023】そして、静水圧プレスにより形成された成
形体を焼結することで、保磁力が高く、かつ配向率も高
い希土類焼結磁石を製造するものである。
Then, by sintering the molded body formed by the hydrostatic pressing, a rare earth sintered magnet having a high coercive force and a high orientation rate is manufactured.

【0024】本発明の構成を以下に詳細に記す。 (1)粉末の保磁力 本発明でCIPあるいはRIPなどの静水圧プレスに用
いる希土類磁石用合金粉末は、水素を吸蔵させることに
より保磁力を好ましくは160kA/m以下に低下させ
る。さらにパルス磁場配向および静水圧プレスにより成
形された後は、脱水素処理を施した後で燒結させて、焼
結磁石の保磁力を950kA/m以上とするものであ
る。
The constitution of the present invention will be described in detail below. (1) Coercive force of powder The alloy powder for rare earth magnets used for hydrostatic pressing such as CIP or RIP in the present invention absorbs hydrogen to reduce the coercive force to preferably 160 kA / m or less. Further, after being formed by pulsed magnetic field orientation and hydrostatic pressing, it is subjected to dehydrogenation treatment and then sintered to make the coercive force of the sintered magnet 950 kA / m or more.

【0025】先に説明したように、CIPやRIPのよ
うな静水圧プレスの場合、パルス磁場で配向させる際に
は、原料粉末の保磁力が大きいと磁石の配向率が低下す
る。これは、粉末の残留磁化の増大による粒子の回転や
再配列のためであるものと考えられる。一般に磁石の保
磁力が大きいほど、粉末の保磁力も大きくなるが、磁石
の保磁力が950kA/m以上で、粉末の保磁力が16
0kA/m以上と高い場合に配向率の低下が著しい。そ
こで本発明では、原料粉末の保磁力を好ましくは160
kA/m以下に低下させて、パルス磁場による磁場配向
と静水圧プレスによる成形体加工を行う。
As described above, in the case of a hydrostatic press such as CIP or RIP, when the raw material powder has a large coercive force when oriented by a pulsed magnetic field, the orientation ratio of the magnet decreases. It is considered that this is because of the rotation and rearrangement of the particles due to the increase in the residual magnetization of the powder. Generally, the larger the coercive force of the magnet, the larger the coercive force of the powder, but the coercive force of the magnet is 950 kA / m or more, and the coercive force of the powder is 16
When it is as high as 0 kA / m or more, the decrease in the orientation rate is remarkable. Therefore, in the present invention, the coercive force of the raw material powder is preferably 160
The magnetic field is oriented to a magnetic field by a pulsed magnetic field and the formed body is processed by a hydrostatic press while reducing the pressure to kA / m or less.

【0026】(2)合金主相と主相中のDy,Tb濃度 本発明に用いる希土類磁石合金は、合金主相がR2T1
4B相(但し、RはYを含む希土類元素、Tは遷移金属
元素を表す。)であり、R成分中のR’(R’はDy、
Tbのうち少なくとも1種以上を表す。)の質量比率
R’/Rが5%以上であることを特徴とする。強磁性R
2T14B相を主相とすることにより、磁場配向が可能
となり、配向率の高い磁石を作製することができる。こ
の際、特にR’(Dy、Tbのうち少なくとも1種以
上)の質量比率R’/Rが5%以上であると、磁石の保
磁力増加に伴い、合金粉末の保磁力も増加するため、本
発明の効果が明確となる。さらにR’/Rが10%以上
になると、本発明は極めて有効である。
(2) Alloy main phase and Dy, Tb concentration in the main phase In the rare earth magnet alloy used in the present invention, the alloy main phase is R2T1.
4B phase (where R is a rare earth element containing Y and T is a transition metal element), and R ′ in the R component (R ′ is Dy,
It represents at least one or more of Tb. ) Mass ratio R '/ R is 5% or more. Ferromagnetic R
By using the 2T14B phase as the main phase, magnetic field orientation becomes possible and a magnet with a high orientation rate can be produced. At this time, in particular, if the mass ratio R ′ / R of R ′ (at least one of Dy and Tb) is 5% or more, the coercive force of the alloy powder also increases with an increase in the coercive force of the magnet. The effect of the present invention becomes clear. Further, when R '/ R is 10% or more, the present invention is extremely effective.

【0027】(3)希土類磁石合金中の水素吸蔵量を制
御する方法 本発明は、希土類磁石合金の水素吸蔵量の制御を、希土
類磁石合金に水素を飽和量まで吸蔵させ、その後の脱水
素工程の加熱温度を250℃以下とすることで行う。こ
の水素吸蔵量の制御は、例えば希土類磁石合金の水素解
砕処理およびそれに引き続く脱水素処理を兼ねて行うこ
とができる。水素解砕処理はR−T−B系合金の粉砕工
程の一部として利用されている。以下に水素解砕処理に
ついて説明する。
(3) Method of controlling hydrogen storage amount in rare earth magnet alloy The present invention controls the hydrogen storage amount of a rare earth magnet alloy by allowing the rare earth magnet alloy to store hydrogen to a saturated amount and then performing a dehydrogenation step. The heating temperature is set to 250 ° C. or lower. The control of the hydrogen storage amount can be performed, for example, in combination with the hydrogen crushing treatment of the rare earth magnet alloy and the subsequent dehydrogenation treatment. The hydrogen crushing process is used as a part of the crushing process of the RTB-based alloy. The hydrogen disintegration process will be described below.

【0028】希土類磁石合金の水素解砕処理において
は、まず原料合金を適当に破砕した後、真空引き且つガ
ス加圧のできる炉に挿入して、密閉状態とする。合金を
セットしてから、炉内を真空引きした後、炉内に水素ガ
スを導入する。この際、一般に安全上の理由と効率を考
慮し、内部圧を大気圧以上(例えば、0.14MPa程
度)に加圧する。処理温度は150℃以下で行うのが望
ましい。150℃以上になると、Rリッチ相の一部が3
水素化物になるまで水素を吸蔵しなくなることから、合
金の膨張に伴う割れの発生が遅くなる傾向になる。作業
効率の面も考慮すると、約10〜35℃程度の室温で行
うが好ましい。
In the hydrogen crushing treatment of the rare earth magnet alloy, first, the raw material alloy is appropriately crushed and then inserted into a furnace which can be evacuated and pressurized with gas to be hermetically sealed. After the alloy is set, the furnace is evacuated, and then hydrogen gas is introduced into the furnace. At this time, generally, in consideration of safety reasons and efficiency, the internal pressure is increased to atmospheric pressure or higher (for example, about 0.14 MPa). The treatment temperature is preferably 150 ° C. or lower. Above 150 ° C, part of the R-rich phase becomes 3
Since hydrogen is not occluded until it becomes a hydride, cracking tends to be delayed with the expansion of the alloy. Considering the work efficiency, it is preferable to carry out at room temperature of about 10 to 35 ° C.

【0029】合金は、水素ガスを吸蔵して膨張し、自ら
割れを生じて解砕していく。この時、炉内の圧力は水素
ガスが減少していくため下がっていくので、適宜補充す
る。合金の水素吸蔵に伴う解砕現象は、炉内圧力の低下
が見られなくなったところで終了したものと判断する。
この状態で希土類磁石合金に水素を飽和量まで吸蔵させ
ることができたとみなす。
The alloy occludes hydrogen gas and expands, cracking itself and crushing. At this time, the pressure inside the furnace is lowered because the hydrogen gas is decreasing, so the pressure is replenished appropriately. It is judged that the crushing phenomenon accompanying the storage of hydrogen in the alloy ended when the decrease in the furnace pressure was no longer observed.
In this state, it is considered that the rare earth magnet alloy was able to store hydrogen up to the saturated amount.

【0030】水素を飽和量まで吸蔵させた後、合金を加
熱して脱水素を行う。ここで、従来の方法における加熱
温度は300℃以上である。加熱脱水素により、主相か
ら水素が放出される。また、主相中の残存水素は主相の
異方性磁界を低下させるため、従来の静磁界による磁場
配向方法においては、この脱水素処理の段階で300℃
以上に加熱することによって主相から水素を放出させて
残存水素をなくすように処理されていた。
After absorbing hydrogen to a saturated amount, the alloy is heated to dehydrogenate. Here, the heating temperature in the conventional method is 300 ° C. or higher. The thermal dehydrogenation releases hydrogen from the main phase. Further, the residual hydrogen in the main phase lowers the anisotropic magnetic field of the main phase. Therefore, in the conventional magnetic field orientation method using a static magnetic field, 300 ° C. is used at the stage of this dehydrogenation treatment.
By heating above, hydrogen was released from the main phase to eliminate residual hydrogen.

【0031】しかし、本発明では、原料粉末の保磁力が
回復しない程度の温度に加熱して脱水素を行う。そのた
め、脱水素温度は250℃以下にすることが好ましい。
加熱時間は、処理装置の特性によって決まってくるが、
Rリッチ相がより安定な状態となるために水素原子を放
出する反応時間を考慮して、試料全体が加熱されるよう
になった時点からの経過時間を30分以上とするのが望
ましく、また、作業効率の面から、2時間を超えない方
が望ましい。
However, in the present invention, dehydrogenation is performed by heating to a temperature at which the coercive force of the raw material powder is not recovered. Therefore, the dehydrogenation temperature is preferably 250 ° C or lower.
The heating time depends on the characteristics of the processing equipment,
Considering the reaction time of releasing hydrogen atoms for the R-rich phase to be in a more stable state, it is desirable to set the elapsed time from the time when the entire sample is heated to 30 minutes or more. In terms of work efficiency, it is desirable not to exceed 2 hours.

【0032】(4)磁場配向 本発明は、160kA/m以下の保磁力を有する希土類
磁石用合金粉末を、パルス磁場を用いて配向させる。先
に説明した通り、160kA/m以下の低い保磁力を有
する希土類磁石用合金粉末は、パルス磁場を配向工程に
使用することによっても、高配向率を有する磁石の作製
が可能である。
(4) Magnetic Field Orientation In the present invention, rare earth magnet alloy powder having a coercive force of 160 kA / m or less is oriented using a pulse magnetic field. As described above, the rare earth magnet alloy powder having a low coercive force of 160 kA / m or less can be used to produce a magnet having a high orientation rate by using a pulsed magnetic field in the orientation step.

【0033】(5)成形方法 本発明は成形体の成形方法が静水圧プレス(CIPまた
はRIP)であることを特徴とする。CIP、RIPな
どの静水圧プレス又は擬似静水圧プレスでは、成形中の
プレス圧による配向の乱れを抑制できる。特にRIP
は、CIPの欠点であった生産性の問題を解決し、CI
P同様の高配向率を得ることができるためこのましい成
形方法である。
(5) Molding Method The present invention is characterized in that the molding method of the molded body is isostatic pressing (CIP or RIP). With a hydrostatic press such as CIP or RIP or a pseudo hydrostatic press, it is possible to suppress the disorder of the orientation due to the press pressure during molding. Especially RIP
Solves the productivity problem that was a drawback of CIP,
This is a preferable molding method because a high orientation ratio similar to P can be obtained.

【0034】(6)脱水素処理方法 成形体の形成後、焼結処理する前に脱水素処理を行う。
この脱水素処理は、通常は800℃付近で長時間、例え
ば30分程度加熱すれば完了するが、同様の処理を本発
明の原料粉末から作られた成形体に対して行うと、脱水
素が不充分な状態で焼結温度近傍まで成形体を加熱する
ことになり、それによって、結晶粒の異常粒成長が起こ
りやすくなり、且つ、磁石特性を低下させる。これは、
本発明の原料粉末から作られた成形体が、従来と異なり
主相中にも一定量以上の水素を含有していることによる
ものである。そこで、本発明では、成形体の脱水素処理
として、成形体を真空中あるいは不活性ガスフロー中で
700〜900℃の温度で1時間以上さらに望ましくは
3時間以上保持する加熱処理を行う。
(6) Dehydrogenation treatment method After forming the molded body, dehydrogenation treatment is carried out before sintering treatment.
This dehydrogenation treatment is usually completed by heating at around 800 ° C. for a long time, for example, for about 30 minutes, but when the same treatment is performed on the molded body made from the raw material powder of the present invention, dehydrogenation is performed. The molded body is heated to a temperature close to the sintering temperature in an insufficient state, whereby abnormal grain growth of crystal grains is likely to occur and magnet characteristics are deteriorated. this is,
This is because the molded body made from the raw material powder of the present invention contains a certain amount or more of hydrogen in the main phase, which is different from the conventional case. Therefore, in the present invention, as the dehydrogenation treatment of the molded body, a heat treatment is carried out by holding the molded body in a vacuum or an inert gas flow at a temperature of 700 to 900 ° C. for 1 hour or more, more preferably 3 hours or more.

【0035】上記の脱水素処理の後は、従来同様、燒
結、時効処理を施し、必要に応じて加工、表面処理を経
て、焼結磁石の製品とする。
After the above dehydrogenation treatment, sintering and aging treatment are performed as in the conventional case, and if necessary, processing and surface treatment are performed to obtain a sintered magnet product.

【0036】[0036]

【作用】本発明によって、従来、パルス磁場で配向させ
た後でCIP、RIPなどの静水圧プレスあるいは擬似
静水圧プレスを行うような方法では高配向率が得られな
かった高保磁力材料用粉末においても、高配向率が得ら
れるようになった。
According to the present invention, in the powder for high coercive force material, a high orientation ratio could not be obtained by the conventional method of performing hydrostatic pressing such as CIP and RIP or pseudo hydrostatic pressing after orienting with a pulsed magnetic field. Also, a high orientation rate can be obtained.

【0037】[0037]

【実施例】(実施例1)合金組成がNd=23.0質量
%、Dy=7.0質量%、B=0.98質量%、Al=
0.3質量%、Cu=0.03質量%、残部=Feとな
るように、原料としてNdメタル、Dyメタル、純鉄、
フェロボロン、Al、Cuを配合し、真空雰囲気中ある
いは不活性ガス雰囲気中にて溶湯とした。その後、スト
リップキャスティング法にて急冷合金とした。
EXAMPLES Example 1 The alloy composition is Nd = 23.0 mass%, Dy = 7.0 mass%, B = 0.98 mass%, Al =
Nd metal, Dy metal, pure iron as a raw material so that 0.3% by mass, Cu = 0.03% by mass, and the balance = Fe.
Ferroboron, Al, and Cu were mixed and made into a molten metal in a vacuum atmosphere or an inert gas atmosphere. Then, it was made into a quenched alloy by the strip casting method.

【0038】得られた合金について、水素解砕装置にて
水素解砕を行った。水素吸蔵の条件としては、実施温度
=30℃、初期水素圧力=0.14MPaとした。その
後、装置内を真空引きしながら170℃程度に2時間加
熱することで脱水素を行った。
The obtained alloy was crushed with a hydrogen crusher. As conditions for hydrogen storage, the operating temperature was 30 ° C. and the initial hydrogen pressure was 0.14 MPa. Then, dehydrogenation was performed by heating the inside of the apparatus to about 170 ° C. for 2 hours while vacuuming.

【0039】水素解砕処理がなされた上記合金につい
て、窒素雰囲気中でブラウンミルにて粗粉砕、さらにジ
ェットミルにて微粉砕を行って粉末を得た。粉末の粒度
はフィッシャーサブシーブサイザーで、3.1μmであ
った。また、粉末の保磁力をVSM(振動型磁力計)で測
定した結果、104kA/mであった。なお、ステアリ
ン酸亜鉛0.03質量%をブラウンミル粉砕後に添加、
混合した。
The above-mentioned alloy which had been subjected to hydrogen disintegration treatment was coarsely pulverized by a brown mill and then finely pulverized by a jet mill in a nitrogen atmosphere to obtain a powder. The particle size of the powder was 3.1 μm on a Fisher subsieve sizer. The coercive force of the powder was measured by VSM (vibration magnetometer), and it was 104 kA / m. Add 0.03% by mass of zinc stearate after pulverizing with a brown mill,
Mixed.

【0040】上記粉末について、RIP法にて成形体を
作製した。粉末をゴムモールドに、約2.8×103
g/m3の密度に充填した後、3Tのパルス磁場で配向
させ、さらに約100MPaの圧力で成形体を得た。
A compact was produced from the above powder by the RIP method. 2.8 × 10 3 k powder into rubber mold
After filling to a density of g / m 3 , it was oriented with a pulsed magnetic field of 3T, and a compact was obtained at a pressure of about 100 MPa.

【0041】上記の成形体について、焼結炉にセット、
真空雰囲気中1037℃で3時間焼結を行った。焼結温
度に到達する前に、粉末に入っていた水素を除去するた
めに790℃で5時間加熱した。得られた焼結体につい
ては、さらに790℃×1時間、引き続いて570℃×
1時間の時効処理を施した。
The above molded body was set in a sintering furnace,
Sintering was performed at 1037 ° C. for 3 hours in a vacuum atmosphere. Before reaching the sintering temperature, heating was performed at 790 ° C. for 5 hours to remove hydrogen contained in the powder. For the obtained sintered body, it was further maintained at 790 ° C. for 1 hour and then 570 ° C.
Aged for 1 hour.

【0042】上記の処理によって得られた焼結体を切
断、研磨して約7mm角の立方体に加工し、磁気測定を
行った。その結果、得られた磁気特性は、残留磁束密度
(以下、Br略す)=1.23T、保磁力(以下、iH
cと略す)=1.83×103kA/m、磁気エネルギ
ー積(以下、BHmaxと略す)=294kJ/m3
配向率=95.3%となった。
The sintered body obtained by the above treatment was cut, polished, processed into a cube of about 7 mm square, and magnetic measurement was performed. As a result, the obtained magnetic characteristics are as follows: residual magnetic flux density (hereinafter, abbreviated as Br) = 1.23T, coercive force (hereinafter, iH).
abbreviated as c) = 1.83 × 10 3 kA / m, magnetic energy product (hereinafter abbreviated as BHmax) = 294 kJ / m 3 ,
The orientation rate was 95.3%.

【0043】(比較例1)実施例1と同様の組成と鋳造
条件によって得られた合金について、水素解砕装置にて
水素解砕を行った。水素吸蔵の条件は、実施例1と同様
とした。その後、装置内を真空引きしながら500℃程
度に2時間加熱することで脱水素を行った。
(Comparative Example 1) The alloy obtained under the same composition and casting conditions as in Example 1 was subjected to hydrogen crushing with a hydrogen crusher. The conditions for hydrogen storage were the same as in Example 1. After that, dehydrogenation was performed by heating to about 500 ° C. for 2 hours while evacuating the inside of the apparatus.

【0044】上記で得られた合金について、実施例1と
同様に粉砕を行った。その結果、得られた粉末の粒度
は、フィッシャーサブシーブサイザーにて約3.0μm
であった。また、粉末の保磁力をVSM(振動型磁力計)
で測定した結果、255kA/mであった。
The alloy obtained above was pulverized in the same manner as in Example 1. As a result, the particle size of the obtained powder was about 3.0 μm with a Fisher subsieve sizer.
Met. In addition, the coercive force of the powder is VSM (vibration type magnetometer).
The result was 255 kA / m.

【0045】上記の粉末について、実施例1と同様にR
IP法にて成形体を作製し、焼結体を得た。その結果、
得られた磁気特性は、Br=0.72T、iHc=1.
85×103kA/m、BHmax=96kJ/m3、配
向率=58.9%となった。
With respect to the above powder, R as in Example 1
A molded body was produced by the IP method to obtain a sintered body. as a result,
The obtained magnetic properties are Br = 0.72T, iHc = 1.
It was 85 × 10 3 kA / m, BHmax = 96 kJ / m 3 , and the orientation rate = 58.9%.

【0046】実施例1と比較例1で得られた磁気特性を
図1に示す。縦軸は磁化、横軸は保磁力を表している。
両者を比較すると、比較例1では曲線の角型が良好でな
く磁石として好ましくないのに対し、実施例1では曲線
の角型がより良好であり、磁石として好ましいことが判
明した。
The magnetic characteristics obtained in Example 1 and Comparative Example 1 are shown in FIG. The vertical axis represents magnetization and the horizontal axis represents coercive force.
Comparing the two, it was found that in Comparative Example 1, the square shape of the curve was not good and was not preferable as a magnet, whereas in Example 1, the square shape of the curve was better and was preferable as a magnet.

【0047】(比較例2)比較例1で得られた粉末を金
型モールドに充填して、上パンチがモールドに挿入され
た時点からプレス方向に垂直な方向に1.2Tの静磁界
を発生させたまま約78MPaの圧力でプレスを行い、
成形体を作製した。その後、実施例1と同様の加熱処理
によって、焼結体を得た。この焼結体を実施例1と同じ
形状に加工して、磁気測定をおこなった。その結果、得
られた磁気特性は、Br=1.17T、iHc=1.7
7×103kA/m、BHmax=280kJ/m3、配
向率=93.5%となった。
(Comparative Example 2) The powder obtained in Comparative Example 1 was filled in a mold and a static magnetic field of 1.2T was generated in the direction perpendicular to the pressing direction from the time when the upper punch was inserted into the mold. While doing so, press at a pressure of about 78 MPa,
A molded body was produced. Then, the same heat treatment as in Example 1 was performed to obtain a sintered body. This sintered body was processed into the same shape as in Example 1 and magnetic measurements were performed. As a result, the obtained magnetic characteristics were Br = 1.17T and iHc = 1.7.
7 × 10 3 kA / m, BHmax = 280 kJ / m 3 , and orientation rate = 93.5%.

【0048】[0048]

【発明の効果】従来、高保磁力材ではパルス磁場配向と
静水圧プレスによって高い配向率が得られなかったのに
対し、本発明によって、高保磁力材において、パルス磁
場配向と静水圧プレスから高配向率の成形体が得られる
ようになった。これによって作製された焼結磁石は、金
型プレスによって得られた磁石よりも高い配向率とな
り、従来では得られなかった高配向の高保磁力型薄型磁
石を製造することができるようになった。
According to the present invention, a high coercive force material cannot be obtained by pulse magnetic field orientation and hydrostatic pressing, whereas a high coercive force material is obtained by pulse magnetic field orientation and hydrostatic pressing according to the present invention. A molded body having a high rate can be obtained. The sintered magnet thus produced has a higher orientation rate than the magnet obtained by the die press, and it has become possible to manufacture a highly-oriented high coercive force thin magnet which has not been obtained in the past.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1と比較例1で得られた焼結磁石の磁気
特性を示す図である。
FIG. 1 is a diagram showing magnetic characteristics of sintered magnets obtained in Example 1 and Comparative Example 1.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // C22C 38/00 303 C22C 38/00 303D (72)発明者 佐々木 史郎 埼玉県秩父市大字下影森1505番地 昭和電 工株式会社秩父生産・技術統括部内 (72)発明者 佐川 眞人 京都市西京区松室追上町22番地の1 イン ターメタリックス株式会社内 Fターム(参考) 4K018 AA27 AB10 CA04 FA08 KA45 5E040 AA04 AA19 BD01 CA01 HB03 HB07 NN01 NN12 NN18 5E062 CD05 CF04 CG02 CG03 CG05─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) // C22C 38/00 303 C22C 38/00 303D (72) Inventor Shiro Sasaki Chichibu City Saitama 1505 Shimokagemori Address Showa Denko Co., Ltd., Chichibu Production and Technology Management Department (72) Inventor Masato Sagawa 1 F-22, Intermetallics Co., Ltd., at 22, Matsumuro Ouegami-cho, Nishikyo-ku, Kyoto (reference) 4K018 AA27 AB10 CA04 FA08 KA45 5E040 AA04 AA19 BD01 CA01 HB03 HB07 NN01 NN12 NN18 5E062 CD05 CF04 CG02 CG03 CG05

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】水素を吸蔵させて低保磁力化させた希土類
磁石合金を粉末化し、該粉末をパルス磁場によって配向
させた後静水圧プレスにて成形体とし、さらに該成形体
を脱水素処理して、その後成形体の焼結および時効処理
を行う希土類焼結磁石の製造方法。
1. A powder of a rare earth magnet alloy having a low coercive force which is occluded with hydrogen, powdered, orientated by a pulsed magnetic field and formed into a compact by isostatic pressing, and the compact is dehydrogenated. Then, the method for producing a rare earth sintered magnet, in which the compact is then sintered and the aging treatment is performed.
【請求項2】希土類磁石合金が、合金主相がR2T14
B相(但し、RはYを含む希土類元素、Tは遷移金属元
素を表わす。)からなり、かつR成分中のR’(R’は
Dy、Tbのうち少なくとも1種以上を表わす。)の質
量比率R’/Rが5%以上である希土類磁石合金からな
ることを特徴とする請求項1に記載の希土類焼結磁石の
製造方法。
2. A rare earth magnet alloy having an alloy main phase of R2T14.
It is composed of a B phase (where R represents a rare earth element including Y and T represents a transition metal element), and is R ′ in the R component (R ′ represents at least one of Dy and Tb). The method for producing a rare earth sintered magnet according to claim 1, wherein the rare earth sintered magnet has a mass ratio R '/ R of 5% or more.
【請求項3】合金主相のR成分中のR’の質量比率R’
/Rが10%以上であることを特徴とする請求項2に記
載の希土類焼結磁石の製造方法。
3. A mass ratio R'of R'in the R component of the alloy main phase.
/ R is 10% or more, The manufacturing method of the rare earth sintered magnet of Claim 2 characterized by the above-mentioned.
【請求項4】希土類磁石合金の水素吸蔵量の制御を、希
土類磁石合金に水素を飽和量まで吸蔵させ、その後の脱
水素工程の加熱温度を250℃以下とすることで行うこ
とを特徴とする請求項1〜3に記載の希土類焼結磁石の
製造方法。
4. The control of the hydrogen storage amount of the rare earth magnet alloy is performed by causing the rare earth magnet alloy to store hydrogen up to a saturated amount and then setting the heating temperature in the subsequent dehydrogenation step to 250 ° C. or lower. The method for manufacturing the rare earth sintered magnet according to claim 1.
【請求項5】水素を吸蔵させて低保磁力化させた希土類
磁石合金の粉末の保磁力が160kA/m以下であるこ
とを特徴とする請求項1〜4に記載の希土類焼結磁石の
製造方法。
5. The production of a rare earth sintered magnet according to claim 1, wherein the coercive force of the powder of the rare earth magnet alloy that has absorbed hydrogen to have a low coercive force is 160 kA / m or less. Method.
【請求項6】静水圧プレスを、粉末をゴムモールドに充
填して金型内でプレスする擬似静水圧プレス(RIP)
で行うことを特徴とする請求項1〜5に記載の希土類焼
結磁石の製造方法。
6. A hydrostatic press (RIP) in which powder is filled in a rubber mold and pressed in a mold.
The method for producing a rare earth sintered magnet according to any one of claims 1 to 5, wherein
【請求項7】成形体の脱水素処理として、成形体を真空
中あるいは不活性ガスフロー中で700〜900℃の温
度で1時間以上保持する加熱処理を、焼結の前に行うこ
とを特徴とする請求項1〜6に記載の希土類焼結磁石の
製造方法。
7. As a dehydrogenation treatment of a compact, a heat treatment for holding the compact in a vacuum or an inert gas flow at a temperature of 700 to 900 ° C. for 1 hour or more is performed before sintering. The method for producing a rare earth sintered magnet according to claim 1.
【請求項8】請求項1〜7に記載の製造方法によって得
られた希土類焼結磁石。
8. A rare earth sintered magnet obtained by the manufacturing method according to claim 1.
【請求項9】配向率が90%以上であることを特徴とす
る請求項8に記載の希土類焼結磁石。
9. The rare earth sintered magnet according to claim 8, wherein the orientation ratio is 90% or more.
【請求項10】保磁力が950kA/m以上であること
を特徴とする請求項8または9に記載の希土類焼結磁
石。
10. The rare earth sintered magnet according to claim 8, which has a coercive force of 950 kA / m or more.
JP2001214595A 2001-07-16 2001-07-16 Rare earth sintered magnet manufacturing method and rare earth sintered magnet Expired - Fee Related JP4648586B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001214595A JP4648586B2 (en) 2001-07-16 2001-07-16 Rare earth sintered magnet manufacturing method and rare earth sintered magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001214595A JP4648586B2 (en) 2001-07-16 2001-07-16 Rare earth sintered magnet manufacturing method and rare earth sintered magnet

Publications (2)

Publication Number Publication Date
JP2003031432A true JP2003031432A (en) 2003-01-31
JP4648586B2 JP4648586B2 (en) 2011-03-09

Family

ID=19049376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001214595A Expired - Fee Related JP4648586B2 (en) 2001-07-16 2001-07-16 Rare earth sintered magnet manufacturing method and rare earth sintered magnet

Country Status (1)

Country Link
JP (1) JP4648586B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102233428A (en) * 2011-06-23 2011-11-09 宁波韵升股份有限公司 Method for preparing bulk sintered Nd-Fe-B permanent magnet material
WO2011145477A1 (en) * 2010-05-19 2011-11-24 住友電気工業株式会社 Powder for magnetic member, powder compact, and magnetic member
JP2012033865A (en) * 2010-07-01 2012-02-16 Sumitomo Electric Ind Ltd Powder for magnetic member, powder compact, and magnetic member
EP2608224A4 (en) * 2011-05-24 2015-07-01 Sumitomo Electric Industries Rare earth-iron-nitrogen system alloy material, method for producing rare earth-iron-nitrogen system alloy material, rare earth-iron system alloy material, and method for producing rare earth-iron system alloy material
US9076584B2 (en) 2009-12-04 2015-07-07 Sumitomo Electric Industries, Ltd. Powder for magnet
JP2015220336A (en) * 2014-05-16 2015-12-07 住友電気工業株式会社 Method for manufacturing compact for magnet, compact for magnet and magnetic member
US9314843B2 (en) 2010-04-15 2016-04-19 Sumitomo Electric Industries, Ltd. Powder for magnet
CN110504097A (en) * 2019-08-29 2019-11-26 江西开源自动化设备有限公司 A kind of pressing under magnetic field method improving sintered magnet remanent magnetism

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0778710A (en) * 1993-09-06 1995-03-20 Sumitomo Special Metals Co Ltd Manufacture of r-fe-b permanent magnet material
JPH0917677A (en) * 1995-06-30 1997-01-17 Sumitomo Special Metals Co Ltd Manufacture of r-fe-b-c permanent magnet material with excellent corrosion resistance
JPH09170055A (en) * 1995-12-18 1997-06-30 Showa Denko Kk Alloy for rare earth magnet, its production and production of permanent magnet
JPH1022110A (en) * 1996-06-28 1998-01-23 Aichi Steel Works Ltd Rare-earth permanent magnet and method for manufacturing the same, and rare-earth permanent bond magnet
JPH10106875A (en) * 1996-09-30 1998-04-24 Tokin Corp Manufacturing method of rare-earth magnet
JPH11307379A (en) * 1998-04-16 1999-11-05 Sumitomo Special Metals Co Ltd Manufacture of r-fe-b magnet
JP2000197997A (en) * 1998-11-02 2000-07-18 Sumitomo Special Metals Co Ltd Compacting device and compacting method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0778710A (en) * 1993-09-06 1995-03-20 Sumitomo Special Metals Co Ltd Manufacture of r-fe-b permanent magnet material
JPH0917677A (en) * 1995-06-30 1997-01-17 Sumitomo Special Metals Co Ltd Manufacture of r-fe-b-c permanent magnet material with excellent corrosion resistance
JPH09170055A (en) * 1995-12-18 1997-06-30 Showa Denko Kk Alloy for rare earth magnet, its production and production of permanent magnet
JPH1022110A (en) * 1996-06-28 1998-01-23 Aichi Steel Works Ltd Rare-earth permanent magnet and method for manufacturing the same, and rare-earth permanent bond magnet
JPH10106875A (en) * 1996-09-30 1998-04-24 Tokin Corp Manufacturing method of rare-earth magnet
JPH11307379A (en) * 1998-04-16 1999-11-05 Sumitomo Special Metals Co Ltd Manufacture of r-fe-b magnet
JP2000197997A (en) * 1998-11-02 2000-07-18 Sumitomo Special Metals Co Ltd Compacting device and compacting method

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9076584B2 (en) 2009-12-04 2015-07-07 Sumitomo Electric Industries, Ltd. Powder for magnet
US9435012B2 (en) 2009-12-04 2016-09-06 Sumitomo Electric Industries, Ltd. Method for producing powder for magnet
US9129730B1 (en) 2009-12-04 2015-09-08 Sumitomo Electric Industries, Ltd. Rare-earth-iron-based alloy material
US9314843B2 (en) 2010-04-15 2016-04-19 Sumitomo Electric Industries, Ltd. Powder for magnet
US9460836B2 (en) 2010-04-15 2016-10-04 Sumitomo Electric Industries, Ltd. Powder for magnet
WO2011145477A1 (en) * 2010-05-19 2011-11-24 住友電気工業株式会社 Powder for magnetic member, powder compact, and magnetic member
CN102665970B (en) * 2010-05-19 2014-12-10 住友电气工业株式会社 Powder for magnetic member, powder compact, and magnetic member
CN102665970A (en) * 2010-05-19 2012-09-12 住友电气工业株式会社 Powder for magnetic member, powder compact, and magnetic member
US9196403B2 (en) 2010-05-19 2015-11-24 Sumitomo Electric Industries, Ltd. Powder for magnetic member, powder compact, and magnetic member
CN103151130A (en) * 2010-05-19 2013-06-12 住友电气工业株式会社 Powder for magnetic member, powder compact, and magnetic member
KR101362036B1 (en) 2010-05-19 2014-02-11 스미토모덴키고교가부시키가이샤 Powder for magnetic member, powder compact, and magnetic member
JP2012033865A (en) * 2010-07-01 2012-02-16 Sumitomo Electric Ind Ltd Powder for magnetic member, powder compact, and magnetic member
EP2608224A4 (en) * 2011-05-24 2015-07-01 Sumitomo Electric Industries Rare earth-iron-nitrogen system alloy material, method for producing rare earth-iron-nitrogen system alloy material, rare earth-iron system alloy material, and method for producing rare earth-iron system alloy material
CN102233428A (en) * 2011-06-23 2011-11-09 宁波韵升股份有限公司 Method for preparing bulk sintered Nd-Fe-B permanent magnet material
JP2015220336A (en) * 2014-05-16 2015-12-07 住友電気工業株式会社 Method for manufacturing compact for magnet, compact for magnet and magnetic member
CN110504097A (en) * 2019-08-29 2019-11-26 江西开源自动化设备有限公司 A kind of pressing under magnetic field method improving sintered magnet remanent magnetism
CN110504097B (en) * 2019-08-29 2023-07-28 江西开源自动化设备有限公司 Magnetic field forming method for improving residual magnetism of sintered magnet

Also Published As

Publication number Publication date
JP4648586B2 (en) 2011-03-09

Similar Documents

Publication Publication Date Title
JP2012216804A (en) Method for manufacturing r-t-b-based permanent magnet
JP4648586B2 (en) Rare earth sintered magnet manufacturing method and rare earth sintered magnet
JPH04245403A (en) Rare earth-fe-co-b-based anisotropic magnet
JPS6181606A (en) Preparation of rare earth magnet
JP3368295B2 (en) Method for producing anisotropic rare earth alloy powder for permanent magnet
JPS6181603A (en) Preparation of rare earth magnet
US7371290B2 (en) Production method for permanent magnet and press device
JP3969691B2 (en) Method for producing rare earth-Fe-Co-B magnet
JP3415208B2 (en) Method for producing R-Fe-B permanent magnet material
JPH07176418A (en) High-performance hot-pressed magnet
JPH09162054A (en) Manufacture of r-t-b anisotropic bond magnet
JP2586199B2 (en) Rare earth-Fe-Co-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
JPH10172850A (en) Production of anisotropic permanent magnet
JPH0617535B2 (en) Method of manufacturing permanent magnet material
JPH06151137A (en) Powder of rare earth magnet material with excellent anisotropy
CN116110707B (en) Sintered Nd-Fe-B permanent magnet and preparation method thereof
JPH0142338B2 (en)
JPH04143221A (en) Production of permanent magnet
JP2860910B2 (en) Manufacturing method of rare earth permanent magnet
JPH06112019A (en) Nitride magnetic material
JPH0199201A (en) Rare earth element-fe-b series cast permanent magnet and manufacture thereof
JPH07245206A (en) Powder for rare-earth permanent magnet and its manufacturing method
JPH04188805A (en) Manufacture of rare-earth bonded magnet
JP2631380B2 (en) Rare earth-iron permanent magnet manufacturing method
JP2704745B2 (en) Manufacturing method of permanent magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101109

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20101109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4648586

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees