JPH0199201A - Rare earth element-fe-b series cast permanent magnet and manufacture thereof - Google Patents

Rare earth element-fe-b series cast permanent magnet and manufacture thereof

Info

Publication number
JPH0199201A
JPH0199201A JP62257669A JP25766987A JPH0199201A JP H0199201 A JPH0199201 A JP H0199201A JP 62257669 A JP62257669 A JP 62257669A JP 25766987 A JP25766987 A JP 25766987A JP H0199201 A JPH0199201 A JP H0199201A
Authority
JP
Japan
Prior art keywords
cast
phase
permanent magnet
temperature
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62257669A
Other languages
Japanese (ja)
Other versions
JP2564492B2 (en
Inventor
Takuo Takeshita
武下 拓夫
Ryoji Nakayama
亮治 中山
Tamotsu Ogawa
保 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP62257669A priority Critical patent/JP2564492B2/en
Publication of JPH0199201A publication Critical patent/JPH0199201A/en
Application granted granted Critical
Publication of JP2564492B2 publication Critical patent/JP2564492B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To improve magnetic properties, antioxidation, heat resistance, etc., of a cast permanent magnet by incorporating recrystalline composition containing R2Fe14B phase as a main phase in an R-Fe-B series cast permanent magnet. CONSTITUTION:An R-Fe-B series alloy cast containing as main ingredients rare earth element (R) including Y, Fe and B is formed. The composition of the cast is of recrystalline composition containing as a main phase R2Fe14B intermetallic compound phase 1 having a tetragonal structure including 0.05-50mum of mean recrystal particle size. Thus, the magnetic properties, antioxidation, heat resistance, etc., of the cast permanent magnet are improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、すぐれた磁気特性を有する。Yを含む希土
類元素(以下、Rで示す)−Fe−B系合金鋳造体の永
久磁石およびその製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention has excellent magnetic properties. The present invention relates to a permanent magnet made of a rare earth element (hereinafter referred to as R)-Fe-B alloy cast body containing Y, and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

R−Fe−B系永久磁石は、希土類系永久磁石の中でも
特に磁気特性のすぐれた磁石として注目されている。上
記R−Fe−B系永久磁石の組織は、−船釣には1強磁
性相であり正方晶構造をとる主相のR2Fe14B金属
間化合物相(以下a R2Fe14B相という)と、R
−rich相とB −rich相から構成されている。
R-Fe-B permanent magnets are attracting attention as magnets with particularly excellent magnetic properties among rare earth permanent magnets. The structure of the above-mentioned R-Fe-B permanent magnet is: - R2Fe14B intermetallic compound phase (hereinafter referred to as a R2Fe14B phase), which is a main phase with a ferromagnetic phase and a tetragonal structure (hereinafter referred to as a R2Fe14B phase);
-rich phase and B-rich phase.

上記R−Fe−B系永久磁石では、その磁気特性が上記
R−Pe−B系永久磁石の組織形態に大きく依存してお
、り、R−Fθ−B系合金のすぐれた磁気特性を生かせ
るような組織形態を有する永久磁石の開発が行なわれて
いた。
The magnetic properties of the R-Fe-B permanent magnet greatly depend on the structure of the R-Pe-B permanent magnet, and the excellent magnetic properties of the R-Fθ-B alloy can be utilized. Permanent magnets with such a structure have been developed.

現在、上記R−Pe−B系永久磁石としては、以下に示
すものがある。
At present, as the above-mentioned R-Pe-B permanent magnets, there are the following.

(1)  粉末冶金法による焼結体を特徴とする永久磁
石(例えば、!開昭59−460008号公報参照)。
(1) Permanent magnets characterized by sintered bodies produced by powder metallurgy (see, for example, Japanese Patent Publication No. 59-460008).

この焼結体を特徴とする永久磁石(以下、焼結磁石と呼
ぶ)は、tず、R−Pa−B系合金のインゴット6るい
は粗粉末を1種々の方法で粉砕して数μ翼程度の微粉末
とし、この微粉末を磁場中あるいは無磁場中で成形した
圧粉体とする。次にその圧粉体を真空中または非酸化性
ガス雰囲気中で。
Permanent magnets featuring this sintered body (hereinafter referred to as sintered magnets) are produced by crushing an ingot or coarse powder of R-Pa-B alloy using various methods. This fine powder is molded into a green compact in a magnetic field or in the absence of a magnetic field. Next, the green compact is placed in a vacuum or in a non-oxidizing gas atmosphere.

室温から昇温して、焼結温度=900〜1200℃で3
0〜120分保持の条件で焼結し、さらに必要に応じて
保磁力を増加させるために引き続き適温の熱処理を行っ
てから冷却することによって製造されている。上記焼結
磁石の磁気特性は1等方性の場合* BHmax = 
l OMGOa程度であシ、異方性の場合、 BH工y
c−30M()09以上の値を示す。
The temperature was raised from room temperature, and the sintering temperature was 900 to 1200℃.
It is manufactured by sintering under conditions of holding for 0 to 120 minutes, and if necessary, subsequently performing heat treatment at an appropriate temperature to increase coercive force, followed by cooling. The magnetic properties of the above sintered magnet are 1 isotropic * BHmax =
l If it is about OMGOa or anisotropic, BH engineering
Indicates a value of c-30M()09 or higher.

上記焼結磁石の組織は、第1図に示すように。The structure of the sintered magnet is as shown in FIG.

R−Fe−B系永久磁石の主相であるR2Pe14B相
1と、B−rich3.そしてR2F1!114B相1
やB −rich相3の粒界部に存在するR−rich
相2からなっている。上記第1図のR2FJ4B相は、
保磁力を増加させるために平均結晶粒径が数μm〜20
μ翼に制御されている。
R2Pe14B phase 1, which is the main phase of the R-Fe-B permanent magnet, and B-rich3. And R2F1!114B phase 1
and R-rich present at the grain boundaries of B-rich phase 3.
Consists of phase 2. The R2FJ4B phase in Fig. 1 above is
In order to increase the coercive force, the average grain size is from several μm to 20 μm.
It is controlled by μ wings.

(2)  超急冷法によるリボン状急冷粉末を、高温圧
縮、塑性加工した永久磁石(例えば、特開昭50−10
0402号参照) この急冷粉末を圧縮した物質を特徴とする永久磁石(以
下、高温圧縮磁石と呼ぶ)は、まず、溶融状態のR−F
e−B系合金を急冷凝固させることによってリボン状の
薄片を得、それを温度2700℃以上に加熱して数分間
で高温圧縮、Wi性加工を行ってから冷却することによ
って製造されている。
(2) Permanent magnets obtained by high-temperature compression and plastic processing of ribbon-shaped quenched powder by ultra-quenching method (e.g.,
(Refer to No. 0402) A permanent magnet (hereinafter referred to as a high-temperature compressed magnet) characterized by a substance obtained by compressing this rapidly solidified powder is first produced by R-F in a molten state.
It is manufactured by rapidly solidifying an e-B alloy to obtain a ribbon-shaped flake, heating it to a temperature of 2,700° C. or higher, performing high-temperature compression and Wi-ness processing for several minutes, and then cooling it.

上記高温圧縮磁石の磁気特性は1等方性の場合。The magnetic properties of the above-mentioned high-temperature compressed magnet are one isotropic.

BH狐z−13MGO13程度、塑性加工による異方性
化によってBHX11aニー30 MGOe程度になる
。上記高温圧縮磁石の組織は、主相が平均結晶粒径:数
10nm〜数100 nmのR2Fe14B相で1凱そ
の粒界部KR−rich相や非晶質相が存在するといり
微細構造であシ、主相のR2Fe14B相は単磁区粒径
:0.3μ富以下の組織に制御されている。
BH Kitsune z-13 MGO13 degree, BHX11a knee 30 MGOe degree due to anisotropy by plastic working. The structure of the above-mentioned high-temperature compression magnet has a fine structure in which the main phase is an R2Fe14B phase with an average crystal grain size of several tens of nanometers to several hundreds of nanometers, and there is a KR-rich phase and an amorphous phase at the grain boundaries. The R2Fe14B phase, which is the main phase, is controlled to have a single domain grain size of 0.3 μm or less.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

R−IFe−B系合金が、高い保磁力を示す永久磁石と
なる丸めには。
For rounding, R-IFe-B alloy becomes a permanent magnet with high coercive force.

(a)  主相であるR2Fe14B相の平均結晶粒径
が50μ属以下、好ましくは単磁区粒子となシ得る0、
3μ寓以下であること。
(a) 0, in which the average crystal grain size of the R2Fe14B phase, which is the main phase, is 50μ or less, preferably single domain grains;
Must be 3μ or less.

(1))  主相の結晶粒内、結晶粒界部に逆磁区発生
時の核となる不純物や歪がないこと。
(1)) There is no impurity or strain in the crystal grains or grain boundaries of the main phase, which can become nuclei when reversed magnetic domains occur.

(C)  主相であるR2Fe14B相の平均結晶粒径
が数μ諷から50μ寓であれば、 R2Fe14B相の
結晶粒界部にI’t−rich相が存在し、上記R2F
e14B相の結晶粒が上記R−rtch相で囲まれてい
ること。
(C) If the average crystal grain size of the R2Fe14B phase, which is the main phase, is from several micrometers to 50 micrometers, an I't-rich phase exists at the grain boundary of the R2Fe14B phase, and the above R2F
The crystal grains of the e14B phase are surrounded by the R-rtch phase.

(d)  i!石粉末の個々のR2Fe、4B相におい
て、結晶磁気異方性の磁化容易軸がそろっておυ、磁気
的異方性を有すること。
(d) i! In the individual R2Fe and 4B phases of the stone powder, the easy axes of magnetization of crystal magnetic anisotropy are aligned and magnetic anisotropy is obtained.

でアシ、%に上記(a)の主相のR2Fe14B相の平
均結晶粒径が、保磁力を大傘(左右していると考えられ
ている。
It is believed that the average crystal grain size of the R2Fe14B phase, which is the main phase in (a) above, has a major influence on the coercive force.

従来、R−XPe−B系合金を単に溶解して鋳造した。Conventionally, R-XPe-B alloys were simply melted and cast.

あるいはさらに均質化処理を行った鋳造体の組織では、
後に熱処理を施しても主相のR2Fe14B相を数10
μ島以下に制御することができないために、その鋳造体
は、すぐれた磁気特性が得られなかった。このため、上
記従来の技術(1)のごとく焼結磁石にした#)、上記
従来の技術(2)のごとく高温圧縮磁石としたシして、
上記R−Fa−B系合金の組織制御を行っていた。
Or, in the structure of a cast body that has been further homogenized,
Even after heat treatment, the main phase R2Fe14B remains in the tens of
Since it was not possible to control the magnetic field below μ islands, the cast body could not obtain excellent magnetic properties. For this reason, using a sintered magnet as in the conventional technique (1) above, and a high-temperature compressed magnet as in the conventional technique (2),
The structure of the R-Fa-B alloy was controlled.

上記従来の技術(1)の焼結磁石は、主相であるR2P
e14B相の平均結晶粒径を数μm−20μ詭に制御す
る必要があるために、上記焼結工程での主相の粒成長を
考慮して、上記焼結用の微粉末は。
The sintered magnet of the above conventional technology (1) has a main phase of R2P.
Since it is necessary to control the average crystal grain size of the e14B phase to within a few μm to 20 μm, the fine powder for sintering is prepared in consideration of the grain growth of the main phase in the sintering process.

通常3〜4μrttK粉砕しなければならない。しかし
、永久磁石用R−IPe−B系合金は、S−4μ重の微
粉末にすると非常に活性となるため、焼結体中に酸化物
等の不純物が発生して、焼結磁石の磁気特性がばらつく
と言う欠点があった。さらに永久磁石としては、主相で
あるR2Pe14B相が単磁区粒子となシ得る0、3μ
諷以下が好ましいが、上記焼結法では、微粉砕時の酸化
が激しく、製造することができない。また、上記焼結磁
石は、厚みが3鶴以下の薄皿の形状では、厚みが薄くな
るにつれて磁気特性が大幅に低下するという欠点もあっ
た。このような欠点を補うために、上記合金に添加元素
を加えたシ、焼結工程を改良したシ、焼結磁石に被膜を
行う等の処置が行われ、上記焼結磁石の高い磁気特性を
引き出すには、複雑な工程や処理を行わざるを得なかっ
た。
Usually 3 to 4 μrttK must be crushed. However, R-IPe-B alloys for permanent magnets become very active when made into fine powder with a weight of S-4μ, so impurities such as oxides are generated in the sintered body, causing the magnetic field of the sintered magnet. The drawback was that the characteristics varied. Furthermore, as a permanent magnet, the R2Pe14B phase, which is the main phase, can form single-domain particles of 0.3 μm.
This is preferable, but the sintering method described above causes severe oxidation during pulverization and cannot be manufactured. In addition, the above-mentioned sintered magnet had the disadvantage that when it was in the shape of a thin plate with a thickness of 3 cranes or less, the magnetic properties decreased significantly as the thickness became thinner. In order to compensate for these shortcomings, measures have been taken such as adding additive elements to the above alloy, improving the sintering process, and coating the sintered magnet. In order to extract it, complicated processes and treatments had to be carried out.

上記従来の技術(2)の高温圧縮磁石は、急冷粉末を高
温圧縮、塑性加工して初めて永久磁石となるために、磁
石形状の自由度1歩留シの点から用途は制限されてい友
。また、高温圧縮、m性加工によプ、微細構造のうち主
相であるR2F・t4B相は。
The high-temperature compressed magnet of the above-mentioned conventional technology (2) becomes a permanent magnet only by high-temperature compression and plastic processing of the quenched powder, so its use is limited because the degree of freedom in the magnet shape is 1 yield. In addition, the R2F/t4B phase, which is the main phase of the microstructure, is formed by high-temperature compression and mechanical processing.

粒成長を起こして保磁力を低下させるために、上記高温
圧縮工程は、数分間という非常に短い時間で行う必要が
あシ、高い磁気特性の永久磁石を得るには、その製造工
程が複雑にならざるを得なかった。
In order to cause grain growth and reduce coercive force, the above-mentioned high-temperature compression process must be carried out in a very short time of several minutes, and in order to obtain a permanent magnet with high magnetic properties, the manufacturing process is complicated. I had no choice but to do it.

すなわち、上記従来の技術(1)および(2)のR−F
e−B系永久磁石は、いずれも−度R−Pa−B系孫石
合金を粉末KL、それを焼結してR−Fe−B系永久磁
石を製造するものであるために、R−Fe−B系合金粉
末の取扱いが難しく、またその焼結方法にもいろいろと
注意を払わなければならず、製造工程も複雑にならざる
を得ないという問題点があった。
That is, the R-F of the above conventional techniques (1) and (2)
All e-B series permanent magnets are produced by producing R-Fe-B series permanent magnets by sintering powder KL of -degree R-Pa-B series Sunstone alloy. There are problems in that it is difficult to handle the Fe-B alloy powder, and various precautions must be taken in the sintering method, making the manufacturing process complicated.

〔問題点を解決するための手段〕[Means for solving problems]

そこで1本発明者等は、すぐれた磁気特性は得られない
と言われているR−F・−B系合金の鋳造体にすぐれた
磁気特性を付与することができるならば、簡単にすぐれ
た磁気特性を有するR −Fe −B系永久磁石を製造
することができるという考えのもとに、すぐれた磁気特
性を有するR −Fe −B系鋳造体永久磁石な得べく
研究を行った結果。
Therefore, the present inventors believe that if it is possible to impart excellent magnetic properties to cast bodies of R-F/-B alloys, which are said to be unable to obtain excellent magnetic properties, it would be possible to easily obtain excellent magnetic properties. Based on the idea that it is possible to manufacture an R-Fe-B permanent magnet with excellent magnetic properties, we conducted research to find an R-Fe-B cast permanent magnet with excellent magnetic properties.

R−Fe−B系合金の鋳造体の組織を。Structure of a cast body of R-Fe-B alloy.

R2Fe、4B相を主相とする再結晶組織とすることに
よシすぐれた磁気特性を有するR−Pa−B系鋳造体永
久磁石を得ることができるという知見を得たのである。
It was found that an R-Pa-B cast permanent magnet having excellent magnetic properties can be obtained by forming a recrystallized structure having R2Fe, 4B as the main phase.

この発明は、かかる知見にもとづいてなされたものであ
って。
This invention was made based on this knowledge.

R−Fe−B系合金の鋳造体の組織が。The structure of a cast body of R-Fe-B alloy.

平均再結晶粒径:0.05〜50μ翼のR2Pe14 
B相を主相とする再結晶組織である希土類−Fe−B系
鋳造体永久磁石に特徴を有するものである。
Average recrystallized grain size: 0.05-50μ blade R2Pe14
This is a rare earth-Fe-B cast permanent magnet having a recrystallized structure with B phase as the main phase.

上記舛結晶組織を第2図にもとづいて説明する。The above-mentioned crystalline structure will be explained based on FIG. 2.

tJ12図(a)は、R−re−B系磁石合金を鋳造し
て得た鋳造体の組織の概略図である。上記第2図(a)
において、1はR21’!114B相、2はR−ric
h相である。R−rich相2は、主相であるR2Fe
14B相1のおもに粒界部に存在する。上記第2図(a
)に示される鋳造体を、適切な条件のもとで処理すると
、第2図(b) K示されるようlc R2Pe14 
B相lの粒内あるいは粒界部ic R2Fe、4 B相
の再結晶1′が発生し、それらが成長して第2図(e)
 K示されるようなR2Fe、4B相の再結晶1′の集
合組織となる。
Figure tJ12 (a) is a schematic diagram of the structure of a cast body obtained by casting an R-re-B magnet alloy. Above figure 2(a)
In, 1 is R21'! 114B phase, 2 is R-ric
It is h phase. R-rich phase 2 is a main phase of R2Fe
14B phase 1 exists mainly at grain boundaries. Figure 2 above (a
) When the cast body shown in ) is processed under appropriate conditions, it becomes lc R2Pe14 as shown in Fig. 2(b) K.
Recrystallization 1' of the B phase occurs within the grains or at the grain boundaries of the B phase 1, and these recrystallize as shown in Fig. 2(e).
The result is a recrystallized 1' texture of R2Fe, 4B phase as shown in K.

上記第2図(b)は、上記第2図(a) K示される鋳
造体を処理し始めて*R2F614B相の再結晶1′が
発生し始めた頃の鋳造体の組織の概略図であシ、上記第
2図(C)は、上記第2図(a)に示される鋳造体の処
理終了後の鋳造体の組織を示す概略図である。
FIG. 2(b) above is a schematic diagram of the structure of the cast body shown in FIG. 2(a) K at the time when the recrystallization 1' of the *R2F614B phase begins to occur. FIG. 2(C) is a schematic diagram showing the structure of the cast body after the processing of the cast body shown in FIG. 2(a) is completed.

ここで、第2図(a)で示されるR−Fa−B系合金の
R2Fli114B相1かち第2図(b)に示されるよ
′うKR2F614B相の再結晶1′を生成させ、それ
を成長させて第2図(C)に示される。よりなR2Pe
14 B相の再結晶1′からなる集合組織となっても、
上記第2図(1))および(C)において形成されたR
2Pe14B相の再結晶1′は、第21M(a)の個々
のR2Fe、4B相1の領域内で・完全にランダムな結
晶方位の結晶配置ではなく。
Here, the R2Fli114B phase 1 of the R-Fa-B alloy shown in FIG. 2(a) and the recrystallized KR2F614B phase 1' shown in FIG. This is shown in FIG. 2(C). More R2Pe
14 Even if the texture consists of recrystallized 1' of B phase,
R formed in FIG. 2 (1)) and (C) above
The recrystallization 1' of the 2Pe14B phase does not have a completely random crystal orientation within the region of the individual R2Fe, 4B phase 1 of the 21M(a).

一定の方位を持った組織となっているのである。It is an organization with a certain orientation.

一方、R−rich相は、第2図(b)に示されるよう
にR2Fe14B相の再結晶生成初期には明らかではな
いが、R2Fe14B相の再結晶1′が成長して第2図
(C)に示される再結晶粒の平均結晶粒径:0.05μ
諺以上の集合組織になると、主に上記再結晶粒1′の粒
界部に析出する。
On the other hand, the R-rich phase is not obvious at the early stage of the recrystallization of the R2Fe14B phase as shown in Figure 2(b), but as the recrystallized 1' of the R2Fe14B phase grows and it is shown in Figure 2(C). Average grain size of recrystallized grains shown in: 0.05μ
When the texture becomes worse than the proverbial texture, it precipitates mainly at the grain boundaries of the recrystallized grains 1'.

この発明は、上記′s2図(11))および(C)に示
される12Fe14B相の再結晶1′を有するR−Fe
−B系合金の鋳造体からなるR−Fe−B系鋳造体永久
磁石に特徴を有するものである。
The present invention is directed to the R-Fe having the recrystallized 1' of the 12Fe14B phase shown in the above 's2 diagram (11)) and (C).
The present invention is characterized by an R-Fe-B cast body permanent magnet made of a cast body of a -B alloy.

したがって、この発明のR−Fe−B系鋳造体永久磁石
は、再結晶組織を有する鋳造体であるのに対し、従来の
技術(1)および(2)のR−Fe−B系永久磁石は、
再結晶組織を有しない点や、焼結体、急冷粉末を圧縮し
た物質という点で全く相違する。
Therefore, the R-Fe-B cast permanent magnet of the present invention is a cast body having a recrystallized structure, whereas the R-Fe-B permanent magnets of conventional techniques (1) and (2) ,
It is completely different in that it does not have a recrystallized structure and is a material obtained by compressing a sintered body or rapidly solidified powder.

乙の発明のR−Fe−B系永久磁石が高い保磁力を示す
理由は、主相であるR2Fe14B相の再結晶粒径が5
0μ層以下、好ましくは、単磁区粒子となり得る0、3
μ属に近い0.05〜3μ讃であシ、再結晶粒のために
その粒内および粒界部に不純物や歪がなく1粒界部には
R−rich相が存在しているからである。上記R2F
e14B相の平均再結晶粒径が0.05μ諺よシ小さい
と着磁が困難となって実用的でなく、50声講よシ大き
いと低い保磁力しか示さず、すぐれた磁気特性を有する
R−IPe−B系永久磁石とは言えない。
The reason why the R-Fe-B permanent magnet of B's invention exhibits a high coercive force is that the recrystallized grain size of the R2Fe14B phase, which is the main phase, is 5.
0μ layer or less, preferably 0,3 which can be single domain particles
This is because the recrystallized grains have no impurities or strain inside the grains or at the grain boundaries, and an R-rich phase exists at the grain boundaries. be. Above R2F
If the average recrystallized grain size of the e14B phase is smaller than 0.05 μ, magnetization becomes difficult and impractical, but if it is larger than 50 µ, it will only show a low coercive force, and R has excellent magnetic properties. -It cannot be said to be an IPe-B permanent magnet.

なお、この発明のR2Fe14B相を主相とする再結晶
組織を有するR−re−B系鋳造体永久磁石のPaの一
部をCo、Ni、Cr、Mo、  W、Ti、Zr、H
fの1棟または28に以上の少量で置換してもよい。
In addition, a part of Pa of the R-re-B cast permanent magnet having a recrystallized structure with R2Fe14B phase as the main phase of this invention is Co, Ni, Cr, Mo, W, Ti, Zr, H.
1 or 28 of f may be replaced with a small amount or more.

上記再結晶組織を得る方法としては、一般に。The method for obtaining the above-mentioned recrystallized structure is generally as follows.

材料内部に高密度の転位や空孔等の歪を含ませた後に、
適当な熱処理を行って再結晶を生成、成長させる方法が
知られているが、上記R−Fθ−B系磁石合金の鋳造体
に再結晶組織を生成させるためには、適当な温度でR2
Fe14B相に水素を吸蔵させて格子歪を与え、さらに
適当な温度で脱水素処理を行うことで* R2Fe14
B相の脆性破壌をなくして組織を回復し、再結晶を生成
、成長させるのが最も好ましいという知見を得たのであ
る。
After incorporating strains such as high-density dislocations and vacancies inside the material,
A method of generating and growing recrystallization by performing an appropriate heat treatment is known, but in order to generate a recrystallized structure in a cast body of the above-mentioned R-Fθ-B magnet alloy, it is necessary to heat R2 at an appropriate temperature.
By occluding hydrogen into the Fe14B phase to give lattice strain and then dehydrogenating it at an appropriate temperature, *R2Fe14
It was found that it is most preferable to eliminate the brittle fractures of the B phase, recover the structure, and generate and grow recrystallization.

この発明の製造法は、かかる知見にもとづいてなされた
ものであって。
The manufacturing method of the present invention was developed based on this knowledge.

R−Fe−B系合金の鋳造体を、水素ガス雰囲気におい
て、温度:700〜1000℃で保持して上記鋳造体に
水素を吸蔵させた後に、温度=700〜1000℃で水
素ガス圧カニ1X10  ’rorr以下または水素ガ
ス分圧:1XIO’rorr以下の非酸化性雰囲気とし
て脱水素処理を行ってから冷却する熱処理を行うことに
よ’) * R2Fe、4 El相を主相とする再結晶
組織を有するR−Pe−B系鋳造体永久磁石を得る方法
に特徴を有するものである。
A cast body of an R-Fe-B alloy is held at a temperature of 700 to 1000°C in a hydrogen gas atmosphere to absorb hydrogen into the cast body, and then heated with a hydrogen gas pressure crab 1X10 at a temperature of 700 to 1000 °C. (By performing dehydrogenation treatment in a non-oxidizing atmosphere with hydrogen gas partial pressure: 1XIO'rorr or less and then cooling heat treatment) * Recrystallized structure with R2Fe, 4El phase as the main phase This method is characterized by a method for obtaining an R-Pe-B cast permanent magnet having the following characteristics.

したがって、この発明の永久磁石の製造法において、R
−Fe−B系合金の鋳造体から永久磁石が得られること
は、従来のR−Pa −B系永久磁石の製造法とは全く
相違するし、さらに従来のR−Fe−B系永久砒石の製
造法に比べて製造工程が非常に簡略である。
Therefore, in the method for manufacturing a permanent magnet of this invention, R
The fact that a permanent magnet can be obtained from a cast body of -Fe-B alloy is completely different from the conventional manufacturing method of R-Pa -B-based permanent magnet, and furthermore, it is completely different from the conventional manufacturing method of R-Pa-B-based permanent magnet. The manufacturing process is very simple compared to the manufacturing method of .

この発明の製造法において、水素ガス雰囲気とは、水素
ガスと他の不活性ガスとの混合ガス雰囲気をも含んでい
る。水素ガス圧は、Fj2Fe1’4 B相に水素を吸
蔵させて、再結晶がおこるのに充分な格子歪を与えるよ
うな圧力が必要であり、少なくとも水素ガス圧力はO,
l Torr以上でなければならない、水素ガスと他の
不活性ガスとの混合ガス雰囲気であれば、少なくとも水
素ガス分圧が0.1 Torr以上でなければならない
In the production method of the present invention, the hydrogen gas atmosphere includes a mixed gas atmosphere of hydrogen gas and other inert gases. The hydrogen gas pressure must be such that the Fj2Fe1'4 B phase absorbs hydrogen and gives sufficient lattice strain to cause recrystallization, and the hydrogen gas pressure must be at least O,
If the atmosphere is a mixed gas of hydrogen gas and another inert gas, the partial pressure of hydrogen gas must be at least 0.1 Torr.

また、 R2Fe14B相に水素をe、IIl!、させ
るiiおjび脱水素処理を行う温度が700℃よシ低い
と。
In addition, hydrogen is added to the R2Fe14B phase e, IIl! , and the temperature at which the dehydrogenation treatment is performed is as low as 700°C.

水素を吸蔵させる際に鋳造体に割れが入って脆くなシ、
脱水素処理の際に水素が残留し、磁気特性を大幅に減少
させる。さらK 、12Fe14 B相に水素を吸蔵さ
せる温度および脱水素処理を行う温度が1000℃よシ
高いと、再結晶の生成、成長が非常に速く、再結晶粒を
5opts+以下に制御することが困難である。
When storing hydrogen, the cast body will crack and become brittle.
During the dehydrogenation process, hydrogen remains and significantly reduces the magnetic properties. Furthermore, if the temperature at which hydrogen is stored in the K, 12Fe14 B phase and the temperature at which the dehydrogenation treatment is performed is higher than 1000°C, the generation and growth of recrystallization is extremely fast, making it difficult to control the recrystallized grains to 5 opts+ or less. It is.

700℃より低い温度の水素ガス雰囲気中にR−Fe−
B系磁石合金の鋳造体を置くと、鋳造体に割れが入って
脆くなるから、上記700t:までの昇温途中の雰囲気
は、水素の存在しない真空または不活性ガス雰囲気とし
なければならない。
R-Fe- in a hydrogen gas atmosphere at a temperature lower than 700°C.
If a cast body of B-based magnetic alloy is placed, the cast body will crack and become brittle, so the atmosphere during the heating up to 700 t must be a hydrogen-free vacuum or an inert gas atmosphere.

脱水素処理を行う際に、水素ガス圧力がlXl0”’!
’orrよシ上の圧力で脱水素処理を終えると、鋳造体
中に水素が残留して磁気特性が低下する。
When performing dehydrogenation treatment, the hydrogen gas pressure is lXl0"'!
When the dehydrogenation process is completed at a pressure above 'orr, hydrogen remains in the cast body and the magnetic properties deteriorate.

〔実施例〕〔Example〕

つぎに、この発明を実施例にもとづいて具体的に説明す
るとともに、比較例により、この発明がいかに優れた効
果を奏するものであるかを説明する。
Next, this invention will be specifically explained based on Examples, and how excellent effects this invention can achieve will be explained using Comparative Examples.

実施例1 希土類元素としてNdを用い、高周波溶解炉で溶解し、
鋳造して製造したNd−Fe−B系の原子数組成がNd
14.1]F’1177.188.1であるNd−Fe
−B系合金の鋳造体をArガス雰囲気中で、温度:1l
OO℃、40時間保持の条件で均質化処理を行って冷却
した後に、たて:8鵡×横:8鵡×高さ:10顛のブロ
ックに切り出した。
Example 1 Using Nd as a rare earth element, melting in a high frequency melting furnace,
The atomic composition of the Nd-Fe-B system produced by casting is Nd.
14.1]F'1177.188.1 Nd-Fe
-A cast body of B-based alloy is placed in an Ar gas atmosphere at a temperature of 1 l.
After homogenization treatment was carried out under the conditions of holding at OO°C for 40 hours and cooling, it was cut into blocks of 8 parrots (vertical) x 8 parrots (width) x 10 parrots (height).

この鋳造体ブロックを熱処理炉に入れ、lXl0””T
orrの真空に排気した後、その真空中で室温から温度
二810℃まで昇温し、温度:81O℃で30分保持し
て鋳造体ブロックの温度を810℃で一様にした後に、
水素ガスをINt/ail(温度:2゜℃)の流量でl
 lLtmまで熱処理炉に流入させ、炉内の水素ガス圧
力をlatmKa!持しながら水素ガスをフローさせて
上記鋳造体ブロックに水素を吸蔵させ、その温度: 8
10℃−水素ガス圧カニ1atm、の状態を5時間保持
して上記鋳造体ブロック内に一様に水素を吸蔵させたの
ち、温度=810℃で1時間排気を行い、熱処理炉内の
雰囲気をIX I O’rorrの真空として、上記鋳
造体ブロックの脱水素処理を行った。その後、炉内にx
atmになるまでArガスを流入して上記鋳造体ブロッ
クを急冷してNd−Fs−B系鋳造体永久磁石を得た。
This cast block was placed in a heat treatment furnace, and
After evacuation to a vacuum of orr, the temperature was raised from room temperature to 2810°C in the vacuum, and held at 810°C for 30 minutes to make the temperature of the cast block uniform at 810°C.
Hydrogen gas was supplied at a flow rate of INt/ail (temperature: 2°C).
The hydrogen gas pressure in the furnace is increased to latmKa! Hydrogen gas is allowed to flow while holding the cast block to store hydrogen at a temperature of 8.
After maintaining the condition of 10°C and hydrogen gas pressure of 1 atm for 5 hours to uniformly absorb hydrogen in the above cast block, exhaust was performed at a temperature of 810°C for 1 hour to change the atmosphere in the heat treatment furnace. The above cast block was subjected to dehydrogenation treatment under a vacuum of IX I O'rorr. After that, x in the furnace
The cast block was rapidly cooled by flowing Ar gas until the temperature reached ATM to obtain a Nd-Fs-B cast permanent magnet.

第3図に、上記実施例1の、この発明のNd−Fe−B
系鋳造体永久磁石の再結晶組織を得るための熱処理パタ
ーンを示す。
FIG. 3 shows the Nd-Fe-B of the present invention in Example 1 above.
A heat treatment pattern for obtaining a recrystallized structure of a cast permanent magnet is shown.

得られた上記鋳造体永久磁石を粉砕して1粒度: 20
0meah以下の粉末とし、この粉末を用いてX線回折
を行ったところ゛、主相であるNd2Fe14 B相と
Nd −rich相の回折線がはつきシと観察された。
The obtained cast permanent magnet is crushed to obtain a particle size of 20
When X-ray diffraction was performed using this powder, it was observed that the diffraction lines of the main phase, Nd2Fe14 B phase, and the Nd-rich phase were clearly visible.

また、上記鋳造体永久磁石を走査電子顕微鏡を用いて組
織観察し、EPMA(電子プローブ微量分折襞fIt)
を用いて組成分析を行った。
In addition, the structure of the cast permanent magnet was observed using a scanning electron microscope, and EPMA (electron probe microfraction fold fIt)
Compositional analysis was performed using

第4図(a)に、この実施例によシ得られた上記鋳造体
永久磁石の走査電子顕微鏡写真%第4図(b) K S
この実施例1における均質化処理を行っただけの上記鋳
造体の走査電子顕微鏡写真を示す。
FIG. 4(a) shows a scanning electron micrograph of the cast permanent magnet obtained in this example. FIG. 4(b) K S
A scanning electron micrograph of the above-mentioned cast body which has only been subjected to the homogenization treatment in Example 1 is shown.

E PMA (電子プローブ微量分析装置)Kよる組成
分析の結果、第4図(a)および(b)の走査電子顕微
鏡写真の基地は共にNd2Fe14B相であシ、その結
晶粒界部にNd −rich相が存在していた。上記第
4図(1))の均質化処理を行ったままの鋳造体のNd
2Fe14B相は、数10〜数1000μ重のデッドラ
イト状の粗大な結晶粒であった。上記第4図(a)のこ
の実施例1によシ得られた鋳造体永久磁石は、主相のN
(12Fe 14 B相が約1.5μ諷の巧結晶粒を有
していることがわかり、EPMA(電子プローブ微量分
析装置)による組成分析の結果でも、再結晶粒はNd2
Fe14 B相であることが確認された。
As a result of compositional analysis using E PMA (electron probe microanalyzer), the bases in the scanning electron micrographs in Figures 4(a) and (b) are both Nd2Fe14B phase, and there is Nd-rich at the grain boundaries. phase existed. Nd of the cast body after the homogenization treatment shown in Figure 4 (1)) above
The 2Fe14B phase was coarse deadrite-like crystal grains weighing several tens to several thousand micrometers. The cast permanent magnet obtained in Example 1 shown in FIG. 4(a) has a main phase of N.
(It was found that the 12Fe 14 B phase has fine crystal grains with a diameter of about 1.5μ, and the results of composition analysis using EPMA (electron probe microanalyzer) also show that the recrystallized grains are Nd2
It was confirmed that it was Fe14 B phase.

よって、上記第4図(a)から、この発明の鋳造体永久
磁石は、単なる鋳造体組織ではなく、約1.5μ講の新
たなNd2F1!114 B相の再結晶粒が多数存在し
ている再結晶組織を有していることがわかる。
Therefore, from FIG. 4(a) above, the cast permanent magnet of the present invention does not have a simple cast structure, but has a large number of recrystallized grains of the new Nd2F1!114B phase of about 1.5 μm. It can be seen that it has a recrystallized structure.

さらに、この再結晶組織は、第3図に示される熱処理を
行って得られることもわかる。
Furthermore, it can be seen that this recrystallized structure can be obtained by performing the heat treatment shown in FIG.

上記実施例1によシ得られた永久磁石の磁気特性の結果
を第1表に示した。
Table 1 shows the results of the magnetic properties of the permanent magnet obtained in Example 1 above.

比較例1および2 上記実施例1と同様の、均質化処理を行った。Comparative examples 1 and 2 The same homogenization treatment as in Example 1 above was performed.

縦:8鵡×横:8MX高さ:10簡の鋳造体ブロックを
熱処理炉に入れ、 lXl0  Torrの真空に排気
した後、その真空中で室温から810℃まで昇温し、温
度: 810℃で30分保持して鋳造体ブロックの温度
を810℃に一様にした後、 Arガスをl NtlW
iL (20℃)の流量でl atmまで熱処理炉に流
入させ、炉内をl atmに維持しなからArガスをフ
ローさせ、その温度二810℃−Arガス圧カニ l 
atmの状態を5時間保持したのち、温度: 810℃
で1時間排気を行い、熱処理炉内の雰囲気をl X I
 OTorrの真空とした。その後、炉内にlatmに
なるまでArガスを流入して上記鋳造体ブロックを急冷
してNd−ye−B系鋳造体永久磁石を得た(比較例1
)。
A cast block of length: 8mm x width: 8MX x height: 10 pieces was placed in a heat treatment furnace, evacuated to a vacuum of 1X10 Torr, and then heated from room temperature to 810℃ in the vacuum. After holding for 30 minutes to make the temperature of the cast block uniform at 810℃, Ar gas was added to lNtlW.
Ar gas is flowed into the heat treatment furnace at a flow rate of iL (20℃) up to latm, and Ar gas is flowed while maintaining the inside of the furnace at latm, and the temperature is 2810℃ - Ar gas pressure crab l
After maintaining ATM condition for 5 hours, temperature: 810℃
The atmosphere inside the heat treatment furnace was evacuated for 1 hour to
The vacuum was OTorr. Thereafter, Ar gas was introduced into the furnace until the temperature reached latm, and the cast block was rapidly cooled to obtain a Nd-ye-B cast permanent magnet (Comparative Example 1).
).

また、上記実施例1の熱処理において水素ガスを用いず
に、 lXl0  Torrの真空中で実施例1と同様
の熱処理を行って、Nd−Fe−B系鋳造体永久磁石を
得た(比較例2)。
Further, in the heat treatment of Example 1, a heat treatment similar to that of Example 1 was performed in a vacuum of 1X10 Torr without using hydrogen gas to obtain an Nd-Fe-B cast permanent magnet (Comparative Example 2). ).

上記比較例1および2の熱処理パターンを第3′図およ
び第3′図に示す。
The heat treatment patterns of Comparative Examples 1 and 2 are shown in FIGS. 3' and 3'.

上記比較例1および2で得られた鋳造体永久殊石の組織
は、第4図(b)に示された組織と同様の。
The structure of the cast permanent stone obtained in Comparative Examples 1 and 2 is similar to the structure shown in FIG. 4(b).

主相(D Nd 2 F s 14 B相がデッドライ
ト状の粗大な結晶粒を有していた。
The main phase (D Nd 2 F s 14 B phase) had deadrite-like coarse crystal grains.

上記比較例1および2で得られた鋳造棒永久磁石の磁気
特性の結果も第1表に示した。
Table 1 also shows the results of the magnetic properties of the cast rod permanent magnets obtained in Comparative Examples 1 and 2 above.

第1表から、この発明の鋳造棒永久磁石は、保磁力が1
2.5 KOeと高く、すぐれた磁気特性を示すことが
わかる。
From Table 1, it can be seen that the cast bar permanent magnet of this invention has a coercive force of 1.
It can be seen that it exhibits excellent magnetic properties with a high value of 2.5 KOe.

第   1   表 実施例2〜10および比較例3〜5 希土類元素としてNdおよびPrを用い、電子ビーム溶
解炉で溶解、鋳造して製造したNd−Pr−Fe−B系
の原子数組成がNd14jPrllJFe78.4 B
4.7であるN(1−F’r −Fe −B系合金の鋳
造体を、たて二B HX横:8wX高さ=10鴎のブロ
ックに切シ出した。
Table 1 Examples 2 to 10 and Comparative Examples 3 to 5 Using Nd and Pr as rare earth elements, the atomic composition of the Nd-Pr-Fe-B system manufactured by melting and casting in an electron beam melting furnace was Nd14jPrllJFe78. 4 B
A cast body of an N(1-F'r-Fe-B-based alloy) having a molecular weight of 4.7 was cut into blocks with vertical dimensions of 2B HX width: 8wX height=10.

この鋳造体ブロックを熱処理炉に入れ、2XIO”’T
orrの真空に排気した後、その真空中で室温から。
This cast block was placed in a heat treatment furnace, and 2XIO"'T
From room temperature in that vacuum after evacuation to orr vacuum.

第2表の水素吸蔵温度まで昇温し、上記第2表の水素吸
蔵温度で30分保持して鋳造体ブロックの温度を均一に
した後、水素ガスを0.6 NLl lj& (温度:
20℃)の流量で水素ガス圧カニ 500Torrにな
るまで熱処理炉に流入させ、炉内を水素ガス圧カニ a
 o 0Torr K #a持しながら水素ガスを減圧
フローさせて上記鋳造体ブロックに水素を吸蔵させ、上
記第2表の水素吸蔵温度−水素ガス圧カニS OOTo
rTの状態を2時間保持して上記鋳造体ブロック内に一
様に水素を吸蔵させた。
After raising the temperature to the hydrogen storage temperature shown in Table 2 and holding it for 30 minutes at the hydrogen storage temperature shown in Table 2 to make the temperature of the cast block uniform, hydrogen gas was heated to 0.6 NLl lj& (temperature:
20°C) until the hydrogen gas pressure reaches 500 Torr.
o 0 Torr K #a, hydrogen gas is allowed to flow under reduced pressure to absorb hydrogen into the cast block, and the hydrogen storage temperature - hydrogen gas pressure crab S OOTo shown in Table 2 above is applied.
The rT state was maintained for 2 hours to uniformly store hydrogen in the cast block.

ついで、上記第2表の脱水素温度で1時間排気・ を行
い、熱処理炉内の雰囲気をl X I O”’ Tor
rの真空として、上記鋳造体ブロックの脱水素処理を行
った。その後炉内に1 atmになるまでArガスを流
入して上記鋳造体ブロックを急冷し、N(1−Pr −
?・−B系鋳造体永久磁石を得た。得られた上記鋳造体
永久磁石について組織観察を行い、再結晶組織の有無を
調べ、′a磁気特性測定して、それぞれの結果を第2表
に示した。
Next, the atmosphere in the heat treatment furnace was reduced to l
The cast block was subjected to dehydrogenation treatment under a vacuum of r. Thereafter, Ar gas was introduced into the furnace until the temperature reached 1 atm to rapidly cool the cast block, and N(1-Pr-
? - A B-based cast permanent magnet was obtained. The structure of the obtained cast permanent magnet was observed, the presence or absence of a recrystallized structure was examined, and the magnetic properties were measured. The results are shown in Table 2.

上記第2表から、温度:)00〜1000℃で水素吸蔵
と脱水素処理を行うと、上記鋳造体ブロックは、再結晶
を有する仁とがわかシ、特tC@[:800〜900℃
の範囲の水素I&麓と脱水素処理においては、高い磁気
特性を有することがわかる。
From Table 2 above, when hydrogen absorption and dehydrogenation treatment is carried out at a temperature of 00 to 1000°C, the cast block has recrystallized cores, special tC@: 800 to 900°C.
It can be seen that it has high magnetic properties in the range of hydrogen I&F and dehydrogenation treatment.

実施例15〜l)および比較例11.12希土類元素と
してNdとD7を用−1高周波溶解炉で溶解、鋳造して
製造したNd−Dy−Pa −B系の原子数組成がNd
zi、5Dys、sF!ys、t Ba、aであるNd
 −Dy −Fe−B系合金の鋳造体をArガス雰囲気
中で、@度:1O1iOC−60時間保持の条件で均質
化処理を行って冷却した後に、たて:awxx横=80
×高さ二10mのブロックに切シ出した。この鋳造体ブ
ロックを熱処理炉に入れ、  lXl0  ’I’or
rの真空に排気した後、その真空中で室温から830C
まで昇温し、温度:53ocで1時間保持して鋳造体プ
關ツクの温度を830℃で一様にした後に、水素ガスを
O,fl NA /iia (温度: 20C)の流量
で600 Torrまで熱処理炉に流入させ、炉内を水
素ガス圧カニ 600 TorrK#1持しながら水素
ガスを減圧フローさせて上記鋳造体ブロックに水素を吸
蔵させ、温度=830℃−水素ガス圧力=600 To
rrの状態を10時間保持して上記鋳造体プクツク内に
一様に水素をrJ!に7Rさせたのち、温度=820℃
で排気を行い、熱処理炉内の雰囲気をそれぞれ、水素ガ
ス圧カニ l X I O”Torr (実施例115
)、 1X10  ’l’orr(実施例16)、LX
l 0”’Torr (実施例1 ? )、 zxlo
−”rorr(比較例1m)およびl〒orr (比較
例12)の真空となるまで上記鋳造体ブロックの脱水素
処Jlを行った。その後、炉内にzatmになるまでA
rガスを流入して上記鋳造体ブロックを急冷し、Nd−
Dy−Pa−B系鋳造体永久磁石を得た。
Examples 15 to l) and Comparative Example 11.12 The atomic composition of the Nd-Dy-Pa-B system manufactured by melting and casting Nd and D7 as rare earth elements in a high-frequency melting furnace is Nd.
zi, 5Dys, sF! Nd which is ys, t Ba, a
-Dy -Fe-B alloy casting was homogenized and cooled in an Ar gas atmosphere under the conditions of @ degree: 1 O 1 iOC - 60 hours, and then vertical: awxx horizontal = 80
× It was cut into blocks with a height of 210 m. This cast block is placed in a heat treatment furnace, and lXl0 'I'or
After evacuating to a vacuum of r, the temperature from room temperature to 830C
After raising the temperature to 53°C and holding it for 1 hour to make the temperature of the cast body uniform at 830°C, hydrogen gas was heated to 600 Torr at a flow rate of O, fl NA /IIA (temperature: 20C). The cast block was allowed to absorb hydrogen by flowing the hydrogen gas under reduced pressure while maintaining the hydrogen gas pressure in the furnace at 600 TorrK #1. Temperature = 830°C - Hydrogen gas pressure = 600 Torr
Hold the rr state for 10 hours and uniformly introduce hydrogen into the above cast body. After 7R, temperature = 820℃
The atmosphere inside the heat treatment furnace was evacuated using a hydrogen gas pressure crab l X I O” Torr (Example 115).
), 1X10'l'orr (Example 16), LX
l 0'''Torr (Example 1?), zxlo
The above cast block was subjected to dehydrogenation Jl until a vacuum of -"rorr (Comparative Example 1m) and l〒orr (Comparative Example 12) was reached. Thereafter, A
The cast block is rapidly cooled by flowing r gas into Nd-
A Dy-Pa-B cast permanent magnet was obtained.

得られた上記鋳造体永久磁石を組織観察したところ、上
記実施例15〜1フおよび比較例11゜12で得られた
鋳造体永久磁石のすべてにおいて再結晶組織を有してお
り、tた。それらの磁気特性を測定してその結果を第3
表に示した。
When the structures of the obtained cast permanent magnets were observed, all of the cast permanent magnets obtained in Examples 15 to 1 and Comparative Examples 11 and 12 had a recrystallized structure. Measure their magnetic properties and send the results to the third
Shown in the table.

上記第3表から、この発明の上記鋳造体永久磁石は、脱
水素処理を行う際に、水素ガス圧力が1×10−1To
rr以下の圧力で脱水素処理を終えるとすぐれた磁気特
性を示すことがわかる。
From Table 3 above, it can be seen that the cast permanent magnet of the present invention has a hydrogen gas pressure of 1 x 10-1To when dehydrogenating.
It can be seen that excellent magnetic properties are exhibited when the dehydrogenation treatment is completed at a pressure below rr.

第   3   表 実施例18〜19および比較例13.14上記実施例1
5〜1フおよび比較例11.12において、均質化処理
を行ったNd −Dy−re−B系合金鋳造体のたて:
8mX横:B鵡×高さ:lO鵡に切り出した鋳造体ブロ
ックを熱処理炉に入れ。
Table 3 Examples 18-19 and Comparative Examples 13.14 Above Example 1
In 5 to 1 and Comparative Example 11.12, the Nd-Dy-re-B alloy castings subjected to homogenization treatment:
8 m x width: B parrot x height: 1 O A cast block cut into a parrot size was placed in a heat treatment furnace.

l X I O’l”orrの真空に排気した後、la
tmtでArガスを流入させ、 Arガスを7a−させ
ながら室温から830℃まで昇温し、830℃で1時間
保持して鋳造体ブロックの温度を830Cで一様にした
後に、Arガスフ四−を止めて水素ガスを0.2Nt/
1IilL(温度=20℃)の流量で熱処理炉に流入さ
せ、炉内を水素ガス置換し、炉内を1 atm Ic維
持しながら水素ガスをフローさせて上記鋳造体ブロック
に水素を吸蔵させ、温度:B:30℃−水素ガス圧カニ
latmの状態を10時間保持して上記鋳造体ブロック
内に一様に水素を吸蔵させたのち。
After evacuation to a vacuum of l X I O'l"orr, la
Ar gas was introduced at tmt, the temperature was raised from room temperature to 830°C while Ar gas was flowing at 7a, and the temperature was maintained at 830°C for 1 hour to make the temperature of the cast block uniform at 830C. Stop and add hydrogen gas to 0.2Nt/
It flows into the heat treatment furnace at a flow rate of 1 IilL (temperature = 20 ° C.), replaces the inside of the furnace with hydrogen gas, maintains the inside of the furnace at 1 atm Ic, and causes the hydrogen gas to flow into the cast block, and the temperature :B: After holding the condition at 30°C and hydrogen gas pressure for 10 hours to uniformly store hydrogen in the cast block.

水素ガスフローを止めて再びArガスを流入させ。Stop the hydrogen gas flow and let Ar gas flow in again.

炉内なArガス置換し、30分保持して炉内を1ain
のArガス雰囲気とした。この時水素ガスは上記にガス
雰囲気中Ktだ残留していた。その後、温度二820℃
で熱処理炉のArガスと残留水素ガスからなる雰囲気を
それぞれ水素ガス分圧が、5×10  Torr (実
施例18 )、8X10−2Torr (実施例19 
)、  2XIOTorr (比較例13)およびl 
Torr (比較例14)となるまで排気を行い、上記
鋳造体ブロックの脱水素処理を行った。水素ガス分圧測
定は、ガスクロマトダラム分析で行い。
Replace the Ar gas in the furnace, hold it for 30 minutes, and then turn the inside of the furnace 1ain.
The atmosphere was set to Ar gas atmosphere. At this time, as much as Kt of hydrogen gas remained in the gas atmosphere. After that, the temperature was 2820℃.
The hydrogen gas partial pressure of the atmosphere consisting of Ar gas and residual hydrogen gas in the heat treatment furnace was 5 x 10 Torr (Example 18) and 8 x 10-2 Torr (Example 19), respectively.
), 2XIOTorr (Comparative Example 13) and l
Torr (Comparative Example 14) The cast block was dehydrogenated by evacuation. Hydrogen gas partial pressure was measured using gas chromatograph Duram analysis.

キャリアガスはArを用−て水素ガスの体積比から換算
した。その後、炉内に1atmKなるまでArガスを流
入して鋳造体プμツクを急冷してNd−D7−re−B
系鋳造体永久磁石を得た。
The carrier gas was converted from the volume ratio of hydrogen gas using Ar. After that, Ar gas was introduced into the furnace until the temperature reached 1 atmK, and the cast body was rapidly cooled down to Nd-D7-re-B.
A cast permanent magnet was obtained.

このようKして得られた上記鋳造体永久磁石も全て再結
晶組織を有しておシ、それらの鋳造体永久磁石の磁気特
性を測定してその結果を第4表に示した。
The cast permanent magnets obtained in this manner all had a recrystallized structure, and the magnetic properties of these cast permanent magnets were measured and the results are shown in Table 4.

第   4   表 上記!@4表から、この発明の上記鋳造体永久出石は、
脱水素処理を行う際に、水素ガス分圧がIX I OT
orr以下の圧力で脱水素処理を終えるとすぐれた磁気
特性を示すことがわかる。
Table 4 above! From @Table 4, the above-mentioned cast permanent stone of this invention is:
When performing dehydrogenation treatment, the hydrogen gas partial pressure is
It can be seen that excellent magnetic properties are exhibited when the dehydrogenation treatment is completed at a pressure below orr.

〔発明の効果〕〔Effect of the invention〕

上述のように、この発明のR−Fe−B系鋳造体永久磁
石は、R2F・t4B相を主相とする再結晶組織を有す
るために、すぐれた磁気特性を示し、さらに再結晶粒径
を制御することによって上記鋳造体永久磁石の磁気特性
、耐酸化性、耐熱性等をも向上することもでき、薄皿磁
石としてもその磁気特性を維持することもできる。
As mentioned above, the R-Fe-B based cast permanent magnet of the present invention has a recrystallized structure with the R2F/t4B phase as the main phase, so it exhibits excellent magnetic properties and also has a recrystallized grain size. Through control, the magnetic properties, oxidation resistance, heat resistance, etc. of the cast permanent magnet can also be improved, and the magnetic properties can also be maintained as a thin plate magnet.

また、この発明のR−Fe−B系鋳造体永久磁石は、R
−Fe−B系合金粉末を焼結することなく。
Further, the R-Fe-B cast permanent magnet of the present invention has R
-Without sintering Fe-B alloy powder.

鋳造体ブーツクを水素表置および脱水素処理するもので
あるから、従来の粉末を焼結して製造するR−F・−B
系永久磁石の製造法に比べて製造1糧が非常に簡単であ
シ、生産性および経済性についてもすぐれた効果をもた
らすものである。
Since the cast boot stock is subjected to hydrogen exposure and dehydrogenation treatment, R-F・-B manufactured by sintering conventional powder is used.
Compared to the manufacturing method of permanent magnets, this method is much simpler to manufacture and has excellent productivity and economic efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の焼結磁石の組織の説明図。 第2図fatは、R−バーB系合金の鋳造体の組織の説
明図。 tJz図(blは、第2図(a) Ic示された組織を
有する鋳造体を処理してR2Fe14B相の再結晶を生
成させた組織を示す説明図。 第2図(elは、第2図(b)の再結晶生成組織を成長
させて得られた再結晶集合組織の説明図。 第3図は、実施例1の熱処理パターン。 第3′図は、比較例1の熱処理パターン。 第1図は、比較例2の熱処理パターン。 第4図(&)は、実施例1Kよシ得られた鋳造体永久磁
石の走査電子顕微鏡写真。 第4図(b) B h実施例1の均質化処理した鋳造体
の走査顕微鏡写真を示す。 1”−12Pa14B相、     2−R−rioh
#a。 3 = B −rich相、1′・−再結晶した12F
I114B相。 出瓢人 三菱金属株式会社 代理人  富 1) 和  夫 外1名1 : R2F
er48才目 2 : R−rtchJFm 第1図 (o)      μm (b)2μm 第4図 (a) (b) 寝2図 4  :  RzFet4B才目 2:  R−richオ目 イ”  4ii−r’晶しfz R2FmBJ8手  
続  補  正  書  く方式)昭和63年 1月2
8日 1、 事件の表示 特願昭62−257669号 2、 発明の名称 希土類−Fe −B系鋳造体永久磁石、およびその製造
法 a 補正をする者 事件との関係  特許出願人 住所 東京都千代田区大手町−丁目5番2号氏名(名称
)  (626)三菱金属株式会社代表者   永 野
  健 4、  代  理  人 住所 東京都千代田区神田錦町−丁目23番地宗保第二
ビル8階 5、 補正指令の日付 昭和63年 1月26日(発送臼) 6、 補正の対象 明細書の「発明の詳細な説明」および1図(1)明ll
1iI第19頁第8行〜第9行に[第3′図および第3
″図] とあるを、 「第3−1図および第3−2図」 と訂正する。 (2)明細書第29頁第5行に 「第3′図は、」 とあるを、 「第3−1図は、」 と訂正する。 (3)明1IllS第29頁第6行に 「第3″図は、」 とあるを、 「第3−2図は、」 と訂正する。 (4)明細書第29頁第8行に 「走査電子顕微鏡写真、[ とあるを、 「走査電子顕微鏡による金属組織写真、」と訂正する。 (5)明細書第29頁第10行に 「走査顕微鏡写真」 とあるを、 「走査電子顕微鏡による金属組織写真」と訂正する。 (6)図面の第3図、第3′図および第3″図を、第3
図、第3−1図および第3−2図に訂正する。 以  上
FIG. 1 is an explanatory diagram of the structure of a conventional sintered magnet. FIG. 2 fat is an explanatory diagram of the structure of a cast body of R-bar B alloy. tJz diagram (bl is Fig. 2 (a) Ic is an explanatory diagram showing the structure in which recrystallization of the R2Fe14B phase is generated by processing a cast body having the structure shown. Fig. 2 (el is Fig. 2) An explanatory diagram of the recrystallized texture obtained by growing the recrystallized structure in (b). Figure 3 is the heat treatment pattern of Example 1. Figure 3' is the heat treatment pattern of Comparative Example 1. The figure shows the heat treatment pattern of Comparative Example 2. Figure 4 (&) is a scanning electron micrograph of the cast permanent magnet obtained from Example 1K. Figure 4 (b) B h Homogenization of Example 1 A scanning micrograph of the treated casting is shown. 1"-12Pa14B phase, 2-R-rioh
#a. 3 = B - rich phase, 1' - recrystallized 12F
I114B phase. Presenter Mitsubishi Metals Co., Ltd. agent Tomi 1) Kazuo and 1 other person 1: R2F
er48 years old 2: R-rtchJFm Fig. 1 (o) μm (b) 2 μm Fig. 4 (a) (b) Sleeping 2 Fig. 4: RzFet4B 2: R-rich Shifz R2FmBJ8 hands
(continued amendment writing method) January 2, 1986
8th 1, Indication of the case, Patent Application No. 62-257669 2, Name of the invention: Rare earth-Fe-B cast permanent magnet, and its manufacturing method a. Person making the amendment: Relationship with the case. Patent applicant address: Chiyoda, Tokyo. 5-2, Otemachi-ku, Tokyo Name (Name) (626) Mitsubishi Metals Co., Ltd. Representative: Ken Nagano 4, Agent address: 8th floor, 5th floor, Soho Daini Building, 23-chome, Kanda Nishikicho, Chiyoda-ku, Tokyo, amended Date of Directive: January 26, 1986 (Despatch Mill) 6. "Detailed Description of the Invention" of the specification subject to amendment and Figure 1 (1) Clear ll
1iI, page 19, lines 8 to 9 [Figure 3' and 3
"Figure 3-1 and Figure 3-2" should be corrected. (2) On page 29, line 5 of the specification, the phrase ``Figure 3'is'' is corrected to ``Figure 3-1 is''. (3) In the 6th line of page 29 of Akira 1IllS, the statement ``Figure 3'' is corrected to ``Figure 3-2 is''. (4) On page 29, line 8 of the specification, ``Scanning electron micrograph,'' [ has been corrected to read ``Metal structure photograph by scanning electron microscope.'' (5) On page 29, line 10 of the specification, the phrase "scanning micrograph" is corrected to "metallic structure photograph taken with a scanning electron microscope." (6) Figures 3, 3' and 3'' of the drawings are
3-1 and 3-2. that's all

Claims (3)

【特許請求の範囲】[Claims] (1)Yを含む希土類元素(以下、Rで示す)とFeと
Bを主成分とするR−Fe−B系合金の鋳造体の組織が 平均再結晶粒径:0.05〜50μmの正方晶構造をと
るR_2Fe_1_4B金属間化合物相を主相とする再
結晶組織であること、を特徴とする希土類−Fe−B系
鋳造体永久磁石。
(1) The structure of a cast body of an R-Fe-B alloy whose main components are a rare earth element containing Y (hereinafter referred to as R), Fe, and B is square with an average recrystallized grain size of 0.05 to 50 μm. A rare earth-Fe-B cast permanent magnet characterized by having a recrystallized structure having an R_2Fe_1_4B intermetallic compound phase as a main phase.
(2)RとFeとBを主成分とする希土類−Fe−B系
合金の鋳造体を、 水素ガス雰囲気中において,温度:700〜1000℃
に保持して上記鋳造体に水素を吸蔵させ、 温度:700〜1000℃で、水素ガス圧力:1×10
^−^1Torr以下または水素ガス分圧:1×10^
−^1Torr以下の非酸化性雰囲気で脱水素処理し、
ついで、冷却する、 ことを特徴とする希土類−Fe−B系鋳造体永久磁石の
製造法。
(2) A cast body of a rare earth-Fe-B alloy containing R, Fe, and B as main components was heated to a temperature of 700 to 1000°C in a hydrogen gas atmosphere.
Temperature: 700-1000°C, Hydrogen gas pressure: 1×10
^-^ 1 Torr or less or hydrogen gas partial pressure: 1 x 10^
−^ Dehydrogenation treatment in a non-oxidizing atmosphere of 1 Torr or less,
A method for manufacturing a rare earth-Fe-B cast permanent magnet, characterized in that the permanent magnet is then cooled.
(3)上記温度:700〜1000℃までの昇温途中の
雰囲気は、水素の存在しない真空または不活性ガス雰囲
気であることを特徴とする特許請求の範囲第2項記載の
希土類−Fe−B系鋳造体永久磁石の製造法。
(3) Rare earth-Fe-B according to claim 2, characterized in that the atmosphere during the temperature increase from 700 to 1000°C is a vacuum or inert gas atmosphere without hydrogen. A method for producing cast permanent magnets.
JP62257669A 1987-10-13 1987-10-13 Manufacturing method of rare earth-Fe-B cast permanent magnet Expired - Lifetime JP2564492B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62257669A JP2564492B2 (en) 1987-10-13 1987-10-13 Manufacturing method of rare earth-Fe-B cast permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62257669A JP2564492B2 (en) 1987-10-13 1987-10-13 Manufacturing method of rare earth-Fe-B cast permanent magnet

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP7248797A Division JP2746223B2 (en) 1995-09-01 1995-09-01 Rare earth-Fe-B cast permanent magnet

Publications (2)

Publication Number Publication Date
JPH0199201A true JPH0199201A (en) 1989-04-18
JP2564492B2 JP2564492B2 (en) 1996-12-18

Family

ID=17309459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62257669A Expired - Lifetime JP2564492B2 (en) 1987-10-13 1987-10-13 Manufacturing method of rare earth-Fe-B cast permanent magnet

Country Status (1)

Country Link
JP (1) JP2564492B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5127970A (en) * 1991-05-21 1992-07-07 Crucible Materials Corporation Method for producing rare earth magnet particles of improved coercivity
US5143560A (en) * 1990-04-20 1992-09-01 Hitachi Metals, Inc., Ltd. Method for forming Fe-B-R-T alloy powder by hydrogen decrepitation of die-upset billets
US5221368A (en) * 1990-07-25 1993-06-22 Aimants Ugimag Method of obtaining a magnetic material of the rare earth/transition metals/boron type in divided form for corrosion-resistant magnets
US5338371A (en) * 1989-07-31 1994-08-16 Mitsubishi Metal Corporation Rare earth permanent magnet powder, method for producing same and bonded magnet

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61238915A (en) * 1985-04-16 1986-10-24 Hitachi Metals Ltd Permanent magnet alloy and its manufacture
JPS6223902A (en) * 1985-07-23 1987-01-31 Sumitomo Special Metals Co Ltd Alloy powder for rare earth magnet and its production
JPS62203303A (en) * 1986-03-03 1987-09-08 Seiko Epson Corp Cast rare earth element-iron system permanent magnet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61238915A (en) * 1985-04-16 1986-10-24 Hitachi Metals Ltd Permanent magnet alloy and its manufacture
JPS6223902A (en) * 1985-07-23 1987-01-31 Sumitomo Special Metals Co Ltd Alloy powder for rare earth magnet and its production
JPS62203303A (en) * 1986-03-03 1987-09-08 Seiko Epson Corp Cast rare earth element-iron system permanent magnet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5338371A (en) * 1989-07-31 1994-08-16 Mitsubishi Metal Corporation Rare earth permanent magnet powder, method for producing same and bonded magnet
US5143560A (en) * 1990-04-20 1992-09-01 Hitachi Metals, Inc., Ltd. Method for forming Fe-B-R-T alloy powder by hydrogen decrepitation of die-upset billets
US5221368A (en) * 1990-07-25 1993-06-22 Aimants Ugimag Method of obtaining a magnetic material of the rare earth/transition metals/boron type in divided form for corrosion-resistant magnets
US5127970A (en) * 1991-05-21 1992-07-07 Crucible Materials Corporation Method for producing rare earth magnet particles of improved coercivity

Also Published As

Publication number Publication date
JP2564492B2 (en) 1996-12-18

Similar Documents

Publication Publication Date Title
EP0304054B1 (en) Rare earth-iron-boron magnet powder and process of producing same
JP5906874B2 (en) Manufacturing method of RTB-based permanent magnet
JP2009260290A (en) Method of manufacturing r-fe-b system anisotropic bulk magnet
JP5906876B2 (en) Manufacturing method of RTB-based permanent magnet
JP2576671B2 (en) Rare earth-Fe-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
JPH04245403A (en) Rare earth-fe-co-b-based anisotropic magnet
JPH04133406A (en) Rare earth-fe-b permanent magnet powder and bonded magnet having excellent magnetic anisotropy and corrosion-resisting property
JP3368295B2 (en) Method for producing anisotropic rare earth alloy powder for permanent magnet
JPH024901A (en) Manufacture of rare earth element-fe-b series alloy magnet powder
JP3368294B2 (en) Method for producing anisotropic rare earth alloy powder for permanent magnet
JP4648586B2 (en) Rare earth sintered magnet manufacturing method and rare earth sintered magnet
JPH0199201A (en) Rare earth element-fe-b series cast permanent magnet and manufacture thereof
JPH03129703A (en) Rare-earth-fe-co-b-based permanent magnet powder and bonded magnet excellent in magnetic anisotropy and corrosion resistance
JPH06207204A (en) Production of rare earth permanent magnet
JP3423965B2 (en) Method for producing anisotropic rare earth alloy powder for permanent magnet
JP2586199B2 (en) Rare earth-Fe-Co-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
JP2746223B2 (en) Rare earth-Fe-B cast permanent magnet
JP3481653B2 (en) Method for producing anisotropic rare earth alloy powder for permanent magnet
JP3086334B2 (en) Anisotropic rare earth alloy powder for permanent magnet
JPH06310316A (en) Rare earth-fe-c-n intermetallic compound magnetic material powder and its manufacture
JP3529551B2 (en) Manufacturing method of rare earth sintered magnet
JP2024008327A (en) Method for producing rare earth magnet powder
JPH04246803A (en) Rare earth-fe-b anisotropic magnet
JPH06224015A (en) Manufacture of rare earth-fe-n intermetallic compound magnetic material particle and magnetic material powder of rare earth-fe-n intermetallic compound produced by same
JPS63262803A (en) Manufacture of nd-fe-b sintered magnet