JP2024008327A - Method for producing rare earth magnet powder - Google Patents
Method for producing rare earth magnet powder Download PDFInfo
- Publication number
- JP2024008327A JP2024008327A JP2022110105A JP2022110105A JP2024008327A JP 2024008327 A JP2024008327 A JP 2024008327A JP 2022110105 A JP2022110105 A JP 2022110105A JP 2022110105 A JP2022110105 A JP 2022110105A JP 2024008327 A JP2024008327 A JP 2024008327A
- Authority
- JP
- Japan
- Prior art keywords
- raw material
- rare earth
- hydrogen
- magnet powder
- magnet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000843 powder Substances 0.000 title claims abstract description 67
- 229910052761 rare earth metal Inorganic materials 0.000 title claims abstract description 53
- 150000002910 rare earth metals Chemical class 0.000 title claims abstract description 43
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 22
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 82
- 239000000956 alloy Substances 0.000 claims abstract description 82
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 75
- 239000001257 hydrogen Substances 0.000 claims abstract description 75
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 74
- 239000002994 raw material Substances 0.000 claims abstract description 49
- 238000009792 diffusion process Methods 0.000 claims abstract description 39
- 238000007323 disproportionation reaction Methods 0.000 claims abstract description 27
- 238000005266 casting Methods 0.000 claims abstract description 24
- 238000005215 recombination Methods 0.000 claims abstract description 23
- 230000006798 recombination Effects 0.000 claims abstract description 22
- 238000006243 chemical reaction Methods 0.000 claims abstract description 13
- 238000010438 heat treatment Methods 0.000 claims abstract description 10
- 230000007704 transition Effects 0.000 claims abstract description 8
- 150000001875 compounds Chemical class 0.000 claims description 9
- 229910052782 aluminium Inorganic materials 0.000 claims description 8
- 229910052779 Neodymium Inorganic materials 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 238000000034 method Methods 0.000 abstract description 33
- 238000006356 dehydrogenation reaction Methods 0.000 abstract description 8
- 238000005984 hydrogenation reaction Methods 0.000 abstract description 2
- 229910017767 Cu—Al Inorganic materials 0.000 abstract 1
- 230000008569 process Effects 0.000 description 30
- 238000012545 processing Methods 0.000 description 27
- 238000005336 cracking Methods 0.000 description 20
- 239000002245 particle Substances 0.000 description 20
- 239000013078 crystal Substances 0.000 description 13
- 229910052723 transition metal Inorganic materials 0.000 description 13
- 239000006185 dispersion Substances 0.000 description 8
- 238000000265 homogenisation Methods 0.000 description 8
- 239000000203 mixture Substances 0.000 description 7
- 229910052758 niobium Inorganic materials 0.000 description 7
- 238000001816 cooling Methods 0.000 description 6
- 229920005989 resin Polymers 0.000 description 6
- 239000011347 resin Substances 0.000 description 6
- 229910052726 zirconium Inorganic materials 0.000 description 6
- 229910052692 Dysprosium Inorganic materials 0.000 description 5
- 229910052771 Terbium Inorganic materials 0.000 description 5
- 230000004907 flux Effects 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 239000011230 binding agent Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 230000009466 transformation Effects 0.000 description 4
- 229910052777 Praseodymium Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011362 coarse particle Substances 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 229910052735 hafnium Inorganic materials 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- -1 tetragonal compound Chemical class 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 229910000521 B alloy Inorganic materials 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical class [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 239000006247 magnetic powder Substances 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910001172 neodymium magnet Inorganic materials 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Images
Landscapes
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Powder Metallurgy (AREA)
- Hard Magnetic Materials (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
Abstract
Description
本発明は、希土類磁石粉末の製造方法等に関する。 The present invention relates to a method for producing rare earth magnet powder, etc.
希土類磁石粉末をバインダ樹脂で固めたボンド磁石は、形状自由度に優れ、高磁気特性を発揮するため、省エネルギー化や軽量化等が望まれる電化製品や自動車等の各種電磁機器に多用される。ボンド磁石のさらなる利用拡大を図るため、希土類磁石粉末の磁気特性の向上が望まれている。希土類磁石粉末の磁気特性は、その製造過程でなされる水素処理条件により大きな影響を受けるため、水素処理に関連する提案が種々なされており、関連する記載が下記の特許文献にある。 Bonded magnets, which are made by hardening rare earth magnet powder with binder resin, have excellent shape freedom and exhibit high magnetic properties, so they are often used in various electromagnetic devices such as electric appliances and automobiles that require energy savings and weight reduction. In order to further expand the use of bonded magnets, it is desired to improve the magnetic properties of rare earth magnet powder. Since the magnetic properties of rare earth magnet powder are greatly affected by the hydrogen treatment conditions performed during its manufacturing process, various proposals related to hydrogen treatment have been made, and related descriptions can be found in the following patent documents.
なお、水素処理(HDDR)は、主に、吸水素による不均化反応(Hydrogenation-Disproportionation/「HD」という。)と、脱水素による再結合反応(Desorption-Recombination/「DR」という。)とからなる。本明細書では、特に断らない限り、その改良型であるd―HDDR(dynamic-Hydrogenation-Disproportionation-Desorption-Recombination)等も含めて単に「HDDR」という。 Hydrogen treatment (HDDR) mainly involves a disproportionation reaction by hydrogen absorption (referred to as "HD") and a recombination reaction by dehydrogenation (referred to as "DR"). Consisting of In this specification, unless otherwise specified, it is simply referred to as "HDDR" including its improved type, d-HDDR (dynamic-hydrogenation-disproportionation-desorption-recombination).
特許文献1には、Cuを含むNdFeB系合金鋳塊に吸水素処理(HD)と脱水素処理(DR)を施す旨の記載がある。特許文献1によれば、高磁気特性(特に保磁力Hcj)な希土類合金粉末は、水素分圧を1kPa程度とした脱水素処理時に得られている(特許文献1の[0035]、表2参照)。
特許文献2~5には、Cuを含む鋳造合金(母合金、原料合金、合金インゴット等)に対して、水素処理する旨の記載はない。Cuを含まない鋳造合金に脱水素処理(DR)を行なう場合、特許文献2、3では炉内の真空度を3.2kPaとし、特許文献4、5では水素分圧を1~5kPaとしている。もっとも、いずれの特許文献でも、脱水素時の水素分圧に関して詳細な検討はされておらず、その点に関する具体的な記載や示唆も全くない。
本発明は、このような事情の下で為されたものであり、高磁気特性な希土類磁石粉末が得られる新たな製造方法等を提供することを目的とする。 The present invention was made under these circumstances, and an object of the present invention is to provide a new manufacturing method etc. that can obtain rare earth magnet powder with high magnetic properties.
本発明者が鋭意研究したところ、Cuを含む鋳造合金に水素処理(HDDR)して希土類磁石粉末を得る場合に、再結合反応時(脱水素時)の水素圧力(分圧)と希土類磁石粉末の磁気特性との間に特異な相関があることを新たに見出した。この成果に基づいて、以降に述べる本発明を完成するに至った。 As a result of intensive research by the present inventor, we found that when hydrogen treating (HDDR) a cast alloy containing Cu to obtain rare earth magnet powder, the hydrogen pressure (partial pressure) during the recombination reaction (during dehydrogenation) and the rare earth magnet powder We have newly discovered that there is a unique correlation between the magnetic properties of Based on this result, the present invention described below has been completed.
《希土類磁石粉末の製造方法》
(1)本発明は、希土類元素と遷移元素とBとが含まれる鋳造合金からなる磁石原料に吸水素させて不均化反応を生じさせる不均化工程と、該不均化工程後の磁石原料から脱水素して再結合反応を生じさせる再結合工程とを備え、該鋳造合金は、その全体に対してCuを0.02~0.4at%含み、該再結合工程は、水素圧力が1.5~3.5kPaである水素雰囲気中で該不均化工程後の磁石原料を加熱する制御排気工程を備える希土類磁石粉末の製造方法である。
《Method for producing rare earth magnet powder》
(1) The present invention includes a disproportionation process in which a magnet raw material made of a cast alloy containing rare earth elements, transition elements, and B is made to absorb hydrogen to cause a disproportionation reaction, and a magnet after the disproportionation process. The cast alloy includes a recombination step in which raw materials are dehydrogenated to cause a recombination reaction. The method for producing rare earth magnet powder includes a controlled exhaust step of heating the magnet raw material after the disproportionation step in a hydrogen atmosphere of 1.5 to 3.5 kPa.
(2)本発明の製造方法によれば、高磁気特性な希土類磁石粉末が得られる。この理由は必ずしも定かではないが、現状、次のように考えられる。本発明の製造方法では、Cuを含むR-TM-B系鋳造合金(R:希土類元素、TM:遷移元素)からなる磁石原料に対して、水素圧力(分圧)を特定範囲とする制御排気工程を施している。この制御排気工程により、再結合工程中に、主相となる結晶核が局所的に異常成長して不均一な結晶粒の粗大化が発生すること、または均質な結晶粒の粗大化が発生することが抑止され得る。これにより、主相(R2TM14B)となる結晶粒が微細かつ均一的に分布した金属組織からなる高磁気特性な希土類磁石粒子が得られたと考えられる。 (2) According to the manufacturing method of the present invention, rare earth magnet powder with high magnetic properties can be obtained. Although the reason for this is not necessarily certain, it is currently thought to be as follows. In the manufacturing method of the present invention, controlled exhaust gas with hydrogen pressure (partial pressure) within a specific range is applied to a magnet raw material made of an R-TM-B cast alloy containing Cu (R: rare earth element, TM: transition element). Process is applied. Due to this controlled evacuation process, during the recombination process, the crystal nuclei that become the main phase grow abnormally locally, causing uneven crystal grain coarsening, or homogeneous crystal grain coarsening. can be inhibited. It is believed that this resulted in rare earth magnet particles having high magnetic properties and having a metal structure in which crystal grains serving as the main phase (R 2 TM 14 B) were finely and uniformly distributed.
《希土類磁石粉末、コンパウンド、ボンド磁石》
本発明は、希土類磁石粉末としても、その希土類磁石粉末を樹脂で結着させたボンド磁石としても、さらにそのボンド磁石の製造に用いられるコンパウンドとしても把握される。コンパウンドは、粉末粒子表面にバインダである樹脂を予め付着させてなる。なお、ボンド磁石やコンパウンドに用いられる粉末は、本発明に係る希土類磁石粉末以外の粉末が混在した複合粉末でもよい。
《Rare earth magnet powder, compound, bonded magnet》
The present invention can be understood as a rare earth magnet powder, a bonded magnet in which the rare earth magnet powder is bonded with a resin, and a compound used for manufacturing the bonded magnet. The compound is made by attaching a resin, which is a binder, to the surface of powder particles in advance. Note that the powder used for the bonded magnet or compound may be a composite powder in which powder other than the rare earth magnet powder according to the present invention is mixed.
《その他》
(1)鋳造合金、磁石原料(解砕原料を含む。)は、形態や状態を問わず、塊状、粒子状、粉末状等のいずれでもよく、また、分級等により粒度調整がされてもよい。
"others"
(1) Casting alloys and magnet raw materials (including crushed raw materials) may be in the form of lumps, particles, powder, etc., regardless of form or state, and particle size may be adjusted by classification etc. .
粒子の形状を問わず、その大きさ(粒サイズ)を適宜「粒径」という。また本明細書では、粒サイズを粒度で指標する。例えば、粒度(d)がα(μm)未満(d<α)の粒子とは、公称目開き(メッシュサイズ)αの篩いを通過する粒子という意味である。 Regardless of the shape of particles, the size (particle size) is appropriately referred to as "particle size." Further, in this specification, particle size is indexed by particle size. For example, particles having a particle size (d) of less than α (μm) (d<α) mean particles that pass through a sieve with a nominal opening (mesh size) α.
(2)希土類磁石粉末は、等方性磁石粉末でも、異方性磁石粉末でもよい。異方性磁石粉末は、一方向(磁化容易軸方向、c軸方向)の磁束密度(Br)が他方向の磁束密度よりも大きい磁石粒子からなる。等方性と異方性は、異方化度(DOT:Degree of Texture)により区別でき、DOTの値が0であれば等方性、0よりも大きければ異方性となる。なお、DOTは、c軸方向に平行(//)または垂直(⊥)な磁場を加えたときの磁束密度Br(//)またはBr(⊥)から、DOT=[Br(//)-Br(⊥)]/Br(//)として求まる。 (2) The rare earth magnet powder may be an isotropic magnet powder or an anisotropic magnet powder. Anisotropic magnet powder consists of magnet particles in which the magnetic flux density (Br) in one direction (easy axis direction, c-axis direction) is larger than the magnetic flux density in the other direction. Isotropy and anisotropy can be distinguished by the degree of anisotropy (DOT: Degree of Texture); if the value of DOT is 0, it is isotropic, and if it is greater than 0, it is anisotropic. In addition, DOT is calculated from the magnetic flux density Br (//) or Br (⊥) when applying a magnetic field parallel (//) or perpendicular (⊥) to the c-axis direction, DOT = [Br (//) - Br (⊥)]/Br(//).
(3)希土類元素(R)として、Nd、Pr、Ce、La等の他、Y、Sm、Tb、Dy等がある。遷移元素(TM)として、3d遷移元素(Sc~Ni)や4d遷移元素(Y~Ag)がある。Rの代表例はNdであり、TMの代表例はFeである。そのNdの一部はPrにより置換されても良い。また、そのFeの一部はCoにより、置換量は鋳造合金全体に対して、例えば0.01~20.0at%、さらには0.5~5.4at%置換されても良い。また、Bの一部はCにより置換されてもよい。置換量は鋳造合金全体に対して、例えば、0.05~1at%さらには0.1~0.6at%以下である。 (3) Rare earth elements (R) include Y, Sm, Tb, Dy, etc. in addition to Nd, Pr, Ce, La, etc. Examples of transition elements (TM) include 3d transition elements (Sc to Ni) and 4d transition elements (Y to Ag). A typical example of R is Nd, and a typical example of TM is Fe. A part of the Nd may be replaced by Pr. In addition, a part of the Fe may be replaced by Co in an amount of, for example, 0.01 to 20.0 at%, or even 0.5 to 5.4 at%, based on the entire cast alloy. Further, a part of B may be replaced by C. The amount of substitution is, for example, 0.05 to 1 at%, more preferably 0.1 to 0.6 at%, based on the entire cast alloy.
鋳造合金または希土類磁石粉末は、(不可避)不純物の他、特性改善に有効な改質元素を含み得る。改質元素として、例えば、保磁力の向上に有効なAl、Ti、V、Cr、Ni、Zn、Ga、Zr、Nb、Mo、Sn、Hf、Ta、W、Dy、Tb、Co等がある。 In addition to (inevitable) impurities, the cast alloy or rare earth magnet powder may contain modifying elements effective for improving properties. Modifying elements include, for example, Al, Ti, V, Cr, Ni, Zn, Ga, Zr, Nb, Mo, Sn, Hf, Ta, W, Dy, Tb, Co, etc., which are effective in improving coercive force. .
(4)特に断らない限り本明細書でいう「x~y」は下限値xおよび上限値yを含む。本明細書に記載した種々の数値または数値範囲に含まれる任意の数値を新たな下限値または上限値として「a~b」のような範囲を新設し得る。また、「x~ykPa」はxkPa~ykPaを意味し、他の単位系についても同様である。 (4) Unless otherwise specified, "x to y" as used herein includes a lower limit x and an upper limit y. A new range such as "a to b" can be established by setting any numerical value included in the various numerical values or numerical ranges described herein as a new lower limit or upper limit. Furthermore, "x~ykPa" means xkPa~ykPa, and the same applies to other unit systems.
上述した本発明の構成要素に、本明細書中から任意に選択した一つまたは二つ以上の構成要素を付加し得る。本明細書で説明する内容は、本発明の製造方法のみならず、希土類磁石粉末、コンパウンド、ボンド磁石等にも適宜該当し、方法的な構成要素であっても物に関する構成要素となり得る。いずれの実施形態が最良であるか否かは、対象、要求性能等によって異なる。 One or more components arbitrarily selected from the present specification may be added to the components of the present invention described above. The content described in this specification applies not only to the manufacturing method of the present invention, but also to rare earth magnet powder, compounds, bonded magnets, etc., and even a method-related component can be a product-related component. Which embodiment is best depends on the object, required performance, etc.
《希土類磁石粉末》
(1)希土類磁石粉末(単に「磁石粉末」という。)は磁石粒子からなり、磁石粒子は正方晶化合物である微細なR2TM14B1型結晶(主相)と、その結晶粒の周囲を包囲する粒界相とからなる。主相を構成する正方晶化合物の化学量論組成は、R:11.8at%、B:5.9at%、残部がTMである。粒界相を含めて考えると、磁石粒子全体(100at%)に対して、例えば、希土類元素(R)は12~18at%、12.5~16.5at%さらには13~15at%、Bは5.5~8at%さらには6~7at%含まれる。RおよびB以外の残部は、主に遷移金属元素(TM)であるが、典型金属元素(Al等)、典型非金属元素(C、O等)、不純物等を含んでもよい。
《Rare earth magnet powder》
(1) Rare earth magnet powder (simply referred to as "magnet powder") consists of magnet particles, which include fine R 2 TM 14 B 1 type crystals (main phase), which are tetragonal compounds, and the surroundings of the crystal grains. It consists of a grain boundary phase surrounding the grain boundary phase. The stoichiometric composition of the tetragonal compound constituting the main phase is R: 11.8 at%, B: 5.9 at%, and the balance is TM. Considering the grain boundary phase, for example, the rare earth element (R) is 12 to 18 at%, 12.5 to 16.5 at%, and further 13 to 15 at%, and B is It contains 5.5 to 8 at% and further 6 to 7 at%. The remainder other than R and B is mainly a transition metal element (TM), but may also contain typical metal elements (Al, etc.), typical nonmetal elements (C, O, etc.), impurities, and the like.
(2)Rは、例えば、Nd、Pr、Dy、Tb等である。磁石粒子は、Cuの他に、Al、Si、Ti、V、Cr、Ni、Zn、Ga、Zr、Nb、Mo、Mn、Sn、Hf、Ta、W、Dy、Tb、Co等の少なくとも一種含んでもよい。
磁石粒子全体に対して、例えば、Cuなら0.02~2at%、0.05~1at%さらには0.1~0.5at%、Alなら0.02~3.5at%、0.2~2.5at%さらには0.4~1.5at%、NbやZrなら0.05~0.7at%、0.1~0.5at%さらには0.15~0.3at%、Gaなら0.4at%以下(0.01~0.4at%)、0.35at%以下さらには0.25at%以下含まれ得る。
(2) R is, for example, Nd, Pr, Dy, Tb, etc. In addition to Cu, the magnet particles include at least one of Al, Si, Ti, V, Cr, Ni, Zn, Ga, Zr, Nb, Mo, Mn, Sn, Hf, Ta, W, Dy, Tb, Co, etc. May include.
For example, Cu is 0.02 to 2 at%, 0.05 to 1 at%, and even 0.1 to 0.5 at%, and Al is 0.02 to 3.5 at%, 0.2 to 2.5at% and 0.4 to 1.5at%, 0.05 to 0.7at% for Nb and Zr, 0.1 to 0.5at% and further 0.15 to 0.3at%, and 0 for Ga. The content may be 0.4 at% or less (0.01 to 0.4 at%), 0.35 at% or less, and further 0.25 at% or less.
《製造方法》
(1)鋳造合金
鋳造合金は、R-TM-B系合金溶湯を鋳型に注湯し、凝固させて得られたインゴット合金でも、その溶湯を急冷凝固させて得られた急冷凝固合金でもよい。急冷凝固合金は、例えば、ストリップキャスト法(SC)等により得られる。
"Production method"
(1) Casting alloy The casting alloy may be an ingot alloy obtained by pouring a molten R-TM-B alloy into a mold and solidifying it, or a rapidly solidified alloy obtained by rapidly cooling and solidifying the molten metal. The rapidly solidified alloy can be obtained, for example, by strip casting (SC).
鋳造合金の成分組成は、磁石粉末の成分組成の他、拡散処理されるときなら拡散原料の成分組成と配合量も考慮して調整される。鋳造合金は、その全体を100at%として、例えば、Rを11.5~15at%、12~14at%さらには12.2~13.5at%、Bを5.5~8at%さらには6~7at%含む。鋳造合金の残部は、遷移元素(例えばFe)や改質元素(例えばCu、Al、Nb、Zr等)である。 The composition of the cast alloy is adjusted by taking into account not only the composition of the magnet powder but also the composition and amount of the diffusion raw material when it is subjected to diffusion treatment. For example, the casting alloy has R of 11.5 to 15 at%, 12 to 14 at%, further 12.2 to 13.5 at%, B of 5.5 to 8 at%, and further 6 to 7 at%, assuming that the entire casting alloy is 100 at%. %include. The remainder of the cast alloy is a transition element (eg, Fe) or a modifying element (eg, Cu, Al, Nb, Zr, etc.).
本発明に係る鋳造合金は、少なくともCuを含む。Cuは、鋳造合金全体に対して、例えば、0.02~0.4at%、0.03~0.25at%,0.05~0.2at%さらには0.07~0.15at%含まれる。Cuが過少では、制御排気工程で水素圧力を調整しても、保磁力があまり向上しない。Cuが過多になると、磁石粉末の保磁力が低下し得る。 The casting alloy according to the present invention contains at least Cu. Cu is contained in, for example, 0.02 to 0.4 at%, 0.03 to 0.25 at%, 0.05 to 0.2 at%, and further 0.07 to 0.15 at%, based on the entire cast alloy. . If Cu is too small, the coercive force will not improve much even if the hydrogen pressure is adjusted in the controlled exhaust process. If Cu becomes too large, the coercive force of the magnet powder may decrease.
鋳造合金は、Cuに加えてAlを含んでもよい。Alは、鋳造合金全体に対して、例えば、0.02~1.5at%、0.2~1.2at%さらには0.5~0.9at%含まれる。Alは、過少なら保磁力の向上効果が乏しくなり、過多なら残留磁束密度の低下要因となる。 The casting alloy may contain Al in addition to Cu. Al is contained in the entire cast alloy, for example, 0.02 to 1.5 at%, 0.2 to 1.2 at%, and further 0.5 to 0.9 at%. If the amount of Al is too small, the effect of improving the coercive force will be poor, and if it is too large, it will cause a decrease in the residual magnetic flux density.
鋳造合金は、NbとZrの少なくとも一方を含んでもよい。NbとZrは合計で、鋳造合金全体に対して、例えば、0.05~0.7at%、0.1~0.5at%さらには0.15~0.3at%含まれる。いずれの元素も、過少では磁気異方性の向上効果が乏しくなり、過多では磁石粉末の残留磁束密度が低下し得る。 The casting alloy may include at least one of Nb and Zr. Nb and Zr are contained in a total of, for example, 0.05 to 0.7 at%, 0.1 to 0.5 at%, and further 0.15 to 0.3 at%, based on the entire cast alloy. If the amount of either element is too small, the effect of improving magnetic anisotropy will be poor, and if it is too large, the residual magnetic flux density of the magnet powder may decrease.
(2)均質化処理
均質化処理(溶体化処理)により、鋳造合金の金属組織の均一化や、軟磁性なαFe相の偏析解消等が図られる。
(2) Homogenization treatment Homogenization treatment (solution treatment) makes the metal structure of the cast alloy uniform and eliminates the segregation of the soft magnetic αFe phase.
均質化処理は、例えば、鋳造合金を1000~1200℃さらには1050~1150℃で加熱してなされる。処理時間は、例えば、3~50時間さらには10~40時間である。加熱雰囲気は、例えば、不活性雰囲気(不活性ガス(Ar等)雰囲気、真空雰囲気等)である。 The homogenization treatment is performed, for example, by heating the cast alloy at 1000 to 1200°C, or further at 1050 to 1150°C. The treatment time is, for example, 3 to 50 hours, or even 10 to 40 hours. The heating atmosphere is, for example, an inert atmosphere (an inert gas (Ar, etc.) atmosphere, a vacuum atmosphere, etc.).
(3)分散処理
分散処理により、Rリッチ(例えばNdリッチ)な粒界相の均一的な形成が促進される。分散処理後の鋳造合金に高温水素解砕処理を行うと、結晶粒界で優先的に破断(分離)が生じて、主相粒内におけるクラックの発生が抑制され得る。
(3) Dispersion treatment The dispersion treatment promotes the uniform formation of an R-rich (for example, Nd-rich) grain boundary phase. When the cast alloy subjected to the dispersion treatment is subjected to high-temperature hydrogen cracking treatment, fracture (separation) occurs preferentially at the grain boundaries, and the generation of cracks within the main phase grains can be suppressed.
分散処理は、高温水素解砕より高い(さらには均質化処理より低い)温度、例えば、650~900℃、650~800℃さらには680~750℃で加熱してなされる。その処理時間は、例えば、10分~10時間さらには0.5~3時間である。加熱雰囲気は、例えば、不活性雰囲気である。 The dispersion treatment is performed by heating at a temperature higher than that of high-temperature hydrogen cracking (and lower than that of homogenization treatment), for example, 650 to 900°C, 650 to 800°C, or further 680 to 750°C. The treatment time is, for example, 10 minutes to 10 hours, and further 0.5 to 3 hours. The heating atmosphere is, for example, an inert atmosphere.
(4)水素解砕
HDDR前(不均化工程前)の鋳造合金を水素雰囲気に予め曝す水素解砕(工程)がなされてもよい。換言すると、不均化工程は、不均化反応を生じる温度未満の水素雰囲気に鋳造合金を曝して得られた磁石原料になされてもよい。
(4) Hydrogen cracking Hydrogen cracking (step) may be performed in which the cast alloy before HDDR (before the disproportionation process) is exposed in advance to a hydrogen atmosphere. In other words, the disproportionation step may be performed on the magnet raw material obtained by exposing the cast alloy to a hydrogen atmosphere below the temperature that causes the disproportionation reaction.
水素解砕処理は、低温域(例えば、室温~300℃さらには室温~100℃)でなされる低温水素解砕でも、高温域(例えば、350~585℃、400~575℃さらには425~550℃)でなされる高温水素解砕でもよい。 Hydrogen cracking treatment can be carried out in a low temperature range (e.g. room temperature to 300°C or even room temperature to 100°C) or in a high temperature range (e.g. 350 to 585°C, 400 to 575°C or even 425 to 550°C). It may also be high-temperature hydrogen cracking performed at
水素分圧は、例えば、1kPa~250kPaさらには5kPa~150kPaである。処理時間(雰囲気温度が目標温度に到達してからの経過時間)は、例えば、0.1~10時間さらには0.5~5時間である。高温水素解砕は、鋳造合金(雰囲気)が所定温度に到達してから水素を処理炉内へ導入するとよい。 The hydrogen partial pressure is, for example, 1 kPa to 250 kPa, and further 5 kPa to 150 kPa. The processing time (the elapsed time after the ambient temperature reaches the target temperature) is, for example, 0.1 to 10 hours, and further 0.5 to 5 hours. In high-temperature hydrogen cracking, hydrogen is preferably introduced into the processing furnace after the cast alloy (atmosphere) reaches a predetermined temperature.
ちなみに、高温水素解砕(工程/処理)を行なうと、水素は結晶粒内へほとんど侵入せずに粒界相(Rリッチ相/Ndリッチ相)へ主に侵入し、粒界相の体積膨張により結晶粒間でクラックが優先的に生じる。その結果、鋳造合金は結晶粒間で分離され、割れやクラックが少ない主相粒からなる磁石原料(解砕原料)が得られる。このような水素解砕の作用効果や機序等については、WO2020/017529で詳述されている。その記載内容(全文)は本願に適宜組み込まれるものとする。 By the way, when high-temperature hydrogen cracking (process/treatment) is performed, hydrogen hardly penetrates into the grains, but mainly enters the grain boundary phase (R-rich phase/Nd-rich phase), causing volume expansion of the grain boundary phase. Cracks occur preferentially between crystal grains. As a result, the cast alloy is separated between crystal grains, and a magnet raw material (crushed raw material) consisting of main phase grains with few cracks and cracks is obtained. The effects, mechanism, etc. of such hydrogen cracking are detailed in WO2020/017529. The written content (full text) shall be incorporated into this application as appropriate.
(5)分級
水素解砕により水素を吸収した鋳造合金は、自ら崩壊するか、軽い解砕により粒状となり得る。鋳造合金は、さらなる解砕や粉砕により粉末状にされてもよいし、分級により粒度調整されてもよい。少なくとも粗大な粒子を除去した磁石原料に、HDDRがなされるとよい。
(5) Classification A cast alloy that has absorbed hydrogen through hydrogen disintegration may collapse on its own or become granular through light disintegration. The cast alloy may be made into a powder by further crushing or pulverization, or the particle size may be adjusted by classification. HDDR is preferably performed on the magnet raw material from which at least coarse particles have been removed.
(6)HDDR
HDDRにより、微細なR2TM14B1型結晶(平均結晶粒径:0.05~2μm)が集合した多結晶体(磁石粒子)からなる磁石粉末が得られる。HDDRは、大別すると、不均化工程(HD)と再結合工程(DR)からなる。
(6) HDDR
By HDDR, a magnet powder consisting of a polycrystalline body (magnet particles) in which fine R 2 TM 14 B type 1 crystals (average grain size: 0.05 to 2 μm) are aggregated is obtained. HDDR can be roughly divided into a disproportionation process (HD) and a recombination process (DR).
不均化工程では、処理炉に入れた磁石原料を所定の水素雰囲気に曝す。本工程により吸水素した磁石原料は、不均化反応(順変態反応)を生じて、三相分解組織(αTM相、RH2相、TM2B相)となる。 In the disproportionation process, the magnet raw material placed in the processing furnace is exposed to a predetermined hydrogen atmosphere. The magnet raw material that has absorbed hydrogen in this step undergoes a disproportionation reaction (forward transformation reaction) and becomes a three-phase decomposed structure (αTM phase, RH 2 phase, TM 2 B phase).
不均化工程は、例えば、水素分圧:10~150kPaさらには15~50kPa、雰囲気温度:600~900℃さらには750~860℃、処理時間:1~5時間としてなされる。なお、本明細書でいう水素雰囲気は、水素と不活性ガスとの混合ガス雰囲気でもよい。 The disproportionation step is performed, for example, at a hydrogen partial pressure of 10 to 150 kPa, further 15 to 50 kPa, an ambient temperature of 600 to 900°C, further 750 to 860°C, and a treatment time of 1 to 5 hours. Note that the hydrogen atmosphere referred to in this specification may be a mixed gas atmosphere of hydrogen and an inert gas.
不均化工程中、水素分圧または雰囲気温度は終始一定でなくてもよい。例えば、反応速度が低下する工程末期に、圧力(水素分圧)または温度の少なくとも一方を上昇させて反応速度を調整し、三相分解を促進させてもよい(組織安定化工程)。 During the disproportionation step, the hydrogen partial pressure or the ambient temperature may not be constant throughout. For example, at the end of the process when the reaction rate decreases, at least one of pressure (hydrogen partial pressure) or temperature may be increased to adjust the reaction rate and promote three-phase decomposition (structure stabilization step).
再結合工程は、不均化工程後の磁石原料から脱水素する。本工程により、脱水素された磁石原料(三相分解組織)は再結合反応(逆変態反応)を生じて、RH2相から水素が除去されると共にTM2B相の結晶方位が転写された微細なR2TM14B1型結晶の水素化物(RTMBHX)となる。 In the recombination step, the magnet raw material after the disproportionation step is dehydrogenated. Through this process, the dehydrogenated magnet raw material (three-phase decomposed structure) caused a recombination reaction (reverse transformation reaction), and hydrogen was removed from the RH 2 phase and the crystal orientation of the TM 2 B phase was transferred. A fine R 2 TM 14 B 1 type crystal hydride (RTMBH x ) is formed.
再結合工程(制御排気工程)は、例えば、水素分圧:1.5~3.5kPa、1.8~3.2kPaさらには2~3kPa、雰囲気温度:600~900℃さらには750~860℃、処理時間:0.5~5時間さらには1~3時間としてなされる。本工程は、水素分圧が比較的高いため緩やかに進行する。また、水素分圧を特定範囲とすることにより、磁石粉末の磁気特性(保磁力)の向上が図られる。 In the recombination process (controlled exhaust process), for example, hydrogen partial pressure: 1.5 to 3.5 kPa, 1.8 to 3.2 kPa, further 2 to 3 kPa, ambient temperature: 600 to 900°C, furthermore 750 to 860°C. , treatment time: 0.5 to 5 hours, further 1 to 3 hours. This step proceeds slowly because the hydrogen partial pressure is relatively high. Furthermore, by setting the hydrogen partial pressure within a specific range, the magnetic properties (coercive force) of the magnet powder can be improved.
再結合工程(制御排気工程)後の処理炉内を真空雰囲気(1Pa以下さらには0.1Pa以下)にすると、磁石原料中に残留した水素が除去され、脱水素が完了する(強制排気工程)。本工程は、例えば、雰囲気温度:600~900℃さらには750~860℃、処理時間:0.1~5時間さらには0.3~1時間としてなされる。強制排気工程後の冷却は、結晶粒の成長を抑止するため急冷されるとよい。 When the inside of the processing furnace is made into a vacuum atmosphere (1 Pa or less, or even 0.1 Pa or less) after the recombination process (controlled exhaust process), the hydrogen remaining in the magnet raw material is removed and dehydrogenation is completed (forced exhaust process). . This step is carried out, for example, at an ambient temperature of 600 to 900°C, preferably 750 to 860°C, and a processing time of 0.1 to 5 hours, further 0.3 to 1 hour. The cooling after the forced evacuation process is preferably rapid cooling in order to suppress the growth of crystal grains.
不均化工程の開始から再結合工程(強制排気工程を含む。)の終了までは、略同温度を維持しつつ、水素分圧の変更のみでなされてもよい。制御排気工程と強制排気工程は、連続的になされても、非連続的になされてもよい。例えば、制御排気工程後に磁石原料を冷却する冷却工程を行い、強制排気工程はバッチ処理されてもよい。 From the start of the disproportionation step to the end of the recombination step (including the forced evacuation step), the temperature may be maintained at approximately the same level and the hydrogen partial pressure may be changed only. The controlled evacuation process and the forced evacuation process may be performed continuously or discontinuously. For example, a cooling process for cooling the magnet raw material may be performed after the controlled exhaust process, and the forced exhaust process may be batch processed.
(7)拡散処理
HDDR後に拡散処理がなされてもよい。拡散処理(拡散工程)は、例えば、HDDR(再結合工程)後の磁石原料に拡散原料を加えた混合原料を加熱してなされる。これにより、R2TM14B1型結晶の表面または結晶粒界に、非磁性相が形成され、磁石粒子の保磁力が向上し得る。なお、拡散処理は、不活性雰囲気(不活性ガス雰囲気、真空雰囲気等)でなされるとよい。
(7) Diffusion processing Diffusion processing may be performed after HDDR. The diffusion treatment (diffusion process) is performed, for example, by heating a mixed raw material obtained by adding a diffusion raw material to the magnet raw material after HDDR (recombination process). As a result, a nonmagnetic phase is formed on the surface or grain boundaries of the R 2 TM 14 B 1 type crystal, and the coercive force of the magnet particles can be improved. Note that the diffusion treatment is preferably performed in an inert atmosphere (an inert gas atmosphere, a vacuum atmosphere, etc.).
拡散原料として、例えば、軽希土類元素の合金や化合物、重希土類元素(Dy、Tb等)またはその合金や化合物(例えばフッ化物)などがある。軽希土類元素(Nd等)-Cu-(Al)系の合金や化合物を用いれば、稀少な重希土類元素の使用を回避できる。 Examples of the diffusion raw material include alloys and compounds of light rare earth elements, heavy rare earth elements (Dy, Tb, etc.), and alloys and compounds thereof (for example, fluorides). By using a light rare earth element (such as Nd)-Cu-(Al) based alloy or compound, it is possible to avoid the use of rare heavy rare earth elements.
《用途》
希土類磁石粉末は、種々の用途に利用され得る。その代表例はボンド磁石である。ボンド磁石は、主に希土類磁石粉末とバインダ樹脂からなる。バインダ樹脂は、熱硬化性樹脂でも熱可塑性樹脂でもよい。またボンド磁石は、圧縮成形されたものでも射出成形されたものでもよい。希土類異方性磁石粉末を用いたボンド磁石は、配向磁場中で成形されるとよい。
《Application》
Rare earth magnet powder can be used for various purposes. A typical example is a bonded magnet. Bonded magnets mainly consist of rare earth magnet powder and binder resin. The binder resin may be a thermosetting resin or a thermoplastic resin. Further, the bonded magnet may be compression molded or injection molded. A bonded magnet using rare earth anisotropic magnet powder is preferably molded in an orienting magnetic field.
鋳造合金の成分組成と製造条件が異なる希土類磁石粉末(試料)を製造し、それらの磁気特性を評価した。このような実施例に基づいて本発明を具体的に説明する。 We produced rare earth magnet powders (samples) with different cast alloy compositions and production conditions, and evaluated their magnetic properties. The present invention will be specifically explained based on such examples.
《試料の製造》
図1A、図1B(両者を併せて「図1」という。)に示す工程に沿って、表1に示す試料群に属する希土類磁石粉末を製造した。具体的には、次の通りである。
《Sample production》
Rare earth magnet powder belonging to the sample group shown in Table 1 was manufactured according to the steps shown in FIGS. 1A and 1B (both are collectively referred to as "FIG. 1"). Specifically, it is as follows.
(1)鋳造
アーク溶解法により、表1に示す複数種の鋳造合金A~Dを用意した。表1に示す成分組成は、各鋳造合金全体に対する配合組成であり、その全体に対する原子比(残部:Fe)で示されている。
(1) Casting A plurality of types of casting alloys A to D shown in Table 1 were prepared by an arc melting method. The component compositions shown in Table 1 are the compounding compositions for each cast alloy as a whole, and are expressed in atomic ratios (remainder: Fe) to the whole.
(2)均質化処理
真空排気後にArを導入した不活性雰囲気(PAr:35kPa)の処理炉内で、各鋳造合金を1140℃×20時間加熱した。
(2) Homogenization Treatment Each cast alloy was heated at 1140° C. for 20 hours in a processing furnace in an inert atmosphere (P Ar : 35 kPa) into which Ar was introduced after evacuation.
特に断らない限り、本実施例でいう雰囲気、温度、圧力は次の通りとする。雰囲気は、被処理物(鋳造合金、磁石原料)を入れた処理炉内の雰囲気である。温度(T)は、被処理物(鋳造合金、磁石原料)に接触させた熱電対により測定した。圧力(P)は、圧力計により処理炉の内圧(被処理物付近)を測定した。 Unless otherwise specified, the atmosphere, temperature, and pressure used in this example are as follows. The atmosphere is the atmosphere inside the processing furnace containing the objects to be processed (casting alloy, magnet raw material). The temperature (T) was measured with a thermocouple brought into contact with the object to be treated (casting alloy, magnet raw material). The pressure (P) was determined by measuring the internal pressure of the processing furnace (near the object to be processed) using a pressure gauge.
雰囲気(ガス)の変更は、処理炉内の真空排気後に行なった。真空雰囲気(Vac)は10Pa以下とした。水素雰囲気は、真空排気後(10Pa以下)の処理炉内へ水素のみを導入し、処理炉の内圧をその水素圧力(PH2)とした(以下同様)。 The atmosphere (gas) was changed after the processing furnace was evacuated. The vacuum atmosphere (Vac) was set to 10 Pa or less. For the hydrogen atmosphere, only hydrogen was introduced into the processing furnace after evacuation (10 Pa or less), and the internal pressure of the processing furnace was set to the hydrogen pressure ( PH2 ) (the same applies below).
(3)水素解砕処理
均質化処理後の鋳造合金に、後述する高温水素解砕または低温水素解砕の一方を施した。
(3) Hydrogen cracking treatment The cast alloy after the homogenization treatment was subjected to either high-temperature hydrogen cracking or low-temperature hydrogen cracking, which will be described later.
(3-1)高温水素解砕
高温水素解砕前に、均質化処理後の鋳造合金を真空雰囲気中で緩やかに700℃にしてから1時間保持した(分散処理)。この分散処理後の鋳造合金を水素雰囲気中(100kPa×450℃)で1時間保持した(高温水素解砕)。分散処理後の処理炉内への水素の導入は、真空状態の処理炉内(鋳造合金)が所定温度(450℃)へ到達した後に行なった。分散処理から高温水素解砕には、被処理物を処理炉内に入れたまま(大気中への取出等をせずに)連続的に行なった。
(3-1) High-temperature hydrogen cracking Before high-temperature hydrogen cracking, the cast alloy after the homogenization treatment was gently raised to 700° C. in a vacuum atmosphere and then held for 1 hour (dispersion treatment). The cast alloy after this dispersion treatment was held in a hydrogen atmosphere (100 kPa x 450°C) for 1 hour (high temperature hydrogen cracking). Hydrogen was introduced into the processing furnace after the dispersion treatment after the inside of the processing furnace (cast alloy) in a vacuum state reached a predetermined temperature (450° C.). The dispersion treatment and high-temperature hydrogen cracking were performed continuously while the material to be treated was kept in the treatment furnace (without being taken out into the atmosphere, etc.).
PH2を維持したまま、処理炉内を室温まで炉冷した。処理炉内の水素をArガス(大気圧)で置換してから、処理炉から取り出した鋳造合金を軽く解砕した。こうして、略粉末状の磁石原料を得た。 The inside of the processing furnace was cooled to room temperature while maintaining P H2 . After replacing the hydrogen in the processing furnace with Ar gas (atmospheric pressure), the cast alloy taken out from the processing furnace was lightly crushed. In this way, a substantially powdery magnet raw material was obtained.
(3-2)低温水素解砕
低温水素解砕は、均質化処理後の鋳造合金を水素雰囲気中(100kPa×室温)で1時間保持して行なった。
(3-2) Low-temperature hydrogen cracking Low-temperature hydrogen cracking was performed by holding the cast alloy after homogenization in a hydrogen atmosphere (100 kPa x room temperature) for 1 hour.
処理炉内の水素をArガス(大気圧)で置換してから、その鋳造合金を処理炉内から取り出して軽く解砕した。こうして、略粉末状の磁石原料を得た。 After replacing the hydrogen in the processing furnace with Ar gas (atmospheric pressure), the cast alloy was taken out of the processing furnace and lightly crushed. In this way, a substantially powdery magnet raw material was obtained.
(4)分級
磁石原料を篩い分けにより分級して、粗大な粒子を除去した。「<α」は、公称目開きα(μm)の試験用篩い(JIS Z 8801)を通過した粒子からなることを意味する。なお、本実施例では、解砕(粉砕)、分級、工程間の搬送等は、いずれも不活性雰囲気(Ar)中(グローブボックス内)で行った。
(4) Classification The magnet raw material was classified by sieving to remove coarse particles. "<α" means that the particles are made of particles that have passed through a test sieve (JIS Z 8801) with a nominal opening α (μm). In this example, crushing (pulverization), classification, transportation between processes, etc. were all performed in an inert atmosphere (Ar) (inside a glove box).
(5)HDDR
処理炉内の水素圧力(PH2)と温度(T)を図1Bに示すように制御して、分級後の磁石原料(12g)に、次のような水素処理(HDDR)を施した。
(5) HDDR
The hydrogen pressure (P H2 ) and temperature (T) in the processing furnace were controlled as shown in FIG. 1B, and the classified magnet raw material (12 g) was subjected to the following hydrogen treatment (HDDR).
先ず、高温水素化工程(25kPa×800℃×2時間)により、磁石原料に不均化反応(順変態反応)を生じさせた(不均化工程:HD)。 First, a disproportionation reaction (forward transformation reaction) was caused in the magnet raw material by a high temperature hydrogenation process (25 kPa x 800°C x 2 hours) (disproportionation process: HD).
次に、水素を連続的に排気しつつ、処理炉内を一定の水素雰囲気(xkPa×800℃:x=0~4)とする制御排気工程を1.5時間行なった。その後、処理炉内を真空雰囲気(0kPa×800℃)とする強制排気工程を0.5時間行った。 Next, a controlled exhaust process was performed for 1.5 hours to maintain a constant hydrogen atmosphere (xkPa×800° C.: x=0 to 4) in the processing furnace while continuously exhausting hydrogen. Thereafter, a forced evacuation process was performed for 0.5 hours to create a vacuum atmosphere (0 kPa x 800°C) in the processing furnace.
制御排気工程中の水素圧力(DR圧力)は、0kPa、1kPa、2kPa、3kPaまたは4kPaのいずれかとした。PH2=0kPaは、処理炉内を真空雰囲気(1Pa以下)としたことを意味する。こうして磁石原料へ再結合反応(逆変態反応)を生じさせた(再結合工程:DR)。 The hydrogen pressure (DR pressure) during the controlled exhaust process was set to either 0 kPa, 1 kPa, 2 kPa, 3 kPa, or 4 kPa. P H2 =0 kPa means that the inside of the processing furnace is in a vacuum atmosphere (1 Pa or less). In this way, a recombination reaction (reverse transformation reaction) was caused in the magnet raw material (recombination step: DR).
処理炉内を真空状態のまま室温付近まで炉冷した後、HDDRした処理物を不活性雰囲気(Ar)中で軽く解砕して、磁石粉末(拡散処理なし)を得た。その一部は、次工程の拡散処理に供した。 After cooling the processing furnace to around room temperature while keeping the inside of the processing furnace in a vacuum state, the HDDR processed material was lightly crushed in an inert atmosphere (Ar) to obtain magnet powder (without diffusion treatment). A part of it was used for the next step of diffusion treatment.
(6)拡散処理
HDDR後の磁石粉末に拡散原料を加えた混合原料を、真空雰囲気中で加熱(800℃×1時間)した(拡散工程)。拡散原料には、原子比がNd51Cu15Al34である合金粉末(<45μm)を用いた。混合原料全体に対する拡散原料の割合は2質量%とした。
(6) Diffusion treatment A mixed raw material obtained by adding a diffusion raw material to the magnet powder after HDDR was heated (800° C. for 1 hour) in a vacuum atmosphere (diffusion step). An alloy powder (<45 μm) having an atomic ratio of Nd 51 Cu 15 Al 34 was used as the diffusion raw material. The ratio of the diffusion raw material to the entire mixed raw material was 2% by mass.
真空状態のまま室温付近まで炉冷した処理炉内から取り出した拡散処理物を、大気中で軽く解砕して、磁石粉末(拡散処理あり)を得た。この磁石粉末は、全体(100at%)に対して、Nd:13.3at%、B:6.3at%、Nb:0.2at%となる。鋳造合金Aを用いたときはCu:0.3at%、Al:0.5 at%、鋳造合金Bを用いたときはCu:0.2at%、Al:1.2at%、鋳造合金Cを用いたときはCu:0.3at%、Al:1.2at%となる。 The diffusion-treated material was taken out from the processing furnace, which was cooled to around room temperature in a vacuum state, and was lightly crushed in the atmosphere to obtain magnet powder (diffusion-treated). This magnet powder has Nd: 13.3 at%, B: 6.3 at%, and Nb: 0.2 at% with respect to the whole (100 at%). When casting alloy A was used, Cu: 0.3 at%, Al: 0.5 at%, when casting alloy B was used, Cu: 0.2 at%, Al: 1.2 at%, casting alloy C was used. When it was, Cu: 0.3 at% and Al: 1.2 at%.
《測定》
磁石粉末の磁気特性を試料振動型磁力計(VSM:Vibrating Sample Magnetometer )により測定した。測定は、磁石粉末をカプセルに詰め、溶融パラフィン(約80℃)中で磁場配向(1193kA/m)させた後、着磁(3580kA/m)して行った。この際、各磁石粉末の密度は7.5g/cm3と仮定した。
"measurement"
The magnetic properties of the magnet powder were measured using a vibrating sample magnetometer (VSM). The measurement was carried out by filling a capsule with magnetic powder, oriented in a magnetic field (1193 kA/m) in molten paraffin (approximately 80° C.), and then magnetized (3580 kA/m). At this time, the density of each magnet powder was assumed to be 7.5 g/cm 3 .
鋳造合金Aを用いて拡散処理しなかった試料群(AL0、AH0)について、DR圧力と保磁力(iHc)の関係を図2Aに示した。鋳造合金Aを用いて拡散処理した試料群(AL1、AH1)について、DR圧力とiHcの関係を図2Bに示した。図2Aと図2Bを併せて「図2」という。 FIG. 2A shows the relationship between DR pressure and coercive force (iHc) for sample groups (AL0, AH0) that were not subjected to diffusion treatment using cast alloy A. FIG. 2B shows the relationship between DR pressure and iHc for the sample groups (AL1, AH1) that were subjected to diffusion treatment using casting alloy A. FIG. 2A and FIG. 2B are collectively referred to as "FIG. 2."
鋳造合金Bを用いて拡散処理しなかった試料群(BL0、BH0)について、DR圧力とiHcの関係を図3に示した。 FIG. 3 shows the relationship between DR pressure and iHc for sample groups (BL0, BH0) that were not subjected to diffusion treatment using casting alloy B.
鋳造合金Cを用いて拡散処理しなかった試料群(CL0、CH0)について、DR圧力とiHcの関係を図4Aに示した。鋳造合金Cを用いて拡散処理した試料群(CL1、CH1)について、DR圧力とiHcの関係を図4Bに示した。図4Aと図4Bを併せて「図4」という。鋳造合金Dを用いて拡散処理しなかった試料群(DL0)について、DR圧力と、iHcとの関係を図5に示した。 FIG. 4A shows the relationship between DR pressure and iHc for sample groups (CL0, CH0) that were not subjected to diffusion treatment using cast alloy C. FIG. 4B shows the relationship between DR pressure and iHc for sample groups (CL1, CH1) that were subjected to diffusion treatment using cast alloy C. FIG. 4A and FIG. 4B are collectively referred to as "FIG. 4." FIG. 5 shows the relationship between DR pressure and iHc for the sample group (DL0) that was not subjected to diffusion treatment using casting alloy D.
参考に、試料群(CH1)において、DR圧力を1kPaまたは2kPaとした各磁石粉末の磁化曲線を図6にまとめて示した。 For reference, the magnetization curves of each magnet powder in the sample group (CH1) at a DR pressure of 1 kPa or 2 kPa are collectively shown in FIG. 6.
《評価》
図2~図5から明らかなように、鋳造合金にCuが含まれるとき、DR圧力により磁気特性が顕著に変化した。具体的にいうと、DR圧力(PH2)を2~3kPa付近(例えば1.5~3.5kPa)としたとき、保磁力(iHc)がピーク的に向上した。このような傾向は、水素解砕の温度や拡散処理の有無を問わず現れた。
"evaluation"
As is clear from FIGS. 2 to 5, when Cu was included in the cast alloy, the magnetic properties changed significantly due to the DR pressure. Specifically, when the DR pressure (P H2 ) was set to around 2 to 3 kPa (for example, 1.5 to 3.5 kPa), the coercive force (iHc) increased to a peak. This tendency appeared regardless of the hydrogen cracking temperature or the presence or absence of diffusion treatment.
Cuに加えてAlも含む鋳造合金を用いた場合も、図2と図4の比較から明らかなように、DR圧力を1.5~3.5kPaとすることにより、iHcがピーク的に向上した。さらに拡散処理を行なうと、iHcがより向上した磁石粉末が得られた。このような傾向は水素解砕の温度や拡散処理の有無を問わず観られた。この場合、図4Aと図5の比較からもわかるように、稀少なGa(保磁力向上元素)を用いた磁石粉末よりもiHcが大きくなった。 Even when a cast alloy containing Al in addition to Cu was used, as is clear from the comparison between Figures 2 and 4, iHc was improved at its peak by setting the DR pressure to 1.5 to 3.5 kPa. . Further diffusion treatment yielded magnet powder with even higher iHc. This tendency was observed regardless of the hydrogen cracking temperature or the presence or absence of diffusion treatment. In this case, as can be seen from the comparison between FIG. 4A and FIG. 5, the iHc was larger than that of the magnet powder using rare Ga (a coercive force improving element).
以上から、本発明の製造方法によれば、稀少な元素等を用いるまでもなく、高磁気特性な希土類磁石粉末が得られることがわかった。 From the above, it was found that according to the manufacturing method of the present invention, rare earth magnet powder with high magnetic properties can be obtained without using rare elements.
Claims (6)
該不均化工程後の磁石原料から脱水素して再結合反応を生じさせる再結合工程とを備え、
該鋳造合金は、その全体に対してCuを0.02~0.4at%含み、
該再結合工程は、水素圧力が1.5~3.5kPaである水素雰囲気中で該不均化工程後の磁石原料を加熱する制御排気工程を備える希土類磁石粉末の製造方法。 a disproportionation step in which a magnet raw material made of a cast alloy containing a rare earth element, a transition element, and B is made to absorb hydrogen to cause a disproportionation reaction;
a recombination step of dehydrogenating the magnet raw material after the disproportionation step to cause a recombination reaction,
The cast alloy contains 0.02 to 0.4 at% of Cu based on the whole,
The recombination step includes a controlled exhaust step of heating the magnet raw material after the disproportionation step in a hydrogen atmosphere with a hydrogen pressure of 1.5 to 3.5 kPa.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022110105A JP2024008327A (en) | 2022-07-08 | 2022-07-08 | Method for producing rare earth magnet powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022110105A JP2024008327A (en) | 2022-07-08 | 2022-07-08 | Method for producing rare earth magnet powder |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2024008327A true JP2024008327A (en) | 2024-01-19 |
Family
ID=89544689
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022110105A Pending JP2024008327A (en) | 2022-07-08 | 2022-07-08 | Method for producing rare earth magnet powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2024008327A (en) |
-
2022
- 2022-07-08 JP JP2022110105A patent/JP2024008327A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6693392B2 (en) | R- (Fe, Co) -B system sintered magnet and its manufacturing method | |
KR20140049480A (en) | Rare earth sintered magnet and making method | |
JP5906874B2 (en) | Manufacturing method of RTB-based permanent magnet | |
JP7358989B2 (en) | permanent magnet | |
JP3250551B2 (en) | Method for producing anisotropic rare earth magnet powder | |
JP2022191358A (en) | magnet manufacturing | |
TW201716598A (en) | R-Fe-B based rare-earth sintering magnet compositing praseodymium (Pr) and tungsten (W) | |
JP5906876B2 (en) | Manufacturing method of RTB-based permanent magnet | |
Zhao et al. | Preparation and properties of hot-deformed magnets processed from nanocrystalline/amorphous Nd–Fe–B powders | |
JP2008127648A (en) | Method for producing rare earth anisotropic magnet powder | |
JP7255514B2 (en) | Method for producing rare earth magnet powder | |
WO2004030000A1 (en) | Method for producing r-t-b based rare earth element permanent magnet | |
EP2645381B1 (en) | Process for producing R-T-B-based rare earth magnet particles | |
JP6760538B2 (en) | Rare earth magnet powder manufacturing method | |
JP2024008327A (en) | Method for producing rare earth magnet powder | |
JPH0682575B2 (en) | Rare earth-Fe-B alloy magnet powder | |
JP2010255098A (en) | Rare earth alloy powder, method for producing the same, compound for anisotropic bond magnet, and anisotropic bond magnet | |
JP4650218B2 (en) | Method for producing rare earth magnet powder | |
JP7401479B2 (en) | Rare earth anisotropic magnet powder and its manufacturing method | |
JP2002025813A (en) | Anisotropic rare earth magnet powder | |
JPH09162054A (en) | Manufacture of r-t-b anisotropic bond magnet | |
JP2024031021A (en) | Manufacturing method of rare earth magnet powder | |
JP2024134583A (en) | Manufacturing method of rare earth magnet powder | |
JPH0199201A (en) | Rare earth element-fe-b series cast permanent magnet and manufacture thereof | |
JP2014075373A (en) | Method for manufacturing rare earth alloy powder, anisotropic bonded magnet and sintered magnet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230703 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20230703 |