JP5906874B2 - Manufacturing method of RTB-based permanent magnet - Google Patents
Manufacturing method of RTB-based permanent magnet Download PDFInfo
- Publication number
- JP5906874B2 JP5906874B2 JP2012068867A JP2012068867A JP5906874B2 JP 5906874 B2 JP5906874 B2 JP 5906874B2 JP 2012068867 A JP2012068867 A JP 2012068867A JP 2012068867 A JP2012068867 A JP 2012068867A JP 5906874 B2 JP5906874 B2 JP 5906874B2
- Authority
- JP
- Japan
- Prior art keywords
- heat treatment
- treatment step
- kpa
- less
- green compact
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 26
- 238000010438 heat treatment Methods 0.000 claims description 140
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 93
- 239000001257 hydrogen Substances 0.000 claims description 87
- 229910052739 hydrogen Inorganic materials 0.000 claims description 87
- 238000000034 method Methods 0.000 claims description 80
- 239000000843 powder Substances 0.000 claims description 78
- 239000012298 atmosphere Substances 0.000 claims description 70
- 230000008569 process Effects 0.000 claims description 57
- 229910045601 alloy Inorganic materials 0.000 claims description 55
- 239000000956 alloy Substances 0.000 claims description 55
- 239000002245 particle Substances 0.000 claims description 46
- 230000036961 partial effect Effects 0.000 claims description 26
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 24
- 238000000465 moulding Methods 0.000 claims description 20
- 238000012545 processing Methods 0.000 claims description 18
- 229910052742 iron Inorganic materials 0.000 claims description 8
- 238000000748 compression moulding Methods 0.000 claims description 6
- 230000000630 rising effect Effects 0.000 claims description 5
- 239000012071 phase Substances 0.000 description 88
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 60
- 238000006243 chemical reaction Methods 0.000 description 42
- 238000011282 treatment Methods 0.000 description 34
- 229910052786 argon Inorganic materials 0.000 description 30
- 239000002994 raw material Substances 0.000 description 29
- 239000013078 crystal Substances 0.000 description 18
- 239000007789 gas Substances 0.000 description 12
- 150000002910 rare earth metals Chemical class 0.000 description 12
- 230000005347 demagnetization Effects 0.000 description 10
- 238000005984 hydrogenation reaction Methods 0.000 description 10
- 239000007791 liquid phase Substances 0.000 description 10
- 238000007731 hot pressing Methods 0.000 description 9
- 239000000700 radioactive tracer Substances 0.000 description 9
- 238000006356 dehydrogenation reaction Methods 0.000 description 8
- 238000007323 disproportionation reaction Methods 0.000 description 8
- 230000005415 magnetization Effects 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 230000002829 reductive effect Effects 0.000 description 8
- 230000006835 compression Effects 0.000 description 7
- 238000007906 compression Methods 0.000 description 7
- 239000006247 magnetic powder Substances 0.000 description 7
- 238000005259 measurement Methods 0.000 description 6
- 125000004429 atom Chemical group 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 238000005215 recombination Methods 0.000 description 5
- 229910000859 α-Fe Inorganic materials 0.000 description 5
- 229910000521 B alloy Inorganic materials 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 4
- 230000004907 flux Effects 0.000 description 4
- 238000010298 pulverizing process Methods 0.000 description 4
- 230000006798 recombination Effects 0.000 description 4
- -1 tetragonal compound Chemical class 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 238000005266 casting Methods 0.000 description 3
- 238000009750 centrifugal casting Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000011049 filling Methods 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 238000007493 shaping process Methods 0.000 description 3
- 238000002490 spark plasma sintering Methods 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 238000006467 substitution reaction Methods 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000008520 organization Effects 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 241000892865 Heros Species 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 238000009739 binding Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000007561 laser diffraction method Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910001172 neodymium magnet Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 238000000634 powder X-ray diffraction Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000000452 restraining effect Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
- Hard Magnetic Materials (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
Description
本発明は、HDDR法によって作製される多孔質構造を有するR−T−B系永久磁石、および前記R−T−B系永久磁石を熱間圧縮することによって作製されるR−T−B系高密度磁石の製造方法に関する。 The present invention relates to an RTB system permanent magnet having a porous structure manufactured by the HDDR method, and an RTB system manufactured by hot compressing the RTB system permanent magnet. The present invention relates to a method for manufacturing a high-density magnet.
高性能永久磁石として代表的なR−T−B系永久磁石(RはNdおよび/またはPrを50原子%以上含む希土類元素、TはFe、またはFeとCo)は、三元系正方晶化合物であるR2T14B相を主相として含む組織を有し、優れた磁気特性を発揮する。R−T−B系永久磁石においては、主相であるR2T14B相の結晶粒径を小さくすることにより保磁力が向上することが知られている。1μm以下の平均結晶粒径を有するR−T−B系永久磁石を得る方法として、HDDR(Hydrogenation−Disproportionation−Desorption−Recombination)処理法が知られている。 R-T-B type permanent magnets typical as high performance permanent magnets (R is a rare earth element containing Nd and / or Pr of 50 atomic% or more, T is Fe, or Fe and Co) is a ternary tetragonal compound It has a structure containing the R 2 T 14 B phase as a main phase and exhibits excellent magnetic properties. In R-T-B permanent magnets, it is known that the coercive force is improved by reducing the crystal grain size of the R 2 T 14 B phase, which is the main phase. As a method for obtaining an RTB-based permanent magnet having an average crystal grain size of 1 μm or less, an HDDR (Hydrogenation-Disposition-Desorption-Recombination) processing method is known.
「HDDR」は水素化(Hydrogenation)および不均化(Disproportionation)と、脱水素(Desorption)および再結合(Recombination)とを順次実行するプロセスを意味している。公知のHDDR処理は、例えば、R−T−B系合金のインゴットまたは粉末を、水素雰囲気または水素ガスと不活性ガスとの混合雰囲気中で温度500℃〜1000℃に保持し、それによって上記インゴットまたは粉末に水素を吸蔵(水素吸蔵処理)させた後、例えば水素圧力が13Pa以下の真空雰囲気、または水素分圧が13Pa以下の不活性雰囲気になるまで温度500℃〜1000℃で脱水素処理し、次いで冷却する。 “HDDR” means a process of sequentially performing hydrogenation and disproportionation, dehydrogenation and recombination. The known HDDR treatment is performed, for example, by holding an R-T-B alloy ingot or powder at a temperature of 500 ° C. to 1000 ° C. in a hydrogen atmosphere or a mixed atmosphere of a hydrogen gas and an inert gas. Alternatively, after hydrogen is occluded in the powder (hydrogen occlusion treatment), dehydrogenation treatment is performed at a temperature of 500 ° C. to 1000 ° C. until, for example, a vacuum atmosphere with a hydrogen pressure of 13 Pa or less, or an inert atmosphere with a hydrogen partial pressure of 13 Pa or less. And then cooled.
上記処理において、典型的には次のような反応が進行する。すなわち、前記水素吸蔵処理によって、水素化ならびに不均化反応(双方を合わせて「HD反応」と呼ぶ。反応式の例:Nd2Fe14B+2H2→2NdH2+12Fe+Fe2B)が進行し、微細組織が形成される。次いで脱水素処理を行うことにより、脱水素ならびに再結合反応(双方をあわせて「DR反応」と呼ぶ。反応式の例:2NdH2+12Fe+Fe2B→Nd2Fe14B+2H2)が起こり、微細なR2Fe14B相を含む合金が得られる。 In the above treatment, the following reaction typically proceeds. That is, by the hydrogen storage treatment, hydrogenation and disproportionation reaction (both are referred to as “HD reaction”. Example of reaction formula: Nd 2 Fe 14 B + 2H 2 → 2NdH 2 + 12Fe + Fe 2 B) progresses and is fine. An organization is formed. Next, dehydrogenation treatment causes dehydrogenation and recombination reaction (both are referred to as “DR reaction”. Example of reaction formula: 2NdH 2 + 12Fe + Fe 2 B → Nd 2 Fe 14 B + 2H 2 ) An alloy containing the R 2 Fe 14 B phase is obtained.
HDDR処理を施して製造されたR−T−B系合金粉末は、大きな保磁力を有し、磁気的異方性を有している。HDDR処理によってR−T−B系合金粉末を製造する方法は、例えば、特許文献1や特許文献2に開示されている。HDDR処理によれば、0.1μm〜1μmの非常に微細な結晶粒径を有する永久磁石粉末が得られる。 The RTB-based alloy powder produced by the HDDR process has a large coercive force and magnetic anisotropy. A method for producing an RTB-based alloy powder by HDDR processing is disclosed in, for example, Patent Document 1 and Patent Document 2. According to the HDDR treatment, a permanent magnet powder having a very fine crystal grain size of 0.1 μm to 1 μm can be obtained.
さらに、近年、平均粒径10μm未満に微粉砕したR−T−B系合金粉末を成型して圧粉体を作製し、その圧粉体に対してHDDR処理を施すことにより作製した多孔質のバルク磁石(以下、多孔質磁石と称する)が開発され、特許文献3に開示されている。この多孔質磁石は、平均粒径が10μm未満の微粉末に対してHDDR処理を施しているために、HDDR反応を短時間で進行させることができ、結果としてHDDR反応を均一に進行させることができるため、減磁曲線の角型性に優れている。特許文献3では、HDDR処理において、昇温時の反応速度制御の困難性に起因する磁気特性低下を抑制するために、HD反応のための昇温工程を真空または不活性雰囲気で行うことが望ましいと記載されている。 Furthermore, in recent years, an R-T-B alloy powder finely pulverized to an average particle size of less than 10 μm is molded to produce a green compact, and a porous material produced by subjecting the green compact to HDDR treatment. A bulk magnet (hereinafter referred to as a porous magnet) has been developed and disclosed in Patent Document 3. Since this porous magnet is subjected to HDDR treatment on fine powder having an average particle size of less than 10 μm, the HDDR reaction can proceed in a short time, and as a result, the HDDR reaction can proceed uniformly. Therefore, the squareness of the demagnetization curve is excellent. In Patent Document 3, in the HDDR process, it is desirable to perform the temperature rising process for the HD reaction in a vacuum or an inert atmosphere in order to suppress a decrease in magnetic characteristics due to difficulty in controlling the reaction rate at the time of temperature rising. It is described.
また、特許文献4には、HDDR処理によって得られた永久磁石粉末をホットプレスなどの熱間成型法によって、バルク化することができることが開示されている。 Patent Document 4 discloses that the permanent magnet powder obtained by the HDDR process can be bulked by a hot molding method such as hot pressing.
特許文献5には、HDDR処理によって磁石粉末を得る際、R−T−B系合金粉末に対してHD処理を行う前に、30kPa(0.3atm)以上100kPa(1.0atm)以下の水素雰囲気下で、600℃以下の温度で保持することが開示されている。この方法によれば、HD反応が起きない温度で、R2T14B相中に水素を含有させてR2Fe14BHx(xは水素量を表す)とし、その後、20kPa(0.2atm)以上60kPa(0.6atm)以下の水素雰囲気下でHD反応温度まで昇温され、その状態に保持される。このとき、水素化および不均化させることによって、その後のDR反応後に高い異方化度を有する永久磁石粉末が得られる。 In Patent Document 5, when magnet powder is obtained by HDDR treatment, a hydrogen atmosphere of 30 kPa (0.3 atm) or more and 100 kPa (1.0 atm) or less is required before performing HD treatment on the RTB-based alloy powder. Below, it is disclosed to hold at temperatures below 600 ° C. According to this method, hydrogen is contained in the R 2 T 14 B phase at a temperature at which no HD reaction occurs to obtain R 2 Fe 14 BH x (x represents the amount of hydrogen), and then 20 kPa (0.2 atm). ) The temperature is raised to the HD reaction temperature in a hydrogen atmosphere of 60 kPa (0.6 atm) or less and maintained in that state. At this time, by performing hydrogenation and disproportionation, a permanent magnet powder having a high degree of anisotropy after the subsequent DR reaction is obtained.
特許文献3の記載によれば、磁界を印加しながら成型した圧粉体に対しHDDR処理を施すことによって、異方性の多孔質磁石が作製される。しかしながら、その配向度は十分大きいとは言えない。 According to the description of Patent Document 3, an anisotropic porous magnet is produced by subjecting the green compact molded while applying a magnetic field to HDDR treatment. However, it cannot be said that the degree of orientation is sufficiently large.
本発明は、上記の課題を解決するためになされたものであり、本発明の主たる目的は、従来の多孔質磁石に比べて高い配向度および残留磁束密度を有するR−T−B系永久磁石を提供することにある。 The present invention has been made to solve the above-mentioned problems, and a main object of the present invention is an RTB-based permanent magnet having a higher degree of orientation and a residual magnetic flux density than conventional porous magnets. Is to provide.
本発明のR−T−B系永久磁石の製造方法は、50%体積中心粒径が1μm以上10μm未満であり、R2T14B相を含むR−T−B系合金(RはNdおよび/またはPrを50原子%以上含む希土類元素、TはFe、またはFeとCo)の粉末を用意する工程と、前記粉末を成型して圧粉体を作製する工程と、前記圧粉体を250℃以上600℃以下の温度の水素雰囲気中で熱処理を施す第一熱処理工程と、前記第一熱処理工程の後、前記圧粉体に対し、650℃以上1000℃以下の水素雰囲気中で熱処理を施す第二熱処理工程と、前記第二熱処理工程の後、前記圧粉体に対し、650℃以上1000℃以下の真空または不活性雰囲気中で熱処理を施す第三熱処理工程とを含み、前記第一熱処理工程終了時から前記第二熱処理工程の開始時までの昇温を真空または不活性雰囲気中で行う。 The manufacturing method of the R-T-B system permanent magnet of the present invention is a R-T-B system alloy having a 50% volume center particle size of 1 μm or more and less than 10 μm and containing an R 2 T 14 B phase (R is Nd and / Or a rare earth element containing 50 atomic% or more of Pr, T is Fe, or Fe and Co), a step of molding the powder to produce a green compact, A first heat treatment step in which heat treatment is performed in a hydrogen atmosphere at a temperature of not less than 600 ° C. and not more than 600 ° C., and after the first heat treatment step, heat treatment is performed on the green compact in a hydrogen atmosphere at 650 ° C. to 1000 ° C. Including a second heat treatment step, and a third heat treatment step in which, after the second heat treatment step, the green compact is subjected to heat treatment in a vacuum of 650 ° C. or higher and 1000 ° C. or lower in an inert atmosphere. Start of the second heat treatment process from the end of the process The heating up performed in a vacuum or inert atmosphere.
ある好ましい実施形態において、前記第一熱処理工程における水素雰囲気の水素分圧は10kPa以上500kPa以下である。 In a preferred embodiment, the hydrogen partial pressure in the hydrogen atmosphere in the first heat treatment step is 10 kPa or more and 500 kPa or less.
ある好ましい実施形態において、前記第一熱処理工程終了後、前記第二熱処理工程の開始までの時間を60分以下とする。 In a preferred embodiment, the time from the end of the first heat treatment step to the start of the second heat treatment step is 60 minutes or less.
ある好ましい実施形態において、前記第二熱処理工程における水素雰囲気の水素分圧は20kPa以上500kPa以下である。 In a preferred embodiment, the hydrogen partial pressure in the hydrogen atmosphere in the second heat treatment step is 20 kPa or more and 500 kPa or less.
ある好ましい実施形態において、前記第二熱処理工程および前記第三熱処理工程における熱処理の温度は950℃以下である。 In a preferred embodiment, the temperature of the heat treatment in the second heat treatment step and the third heat treatment step is 950 ° C. or lower.
ある好ましい実施形態において、前記第一熱処理工程、前記第二熱処理工程、および、前記第三熱処理工程の間、前記圧粉体は成形容器内に保持されている。 In a preferred embodiment, the green compact is held in a molded container during the first heat treatment step, the second heat treatment step, and the third heat treatment step.
本発明によるR−T−B系高密度磁石の製造方法は、上記いずれかに記載の製造方法によって製造されたR−T−B系永久磁石を準備する工程と、熱間圧縮成型によって前記R−T−B系永久磁石の密度を高める工程とを含む。 An R-T-B system high-density magnet manufacturing method according to the present invention includes a step of preparing an R-T-B system permanent magnet manufactured by any one of the manufacturing methods described above, and the R by hot compression molding. A step of increasing the density of the TB permanent magnet.
本発明によれば、50%体積中心粒径1μm以上10μm未満のR−T−B系合金粉末を成型した圧粉体に対して、まず600℃以下の水素雰囲気で熱処理を行ってR−T−B系合金中の希土類リッチ相に水素吸蔵させ、その後、雰囲気を真空または不活性雰囲気に切り替えてHD反応温度まで昇温する。こうすることにより、後のHDDR処理における反応の不均一性に伴う配向度および角型性の低下を抑制し、優れた磁気特性を有する磁石を製造することが可能となる。 According to the present invention, a green compact obtained by molding an RTB-based alloy powder having a 50% volume center particle size of 1 μm or more and less than 10 μm is first heat-treated in a hydrogen atmosphere at 600 ° C. or less to obtain RT -Hydrogen is occluded in the rare earth-rich phase in the B-based alloy, and then the atmosphere is switched to a vacuum or an inert atmosphere to raise the temperature to the HD reaction temperature. By doing so, it is possible to suppress a decrease in the degree of orientation and squareness due to the reaction non-uniformity in the subsequent HDDR process, and to manufacture a magnet having excellent magnetic properties.
本発明者らは、特許文献3の多孔質磁石の配向度が劣る原因について詳細な考察を行った結果、50%体積中心粒径10μm未満のR−T−B系合金粉末の圧粉体において、以下に示すような点を考慮する必要がある、ということに想到した。 As a result of detailed investigations on the cause of the poor orientation degree of the porous magnet of Patent Document 3, the present inventors have found that in a green compact of an RTB-based alloy powder having a 50% volume center particle size of less than 10 μm. I came up with the need to consider the following points.
HDDR処理によって磁気的異方性が得られたR−T−B系磁石においてR2T14B相の磁化容易軸であるc軸は、HDDR処理前のR2T14B相のc軸とほぼ同一の方位となることが知られている。このようなR2T14B相の方位を記憶するメカニズムについては、さまざまな考察がなされている。HD処理後に得られる組織中には、典型的にはRH2相やα−Fe相、Fe2B相などが存在する。この組織を、以下「不均化組織」と呼ぶ。この組織に、HDDR処理前のR2T14B相のc軸の向きを伝承している領域が存在すると考えられる。これは、特許文献3の多孔質磁石でも同様であると考えられる。 C-axis is an axis of easy magnetization of the R 2 T 14 B phase in the R-T-B magnet thus obtained magnetic anisotropy by HDDR treatment, the c-axis of the HDDR treatment before the R 2 T 14 B phase It is known that the directions are almost the same. Various considerations have been made on the mechanism for storing the orientation of the R 2 T 14 B phase. In the structure obtained after the HD treatment, there are typically RH 2 phase, α-Fe phase, Fe 2 B phase and the like. This structure is hereinafter referred to as “disproportionated structure”. In this organization, it is considered that there is a region where the direction of the c-axis of the R 2 T 14 B phase before HDDR processing is passed. This is considered to be the same for the porous magnet of Patent Document 3.
上述したように、特許文献3には、R−T−B系合金粉末を成型して圧粉体を作製し、その圧粉体に対して施すHDDR処理において、昇温時の反応速度制御の困難性に起因する磁気特性低下を抑制するために、HD反応のための昇温工程を真空または不活性雰囲気で行うことが望ましいと記載されている。しかしながら、圧粉体を真空または不活性雰囲気中で昇温させると、R−T−B系合金粉末中における希土類リッチ相(R2T14B相の粒界部分に存在し、Rが50原子%以上の相)の溶解温度(たとえばNd−Fe−B三元系においては、共晶温度である680℃で希土類リッチ相が溶解する。)以上になると液相が生成し、R2T14B相の一部を溶解する可能性がある。 As described above, Patent Document 3 describes the reaction rate control at the time of temperature increase in the HDDR process in which an RTB-based alloy powder is molded to produce a green compact and applied to the green compact. It is described that it is desirable to perform the temperature raising step for the HD reaction in a vacuum or in an inert atmosphere in order to suppress a decrease in magnetic characteristics due to difficulty. However, when the green compact is heated in vacuum or in an inert atmosphere, it exists in the rare earth-rich phase (R 2 T 14 B phase grain boundary portion) in the R-T-B alloy powder, and R is 50 atoms. % Or more) (for example, in the Nd—Fe—B ternary system, the rare earth-rich phase dissolves at the eutectic temperature of 680 ° C.), a liquid phase is formed, and R 2 T 14 There is a possibility of dissolving a part of the B phase.
その後、従来技術における通常のHD反応においては、R2T14B相、液相のいずれも水素と反応し、RH2相、α−Fe相、Fe2B相に分解するなどして不均化組織を形成する。このとき、液相中の少なくとも昇温中にR2T14B相が溶解した成分と、水素との反応で生成する組織は、磁界中成型によりR2T14B相のc軸方向を揃えた方向とは無関係な方向に生成するため、次いで行うDR反応によって再結合したR2T14B相のc軸方向は、磁界中成型によってR2T14B相のc軸方向を揃えた方向とは無関係な方向に向いてしまい、全体としてHDDR処理前の状態よりも配向度が低下してしまう可能性がある。 Thereafter, in the ordinary HD reaction in the prior art, both the R 2 T 14 B phase and the liquid phase react with hydrogen and decompose into RH 2 phase, α-Fe phase, Fe 2 B phase, etc. Form a chemical structure. At this time, the structure formed by the reaction between the component in which the R 2 T 14 B phase is dissolved at least during the temperature rise in the liquid phase and the hydrogen is aligned with the c-axis direction of the R 2 T 14 B phase by molding in a magnetic field. The c-axis direction of the R 2 T 14 B phase recombined by the subsequent DR reaction is the same as the c-axis direction of the R 2 T 14 B phase formed by magnetic field molding. The orientation may be irrelevant to the direction, and the degree of orientation as a whole may be lower than that before the HDDR process.
また、このようにR2T14B相、液相のいずれからもRH2相、α−Fe相、Fe2B相が分解して生成すると、HD反応により形成した組織は不均一なものとなり、結果として保磁力のばらつきが大きくなって角型性が悪化するのではないかと考えられる。 In addition, when the RH 2 phase, α-Fe phase, and Fe 2 B phase are decomposed and produced from any of the R 2 T 14 B phase and the liquid phase, the structure formed by the HD reaction becomes uneven. As a result, it is considered that the variation in coercive force increases and the squareness deteriorates.
そこで本発明者らは、R−T−B系合金粉末の圧粉体をHDDR処理することによって生じる配向度および角型性の悪化は、HD反応前の昇温過程において生成した液相がR2T14B相の一部を溶解することが主原因であり、この液相の生成を抑制することができれば、配向度、角型性の悪化は阻止できると考え、その解決方法として、R−T−B系合金中の希土類リッチ相に水素を吸蔵させ、HDDR処理温度よりも高い融点を有する希土類水素化物(RHx:xは水素量を表す)とすることで、昇温過程における液相生成を抑制できると考え、R−T−B系合金の圧粉体を、600℃以下の水素雰囲気下で水素化させ、そのままHD反応の水素雰囲気下でHD処理温度まで昇温、保持し、HD反応させた後にDR処理を施し、多孔質磁石の作製を試みた。しかしながら、予想に反して得られた磁石の配向度および角型性は、逆に悪化してしまった。 Therefore, the present inventors have found that the deterioration of the degree of orientation and squareness caused by the HDDR treatment of the green compact of the R-T-B type alloy powder is caused by the fact that the liquid phase produced in the temperature rising process before the HD reaction is R 2 The main cause is to dissolve a part of the T 14 B phase. If the formation of this liquid phase can be suppressed, the deterioration of the orientation degree and the squareness can be prevented. -Occurrence of hydrogen in the rare earth-rich phase in the TB-based alloy to form a rare earth hydride having a melting point higher than the HDDR processing temperature (RH x : x represents the amount of hydrogen), thereby increasing the liquid in the temperature rising process. The R-T-B alloy green compact is hydrogenated under a hydrogen atmosphere of 600 ° C. or less, and heated to the HD processing temperature under the hydrogen atmosphere of the HD reaction. , HD reaction, then DR treatment, porous magnet I tried to make. However, contrary to expectation, the degree of orientation and squareness of the magnet obtained were deteriorated.
本発明者らは上記HD反応の前に600℃以下の温度で水素化工程を施した多孔質磁石の配向度および角型性が悪化した原因について考察したところ、多孔質磁石の製造工程で採用される50%体積中心粒径10μm未満のR−T−B系合金粉末の圧粉体においては、水素ガスと接する粉末の個々の粒子の表面積が従来のHDDR磁粉を作製するための合金粉末粒子(50μm〜10mm程度)に対して100倍以上大きく、上記600℃以下の低温での水素化工程からHD工程までの昇温工程をHD工程と同じ水素雰囲気で行うことにより昇温中に起こるHD反応の進行が、従来のHDDR磁粉の製造過程に比べて顕著であり、これが当初の予想に反して配向度の悪化を招いてしまう一つの要因ではないかと考えた。 The present inventors considered the cause of the deterioration of the degree of orientation and squareness of the porous magnet that had been subjected to the hydrogenation process at a temperature of 600 ° C. or less before the HD reaction, and was adopted in the manufacturing process of the porous magnet. In the compact of R-T-B type alloy powder having a 50% volume center particle size of less than 10 μm, the surface area of each particle of the powder in contact with hydrogen gas is an alloy powder particle for producing a conventional HDDR magnetic powder HD that occurs during temperature rise by performing the temperature raising process from the hydrogenation process at a low temperature of 600 ° C. or less to the HD process in the same hydrogen atmosphere as the HD process at least 100 times larger than (about 50 μm to 10 mm). The progress of the reaction is remarkable as compared with the conventional manufacturing process of HDDR magnetic powder, and this is considered to be one factor that causes deterioration of the degree of orientation contrary to the initial expectation.
上述したことを鑑み、本発明者らは、上記昇温工程における不適切なHD反応を抑制するために、昇温工程の雰囲気を真空または不活性雰囲気とすることにより、配向度および角型性に優れるR−T−B系多孔質磁石が得られることを見出し、本発明を完成するに至った。 In view of the above, the present inventors have set the degree of orientation and squareness by setting the atmosphere of the temperature raising step to a vacuum or an inert atmosphere in order to suppress inappropriate HD reaction in the temperature raising step. The present inventors have found that an R-T-B type porous magnet having excellent resistance can be obtained, and have completed the present invention.
以下、本発明によるR−T−B系永久磁石の製造方法について、望ましい実施形態を詳細に説明する。 Hereinafter, preferred embodiments of the method for producing an R-T-B permanent magnet according to the present invention will be described in detail.
<原料合金>
まず、主たる相として硬磁性相であるR2T14B相を含むR−T−B系合金(原料合金)を用意する。ここで、「R」は希土類元素であり、Ndおよび/またはPrを50原子%以上含む。本明細書における希土類元素Rはイットリウム(Y)を含んでもよい。TはFeまたはFeとCoである。このR−T−B系合金(原料合金)は、R2T14B相を体積比率で50%以上含んでいることが望ましい。原料合金に含まれる希土類元素Rの大部分は、R2T14B相および希土類リッチ相を構成しているが、一部はR2O3やその他の相を構成している。
<Raw material alloy>
First, an RTB-based alloy (raw material alloy) including an R 2 T 14 B phase that is a hard magnetic phase as a main phase is prepared. Here, “R” is a rare earth element and contains Nd and / or Pr by 50 atomic% or more. The rare earth element R in this specification may contain yttrium (Y). T is Fe or Fe and Co. This RTB-based alloy (raw material alloy) preferably contains 50% or more of the R 2 T 14 B phase by volume. Most of the rare earth element R contained in the raw material alloy constitutes the R 2 T 14 B phase and the rare earth rich phase, but a part constitutes R 2 O 3 and other phases.
希土類元素Rの組成比率は原料合金全体の12原子%以上30原子%以下であることが望ましく、13原子%以上18原子%以下であることがより望ましい。また、Rの一部をDyおよび/またはTbとすることで、保磁力を向上させることができる。また、希土類元素Rの組成比率が15原子%以下であると、ホットプレス後に金型から取り出しやすいのでより望ましい。 The composition ratio of the rare earth element R is desirably 12 atom% or more and 30 atom% or less, and more desirably 13 atom% or more and 18 atom% or less of the entire raw material alloy. Moreover, the coercive force can be improved by setting a part of R to Dy and / or Tb. Further, it is more preferable that the composition ratio of the rare earth element R is 15 atomic% or less because it is easy to remove from the mold after hot pressing.
Bの組成比率は原料合金全体の3原子%以上15原子%以下が望ましく、5原子%以上8原子%以下がより望ましく、5.5原子%以上7.5原子%以下がさらに望ましい。Bはその一部をCで置換してもよいが、その置換量は置換前のBの量に対して10原子%以下であることが望ましい。 The composition ratio of B is preferably 3 atomic percent or more and 15 atomic percent or less, more preferably 5 atomic percent or more and 8 atomic percent or less, and further preferably 5.5 atomic percent or more and 7.5 atomic percent or less. A part of B may be substituted with C, but the amount of substitution is preferably 10 atomic% or less with respect to the amount of B before substitution.
「T」は残余を占め、Fe、またはFeおよびFeの一部を置換したCoである。その置換量はT全体の50原子%以下であることが望ましい。また、原料合金全体に対するCoの総量は、コストなどの観点から、20原子%以下であることが望ましく、5原子%以下であることがさらに望ましい。Coを全く含有しない場合でも高い磁気特性は得られるが、0.5原子%以上のCoを含有すると、より安定した磁気特性を得ることができる。 “T” occupies the remainder and is Fe or Co substituted for Fe and part of Fe. The amount of substitution is desirably 50 atomic% or less of the entire T. Further, the total amount of Co with respect to the entire raw material alloy is preferably 20 atomic% or less, and more preferably 5 atomic% or less from the viewpoint of cost and the like. High magnetic properties can be obtained even when Co is not contained at all, but more stable magnetic properties can be obtained when Co of 0.5 atomic% or more is contained.
磁気特性向上などの効果を得るため、Al、Ti、V、Cr、Ga、Nb、Mo、In、Sn、Hf、Ta、W、Cu、Si、Zr、Niなどの元素を適宜添加してもよい。ただし、添加量の増加は、特に飽和磁化の低下を招くため、総量で全体の10原子%以下とすることが望ましい。原料合金には不可避の不純物を含有していてもよい。 In order to obtain effects such as improvement of magnetic characteristics, elements such as Al, Ti, V, Cr, Ga, Nb, Mo, In, Sn, Hf, Ta, W, Cu, Si, Zr, and Ni may be added as appropriate. Good. However, since an increase in the amount of addition causes a decrease in saturation magnetization in particular, the total amount is preferably 10 atomic% or less. The raw material alloy may contain inevitable impurities.
原料合金は、磁気特性に悪影響を及ぼすα−Fe相の量を低減することのできるストリップキャスト法により作製することが望ましいが、ブックモールド法、遠心鋳造法、アトマイズ法などによっても作製することができる。原料合金における組織均質化などを目的として、粉砕前の原料合金に対して熱処理を施してもよい。このような熱処理は、真空または不活性雰囲気において、典型的には1000℃以上の温度で実行され得る。 The raw material alloy is preferably produced by a strip casting method that can reduce the amount of α-Fe phase that adversely affects magnetic properties, but can also be produced by a book mold method, a centrifugal casting method, an atomizing method, or the like. it can. For the purpose of homogenizing the structure of the raw material alloy, heat treatment may be performed on the raw material alloy before pulverization. Such heat treatment can be performed in a vacuum or inert atmosphere, typically at a temperature of 1000 ° C. or higher.
<粉砕>
次に、原料合金を公知の方法で粉砕することにより、原料粉末を作製する。本実施形態では、まずジョークラッシャーなどの機械的粉砕法や水素吸蔵粉砕法などを用いて原料合金を粗粉砕し、大きさ50μm〜1000μm程度の粗粉砕粉末を作製する。この粗粉砕粉末に対してジェットミルなどによる微粉砕を行い、典型的には50%体積中心粒径が1μm以上10μm未満の原料粉末を作製する。なお、50%体積中心粒径(D50)は気流分散型レーザー回折法により測定できる。
<Crushing>
Next, the raw material powder is produced by pulverizing the raw material alloy by a known method. In this embodiment, first, a raw material alloy is coarsely pulverized using a mechanical crushing method such as a jaw crusher or a hydrogen occlusion pulverizing method to produce a coarsely pulverized powder having a size of about 50 μm to 1000 μm. The coarsely pulverized powder is finely pulverized by a jet mill or the like to produce a raw material powder typically having a 50% volume center particle size of 1 μm or more and less than 10 μm. The 50% volume center particle size (D 50 ) can be measured by a gas flow dispersion type laser diffraction method.
取扱いの観点から、原料粉末の50%体積中心粒径は1μm以上であることが好ましい。50%体積中心粒径が1μm未満になると、原料粉末が大気雰囲気中の酸素と反応しやすくなり、酸化による発熱・発火の危険性が高まるからである。取扱いをより容易にするためには、50%体積中心粒径を3μm以上に設定することが好ましい。成型体の機械的強度向上という観点から、50%体積中心粒径の好ましい上限は9μmであり、さらに好ましい上限は8μmである。 From the viewpoint of handling, the 50% volume center particle size of the raw material powder is preferably 1 μm or more. This is because when the 50% volume center particle size is less than 1 μm, the raw material powder easily reacts with oxygen in the air atmosphere, increasing the risk of heat generation and ignition due to oxidation. In order to make handling easier, it is preferable to set the 50% volume center particle size to 3 μm or more. From the viewpoint of improving the mechanical strength of the molded body, the preferable upper limit of the 50% volume center particle size is 9 μm, and the more preferable upper limit is 8 μm.
<圧粉体>
次に、上記の原料合金粉末を成型し、圧粉体を作製する。圧粉体を成型する工程は、10MPa〜200MPaの圧力を付加し、0.4MA/m〜16MA/mの磁界中(静磁界、パルス磁界など)で行うことが望ましい。成型は公知の粉末プレス装置によって行うことができる。粉末プレス装置から取り出し時の圧粉体密度(成型体密度)は、3.5g/cm3〜5.2g/cm3程度である。
<Green compact>
Next, the raw material alloy powder is molded to produce a green compact. The step of molding the green compact is preferably performed in a magnetic field of 0.4 MA / m to 16 MA / m (static magnetic field, pulsed magnetic field, etc.) by applying a pressure of 10 MPa to 200 MPa. Molding can be performed by a known powder press apparatus. Compact density (compact density) when removed from the powder press device is 3.5g / cm 3 ~5.2g / cm 3 order.
また、成形は例えば図10や特開平7−153612号公報に記載のような容器内に原料合金粉末を充填した後に、0.05MPa〜10MPaの圧力を付加して圧粉体を作製してもよい。この場合は、容器に圧粉体を入れたままHDDR処理を行う。容器内で成形することによって、圧粉体密度が低い場合においても取り扱いが容易となる。圧粉体密度を低くすることにより、後のHDDR処理において、水素吸蔵に伴う体積膨張によって生じる内部応力を圧粉体内部で緩和することができるため、クラックの発生を抑制することができる。この場合の圧粉体密度は3.0g/cm3〜4.0g/cm3程度である。 Further, the molding may be performed by filling a raw material alloy powder in a container as shown in FIG. 10 or JP-A-7-153612, and then applying a pressure of 0.05 MPa to 10 MPa to produce a green compact. Good. In this case, the HDDR process is performed with the green compact in the container. By forming in a container, handling becomes easy even when the green compact density is low. By reducing the density of the green compact, internal stress generated by volume expansion accompanying hydrogen occlusion can be relieved in the green compact in subsequent HDDR processing, so that the occurrence of cracks can be suppressed. Compact density in this case is about 3.0g / cm 3 ~4.0g / cm 3 .
上記の成型工程は、磁界を印加することなく実行してもよい。磁界配向を行わない場合、最終的には等方性の多孔質磁石が得られることになる。しかし、より高い磁気特性を得るためには、磁界配向を行いながら成型工程を実行し、最終的に異方性の多孔質磁石を得ることが望ましい。 You may perform said shaping | molding process, without applying a magnetic field. When magnetic field orientation is not performed, an isotropic porous magnet is finally obtained. However, in order to obtain higher magnetic characteristics, it is desirable to execute a molding process while performing magnetic field orientation and finally obtain an anisotropic porous magnet.
原料合金の粉砕工程および上記圧粉体の成型工程は、原料粉末の酸化を抑制しながら行うことが望ましい。原料粉末の酸化を抑制するには、各工程および各工程間のハンドリングをできる限り酸素量を抑制した不活性雰囲気で行うことが望ましい。DR処理前の圧粉体の酸素量は1質量%以下に抑制することが望ましく、0.6質量%以下に抑制することがより望ましい。 It is desirable to perform the raw material alloy pulverization step and the green compact molding step while suppressing oxidation of the raw material powder. In order to suppress the oxidation of the raw material powder, it is desirable to carry out each process and the handling between the processes in an inert atmosphere in which the amount of oxygen is suppressed as much as possible. The amount of oxygen in the green compact before the DR treatment is preferably suppressed to 1% by mass or less, and more preferably to 0.6% by mass or less.
<HDDR処理>
次に上記成型工程によって得られた圧粉体に対し、HDDR処理を施す。本実施形態において、HDDR処理は第一熱処理工程、第二熱処理工程、第三熱処理工程の3工程を含む。
<HDDR processing>
Next, the HDDR process is performed on the green compact obtained by the molding step. In the present embodiment, the HDDR process includes three steps of a first heat treatment step, a second heat treatment step, and a third heat treatment step.
第一熱処理工程は、原料粉末を用いて成型した圧粉体に対し、水素雰囲気中で250℃以上600℃以下の温度において熱処理を施す工程である。第一熱処理工程では、R2T14B相のHD反応は起こらないが、R2T14B相の結晶格子間に水素が吸蔵される。また、R2T14B相の結晶粒間に存在する希土類リッチ相は水素化され、主にRの水素化物として存在する。水素化した希土類リッチ相は、主に希土類水素化物RHxとして存在し、その融点は第二熱処理工程(HD工程)における熱処理温度よりも高い。そのため、第一熱処理工程を行うことにより、第二熱処理工程の前に液相が生成して、R2T14B相を溶解し、磁気特性、特に配向度および角型性が悪化することを抑制する。 The first heat treatment step is a step of subjecting the green compact molded using the raw material powder to a heat treatment at a temperature of 250 ° C. or higher and 600 ° C. or lower in a hydrogen atmosphere. In the first heat treatment step, but does not occur HD reaction R 2 T 14 B phase, hydrogen is occluded between the crystal lattice of the R 2 T 14 B phase. Further, the rare earth-rich phase existing between the crystal grains of the R 2 T 14 B phase is hydrogenated and exists mainly as a hydride of R. The hydrogenated rare earth-rich phase exists mainly as a rare earth hydride RH x , and its melting point is higher than the heat treatment temperature in the second heat treatment step (HD step). Therefore, by performing the first heat treatment step, the liquid phase is generated before the second heat treatment step, the R 2 T 14 B phase is dissolved, and the magnetic properties, particularly the degree of orientation and the squareness are deteriorated. Suppress.
第一熱処理工程においては、R2T14B相の結晶格子間に水素が吸蔵され、R2T14B相の体積が約2%膨張することを、粉末X線回折測定より求めた格子定数から確認している。このことから、圧粉体の寸法や形状によっては、体積膨張によって生じる内部応力により圧粉体にクラックが生じてしまう可能性がある。このクラックの抑制のため、例えば、水素が通気可能な程度に密閉された容器など、圧粉体の体積膨張を抑制する拘束治具を用いてHDDR処理を行ってもよい。 In the first heat treatment step, hydrogen is occluded between the crystal lattice of the R 2 T 14 B phase, that the volume of the R 2 T 14 B phase expands approximately 2%, the lattice constant determined from X-ray powder diffraction measurement Confirmed from. Therefore, depending on the size and shape of the green compact, there is a possibility that the green compact may crack due to internal stress caused by volume expansion. In order to suppress this crack, for example, the HDDR process may be performed using a restraining jig that suppresses the volume expansion of the green compact, such as a container hermetically sealed to allow hydrogen to pass through.
第一熱処理工程の熱処理温度は、R2T14B相のHD反応が起こってしまうと、反応速度制御の困難性から配向度が悪化するため、R2T14B相のHD反応が起こる温度以下で行う必要がある。 The heat treatment temperature of the first heat treatment step, the thus occurred HD reaction R 2 T 14 B phase, because the degree of orientation deteriorates the difficulty of reaction rate control, the temperature at which HD reaction R 2 T 14 B phase will occur You need to do the following:
R−T−B系合金粉末の圧粉体を100kPaの水素雰囲気中で昇温しながら水素吸収挙動を調査したところ、610℃〜700℃において急激に水素を吸収することが確認された。そこで、700℃においてR−T−B系合金粉末の圧粉体を水素化させた後にX線回折測定によって構成相を調査したところ、R2T14B相は不均化し、RHx相とα−Fe相とFe2B相に分解していることが確認された。したがって、この水素の吸収はR2T14B相のHD反応によるものと考えられる。また、前記反応温度より低い600℃においてR−T−B系合金粉末の圧粉体を水素化させた後にX線回折測定によって構成相を調査したところ、R2T14B相のHD反応は起こっておらず、希土類リッチ相は主にRHx相となっていることが確認された。したがって、R2T14B相を不均化させることなく、希土類リッチ相を高融点化合物である希土類水素化物RHxとするための第一熱処理工程の熱処理温度は、600℃以下である。 When the hydrogen absorption behavior was investigated while raising the green compact of the RTB-based alloy powder in a hydrogen atmosphere of 100 kPa, it was confirmed that hydrogen was rapidly absorbed at 610 ° C to 700 ° C. Therefore, when the constituent phase was investigated by X-ray diffraction measurement after hydrogenating the green compact of the RTB-based alloy powder at 700 ° C., the R 2 T 14 B phase was disproportionated and the RH x phase It was confirmed that it was decomposed into an α-Fe phase and an Fe 2 B phase. Therefore, this hydrogen absorption is considered to be due to the HD reaction of the R 2 T 14 B phase. Further, when the constituent phase was investigated by X-ray diffraction measurement after hydrogenating the green compact of the RTB-based alloy powder at 600 ° C. lower than the reaction temperature, the HD reaction of the R 2 T 14 B phase was It was confirmed that the rare earth-rich phase was mainly the RH x phase. Therefore, the heat treatment temperature in the first heat treatment step for converting the rare earth-rich phase to the rare earth hydride RH x that is a high melting point compound without disproportionating the R 2 T 14 B phase is 600 ° C. or less.
希土類リッチ相の水素化の反応速度を向上させるため、熱処理温度は250℃以上であり、400℃以上であることが望ましい。また、水素化を十分進行させるために、600℃以下の所定の温度まで昇温した後に所定時間保持してもよく、その保持時間は120分以下であることが望ましい。120分を超えて熱処理を行っても、それ以上の効果は見られず、生産性の悪化を招く。 In order to improve the reaction rate of hydrogenation of the rare earth-rich phase, the heat treatment temperature is 250 ° C. or higher and desirably 400 ° C. or higher. Moreover, in order to fully advance hydrogenation, you may hold | maintain for a predetermined time, after heating up to the predetermined temperature of 600 degrees C or less, and it is desirable that the holding time is 120 minutes or less. Even if the heat treatment is carried out for more than 120 minutes, no further effect is seen and the productivity is deteriorated.
また、第一熱処理工程における雰囲気の水素分圧は、10kPa以上である。また、50kPa以上であれば希土類リッチ相の水素化が十分に進行するので好ましい。また、500kPaを超える水素分圧では、処理に特殊な装置が必要となるため、500kPa以下であることが望ましい。より好ましい水素分圧は150kPa以下である。水素分圧が150kPaを超えると水素吸蔵が急激に起こってしまい、水素吸蔵に伴う体積膨張によって圧粉体にクラックが入ってしまう可能性がある。 Moreover, the hydrogen partial pressure of the atmosphere in the first heat treatment step is 10 kPa or more. Moreover, if it is 50 kPa or more, since hydrogenation of a rare earth rich phase will fully advance, it is preferable. In addition, when the hydrogen partial pressure exceeds 500 kPa, a special apparatus is required for the treatment, and therefore, it is preferably 500 kPa or less. A more preferable hydrogen partial pressure is 150 kPa or less. When the hydrogen partial pressure exceeds 150 kPa, hydrogen occlusion occurs abruptly, and the green compact may crack due to volume expansion accompanying hydrogen occlusion.
次に、雰囲気を真空(1.3Pa以下)または不活性雰囲気に切り替えて、第二熱処理工程の熱処理温度まで昇温する。昇温中の雰囲気に水素ガスが存在すると、R2T14B相の水素化、不均化反応が進行してしまうため、反応速度制御が困難となり、結果として磁気特性の低下を招く可能性があるが、特許文献5などの従来のHDDR磁粉(原料合金粉末の平均粒子径が50μm〜10mm)の製造においては、水素ガスが存在することによって生じるHD反応で不均化する領域はごく一部であり、適切な昇温速度の下では、一定量の水素が存在しても表面のごくわずかな領域のみが昇温中に水素化および不均化するにとどまり、HDDR処理後の配向度への影響はそれほど顕在化しない。一方、本発明の製造方法では、50%体積中心粒径が10μm未満の微粉末を対象としており、表面積は従来のHDDR磁粉よりも100倍以上も大きく、昇温中の雰囲気に水素が存在することによって起こるHD反応の進行が、従来のHDDR磁粉の製造に比べて顕著であり、結果HDDR処理後の配向度の低下が顕在化する。なお、本明細書において、不活性ガスとはアルゴンおよび/またはヘリウムなどの希土類元素と反応しないガスを意味する。昇温工程を窒素雰囲気で行うと、R−T−B系合金粉末が窒化する可能性があるので好ましくない。 Next, the atmosphere is switched to a vacuum (1.3 Pa or less) or an inert atmosphere, and the temperature is raised to the heat treatment temperature of the second heat treatment step. If hydrogen gas is present in the temperature-raising atmosphere, the hydrogenation and disproportionation reactions of the R 2 T 14 B phase will proceed, making it difficult to control the reaction rate and possibly resulting in a decrease in magnetic properties. However, in the production of conventional HDDR magnetic powder (the average particle diameter of the raw material alloy powder is 50 μm to 10 mm) such as Patent Document 5, there is only one region that is disproportionated by the HD reaction caused by the presence of hydrogen gas. Under a suitable heating rate, even if a certain amount of hydrogen is present, only a very small area of the surface is hydrogenated and disproportionated during the heating, and the degree of orientation after HDDR treatment. The impact on is not so obvious. On the other hand, in the production method of the present invention, a fine powder having a 50% volume center particle size of less than 10 μm is targeted, the surface area is more than 100 times larger than that of the conventional HDDR magnetic powder, and hydrogen exists in the atmosphere during temperature rise. The progress of the HD reaction caused by this is remarkable as compared with the production of conventional HDDR magnetic powder, and as a result, a decrease in the degree of orientation after the HDDR treatment becomes obvious. In the present specification, an inert gas means a gas that does not react with rare earth elements such as argon and / or helium. If the temperature raising step is performed in a nitrogen atmosphere, the RTB-based alloy powder may be nitrided, which is not preferable.
また、昇温の時間が長すぎると、第一熱処理工程により一旦生成したRHx相の脱水素反応が生じ、その結果液相が生成されて、主相であるR2T14B相と反応し、得られる磁石の配向度および角型性を悪化させる可能性があるため、昇温の時間(第一熱処理工程終了時から、第二熱処理工程の開始時までの時間)は60分以下とすることが望ましく、30分以下とすることがより望ましく、10分以下とすることがさらに望ましい。なお、雰囲気ガスの置換に要する時間や装置の昇温能力等を考慮すると、昇温時間は通常1分以上である。 On the other hand, if the temperature raising time is too long, dehydrogenation reaction of the RH x phase once generated by the first heat treatment process occurs, and as a result, a liquid phase is generated and reacted with the main phase R 2 T 14 B phase. In addition, since the degree of orientation and squareness of the obtained magnet may be deteriorated, the temperature raising time (time from the end of the first heat treatment step to the start of the second heat treatment step) is 60 minutes or less. It is desirable to set it to 30 minutes or less, more desirably 10 minutes or less. In consideration of the time required for the replacement of the atmospheric gas, the temperature increase capability of the apparatus, etc., the temperature increase time is usually 1 minute or more.
次いで行う第二熱処理工程は、水素雰囲気中においてR2T14B相をHD反応させて不均化組織を得る工程である。この時、第二熱処理工程の温度および水素分圧を適正に制御することによって最終的に得られる磁石の磁気的異方性を高めることができる。 Next, the second heat treatment step to be performed is a step of obtaining a disproportionated structure by HD reaction of the R 2 T 14 B phase in a hydrogen atmosphere. At this time, the magnetic anisotropy of the finally obtained magnet can be increased by appropriately controlling the temperature and the hydrogen partial pressure in the second heat treatment step.
第二熱処理工程の温度は650℃以上1000℃以下である。650℃未満では不均化が完了するまでに時間がかかりすぎる。また、1000℃を超えると不均化組織が粗大化するため、後の第三熱処理工程によって得られるR2T14B相の集合組織が粗大となり、磁気特性、特に保磁力の低下を招く。粒成長を抑制するという観点から、第二処理工程の温度を950℃以下に設定することが好ましく、900℃以下に設定することがより好ましい。 The temperature of the second heat treatment step is 650 ° C. or higher and 1000 ° C. or lower. Below 650 ° C., it takes too much time to complete disproportionation. Further, when the temperature exceeds 1000 ° C., the disproportionated structure becomes coarse, and the texture of the R 2 T 14 B phase obtained by the subsequent third heat treatment step becomes coarse, resulting in a decrease in magnetic properties, particularly coercive force. From the viewpoint of suppressing grain growth, the temperature of the second treatment step is preferably set to 950 ° C. or lower, and more preferably set to 900 ° C. or lower.
第二熱処理工程の水素分圧は20kPa以上であることが望ましい。水素分圧が20kPa未満ではR2T14B相の不均化が十分に進むまでに時間がかかりすぎるため、生産性の低下を招く可能性がある。また、500kPaを超える水素分圧では、処理に特殊な装置が必要となるため、500kPa以下であることが望ましい。なお、より好ましい水素分圧は150kPa以下である。水素分圧が150kPaを超えると水素吸蔵が急激に起こってしまい、水素吸蔵に伴う体積膨張によって圧粉体にクラックが入ってしまう可能性がある。 The hydrogen partial pressure in the second heat treatment step is desirably 20 kPa or more. When the hydrogen partial pressure is less than 20 kPa, it takes too much time for the disproportionation of the R 2 T 14 B phase to proceed sufficiently, which may lead to a decrease in productivity. In addition, when the hydrogen partial pressure exceeds 500 kPa, a special apparatus is required for the treatment, and therefore, it is preferably 500 kPa or less. A more preferable hydrogen partial pressure is 150 kPa or less. When the hydrogen partial pressure exceeds 150 kPa, hydrogen occlusion occurs abruptly, and the green compact may crack due to volume expansion accompanying hydrogen occlusion.
第二熱処理工程に要する時間は、10分以上5時間以下であることが望ましい。10分未満では、R2T14B相の不均化が十分に進まない可能性がある。また、5時間を超えると不均化組織が粗大化するため、第三熱処理工程後の再結合組織が粗大となり、磁気特性、特に保磁力の低下を招く可能性がある。より望ましくは15分以上2時間以下である。 The time required for the second heat treatment step is desirably 10 minutes or more and 5 hours or less. If it is less than 10 minutes, disproportionation of the R 2 T 14 B phase may not proceed sufficiently. Further, when the time exceeds 5 hours, the disproportionated structure becomes coarse, and the recombination structure after the third heat treatment step becomes coarse, which may cause a decrease in magnetic properties, particularly coercive force. More desirably, it is 15 minutes or more and 2 hours or less.
次いで行う第三熱処理工程では、真空(1.3Pa以下)または不活性雰囲気において650℃以上1000℃以下で保持することにより、RHx相の脱水素反応を起こし、R2T14B相を再結合反応により生成させる。なお、第三熱処理工程の雰囲気を段階的に変化させることで脱水素反応の過程を制御することもできる。例えば、絶対圧または水素分圧が1kPa〜20kPaの雰囲気に5分以上5時間以下の時間で制御したのち、真空または不活性雰囲気において650℃以上1000℃以下で保持することでHcJを制御することができる。 Next, in the third heat treatment step to be performed, the dehydration reaction of the RH x phase is caused by holding at 650 ° C. or more and 1000 ° C. or less in a vacuum (1.3 Pa or less) or an inert atmosphere, and the R 2 T 14 B phase is regenerated. It is produced by a binding reaction. In addition, the process of a dehydrogenation reaction can also be controlled by changing the atmosphere of a 3rd heat treatment process in steps. For example, after controlling the absolute pressure or hydrogen partial pressure in an atmosphere of 1 kPa to 20 kPa for a time of 5 minutes or more and 5 hours or less, H cJ is controlled by maintaining the vacuum at 650 ° C. or more and 1000 ° C. or less in an inert atmosphere. be able to.
第三熱処理工程で生成したR2T14B相は典型的には0.1μm以上1.0μm以下の平均結晶粒径を有する集合組織を形成する。また、再結合に使用されなかったRHxからの脱水素反応が起こるとともに、Rに富む液相が生成する。この液相に、HD処理時において残存していたR’−M化合物が溶解し、R2T14B相の結晶粒界に侵入する。その結果、非磁性の粒界相(希土類リッチ相)が形成され、個々のR2T14B相を磁気的に孤立化させるため、保磁力が発現する。また、M元素の一部がR2T14B相内へ拡散することによって、保磁力が向上する。このとき、焼結反応も同時に起こり、多孔質の永久磁石となる。粒成長を抑制するという観点から、第三処理工程の温度を950℃以下に設定することが好ましく、900℃以下に設定してもよい。 The R 2 T 14 B phase generated in the third heat treatment step typically forms a texture having an average crystal grain size of 0.1 μm or more and 1.0 μm or less. In addition, a dehydrogenation reaction from RH x not used for recombination occurs, and a liquid phase rich in R is generated. In this liquid phase, the R′-M compound remaining at the time of HD treatment is dissolved, and enters the crystal grain boundary of the R 2 T 14 B phase. As a result, a nonmagnetic grain boundary phase (rare earth rich phase) is formed, and the individual R 2 T 14 B phases are magnetically isolated, so that a coercive force is developed. Further, a part of the M element diffuses into the R 2 T 14 B phase, thereby improving the coercive force. At this time, a sintering reaction also occurs at the same time, resulting in a porous permanent magnet. From the viewpoint of suppressing grain growth, the temperature of the third treatment step is preferably set to 950 ° C. or lower, and may be set to 900 ° C. or lower.
第三熱処理工程の温度は650℃以上1000℃以下である。650℃未満では脱水素が完了するまでに時間がかかりすぎる。また、1000℃を超えると再結合したR2T14
B相が結晶粒成長してしまうため、磁気特性、特に保磁力の低下を招く。また、第三熱処理工程に要する時間は、5分以上10時間以下が望ましく、10分以上2時間以下がより望ましい。
The temperature of the third heat treatment step is 650 ° C. or higher and 1000 ° C. or lower. Below 650 ° C., it takes too much time to complete dehydrogenation. Further, when the temperature exceeds 1000 ° C., the recombined R 2 T 14
Since the B phase grows crystal grains, the magnetic properties, particularly the coercive force, are reduced. The time required for the third heat treatment step is preferably 5 minutes or more and 10 hours or less, and more preferably 10 minutes or more and 2 hours or less.
<多孔質磁石>
上記HDDR処理によって、3.5g/cm3以上7.0g/cm3以下の密度を有する多孔質磁石が得られる。この多孔質磁石においては、第二熱処理工程より前に粉末粒子の磁化容易軸を所定方向に配向させておくことにより、HDDR処理で形成する集合組織内の微細なNd2Fe14B型結晶相の磁化容易軸を磁石全体にわたって所定方向に配向することができる。
<Porous magnet>
By the HDDR treatment, a porous magnet having a density of 3.5 g / cm 3 or more and 7.0 g / cm 3 or less is obtained. In this porous magnet, the easy magnetization axis of the powder particles is oriented in a predetermined direction before the second heat treatment step, so that the fine Nd 2 Fe 14 B type crystal phase in the texture formed by the HDDR process is obtained. Can be oriented in a predetermined direction throughout the magnet.
この多孔質磁石には、HDDR処理工程で相互に結合した粉末粒子の間に、三次元網状に連通する長径10μm程度の空隙が存在している。圧粉体を構成していた個々の粉末粒子は、HDDR処理により隣接する粉末粒子と結合し、剛性を発揮する三次元構造を形成するとともに、個々の粉末粒子内では微細なNd2Fe14B型結晶相の集合組織が形成さ
れている。
In this porous magnet, there is a void having a major axis of about 10 μm communicating with the three-dimensional network between the powder particles bonded to each other in the HDDR processing step. The individual powder particles constituting the green compact are combined with the adjacent powder particles by the HDDR process to form a three-dimensional structure exhibiting rigidity, and fine Nd 2 Fe 14 B in each powder particle. A texture of the type crystal phase is formed.
本発明のR−T−B系多孔質磁石の密度は、3.5g/cm3以上7.0g/cm3以下であるが、粉末粒子間の隙間が存在した状態でも、粒子同士が結合し、十分な機械的強度と優れた磁気特性とを発揮する。 The density of the R-T-B type porous magnet of the present invention is 3.5 g / cm 3 or more and 7.0 g / cm 3 or less, but the particles are bonded to each other even when there are gaps between the powder particles. Demonstrate sufficient mechanical strength and excellent magnetic properties.
本実施形態では、成型工程後に圧粉体に対してHDDR処理を施すため、HDDR処理後には粉末成型を行わない。このため、成型のための加圧によって磁粉が粉砕されて磁気特性が劣化するるようなことがHDDR処理後に生じず、HDDR粉末を圧縮するボンド磁石に比べて高い磁気特性を得ることができる。 In this embodiment, since the HDDR process is performed on the green compact after the molding process, the powder molding is not performed after the HDDR process. For this reason, it does not occur after HDDR processing that the magnetic powder is crushed by pressurization for molding, and high magnetic characteristics can be obtained compared to a bonded magnet that compresses HDDR powder.
<多孔質磁石の熱間圧縮成型>
上記の方法によって得られた多孔質磁石は、そのままの状態でバルク永久磁石として利用することができるが、さらにホットプレス法などの熱間圧縮成型を用いることによって、高密度化を行い、平均結晶粒径0.1μm以上1μm以下のR2T14B相の集合組織を有する高密度磁石を得ることができる。
<Hot compression molding of porous magnet>
The porous magnet obtained by the above method can be used as a bulk permanent magnet as it is, but it is further densified by using hot compression molding such as a hot press method, and the average crystal A high-density magnet having a texture of R 2 T 14 B phase with a particle size of 0.1 μm or more and 1 μm or less can be obtained.
以下に熱間圧縮成型による高密度化について、具体的な実施形態の一例を示す。多孔質磁石に対する熱間圧縮は、公知の熱間圧縮技術を用いて行うことができる。例えば、ホットプレス、SPS(spark plasma sintering)、HIP、熱間圧延などの熱間圧縮成型を行うことが可能である。なかでも、所望の形状を得やすいホットプレスやSPSが好適に用いられ得る。以下、ホットプレスを行う手順について説明する。 An example of a specific embodiment will be shown below for densification by hot compression molding. Hot compression on the porous magnet can be performed using a known hot compression technique. For example, hot compression molding such as hot pressing, SPS (spark plasma sintering), HIP, and hot rolling can be performed. Especially, the hot press and SPS which are easy to obtain a desired shape can be used suitably. Hereinafter, a procedure for performing hot pressing will be described.
本実施形態では、図1に示す構成を有するホットプレス装置を用いる。この装置は、中央に開口部を有する金型(ダイ)27と多孔質磁石を加圧するための上パンチ28aおよび下パンチ28bと、これらのパンチ28a、28bを昇降する駆動部30a、30bとを備えている。 In the present embodiment, a hot press apparatus having the configuration shown in FIG. 1 is used. This apparatus includes a die (die) 27 having an opening in the center, an upper punch 28a and a lower punch 28b for pressurizing a porous magnet, and drive units 30a and 30b for raising and lowering these punches 28a and 28b. I have.
上述した方法によって作製した多孔質磁石(図1では参照符号「10」と付している)を、図1に示す金型27に装填する。このとき、配向方向とプレス方向とが一致するように装填を行うことが望ましい。金型27およびパンチ28a、28bは、使用する雰囲気ガス中で加熱温度および印加圧力に耐えうる材料から形成される。このような材料としては、カーボンや、タングステンカーバイドなどの超硬合金が望ましい。なお、多孔質磁石10の外形寸法は金型27の開口部寸法よりも小さく設定しておくことにより、異方性を高められる。次に、多孔質磁石10を装填した金型27をホットプレス装置にセットする。ホットプレス装置は、真空(1.3Pa以下)または不活性雰囲気に制御することが可能なチャンバ26を備えていることが望ましい。チャンバ26内には、例えば抵抗加熱によるカーボンヒーターなどの加熱装置と、多孔質磁石を加圧して圧縮するためのシリンダーとが備え付けられている。 A porous magnet (indicated by reference numeral “10” in FIG. 1) produced by the method described above is loaded into the mold 27 shown in FIG. At this time, it is desirable to perform loading so that the orientation direction and the pressing direction coincide. The mold 27 and the punches 28a and 28b are formed of a material that can withstand the heating temperature and the applied pressure in the atmosphere gas to be used. As such a material, carbon or cemented carbide such as tungsten carbide is desirable. In addition, the anisotropy can be increased by setting the outer dimension of the porous magnet 10 to be smaller than the opening dimension of the mold 27. Next, the mold 27 loaded with the porous magnet 10 is set in a hot press apparatus. The hot press apparatus preferably includes a chamber 26 that can be controlled to a vacuum (1.3 Pa or less) or an inert atmosphere. In the chamber 26, for example, a heating device such as a carbon heater by resistance heating and a cylinder for pressurizing and compressing the porous magnet are provided.
チャンバ26内を真空または不活性雰囲気で満たした後、加熱装置により金型27を加熱し、金型27に装填された多孔質磁石10の温度を600℃〜900℃に高め、9.8〜294MPaの圧力Pで多孔質磁石10を加圧する。多孔質磁石10に対する加圧は、金型27の温度が設定レベルに到達してから開始することが望ましい。金型の温度が十分に高くない場合には、加圧時に多孔質磁石に割れが生じたり、得られる高密度磁石の配向度が悪化してしまう可能性がある。加圧しながら600℃〜900℃の温度で10分以上保持した後、冷却する。加熱圧縮により高密度化された磁石が大気と接触して酸化しない程度の低い温度(100℃以下程度)まで冷却が進んだ後、本実施例の磁石をチャンバから取り出す。こうして、上記の多孔質磁石から本実施形態のR−T−B系高密度磁石を得ることができる。 After filling the chamber 26 with a vacuum or an inert atmosphere, the mold 27 is heated by a heating device, and the temperature of the porous magnet 10 loaded in the mold 27 is increased to 600 ° C. to 900 ° C. The porous magnet 10 is pressurized with a pressure P of 294 MPa. It is desirable that the pressurization to the porous magnet 10 is started after the temperature of the mold 27 reaches a set level. If the mold temperature is not sufficiently high, the porous magnet may be cracked during pressurization, or the degree of orientation of the resulting high-density magnet may deteriorate. While maintaining the pressure at 600 ° C. to 900 ° C. for 10 minutes or more while cooling, it is cooled. After the magnet, which has been densified by heat compression, is cooled to a low temperature (about 100 ° C. or less) that does not oxidize due to contact with the atmosphere, the magnet of this embodiment is taken out of the chamber. Thus, the RTB-based high density magnet of the present embodiment can be obtained from the porous magnet.
こうして得られた磁石の密度は真密度の90%以上に達する。また、本実施形態によれば、最終的な結晶相集合組織において、個々の結晶粒の最短粒径aと最長粒径bの比b/aが2未満である結晶粒が全結晶粒の50体積%以上存在する。この点において、本実施形態の磁石は、例えば特開平02−39503号公報などに記載の従来の熱間塑性加工による異方性バルク磁石と大きく異なっている。このような磁石の結晶組織においては最短粒径aと最長粒径bの比b/aが2を超えた扁平な結晶粒が支配的である。 The density of the magnet thus obtained reaches 90% or more of the true density. In addition, according to the present embodiment, in the final crystal phase texture, the crystal grains in which the ratio b / a of the shortest particle diameter a to the longest particle diameter b of each crystal grain is less than 2 are 50 of the total crystal grains. It exists by volume% or more. In this respect, the magnet of the present embodiment is greatly different from the conventional anisotropic bulk magnet by hot plastic working described in, for example, Japanese Patent Laid-Open No. 02-39503. In such a crystal structure of a magnet, flat crystal grains in which the ratio b / a between the shortest particle diameter a and the longest particle diameter b exceeds 2 are dominant.
(実験例1)
原料合金の粉末として、下の表1に示す組成の合金粉末を用意し、上述した実施形態の製造方法により、多孔質磁石を作製した。以下、本実験例における多孔質磁石の作製方法を説明する。
(Experimental example 1)
As a raw material alloy powder, an alloy powder having the composition shown in Table 1 below was prepared, and a porous magnet was manufactured by the manufacturing method of the above-described embodiment. Hereinafter, a method for producing a porous magnet in this experimental example will be described.
まず、表1の組成を有する急冷凝固合金をストリップキャスト法で作製した。得られた急冷凝固合金を水素吸蔵崩壊法によって粒径425μm以下の粉末に粗粉砕した後、ジェットミルを用いて粗粉末を微粉砕し、50%体積中心粒径4.2〜4.5μmの微粉末を得た。なお、50%体積中心粒径は、気流分散型レーザー回折式粒度分布測定装置(Sympatec社製、HEROS/RODOS、以下本実施例の50%体積中心粒径はすべて同じ装置で測定)によって測定した。 First, a rapidly solidified alloy having the composition shown in Table 1 was produced by strip casting. The obtained rapidly solidified alloy was coarsely pulverized into a powder having a particle size of 425 μm or less by the hydrogen occlusion / disintegration method, and then the coarse powder was finely pulverized using a jet mill to obtain a 50% volume center particle size of 4.2 to 4.5 μm. A fine powder was obtained. The 50% volume center particle size was measured by an air flow dispersion type laser diffraction particle size distribution measuring device (manufactured by Sympatec, HEROS / RODOS, hereinafter all 50% volume center particle sizes in this example were measured with the same device). .
次に、この粉末をプレス装置の金型に充填し、0.64MA/mの磁界中において、磁界と平行方向に76MPaの圧力を印加して圧粉体を作製した。圧粉体の密度は、寸法と重量に基づいて計算すると、4.2〜4.5g/cm3であった。 Next, this powder was filled in a die of a press machine, and a green compact was produced by applying a pressure of 76 MPa in a direction parallel to the magnetic field in a magnetic field of 0.64 MA / m. The density of the green compact was calculated to be 4.2 to 4.5 g / cm 3 based on the size and weight.
次に、圧粉体に対してHDDR処理を行った。具体的には、圧粉体を100kPaの水素流気中で温度T1=200、250、300、400、600、700(℃)まで14℃/minの昇温速度で昇温し、30分間保持し、第一熱処理工程を行った。その後、雰囲気を100kPaのアルゴン流気に切り替えた後、840℃まで14℃/minの昇温速度で昇温し、次いで雰囲気を100kPaの水素流気に切り替えた後、840℃を2時間保持して第二熱処理工程を行った。その後、840℃のまま5.3kPaに減圧したアルゴン流気中で1時間保持し、第三熱処理工程を行った。次に、100kPaのアルゴン流気中で室温まで冷却し、サンプルを作製した。 Next, HDDR processing was performed on the green compact. Specifically, the green compact is heated to a temperature T 1 = 200, 250, 300, 400, 600, 700 (° C.) at a heating rate of 14 ° C./min in a hydrogen gas of 100 kPa for 30 minutes. The first heat treatment step was performed. Then, after switching the atmosphere to 100 kPa argon flow, the temperature was raised to 840 ° C. at a rate of 14 ° C./min, and then the atmosphere was switched to 100 kPa hydrogen flow, and then maintained at 840 ° C. for 2 hours. The second heat treatment step was performed. Then, it hold | maintained for 1 hour in the argon air pressure-reduced to 5.3 kPa with 840 degreeC, and performed the 3rd heat treatment process. Next, the sample was cooled to room temperature in a 100 kPa argon stream to prepare a sample.
作製したサンプルの寸法と重量から密度を計算すると、5.4〜6.2g/cm3であった。 When the density was calculated from the size and weight of the prepared sample, it was 5.4 to 6.2 g / cm 3 .
作製したサンプルに対して3.2MA/mのパルス磁界で着磁した後、磁気特性をBHトレーサー(装置名:MTR−1412(メトロン技研社製))で測定した。図2は温度T1と残留磁束密度Br、図3はT1と保磁力HcJ、図4はT1と配向度(Br/Jmax)、図5はT1と角型比(Hk/HcJ)、図6はT1と最大エネルギー積((BH)max)の関係を示す。なお、Jmaxは、着磁したサンプルの着磁方向に1.6MA/mまで外部磁界を印加した時のサンプルの磁化の最大測定値であり、Br/Jmaxが大きいほど配向度に優れている。また、Hkは磁化がBr×0.9となる時の外部磁界の値であり、Hk/HcJが大きいほど減磁曲線の角型性に優れている。 The prepared sample was magnetized with a pulse magnetic field of 3.2 MA / m, and then the magnetic properties were measured with a BH tracer (device name: MTR-1412 (manufactured by Metron Engineering Co., Ltd.)). 2 shows temperature T 1 and residual magnetic flux density B r , FIG. 3 shows T 1 and coercive force H cJ , FIG. 4 shows T 1 and orientation (B r / J max ), and FIG. 5 shows T 1 and squareness ratio ( H k / H cJ ), FIG. 6 shows the relationship between T 1 and the maximum energy product ((BH) max ). Note that J max is the maximum measured value of the magnetization of the sample when an external magnetic field is applied up to 1.6 MA / m in the magnetization direction of the magnetized sample. The larger the Br / J max , the better the degree of orientation. ing. H k is the value of the external magnetic field when the magnetization is B r × 0.9, and the greater the H k / H cJ , the better the squareness of the demagnetization curve.
図2〜6には、比較例として第一熱処理工程無しの結果も示している。なお、第一熱処理工程無しのサンプルは、100kPaのアルゴン流気中で840℃まで14℃/minで昇温した後に、雰囲気を100kPaの水素流気に切り替えて840℃で2時間保持して第二熱処理工程を行い、次いで雰囲気を100kPaのアルゴン流気中で840℃を1時間保持して第三熱処理工程を行い、100kPaのアルゴン流気中で室温まで冷却して作製した。 2 to 6 also show the result without the first heat treatment step as a comparative example. The sample without the first heat treatment step was heated up to 840 ° C./min in a 100 kPa argon flow at 14 ° C./min, and then the atmosphere was switched to a 100 kPa hydrogen flow and held at 840 ° C. for 2 hours. A second heat treatment step was performed, and then the atmosphere was maintained at 840 ° C. for 1 hour in a 100 kPa argon flow to perform a third heat treatment step, and then cooled to room temperature in a 100 kPa argon flow.
図4および図5より明らかなように、T1が250℃以上600℃以下のサンプルは、第一熱処理工程無しのサンプルに比べて、配向度および角型性に優れており、T1が400℃以上600℃以下で作製したサンプルにおいては、配向度および角型性に特に優れている。T1が700℃で作製したサンプルでは、水素流気中における700℃までの昇温過程でR2T14B相の水素化・不均化反応が進行してしまうため、配向度および角型性のいずれも小さな値を示している。 As is clear from FIGS. 4 and 5, the sample having T 1 of 250 ° C. or more and 600 ° C. or less is superior in orientation degree and squareness compared to the sample without the first heat treatment step, and T 1 is 400. Samples manufactured at a temperature of from 600 ° C. to 600 ° C. are particularly excellent in the degree of orientation and squareness. In the sample prepared at T 1 of 700 ° C., the hydrogenation / disproportionation reaction of the R 2 T 14 B phase proceeds in the process of raising the temperature up to 700 ° C. in a hydrogen stream. Both sexes show small values.
図7は、合金A3について、T1=600℃の条件で作製したサンプルの破断面を示すSEM写真である。図7において見られる、サンプル内に存在する細孔は、HDDR処理工程で相互に結合した粉末粒子の間に存在する空隙であり、三次元網状に連通している。圧粉体を構成していた個々の粉末粒子は、HDDR処理により、隣接する粉末粒子と結合し、剛性を発揮する三次元構造を形成するとともに、個々の粉末粒子内では、微細なR2T14B相の集合組織が形成されている。 FIG. 7 is an SEM photograph showing a fracture surface of a sample prepared for Alloy A3 under the condition of T 1 = 600 ° C. The pores present in the sample as seen in FIG. 7 are voids that exist between the powder particles that are bonded to each other in the HDDR processing step, and communicate with each other in a three-dimensional network. The individual powder particles constituting the green compact are combined with adjacent powder particles by the HDDR process to form a three-dimensional structure exhibiting rigidity, and within each powder particle, fine R 2 T 14 B-phase texture is formed.
また、作製したサンプルの減磁曲線の一例として、A2について、上記作製方法においてT1=600℃で作製したサンプルの減磁曲線を図8に示す。また、比較例として、上記作製方法で作製した第一熱処理工程無しのサンプルの減磁曲線もあわせて示す。図8から明らかなように、比較例のサンプルの減磁曲線は角型性が非常に悪いが、本発明の第一熱処理工程を行うことにより、減磁曲線の角型性に優れる磁石を作製することができる。 Further, as an example of the demagnetization curve of the manufactured sample, FIG. 8 shows a demagnetization curve of the sample manufactured for A2 at T 1 = 600 ° C. in the above manufacturing method. As a comparative example, a demagnetization curve of a sample without the first heat treatment step manufactured by the above manufacturing method is also shown. As is clear from FIG. 8, the demagnetization curve of the sample of the comparative example has very poor squareness, but a magnet having excellent squareness of the demagnetization curve is produced by performing the first heat treatment step of the present invention. can do.
(実験例2)
実験例1で説明した方法と同一の方法で合金A2、A5の粉末の圧粉体を作製した。次に、圧粉体に対してHDDR処理を行った。具体的には、圧粉体を100kPaの水素流気中で600℃まで14℃/minの昇温速度で昇温し、30分間保持し、第一熱処理工程を行った。その後、雰囲気を表2に記載の雰囲気ガス流気(全圧が100kPaのアルゴンガス流気、または全圧が100kPaで水素分圧が50kPaの水素/アルゴン混合ガス流気)に切り替えた後、840℃まで14℃/minの昇温速度で昇温した。次いで雰囲気を全圧が100kPaの水素流気に切り替えた後840℃を2時間保持して第二熱処理工程を行った。また、第一熱処理工程終了時から第二熱処理工程開始時までの雰囲気を水素分圧が50kPaの水素/アルゴン混合ガス流気で行ったものについては、そのままの雰囲気で第二熱処理工程を行うサンプルも作製した。その後、840℃のまま5.3kPaに減圧したアルゴン流気中で1時間保持し、第三熱処理工程を行った。次に、100kPaのアルゴン流気中で室温まで冷却し、サンプルを作製した。
(Experimental example 2)
The green compacts of the alloys A2 and A5 were produced by the same method as described in Experimental Example 1. Next, HDDR processing was performed on the green compact. Specifically, the green compact was heated to 600 ° C. at a heating rate of 14 ° C./min in a hydrogen gas of 100 kPa and held for 30 minutes to perform the first heat treatment step. Then, after switching the atmosphere to the atmosphere gas flow shown in Table 2 (Argon gas flow with a total pressure of 100 kPa, or a hydrogen / argon mixed gas flow with a total pressure of 100 kPa and a hydrogen partial pressure of 50 kPa), 840 The temperature was raised to 14 ° C. at a rate of 14 ° C./min. Next, after the atmosphere was switched to a hydrogen flow with a total pressure of 100 kPa, the second heat treatment step was performed while maintaining 840 ° C. for 2 hours. In addition, in the case where the atmosphere from the end of the first heat treatment step to the start of the second heat treatment step is performed with a hydrogen / argon mixed gas flow with a hydrogen partial pressure of 50 kPa, the sample in which the second heat treatment step is performed as it is Also made. Then, it hold | maintained for 1 hour in the argon air pressure-reduced to 5.3 kPa with 840 degreeC, and performed the 3rd heat treatment process. Next, the sample was cooled to room temperature in a 100 kPa argon stream to prepare a sample.
作製したサンプルに対して3.2MA/mのパルス磁界で着磁した後、磁気特性をBHトレーサー(装置名:MTR−1412(メトロン技研社製))で測定した。測定結果および作製したサンプルの寸法と重量から計算した密度を表2に示す。表2からわかるように、第一熱処理工程終了時から第二熱処理工程開始時までにおいて流気するガスの水素分圧P2が0kPaにおいては良好な磁気特性が得られるが、P2が50kPaでは配向度および角型性が悪化する。これは、第一熱処理工程終了時から第二熱処理工程開始時までの昇温中において一部HD反応が起こっているためであると考えられる。 The prepared sample was magnetized with a pulse magnetic field of 3.2 MA / m, and then the magnetic properties were measured with a BH tracer (device name: MTR-1412 (manufactured by Metron Engineering Co., Ltd.)). Table 2 shows the density calculated from the measurement results and the dimensions and weights of the prepared samples. As can be seen from Table 2, good magnetic properties are obtained when the hydrogen partial pressure P 2 of the gas flowing from the end of the first heat treatment step to the start of the second heat treatment step is 0 kPa, but when P 2 is 50 kPa, Degree of orientation and squareness deteriorate. This is presumably because part of the HD reaction occurred during the temperature increase from the end of the first heat treatment step to the start of the second heat treatment step.
ここで、P2は、第一熱処理工程終了時から第二熱処理工程開始時までにおいて流気するガスの水素分圧であり、P3は、第二熱処理工程における水素分圧である。 Here, P2 is the hydrogen partial pressure of gas flowing from the end of the first heat treatment step to the start of the second heat treatment step, and P3 is the hydrogen partial pressure in the second heat treatment step.
[参考例]
また、参考例として、従来のHDDR磁粉の製造工程で用いられる、粗粉砕した原料合金粉末に対し、上記と同じく第一熱処理工程終了時から第二熱処理工程開始時までの雰囲気の影響を調査した。
[Reference example]
In addition, as a reference example, the influence of the atmosphere from the end of the first heat treatment process to the start of the second heat treatment process was investigated for the coarsely pulverized raw material alloy powder used in the conventional HDDR magnetic powder manufacturing process. .
原料合金として表3に示す合金を遠心鋳造法で作製し、水素吸蔵崩壊法によって粒径300μm以下に粗粉砕した粉末に対し、実験例2と同様のHDDR処理を行った。 The alloy shown in Table 3 as a raw material alloy was produced by centrifugal casting, and the same HDDR treatment as in Experimental Example 2 was performed on the powder coarsely pulverized to a particle size of 300 μm or less by the hydrogen storage / disintegration method.
HDDR処理後の粉末を、円筒型のホルダに投入し、800kA/mの磁界中で配向しながらパラフィンで固定した。得られたサンプルを4.8MA/mのパルス磁界で着磁した後、磁気特性を振動試料型磁束計(VSM:装置名VSM5(東英工業社製))で測定した。なお、反磁界補正は行っていない。測定結果を表4に示す。 The HDDR-treated powder was put into a cylindrical holder and fixed with paraffin while being oriented in a magnetic field of 800 kA / m. The obtained sample was magnetized with a pulse magnetic field of 4.8 MA / m, and the magnetic properties were measured with a vibrating sample magnetometer (VSM: device name VSM5 (manufactured by Toei Kogyo Co., Ltd.)). Note that demagnetizing field correction is not performed. Table 4 shows the measurement results.
表中のBrおよびJmaxは、サンプルの真密度が7.6g/cm3であるとして計算によって求めた。なお、Jmaxは、着磁したサンプルの着磁方向に1.6MA/mまで外部磁界を印加した時のサンプルの磁化の測定値を、VSM測定における鏡像効果を考慮して補正した値である。 B r and J max in the table, the true density of the samples was determined by calculation as being 7.6 g / cm 3. Note that J max is a value obtained by correcting the measured value of the magnetization of the sample when an external magnetic field is applied up to 1.6 MA / m in the magnetization direction of the magnetized sample in consideration of the mirror image effect in the VSM measurement. .
表4よりわかるように、粒径300μm以下に粗粉砕した粉末に対しては、第一熱処理工程終了時から第二熱処理工程開始時までの昇温中における水素分圧が0kPaおよび50kPaのいずれにおいてもほぼ同程度の配向度を有しており、原料合金の50%体積中心粒径が10μm未満である本発明の実施例の傾向とは異なる。これは、前述したように、本発明におけるR−T−B系合金粉末の50%体積中心粒径が10μm未満と小さいために、表面積が大きくなり、結果として昇温中に生じるHD反応の影響が顕在化したものと考えられる。 As can be seen from Table 4, for the powder coarsely pulverized to a particle size of 300 μm or less, the hydrogen partial pressure during the temperature increase from the end of the first heat treatment step to the start of the second heat treatment step is either 0 kPa or 50 kPa. However, the degree of orientation of the raw material alloy is different from the tendency of the example of the present invention in which the 50% volume center particle diameter is less than 10 μm. This is because, as described above, the RTB-based alloy powder of the present invention has a small 50% volume center particle size of less than 10 μm, which increases the surface area, resulting in the influence of the HD reaction that occurs during temperature rise. It is thought that was manifested.
(実験例3)
実験例1で説明した方法と同一の方法で合金A2、A5の粉末の圧粉体を作製した。次に、圧粉体に対してHDDR処理を行った。具体的には、圧粉体を全圧が100kPaで、水素分圧がP1=0、10、20、50、100kPaである水素/アルゴン混合ガス流気雰囲気中で600℃まで14℃/minの昇温速度で昇温し、30分間保持して、第一熱処理工程を行った。
(Experimental example 3)
The green compacts of the alloys A2 and A5 were produced by the same method as described in Experimental Example 1. Next, HDDR processing was performed on the green compact. Specifically, the green compact has a total pressure of 100 kPa and a hydrogen partial pressure of P 1 = 0, 10, 20, 50, 100 kPa. The first heat treatment step was performed by raising the temperature at a temperature rise rate of and holding for 30 minutes.
その後、雰囲気を100kPaのアルゴンガス流気に切り替え、840℃まで14℃/minの昇温速度で昇温した。次いで雰囲気を100kPaの水素ガス流気に切り替えた後840℃を2時間保持して第二熱処理工程を行った。その後、840℃のまま5.3kPaに減圧したアルゴン流気中で1時間保持し、第三熱処理工程を行った。次に、100kPaのアルゴン流気中で室温まで冷却し、サンプルを作製した。 Thereafter, the atmosphere was switched to an argon gas flow of 100 kPa, and the temperature was increased to 840 ° C. at a temperature increase rate of 14 ° C./min. Next, after switching the atmosphere to a hydrogen gas flow of 100 kPa, the second heat treatment step was performed while maintaining 840 ° C. for 2 hours. Then, it hold | maintained for 1 hour in the argon air pressure-reduced to 5.3 kPa with 840 degreeC, and performed the 3rd heat treatment process. Next, the sample was cooled to room temperature in a 100 kPa argon stream to prepare a sample.
作製したサンプルに対して3.2MA/mのパルス磁界で着磁した後、磁気特性をBHトレーサー(装置名:MTR−1412(メトロン技研社製))で測定した。測定結果を表5に示す。表5からわかるように、第一熱処理工程において流気するガスの水素分圧P1が10kPa以上において良好な磁気特性が得られる。 The prepared sample was magnetized with a pulse magnetic field of 3.2 MA / m, and then the magnetic properties were measured with a BH tracer (device name: MTR-1412 (manufactured by Metron Engineering Co., Ltd.)). Table 5 shows the measurement results. As can be seen from Table 5, good magnetic properties can be obtained when the hydrogen partial pressure P 1 of the gas flowing in the first heat treatment step is 10 kPa or more.
(実験例4)
表6の組成を有する急冷凝固合金をストリップキャスト法で作製した。得られた急冷凝固合金を水素吸蔵崩壊法によって粒径425μm以下の粉末に粗粉砕した後、ジェットミルを用いて粗粉末を微粉砕し、50%体積中心粒径4.2〜4.5μmの微粉末を得た。
(Experimental example 4)
A rapidly solidified alloy having the composition shown in Table 6 was produced by strip casting. The obtained rapidly solidified alloy was coarsely pulverized into a powder having a particle size of 425 μm or less by the hydrogen occlusion / disintegration method, and then the coarse powder was finely pulverized using a jet mill to obtain a 50% volume center particle size of 4.2 to 4.5 μm. A fine powder was obtained.
次に、この粉末をプレス装置の金型に充填し、1.2MA/mの磁界中において、磁界と直角方向に72MPaの圧力を印加して圧粉体を作製した。圧粉体の密度は、寸法と重量に基づいて計算すると、4.0〜4.2g/cm3であった。 Next, this powder was filled in a mold of a press machine, and a pressure of 72 MPa was applied in a direction perpendicular to the magnetic field in a magnetic field of 1.2 MA / m to produce a green compact. The density of the green compact was 4.0 to 4.2 g / cm 3 when calculated based on dimensions and weight.
次に、圧粉体に対してHDDR処理を行った。具体的には、圧粉体を100kPaの水素流気中で600℃まで14℃/minの昇温速度で昇温し、30分間保持し、第一熱処理工程を行った。その後、雰囲気を100kPaのアルゴン流気に切り替えた後、860℃まで14℃/minの昇温速度で昇温し、次いで雰囲気を100kPaの水素流気に切り替えた後、860℃を2時間保持して第二熱処理工程を行った。その後、860℃のまま5.3kPaに減圧したアルゴン流気中で1時間保持し、第三熱処理工程を行った。次に、100kPaのアルゴン流気中で室温まで冷却し、サンプルを作製した。 Next, HDDR processing was performed on the green compact. Specifically, the green compact was heated to 600 ° C. at a heating rate of 14 ° C./min in a hydrogen gas of 100 kPa and held for 30 minutes to perform the first heat treatment step. Then, after switching the atmosphere to 100 kPa argon flow, the temperature was increased to 860 ° C. at a rate of 14 ° C./min, and then the atmosphere was switched to 100 kPa hydrogen flow, and then maintained at 860 ° C. for 2 hours. The second heat treatment step was performed. Then, it hold | maintained for 1 hour in the argon air pressure-reduced to 5.3 kPa with 860 degreeC, and performed the 3rd heat treatment process. Next, the sample was cooled to room temperature in a 100 kPa argon stream to prepare a sample.
また、比較例として第一熱処理工程無しの結果のサンプルも作製した。なお、第一熱処理工程無しのサンプルは、100kPaのアルゴン流気中で840℃まで14℃/minで昇温した後に、雰囲気を100kPaの水素流気に切り替えて840℃で2時間保持して第二熱処理工程を行い、次いで雰囲気を100kPaのアルゴン流気中で840℃を1時間保持して第三熱処理工程を行い、100kPaのアルゴン流気中で室温まで冷却して作製した。 Moreover, the sample of the result without a 1st heat treatment process was also produced as a comparative example. The sample without the first heat treatment step was heated up to 840 ° C./min in a 100 kPa argon flow at 14 ° C./min, and then the atmosphere was switched to a 100 kPa hydrogen flow and held at 840 ° C. for 2 hours. A second heat treatment step was performed, and then the atmosphere was maintained at 840 ° C. for 1 hour in a 100 kPa argon flow to perform a third heat treatment step, and then cooled to room temperature in a 100 kPa argon flow.
作製したサンプルに対して3.2MA/mのパルス磁界で着磁した後、磁気特性をBHトレーサー(装置名:MTR−1412(メトロン技研社製))で測定した。測定結果を表7に示す。 The prepared sample was magnetized with a pulse magnetic field of 3.2 MA / m, and then the magnetic properties were measured with a BH tracer (device name: MTR-1412 (manufactured by Metron Engineering Co., Ltd.)). Table 7 shows the measurement results.
表7よりわかるように、第一熱処理工程を導入することにより、配向度および角型性が向上した。 As can be seen from Table 7, the degree of orientation and squareness were improved by introducing the first heat treatment step.
(実験例5)
実験例4で作製したA6組成の実施例の多孔質磁石を超硬合金製の金型中で800℃に加熱し、50MPaの圧力で30分間の熱間圧縮処理(ホットプレス)を行うことにより、密度が7.58g/cm3の高密度磁石を得た。
(Experimental example 5)
By heating the porous magnet of the Example of A6 composition prepared in Experimental Example 4 to 800 ° C. in a cemented carbide mold and performing hot compression treatment (hot pressing) for 30 minutes at a pressure of 50 MPa. A high density magnet having a density of 7.58 g / cm 3 was obtained.
作製したサンプルに対して3.2MA/mのパルス磁界で着磁した後、磁気特性をBHトレーサー(装置名:MTR−1412(メトロン技研社製))で測定した。得られた結果を図9に示す。図からわかるように、多孔質磁石および高密度磁石ともに、良好な磁気特性が得られた。また、ホットプレスによって保磁力はほとんど変化しないのに対し、減磁曲線の角型性が改善していることも確認された。 The prepared sample was magnetized with a pulse magnetic field of 3.2 MA / m, and then the magnetic properties were measured with a BH tracer (device name: MTR-1412 (manufactured by Metron Engineering Co., Ltd.)). The obtained results are shown in FIG. As can be seen from the figure, good magnetic properties were obtained for both the porous magnet and the high-density magnet. It was also confirmed that the squareness of the demagnetization curve was improved while the coercive force hardly changed by hot pressing.
(実験例6)
まず、表6の組成を有する合金A10を遠心鋳造法で作製した。得られた合金Aを4.2kPaのアルゴン減圧雰囲気で1110℃、480分の均質化熱処理を行った。その後、水素吸蔵崩壊法によって粒径425μm以下に粗粉砕した後、ジェットミルを用いて粗粉末を微粉砕し、50%体積中心粒径5.1μmの微粉末を得た。次に、この微粉末をプレス装置の金型に充填し、1.2MA/mの磁界中において、磁界と直角方向に32MPaの圧力を印加して圧粉体を作製した。圧粉体の密度は、寸法と重量に基づいて計算すると、4.2g/cm3であった。
(Experimental example 6)
First, an alloy A10 having the composition shown in Table 6 was produced by a centrifugal casting method. The obtained alloy A was subjected to homogenization heat treatment at 1110 ° C. for 480 minutes in an argon reduced pressure atmosphere of 4.2 kPa. Thereafter, the powder was coarsely pulverized to a particle size of 425 μm or less by the hydrogen storage / disintegration method, and then the coarse powder was finely pulverized using a jet mill to obtain a fine powder having a 50% volume center particle size of 5.1 μm. Next, this fine powder was filled in a die of a press machine, and a green compact was produced by applying a pressure of 32 MPa in a direction perpendicular to the magnetic field in a magnetic field of 1.2 MA / m. The density of the green compact was 4.2 g / cm 3 when calculated based on dimensions and weight.
次に、圧粉体に対して前述のHDDR処理を行った。具体的には、圧粉体を100kPaの水素流気中で温度T1=600℃まで14℃/minの昇温速度で昇温し、30分間保持し、第一熱処理工程を行った。その後、雰囲気を100kPaのアルゴン流気に切り替えた後、860℃まで14℃/minの昇温速度で昇温し、次いで雰囲気を100kPaの水素流気に切り替えた後、860℃を120分保持して第二熱処理工程を行った。その後、860℃のまま5.3kPaに減圧したアルゴン流気中で60分保持し、第三熱処理工程を行った。次に、100kPaのアルゴン流気中で室温まで冷却し、サンプルを作製した。 Next, the above-mentioned HDDR process was performed on the green compact. Specifically, the green compact was heated to a temperature T 1 = 600 ° C. at a temperature increase rate of 14 ° C./min in a 100 kPa hydrogen stream and held for 30 minutes to perform the first heat treatment step. Then, after switching the atmosphere to a 100 kPa argon flow, the temperature was increased to 860 ° C. at a rate of 14 ° C./min, and then the atmosphere was switched to a 100 kPa hydrogen flow, and then maintained at 860 ° C. for 120 minutes. The second heat treatment step was performed. Then, it hold | maintained for 60 minutes in the argon air pressure-reduced to 5.3 kPa with 860 degreeC, and performed the 3rd heat treatment process. Next, the sample was cooled to room temperature in a 100 kPa argon stream to prepare a sample.
作製したサンプルの寸法と重量から密度を計算すると、5.67g/cm3であった。 When the density was calculated from the size and weight of the prepared sample, it was 5.67 g / cm 3 .
作製したサンプルに対して3.2MA/mのパルス磁界で着磁した後、磁気特性をBHトレーサー(装置名:MTR−1412(メトロン技研社製))で測定した。結果を表8に示す。 The prepared sample was magnetized with a pulse magnetic field of 3.2 MA / m, and then the magnetic properties were measured with a BH tracer (device name: MTR-1412 (manufactured by Metron Engineering Co., Ltd.)). The results are shown in Table 8.
さらにHDDR処理後のサンプルを超硬合金製の金型中で800℃に加熱し、50MPaの圧力で20分間の熱間圧縮処理(ホットプレス)を行うことにより、密度7.57g/cm3の高密度磁石を得た。作製した高密度磁石に対して3.2MA/mのパルス磁界で着磁した後、磁気特性をBHトレーサー(装置名:MTR−1412(メトロン技研社製))で測定した。結果を表8に示す。表8からわかるようにいずれのサンプルも良好な磁気特性が得られ、特にホットプレスによってHDDR処理後に比べさらに良好な磁気特性が得られている。 Further, the sample after HDDR treatment was heated to 800 ° C. in a cemented carbide metal mold and subjected to hot compression treatment (hot pressing) for 20 minutes at a pressure of 50 MPa, whereby a density of 7.57 g / cm 3 was obtained. A high density magnet was obtained. After magnetizing the produced high-density magnet with a pulse magnetic field of 3.2 MA / m, the magnetic properties were measured with a BH tracer (device name: MTR-1412 (Metron Giken Co., Ltd.)). The results are shown in Table 8. As can be seen from Table 8, all the samples have good magnetic properties, and particularly better magnetic properties are obtained by hot pressing than after HDDR treatment.
(実験例7)
実験例4で説明した方法と同一の方法で合金A6の粉末を作製した。次に、図10に示すような成形容器2およびプレス治具3を用意した。この実験例における成形容器2は、非磁性ステンレスから形成されている。作製した粉末1を、内側の寸法が12mm×20mmで高さが20mmの角型の成形容器2に充填した。次に、成形容器2の内側寸法よりもわずかに小さい角型の押し棒(プレス治具)3で成形容器2の解放面に蓋をした。プレス方向と垂直方向(20mmの方向)に1.2MA/mの磁界を印加しながら、押し棒3を手で押しつけた。このとき、約0.1MPaの圧力を付加して成形容器2内の粉末1を成形して圧粉体を作製した。圧粉体の密度はおよそ3.5g/cm3であった。
(Experimental example 7)
Alloy A6 powder was prepared in the same manner as described in Experimental Example 4. Next, a forming container 2 and a pressing jig 3 as shown in FIG. 10 were prepared. The molded container 2 in this experimental example is made of nonmagnetic stainless steel. The produced powder 1 was filled into a rectangular shaped container 2 having an inner dimension of 12 mm × 20 mm and a height of 20 mm. Next, the release surface of the molded container 2 was covered with a square push rod (press jig) 3 slightly smaller than the inner dimension of the molded container 2. While applying a magnetic field of 1.2 MA / m in the direction perpendicular to the press direction (20 mm direction), the push rod 3 was pressed by hand. At this time, a pressure of about 0.1 MPa was applied to mold the powder 1 in the molding container 2 to produce a green compact. The density of the green compact was approximately 3.5 g / cm 3 .
その後、押し棒3を成形容器2から取り外し、成形容器2ごとHDDR処理を行った。具体的には、圧粉体を100kPaの水素流気中で600℃まで14℃/minの昇温速度で昇温した。そして、第一熱処理工程を行い、600℃で保持することなく雰囲気を100kPaのアルゴン流気に切り替え、860℃まで14℃/minの昇温速度で昇温した。次に雰囲気を100kPaの水素流気に切り替えた後、860℃を2時間保持して第二熱処理工程を行った。次に860℃のまま100kPaのアルゴン流気中で1時間保持し、第三熱処理工程を行った後、室温まで冷却し、多孔質磁石を作製した。作製した多孔質磁石の密度は約4.3g/cm3であった。 Thereafter, the push rod 3 was removed from the forming container 2 and the entire forming container 2 was subjected to HDDR processing. Specifically, the green compact was heated to 600 ° C. at a rate of 14 ° C./min in a 100 kPa hydrogen flow. Then, the first heat treatment step was performed, the atmosphere was switched to an argon flow of 100 kPa without maintaining at 600 ° C., and the temperature was increased to 860 ° C. at a temperature increase rate of 14 ° C./min. Next, after the atmosphere was switched to a hydrogen flow of 100 kPa, the second heat treatment step was performed while maintaining 860 ° C. for 2 hours. Next, it kept at 860 degreeC in 100 kPa argon stream for 1 hour, and after performing the 3rd heat treatment process, it cooled to room temperature and produced the porous magnet. The density of the produced porous magnet was about 4.3 g / cm 3 .
このように、本明細書における「圧粉体」とは、低圧の圧縮に起因して密度が低いために、それ自体では機械的強度が足りず、自立できない状態の粉末を含むものとする。なお、成形容器2は、図示される形状を有する容器に限定されない。特開平7−153612号公報に開示されている充填容器およびその改変例を、圧粉体の形成行程および/またはHDDR処理工程において成形容器として使用することもできる。 As described above, the “green compact” in the present specification includes a powder in a state where the mechanical strength is insufficient by itself due to low density due to low-pressure compression, and the powder cannot be self-supported. In addition, the shaping | molding container 2 is not limited to the container which has the shape shown in figure. The filling container disclosed in JP-A-7-153612 and a modified example thereof can also be used as a forming container in the green compact forming process and / or HDDR processing step.
次に、多孔質磁石を超硬合金製の金型中で800℃に加熱し、表9に記載の圧力で15分間の熱間圧縮処理(ホットプレス)を行うことにより、密度が7.54〜7.58g/cm3の高密度磁石を作製した。 Next, the porous magnet was heated to 800 ° C. in a cemented carbide metal mold and subjected to hot compression treatment (hot pressing) for 15 minutes at the pressure shown in Table 9, resulting in a density of 7.54. A high density magnet of ˜7.58 g / cm 3 was produced.
作製したサンプルに対して3.2MA/mのパルス磁界で着磁した後、磁気特性をBHトレーサー(装置名:MTR−1412(メトロン技研社製))で測定した。得られた結果を表9に示す。表9からわかるように、成形容器を用いて成形し,成形容器ごとHDDR処理を行っても、良好な磁気特性が得られる。 The prepared sample was magnetized with a pulse magnetic field of 3.2 MA / m, and then the magnetic properties were measured with a BH tracer (device name: MTR-1412 (manufactured by Metron Engineering Co., Ltd.)). Table 9 shows the obtained results. As can be seen from Table 9, good magnetic properties can be obtained even when molding is performed using a molded container and HDDR treatment is performed on the entire molded container.
(実験例8)
まず、実験例4で作製した原料合金A6の原料合金粉末をプレス装置の金型に充填し、1.2MA/mの磁界中において、磁界と直角方向に32MPaの圧力を印加して圧粉体を作製した。圧粉体の密度は、寸法と重量に基づいて計算すると、4.3g/cm3であった。
(Experimental example 8)
First, the raw material alloy powder of the raw material alloy A6 produced in Experimental Example 4 is filled in a die of a press machine, and a pressure of 32 MPa is applied in a direction perpendicular to the magnetic field in a 1.2 MA / m magnetic field. Was made. The density of the green compact was 4.3 g / cm 3 when calculated based on the dimensions and weight.
次に、圧粉体に対して前述のHDDR処理を行った。具体的には、圧粉体を100kPaの水素流気中で温度T1=600℃まで14℃/minの昇温速度で昇温し、30分間保持し、第一熱処理工程を行った。その後、雰囲気を100kPaのアルゴン流気に切り替えた後、860℃まで14℃/minの昇温速度で昇温し、次いで雰囲気を100kPaの水素流気に切り替えた後、860℃を120分保持して第二熱処理工程を行った。その後、860℃に保持したまま表10に示すように炉内の水素分圧を2.0〜10.0kPaに調整しながら60分保持し、次いで860℃のまま5.3kPaに減圧したアルゴン流気中で60分保持し、第三熱処理工程を行った。その後、100kPaのアルゴン流気中で室温まで冷却し、サンプルを作製した。 Next, the above-mentioned HDDR process was performed on the green compact. Specifically, the green compact was heated to a temperature T 1 = 600 ° C. at a temperature increase rate of 14 ° C./min in a 100 kPa hydrogen stream and held for 30 minutes to perform the first heat treatment step. Then, after switching the atmosphere to a 100 kPa argon flow, the temperature was increased to 860 ° C. at a rate of 14 ° C./min, and then the atmosphere was switched to a 100 kPa hydrogen flow, and then maintained at 860 ° C. for 120 minutes. The second heat treatment step was performed. Thereafter, while maintaining the temperature at 860 ° C., as shown in Table 10, the hydrogen partial pressure in the furnace was maintained for 60 minutes while adjusting the pressure to 2.0 to 10.0 kPa, and then the argon flow reduced to 5.3 kPa while maintaining the temperature at 860 ° C. Holding in the air for 60 minutes, a third heat treatment step was performed. Then, it cooled to room temperature in 100 kPa argon flow, and the sample was produced.
作製したサンプルの寸法と重量から密度を計算すると、5.7〜6.0g/cm3であった。 When the density was calculated from the size and weight of the prepared sample, it was 5.7 to 6.0 g / cm 3 .
作製したサンプルに対して3.2MA/mのパルス磁界で着磁した後、磁気特性をBHトレーサー(装置名:MTR−1412(メトロン技研社製))で測定した。結果を表11に示す。表11からわかるようにいずれのサンプルも良好な磁気特性が得られている。特に、条件S2〜S5のように第3熱処理工程の1段目に水素分圧2kPa〜6kPaで処理した場合に高いHcJが得られていることがわかる。 The prepared sample was magnetized with a pulse magnetic field of 3.2 MA / m, and then the magnetic properties were measured with a BH tracer (device name: MTR-1412 (manufactured by Metron Engineering Co., Ltd.)). The results are shown in Table 11. As can be seen from Table 11, all the samples have good magnetic properties. In particular, it can be seen that high H cJ is obtained when treatment is performed at a hydrogen partial pressure of 2 kPa to 6 kPa in the first stage of the third heat treatment step as in the conditions S2 to S5.
本発明で作製した磁石は、従来の多孔質磁石に比べて高い配向度および残留磁束密度を有するため、これらの特性が求められる様々な用途に好適に用いられる。 Since the magnet produced by this invention has a high degree of orientation and a residual magnetic flux density compared with the conventional porous magnet, it is used suitably for various uses as which these characteristics are calculated | required.
10 多孔質磁石
27 金型(ダイ)
28a 上パンチ
28b 下パンチ
30a 駆動部
30b 駆動部
26 チャンバ
10 Porous magnet 27 Mold (die)
28a Upper punch 28b Lower punch 30a Driving unit 30b Driving unit 26 Chamber
Claims (7)
前記粉末を成型して圧粉体を作製する工程と、
前記圧粉体を250℃以上600℃以下の温度の水素雰囲気中で熱処理を施す第一熱処理工程と、
前記第一熱処理工程の後、前記圧粉体に対し、650℃以上1000℃以下の水素雰囲気中で熱処理を施す第二熱処理工程と、
前記第二熱処理工程の後、前記圧粉体に対し、650℃以上1000℃以下の真空または不活性雰囲気中で熱処理を施す第三熱処理工程と、
を含み、
前記第一熱処理工程終了時から前記第二熱処理工程の開始時までの昇温を真空または不活性雰囲気中で行う、R−T−B系永久磁石の製造方法。 An RTB-based alloy having a 50% volume center particle size of 1 μm or more and less than 10 μm and containing an R 2 T 14 B phase (R is a rare earth element containing 50 atomic% or more of Nd and / or Pr, T is Fe, Or preparing a powder of Fe and Co);
Forming a green compact by molding the powder;
A first heat treatment step of heat treating the green compact in a hydrogen atmosphere at a temperature of 250 ° C. or higher and 600 ° C. or lower;
After the first heat treatment step, a second heat treatment step of performing heat treatment on the green compact in a hydrogen atmosphere at 650 ° C. or higher and 1000 ° C. or lower;
After the second heat treatment step, a third heat treatment step of performing heat treatment on the green compact in a vacuum of 650 ° C. or higher and 1000 ° C. or lower or an inert atmosphere;
Including
The manufacturing method of the RTB type | system | group permanent magnet which performs temperature rising from the time of completion | finish of said 1st heat processing process to the time of the start of said 2nd heat processing process in a vacuum or inert atmosphere.
熱間圧縮成型によって前記R−T−B系永久磁石の密度を高める工程と、
を含む、R−T−B系高密度磁石の製造方法。 Preparing an RTB-based permanent magnet manufactured by the manufacturing method according to claim 1;
Increasing the density of the R-T-B permanent magnet by hot compression molding;
The manufacturing method of the RTB type | system | group high density magnet containing this.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012068867A JP5906874B2 (en) | 2011-03-28 | 2012-03-26 | Manufacturing method of RTB-based permanent magnet |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011070494 | 2011-03-28 | ||
JP2011070494 | 2011-03-28 | ||
JP2012068867A JP5906874B2 (en) | 2011-03-28 | 2012-03-26 | Manufacturing method of RTB-based permanent magnet |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012216804A JP2012216804A (en) | 2012-11-08 |
JP5906874B2 true JP5906874B2 (en) | 2016-04-20 |
Family
ID=47269247
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012068867A Active JP5906874B2 (en) | 2011-03-28 | 2012-03-26 | Manufacturing method of RTB-based permanent magnet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5906874B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6198103B2 (en) * | 2013-02-22 | 2017-09-20 | 日立金属株式会社 | Manufacturing method of RTB-based permanent magnet |
KR101451508B1 (en) | 2013-04-22 | 2014-10-15 | 삼성전기주식회사 | Method for preparing Nd-Fe-B based rare earth sintered magnet |
JP6511779B2 (en) * | 2014-11-12 | 2019-05-15 | Tdk株式会社 | RTB based sintered magnet |
GB201511553D0 (en) | 2015-07-01 | 2015-08-12 | Univ Birmingham | Magnet production |
JP6652011B2 (en) * | 2016-08-05 | 2020-02-19 | Tdk株式会社 | RTB based sintered magnet |
JP6691666B2 (en) * | 2016-10-06 | 2020-05-13 | 日立金属株式会社 | Method for manufacturing RTB magnet |
JP6691667B2 (en) * | 2016-10-06 | 2020-05-13 | 日立金属株式会社 | Method for manufacturing RTB magnet |
WO2018209681A1 (en) * | 2017-05-19 | 2018-11-22 | Robert Bosch Gmbh | Hot deformed magnet, and a method for preparing said hot deformed magnet |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3623571B2 (en) * | 1995-11-20 | 2005-02-23 | 株式会社Neomax | Method for producing RTB-based anisotropic bonded magnet |
JPH11158588A (en) * | 1997-09-26 | 1999-06-15 | Mitsubishi Materials Corp | Raw alloy for manufacture of rare earth magnetic powder, and its production |
JP3622652B2 (en) * | 2000-09-01 | 2005-02-23 | 日産自動車株式会社 | Anisotropic bulk exchange spring magnet and manufacturing method thereof |
JP4873008B2 (en) * | 2006-05-18 | 2012-02-08 | 日立金属株式会社 | R-Fe-B porous magnet and method for producing the same |
JP2008127648A (en) * | 2006-11-22 | 2008-06-05 | Hitachi Metals Ltd | Method for producing rare earth anisotropic magnet powder |
JP2009283568A (en) * | 2008-05-20 | 2009-12-03 | Nissan Motor Co Ltd | Magnet molded body and its method for manufacturing |
-
2012
- 2012-03-26 JP JP2012068867A patent/JP5906874B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2012216804A (en) | 2012-11-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5906874B2 (en) | Manufacturing method of RTB-based permanent magnet | |
JP6229783B2 (en) | Method for producing microcrystalline alloy intermediate product and microcrystalline alloy intermediate product | |
JP5892139B2 (en) | Rare earth anisotropic magnet and manufacturing method thereof | |
JP4873008B2 (en) | R-Fe-B porous magnet and method for producing the same | |
JP4872887B2 (en) | Porous material for R-Fe-B permanent magnet and method for producing the same | |
JP5288277B2 (en) | Manufacturing method of RTB-based permanent magnet | |
JP6037128B2 (en) | R-T-B rare earth magnet powder, method for producing R-T-B rare earth magnet powder, and bonded magnet | |
JP5906876B2 (en) | Manufacturing method of RTB-based permanent magnet | |
JP4543940B2 (en) | Method for producing RTB-based sintered magnet | |
WO2019151244A1 (en) | Permanent magnet | |
JP2001076917A (en) | Manufacture of anisotropic rare-earth magnet powder | |
JP6691666B2 (en) | Method for manufacturing RTB magnet | |
JP2008127648A (en) | Method for producing rare earth anisotropic magnet powder | |
JP5288276B2 (en) | Manufacturing method of RTB-based permanent magnet | |
JP4076178B2 (en) | R-T-B rare earth permanent magnet | |
JP6198103B2 (en) | Manufacturing method of RTB-based permanent magnet | |
JP2012195392A (en) | Method of manufacturing r-t-b permanent magnet | |
JP6179709B2 (en) | R-T-B rare earth magnet powder, method for producing R-T-B rare earth magnet powder, and bonded magnet | |
JP6691667B2 (en) | Method for manufacturing RTB magnet | |
JP6623998B2 (en) | Method for producing RTB based sintered magnet | |
JP4556727B2 (en) | Manufacturing method of rare earth sintered magnet | |
JP4534553B2 (en) | R-T-B system sintered magnet and manufacturing method thereof | |
WO2012105346A1 (en) | Process for production of rare earth alloy powder, anisotropic bonded magnet, and sintered magnet | |
JPH0199201A (en) | Rare earth element-fe-b series cast permanent magnet and manufacture thereof | |
JP2002246253A (en) | Method of manufacturing sintered magnet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20141210 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20151218 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20151222 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160223 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160307 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5906874 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |