JPH11158588A - Raw alloy for manufacture of rare earth magnetic powder, and its production - Google Patents

Raw alloy for manufacture of rare earth magnetic powder, and its production

Info

Publication number
JPH11158588A
JPH11158588A JP10059646A JP5964698A JPH11158588A JP H11158588 A JPH11158588 A JP H11158588A JP 10059646 A JP10059646 A JP 10059646A JP 5964698 A JP5964698 A JP 5964698A JP H11158588 A JPH11158588 A JP H11158588A
Authority
JP
Japan
Prior art keywords
phase
rare earth
temperature
alloy
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10059646A
Other languages
Japanese (ja)
Inventor
Ryoji Nakayama
亮治 中山
Yoshinari Ishii
義成 石井
Koichiro Morimoto
耕一郎 森本
Kensuke Oki
憲典 沖
Noriyuki Kuwano
範之 桑野
Masaru Itakura
賢 板倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP10059646A priority Critical patent/JPH11158588A/en
Publication of JPH11158588A publication Critical patent/JPH11158588A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0573Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes obtained by reduction or by hydrogen decrepitation or embrittlement

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a raw alloy for manufacture of a rare earth magnetic powder. SOLUTION: When the symbol R refers hereinafter to at least one kind among rare earth elements including Y, the symbol T refers hereinafter to Fe or a component which is composed essentially of Fe and in which part of Fe is substituted by Co or Ni, and the symbol M refers hereinafter to B or a component in which part of B is substituted by C, this raw alloy has a structure in which a phase (hereinafter referred to as an internal dispersed phase), constituted so that a g-phase having a crystal structure capable of being in a coherent relation with an MR hydride consisting of an M-containing R hydride is dispersed in the inner part of a phase of the above MR hydride having 0.002-20 μm average grain size, is dispersed in the matrix of an R-T-M alloy composed essentially of R, T, and M into island state.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、希土類磁石粉末
製造用原料合金およびその製造方法に関するものであ
り、この希土類磁石粉末製造用原料合金を脱水素して得
られた希土類磁石粉末は、有機バインダーまたは金属バ
インダーにより結合してボンド磁石を製造したり、ホッ
トプレスまたは熱間静水圧プレスしてそれぞれホットプ
レス磁石または熱間静水圧プレス磁石を製造することが
できる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a material alloy for producing a rare earth magnet powder and a method for producing the same. The rare earth magnet powder obtained by dehydrogenating the material alloy for producing a rare earth magnet powder has an organic binder. Alternatively, a bonded magnet can be manufactured by bonding with a metal binder, or a hot pressed magnet or a hot isostatic pressed magnet can be manufactured by hot pressing or hot isostatic pressing, respectively.

【0002】[0002]

【従来の技術】微細な希土類金属間化合物相の集合組織
からなる希土類磁石粉末を製造するには、R2 Fe14
金属間化合物相を500〜1000℃の水素中でR2
14B相に水素を吸蔵させて、RH2 ,FeおよびFe
2 Bの3相に相変態させ、続けて同じ温度領域で脱水素
を行うと、前記水素吸蔵により発生したRH2 ,Feお
よびFe2 Bの3相はR2 Fe14B相に再変態し、微細
なR2 Fe14B金属間化合物の再結晶集合組織となり、
優れた磁気特性を示すようになることは知られている
[特開平3−129702号公報、日本金属学会秋季大
会一般講演概要(1989,P367)などを参照]。
2. Description of the Related Art To manufacture a rare earth magnet powder having a texture of a fine rare earth intermetallic compound phase, R 2 Fe 14 B
The intermetallic compound phase is subjected to R 2 F in hydrogen at 500 to 1000 ° C.
e 14 B phase is made to absorb hydrogen, and RH 2 , Fe and Fe
When the phase is transformed to the 3B phase and dehydrogenation is subsequently performed in the same temperature range, the 3 phases of RH 2 , Fe and Fe 2 B generated by the hydrogen absorption are re-transformed to the R 2 Fe 14 B phase. And a recrystallized texture of fine R 2 Fe 14 B intermetallic compound,
It is known that excellent magnetic properties are exhibited [see Japanese Unexamined Patent Publication (Kokai) No. 3-129702, Summary of General Lectures of Autumn Meeting of the Japan Institute of Metals (1989, P367)].

【0003】この製法は、R2 Fe14B金属間化合物相
の水素化(Hydrogenation )、相分解(Decomposition
)、脱水素化(Desorption)および再結合(Recombina
tion)の工程からなるところからHDDR処理法と呼ば
れており、この方法は、Yを含む少なくとも1種の希土
類元素(以下、Rで示す)、Fe、またはFeを主成分
とし一部をCo,Niで置換した成分(以下、Tで示
す)、および、B、またはBのうちの一部をCで置換し
た成分(以下、Mで示す)、を主成分とする合金(以
下、R−T−M系合金という)についても適用すること
ができ、一層磁気異方性に優れた再結晶集合組織を有す
る希土類磁石粉末が得られることも知られている。
[0003] This production method comprises the steps of hydrogenation and phase decomposition of an R 2 Fe 14 B intermetallic compound phase.
), Dehydrogenation and Recombina
), which is called an HDDR processing method. This method includes at least one rare earth element (hereinafter, referred to as R) containing Y, Fe, or Fe as a main component and a part as Co. , Ni (hereinafter referred to as T), and an alloy (hereinafter referred to as R-) containing B or a component obtained by substituting a part of B with C (hereinafter referred to as M) as a main component. It is also known that a rare earth magnet powder having a recrystallized texture with more excellent magnetic anisotropy can be obtained.

【0004】[0004]

【発明が解決しようとする課題】しかし、R−T−M系
合金を500℃〜1000℃の温度範囲で水素吸蔵処理
し、引き続きその温度範囲で脱水素処理すると、常に高
温で処理されるために異常な粒成長が起こり、均一で微
細な再結晶集合組織が得られない場合があり、したがっ
て、十分な磁気特性を有する希土類磁石粉末は得られな
い場合がある。
However, if the R-T-M alloy is subjected to a hydrogen absorption treatment in a temperature range of 500 ° C. to 1000 ° C. and then to a dehydrogenation treatment in that temperature range, it is always treated at a high temperature. In some cases, abnormal grain growth occurs, and a uniform and fine recrystallized texture cannot be obtained. Therefore, a rare earth magnet powder having sufficient magnetic properties may not be obtained.

【0005】[0005]

【課題を解決するための手段】そこで、本発明者等は、
従来よりも一層優れた希土類磁石粉末を製造すべく研究
を行った結果、(a)R−T−M系合金素地中に、平均
粒径:0.002〜20μmのMR水素化物相内部に、
前記MR水素化物と整合的な関係にあり得る結晶構造を
有する相(以下、g相という)が分散して存在している
相(以下、前記MR水素化物相中にg相が分散している
相を内部分散相という)が島状に分散している組織を有
する希土類磁石粉末製造用原料合金を作製し、この希土
類磁石粉末製造用原料合金を脱水素処理すると、従来よ
りも一層優れた磁気特性を有する希土類磁石粉末を得る
ことができる、(b)前記(a)の希土類磁石粉末製造
用原料合金に、さらに、格子定数がa=0.65〜0.
85nm,c=0.90〜1.10nmの正方晶系結晶
構造を有しかつ(R+M)/Tが0.13〜0.30の
組成比を有する相(以下、TE相という)が分散してい
る組織を有する希土類磁石粉末製造用原料合金を脱水素
処理すると、従来よりも一層優れた磁気特性を有する希
土類磁石粉末を得ることができる、という知見を得たの
である。
Means for Solving the Problems Accordingly, the present inventors have
As a result of conducting research to produce a rare earth magnet powder that is even better than before, it was found that (a) an MR hydride phase having an average particle size of 0.002 to 20 μm in an RTM alloy base material,
A phase in which a phase having a crystal structure that can be in a consistent relationship with the MR hydride (hereinafter, referred to as a g phase) is present in a dispersed state (hereinafter, a g phase is dispersed in the MR hydride phase). When a raw alloy for producing a rare earth magnet powder having a structure in which a phase is referred to as an internal dispersed phase) is dispersed in the form of islands, and the raw alloy for producing the rare earth magnet powder is subjected to dehydrogenation treatment, a more excellent magnetic property than before is obtained. (B) The raw material alloy for producing a rare earth magnet powder of the above (a) can further obtain a rare earth magnet powder having characteristics.
A phase having a tetragonal crystal structure of 85 nm and c = 0.90 to 1.10 nm and a composition ratio of (R + M) / T of 0.13 to 0.30 (hereinafter referred to as TE phase) is dispersed. It has been found that when a raw material alloy for producing a rare earth magnet powder having the above structure is subjected to a dehydrogenation treatment, a rare earth magnet powder having more excellent magnetic properties than before can be obtained.

【0006】この発明は、かかる研究結果に基づいてな
されたものであって、(1)R−T−M系合金の素地中
に、平均粒径:0.002〜20μmのMR水素化物相
の内部に前記MR水素化物と整合的な関係にあり得る結
晶構造を有するg相が分散している構成の内部分散相が
島状に分散している組織を有する希土類磁石粉末製造用
原料合金、(2)R−T−M系合金の素地中に、MR水
素化物相の内部にg相が分散している構成の内部分散相
とTE相が分散している組織を有する希土類磁石粉末製
造用原料合金、(3)前記TE相は、前記MR水素化物
相の内部にg相が分散している構成の内部分散相の周囲
を一部包囲する状態で分散している前記(2)記載の希
土類磁石粉末製造用原料合金、に特徴を有するものであ
る。
The present invention has been made on the basis of the above research results. (1) An MR hydride phase having an average particle size of 0.002 to 20 μm is contained in a base of an RTM alloy. A raw alloy for producing a rare earth magnet powder having a structure in which a g-phase having a crystal structure that can be in a consistent relationship with the MR hydride is dispersed therein in an island shape; 2) A raw material for producing a rare earth magnet powder having a structure in which a g phase is dispersed inside an MR hydride phase and a structure in which a TE phase is dispersed in a base of an R-T-M alloy. Alloy, (3) The rare earth element according to (2), wherein the TE phase is dispersed in a state surrounding a part of an internal dispersed phase having a structure in which a g phase is dispersed in the MR hydride phase. Material alloy for producing magnet powder.

【0007】前記MR水素化物相の大きさは平均粒径:
0.002〜20μm(好ましくは0.002〜3μ
m、さらに好ましくは0.002〜1μm)の範囲内に
あり、微細であるほど好ましいが、平均粒径が0.00
2μmよりも小さいとMR水素化物相とg相からなる内
部分散相を形成しなくなるので希土類磁石粉末製造用原
料合金としては好ましくない。内部分散相を構成する前
記MR水素化物相は、M:0.1〜50原子%を含むR
の水素化物であることが好ましく、M:0.1〜50原
子%を含みかつ30原子%以下(0を含まず)のTおよ
びAを含むRの水素化物であることが一層好ましい。
[0007] The size of the MR hydride phase is an average particle size:
0.002 to 20 μm (preferably 0.002 to 3 μm
m, more preferably within a range of 0.002 to 1 μm), and the finer the particle, the more preferable.
If it is smaller than 2 μm, an internal dispersed phase consisting of an MR hydride phase and a g phase will not be formed, which is not preferable as a raw material alloy for producing a rare earth magnet powder. The MR hydride phase constituting the internal dispersed phase has an M content of 0.1 to 50 atomic%.
Is preferable, and M is more preferably a hydride of R containing 0.1 to 50 atomic% and containing T and A of 30 atomic% or less (not including 0).

【0008】前記「MR水素化物と整合的な関係にあり
得る結晶構造を有するg相」とは、具体的には、MR水
素化物の結晶構造が面心立方格子に類する構造であり、
g相の結晶構造がMR水素化物の面心立方格子に類する
低指数の面間隔にほぼ等しい面間隔を有する構造であ
り、これはMR水素化物の結晶構造とg相の結晶構造が
整合的な関係にあることを意味するものである。この発
明の希土類磁石粉末製造用原料合金に含まれるYを含む
希土類元素のうち少なくとも1種以上の希土類元素の中
でもRはNd,Pr,Dy,La,Ceが特に好まし
い。
The “g phase having a crystal structure that can be in a consistent relationship with the MR hydride” is, specifically, a structure in which the crystal structure of the MR hydride is similar to a face-centered cubic lattice.
The crystal structure of the g-phase has a plane spacing substantially equal to the low-index plane spacing similar to the face-centered cubic lattice of the MR hydride, which indicates that the crystal structure of the MR hydride and the crystal structure of the g-phase are consistent. It means that they are in a relationship. Among at least one or more rare earth elements including Y contained in the raw material alloy for producing a rare earth magnet powder of the present invention, R is particularly preferably Nd, Pr, Dy, La, or Ce.

【0009】この発明の希土類磁石粉末製造用原料合金
の組織を図面に基づいて説明する。図1は、この発明の
前記(1)の希土類磁石粉末製造用原料合金の組織の写
生図である。図1から、MR水素化物相の内部に細かい
斑点状にg相が分散して内部分散相を構成し、この内部
分散相が素地中に島状に分散している組織を有すること
が分かる。図2は、この発明の前記(2)および(3)
の希土類磁石粉末製造用原料合金の組織の写生図であ
る。図2から、MR水素化物相の内部に細かい斑点状に
g相が分散して内部分散相を構成し、この内部分散相を
TE相が一部包囲した状態で素地中に島状に分散してい
る組織を有することが分かる。なお、図1および図2の
代表的な素地はMを主成分(例えば、Fe、Fe−C
o、Fe2B、(Fe,Co)2 B等)とする相であ
る。かかる図1および図2に示される組織を有する希土
類磁石粉末製造用原料合金を、真空雰囲気中で500〜
1000℃の範囲内の所定の温度に昇温し保持すること
により強制的に脱水素処理すると、微細なR2 14M型
金属間化合物相の再結晶集合組織を有する磁気異方性に
優れた希土類磁石粉末を製造することができ、この希土
類磁石粉末を有機バインダーまたは金属バインダーによ
り結合することにより、または温度:600〜900℃
でホットプレスまたは熱間静水圧プレスすることにより
希土類磁石を製造することができる。
The structure of the raw material alloy for producing a rare earth magnet powder of the present invention will be described with reference to the drawings. FIG. 1 is a sketch of the structure of the raw material alloy for producing a rare earth magnet powder of the above (1) of the present invention. From FIG. 1, it can be seen that the g phase is dispersed in the form of fine spots inside the MR hydride phase to form an internal dispersed phase, and that the internal dispersed phase has a structure in which the internal dispersed phase is dispersed in an island shape in the matrix. FIG. 2 shows (2) and (3) of the present invention.
FIG. 4 is a sketch drawing of the structure of a raw material alloy for producing a rare earth magnet powder. From FIG. 2, it can be seen that the g phase is dispersed in the form of fine spots inside the MR hydride phase to form an internal dispersed phase, and this internal dispersed phase is dispersed in the form of islands in a matrix with the TE phase partially surrounded. It can be seen that the organization has a certain organization. 1 and 2 is mainly composed of M (for example, Fe, Fe-C
o, Fe 2 B, (Fe, Co) 2 B, etc.). The raw material alloy for producing a rare earth magnet powder having the structure shown in FIGS.
When the dehydrogenation treatment is forcibly performed by raising the temperature to a predetermined temperature within the range of 1000 ° C. and maintaining the temperature, it is excellent in magnetic anisotropy having a recrystallized texture of fine R 2 T 14 M type intermetallic compound phase. Rare earth magnet powder can be manufactured, by bonding the rare earth magnet powder with an organic binder or a metal binder, or at a temperature of 600 to 900 ° C.
And hot pressing or hot isostatic pressing to produce a rare earth magnet.

【0010】この発明の前記(1)の希土類磁石粉末製
造用原料合金を製造するには、R−T−M系合金インゴ
ット、好ましくは900〜1200℃で均質化処理を行
ったR−T−M系合金インゴットを用意し、このインゴ
ットを、非酸化性雰囲気(真空雰囲気、不活性ガス雰囲
気など)中で室温から温度:500℃未満の範囲内の所
定の温度に昇温、または昇温し保持したのち、水素また
は水素と不活性ガスの混合雰囲気中で温度:500〜7
50℃の範囲内の所定の温度に昇温し保持し、さらに水
素または水素と不活性ガスの混合雰囲気中、温度:75
0〜1000℃の範囲内の所定の温度に昇温し保持する
ことによりR−T−M系合金インゴットに水素を吸蔵さ
せる水素吸蔵処理を施し、引き続いてこの水素吸蔵処理
を施したR−T−M系合金インゴットを不活性ガス雰囲
気中で500〜1000℃に保持の不活性ガス熱処理を
施し、ついで、不活性ガス雰囲気中で室温まで冷却する
冷却処理を施すことにより製造することができる。
In order to produce the raw material alloy for producing a rare earth magnet powder of the above (1) of the present invention, an R-T-M-based alloy ingot, preferably an R-T-M alloy which has been homogenized at 900 to 1200 ° C. An M-based alloy ingot is prepared, and the temperature of the ingot is increased from room temperature to a predetermined temperature within a range of less than 500 ° C. in a non-oxidizing atmosphere (vacuum atmosphere, inert gas atmosphere, or the like). After holding, temperature: 500-7 in a mixed atmosphere of hydrogen or hydrogen and an inert gas
The temperature is raised to and maintained at a predetermined temperature within a range of 50 ° C., and further, in a hydrogen or mixed atmosphere of hydrogen and an inert gas, at a temperature of 75 ° C.
The R-T-M-based alloy ingot is subjected to a hydrogen occlusion treatment by raising the temperature to a predetermined temperature within the range of 0 to 1000 ° C. and held, and subsequently, the R-T subjected to the hydrogen occlusion treatment is subjected to the hydrogen occlusion treatment. The alloy can be manufactured by subjecting the -M alloy ingot to an inert gas heat treatment maintained at 500 to 1000C in an inert gas atmosphere, and then to a cooling process of cooling to room temperature in an inert gas atmosphere.

【0011】また、この発明のTE相が分散している組
織を有する前記(2)または(3)の希土類磁石粉末製
造用原料合金を製造するには、R−T−M系合金インゴ
ット、好ましくは900〜1200℃で均質化処理を行
ったR−T−M系合金インゴットを用意し、このインゴ
ットを、非酸化性雰囲気(真空雰囲気、不活性ガス雰囲
気など)中で室温から温度:500℃未満の範囲内の所
定の温度に昇温、または昇温し保持したのち、水素また
は水素と不活性ガスの混合雰囲気中で温度:750〜1
000℃の範囲内の所定の温度に昇温し保持することに
よりR−T−M系合金インゴットに水素を吸蔵させる水
素吸蔵処理を施し、引き続いてこの水素吸蔵処理を施し
たR−T−M系合金インゴットを不活性ガス雰囲気中で
温度:500〜1000℃の範囲内の所定の温度に保持
の不活性ガス熱処理を施し、ついで、不活性ガス雰囲気
中で室温まで冷却する冷却処理を施すことにより製造す
ることができる。
In order to produce the raw material alloy for producing a rare earth magnet powder of the above (2) or (3) having a structure in which the TE phase is dispersed according to the present invention, an RTM-based alloy ingot, preferably Prepares an RTM-based alloy ingot that has been homogenized at 900 to 1200 ° C., and the ingot is heated from room temperature to 500 ° C. in a non-oxidizing atmosphere (a vacuum atmosphere, an inert gas atmosphere, or the like). The temperature is raised to a predetermined temperature within the range of less than or less than 750 to 1 in a mixed atmosphere of hydrogen or hydrogen and an inert gas.
The R-T-M alloy ingot is subjected to a hydrogen-absorbing treatment in which hydrogen is absorbed by raising the temperature to a predetermined temperature within the range of 000 ° C., and subsequently, the R-T-M is subjected to the hydrogen-absorbing treatment. Subjecting the system alloy ingot to an inert gas heat treatment at a predetermined temperature in the range of 500 to 1000 ° C. in an inert gas atmosphere, and then to a cooling treatment for cooling to room temperature in the inert gas atmosphere. Can be manufactured.

【0012】従って、この発明は、(4)R−T−M系
合金インゴットを、非酸化性雰囲気中で室温から温度:
500℃未満の範囲内の所定の温度に昇温、または昇温
し保持したのち、水素または水素と不活性ガスの混合雰
囲気中で温度:500〜750℃の範囲内の所定の温度
に昇温し保持し、さらに水素または水素と不活性ガスの
混合雰囲気中で温度:750〜1000℃の範囲内の所
定の温度に昇温し保持することによりR−T−M系合金
インゴットに水素を吸蔵させる水素吸蔵処理を施し、引
き続いて水素吸蔵処理を施したR−T−M系合金インゴ
ットを不活性ガス雰囲気中で500〜1000℃に保持
の不活性ガス熱処理を施し、ついで、不活性ガス雰囲気
中で室温まで冷却する冷却処理を施す希土類磁石粉末製
造用原料合金の製造方法、(5)R−T−M系合金イン
ゴットを、非酸化性雰囲気中で室温から温度:500℃
未満までの所定の温度に昇温、または昇温し保持したの
ち、水素または水素と不活性ガスの混合雰囲気中で温
度:750〜1000℃の範囲内の所定の温度に昇温し
保持することによりR−T−M系合金インゴットに水素
を吸蔵させる水素吸蔵処理を施し、引き続いて水素吸蔵
処理を施したR−T−M系合金インゴットを不活性ガス
雰囲気中で温度:500〜1000℃の範囲内の所定の
温度に保持の不活性ガス熱処理を施し、ついで、不活性
ガス雰囲気中で室温まで冷却する冷却処理を施す希土類
磁石粉末製造用原料合金の製造方法、(6)前記希土類
磁石粉末製造用原料合金の製造方法において、前記R−
T−M系合金インゴットは、真空またはAr雰囲気中、
温度:600〜1200℃に保持することにより均質化
処理したR−T−M系合金インゴットである前記(4)
または(5)記載の希土類磁石粉末製造用原料合金の製
造方法、に特徴を有するものである。
Accordingly, the present invention provides (4) a method of preparing an RTM-based alloy ingot from room temperature to a temperature:
After the temperature is raised to a predetermined temperature within a range of less than 500 ° C., or after the temperature is raised and held, the temperature is raised to a predetermined temperature within a range of 500 to 750 ° C. in hydrogen or a mixed atmosphere of hydrogen and an inert gas. Then, in a mixed atmosphere of hydrogen or hydrogen and an inert gas, the temperature is raised to a predetermined temperature in the range of 750 to 1000 ° C., and the hydrogen is absorbed in the RTM alloy ingot. And then subjecting the RTM alloy ingot subjected to the hydrogen storage treatment to an inert gas heat treatment at 500 to 1000 ° C. in an inert gas atmosphere. Method for producing a raw material alloy for producing a rare earth magnet powder, which is subjected to a cooling treatment for cooling to room temperature in an atmosphere; (5) heating an RTM-based alloy ingot from room temperature to 500 ° C. in a non-oxidizing atmosphere;
After the temperature is raised to a predetermined temperature up to or less than or equal to and maintained at a predetermined temperature within a range of 750 to 1000 ° C. in hydrogen or a mixed atmosphere of hydrogen and an inert gas. And then subjecting the RTM-based alloy ingot to a hydrogen-absorbing treatment for absorbing hydrogen, and then subjecting the RTM-based alloy ingot subjected to the hydrogen-absorbing treatment to an inert gas atmosphere at a temperature of 500 to 1000 ° C. A method of producing a raw alloy for producing a rare earth magnet powder, which is subjected to an inert gas heat treatment maintained at a predetermined temperature within a range, and then subjected to a cooling treatment of cooling to room temperature in an inert gas atmosphere; (6) the rare earth magnet powder In the method for producing a raw material alloy for production, the R-
The T-M alloy ingot is vacuum or Ar atmosphere,
Temperature: The above-mentioned (4), which is an RT-M-based alloy ingot homogenized by maintaining the temperature at 600 to 1200 ° C.
Or (5) a method for producing a raw material alloy for producing a rare earth magnet powder according to (5).

【0013】前記(4)または(5)記載の不活性ガス
熱処理の不活性ガス雰囲気は、圧力:0.5〜11at
mの不活性ガス雰囲気であり、不活性ガス熱処理後の冷
却は、500℃までを30〜500℃/min.の冷却
速度で行うことが好ましい。
The inert gas atmosphere in the inert gas heat treatment according to the above (4) or (5), has a pressure of 0.5 to 11 at.
m inert gas atmosphere, and cooling after the inert gas heat treatment is performed up to 500 ° C. at 30 to 500 ° C./min. It is preferable to carry out at a cooling rate of

【0014】この発明の(4)および(5)の希土類磁
石粉末製造用原料合金の製造方法において、非酸化性雰
囲気は、真空雰囲気、不活性ガス雰囲気、または真空雰
囲気としたのち不活性ガス雰囲気とするなど真空雰囲気
および不活性ガス雰囲気の組み合わせ雰囲気あるが、合
金表面の吸着ガスを取り去るために真空雰囲気または昇
温過程の初期を真空雰囲気とすることが最も好ましい。
In the method for producing a raw material alloy for producing a rare earth magnet powder according to (4) and (5) of the present invention, the non-oxidizing atmosphere is a vacuum atmosphere, an inert gas atmosphere, or a vacuum atmosphere and then an inert gas atmosphere. Although there is a combination atmosphere of a vacuum atmosphere and an inert gas atmosphere, it is most preferable to use a vacuum atmosphere or a vacuum atmosphere at the beginning of the temperature raising process in order to remove the adsorption gas on the alloy surface.

【0015】この発明の前記(4)の希土類磁石粉末製
造用原料合金の製造方法の処理パターンを図3に示し
た。図3では、R−T−M系合金を非酸化性雰囲気中で
室温から温度:500℃未満の範囲内の所定の温度に昇
温しまたは昇温保持したのち、水素ガス雰囲気または水
素ガスと不活性ガスの混合ガス雰囲気中で温度:500
〜750℃の範囲内の所定の温度に昇温し保持し、さら
に水素ガス雰囲気または水素ガスと不活性ガスの混合ガ
ス雰囲気で温度:750〜1000℃の範囲内の所定の
温度に昇温し保持することによりR−T−M系合金に水
素を吸蔵させて相変態を促し、引き続いて水素吸蔵処理
を施したR−T−M系合金インゴットを不活性ガス雰囲
気中で温度:500〜1000℃の範囲内の所定の温度
に保持の不活性ガス熱処理を施し、ついで、不活性ガス
雰囲気中で室温まで冷却することを示している。
FIG. 3 shows a processing pattern of the method (4) for producing a raw material alloy for producing a rare earth magnet powder according to the present invention. In FIG. 3, after raising or maintaining the temperature of the RTM-based alloy in a non-oxidizing atmosphere from room temperature to a predetermined temperature within a range of less than 500 ° C., a hydrogen gas atmosphere or a hydrogen gas atmosphere is used. Temperature in mixed gas atmosphere of inert gas: 500
The temperature is raised to and maintained at a predetermined temperature in the range of 750 ° C. to 750 ° C., and further raised to a predetermined temperature in the range of 750 to 1000 ° C. in a hydrogen gas atmosphere or a mixed gas atmosphere of hydrogen gas and an inert gas. By holding the RTM alloy, hydrogen is absorbed in the RTM alloy to promote phase transformation. Subsequently, the RTM alloy ingot subjected to the hydrogen absorbing treatment is heated in an inert gas atmosphere at a temperature of 500 to 1000. This shows that the inert gas heat treatment is performed at a predetermined temperature in the range of ° C. and then cooled to room temperature in an inert gas atmosphere.

【0016】さらにこの発明の前記(5)の希土類磁石
粉末製造用原料合金の製造方法の処理パターンを図4に
示した。図4では、R−T−M系合金を非酸化性雰囲気
中で室温から温度:500℃未満の範囲内の所定の温度
に昇温しまたは昇温保持したのち、水素ガス雰囲気また
は水素ガスと不活性ガスの混合ガス雰囲気中で温度:7
50〜1000℃の範囲内の所定の温度に昇温し保持す
ることによりR−T−M系合金に水素を吸蔵させて相変
態を促し、引き続いて水素吸蔵処理を施したR−T−M
系合金インゴットを不活性ガス雰囲気中で温度:500
〜1000℃の範囲内の所定の温度に保持の不活性ガス
熱処理を施し、ついで、不活性ガス雰囲気中で室温まで
冷却することを示している。
FIG. 4 shows a processing pattern of the method (5) for producing a raw material alloy for producing a rare earth magnet powder according to the present invention. In FIG. 4, after raising or maintaining the temperature of the RTM-based alloy from room temperature to a predetermined temperature within a range of less than 500 ° C. in a non-oxidizing atmosphere, the RTM-based alloy is mixed with a hydrogen gas atmosphere or a hydrogen gas. Temperature: 7 in a mixed gas atmosphere of inert gas
By raising and maintaining the temperature at a predetermined temperature in the range of 50 to 1000 ° C., hydrogen is absorbed in the R-T-M-based alloy to promote the phase transformation, and subsequently, the R-T-M which has been subjected to the hydrogen-absorbing treatment
-Based alloy ingot in an inert gas atmosphere at a temperature of 500
This shows that an inert gas heat treatment is performed at a predetermined temperature in a range of up to 1000 ° C., and then cooled to room temperature in an inert gas atmosphere.

【0017】この発明の前記(4)の希土類磁石粉末製
造用原料合金の製造方法のパターンを図3示し、さらに
この発明の前記(5)の希土類磁石粉末製造用原料合金
の製造方法のパターンを図4示したが、これにのみ限定
されるものではなく、種々に変形したパターンを採用す
ることができる。
FIG. 3 shows a pattern of the method (4) for producing a material alloy for producing a rare earth magnet powder according to the present invention. FIG. 3 shows a pattern of the method (5) for producing a material alloy for producing a rare earth magnet powder according to the invention (5). Although shown in FIG. 4, the present invention is not limited to this, and variously modified patterns can be adopted.

【0018】この発明の希土類磁石粉末製造用原料合金
の製造方法における不活性ガス熱処理は、水素吸蔵処理
したR−T−M系合金をArガスやHeガスなどの不活
性ガス雰囲気(圧力:0.5〜11atm、好ましくは
圧力:1.2〜11atm、さらに好ましくは1.2〜
2atm)の不活性ガス雰囲気で温度:500〜100
0℃(好ましくは650〜950℃、さらに好ましくは
750〜900℃)の範囲内の所定の温度に30秒〜5
時間(好ましくは1分〜1時間、さらに好ましくは10
分〜30分)の範囲内の所定の時間保持する熱処理であ
る。この不活性ガス熱処理は圧力:1.2〜2atmの
Arガス雰囲気中、温度:750〜900℃に1分〜3
0分保持することにより行うことが最も好ましい。この
不活性ガス熱処理は、水素吸蔵処理の水素ガス雰囲気ま
たは水素ガスと不活性ガスの混合ガス雰囲気を不活性ガ
スで置換する形で不活性ガスを導入し行う。
In the inert gas heat treatment in the method for producing a raw material alloy for producing a rare earth magnet powder of the present invention, the hydrogen-absorbing RTM alloy is subjected to an inert gas atmosphere (pressure: 0) such as Ar gas or He gas. 0.5 to 11 atm, preferably pressure: 1.2 to 11 atm, more preferably 1.2 to 11 atm.
Temperature: 500 to 100 in an inert gas atmosphere of 2 atm)
0 ° C. (preferably 650-950 ° C., more preferably 750-900 ° C.) for 30 seconds-5 ° C.
Time (preferably 1 minute to 1 hour, more preferably 10 minutes
(Minute to 30 minutes). This inert gas heat treatment is performed in an Ar gas atmosphere at a pressure of 1.2 to 2 atm and a temperature of 750 to 900 ° C. for 1 minute to 3 minutes.
It is most preferable to carry out by holding for 0 minutes. This inert gas heat treatment is performed by introducing an inert gas in such a manner that the hydrogen gas atmosphere of the hydrogen storage treatment or the mixed gas atmosphere of the hydrogen gas and the inert gas is replaced with the inert gas.

【0019】その後の冷却処理では不活性ガス(Arガ
ス)により室温まで冷却するが、冷却処理の冷却は50
0℃までを30〜500℃/min.(好ましくは、5
0〜300℃/min.)の冷却速度で行うと一層優れ
た原料合金を製造することができる。
In the subsequent cooling process, cooling to room temperature is performed by an inert gas (Ar gas).
0 to 30 ° C / min. (Preferably 5
0 to 300 ° C / min. By performing the cooling at the cooling rate of (1), a more excellent raw material alloy can be produced.

【0020】この様にして得られた原料合金は一時保存
することができる。この原料合金を、到達圧:1Tor
r未満の真空雰囲気中、温度:500〜1000℃の範
囲内の所定の温度に保持する脱水素処理を行うことによ
り、強制的に水素を放出させて水素を十分に除去し、つ
いで不活性ガス(Arガス)より室温まで冷却すること
により微細なR2 14M型金属間化合物相の再結晶集合
組織を有する磁気異方性に優れた希土類磁石粉末を製造
することができる。
The raw material alloy thus obtained can be temporarily stored. This raw material alloy was subjected to an ultimate pressure of 1 Torr.
By performing a dehydrogenation treatment at a predetermined temperature within a range of 500 to 1000 ° C. in a vacuum atmosphere of less than r, hydrogen is forcibly released to sufficiently remove hydrogen, and then inert gas is removed. By cooling from (Ar gas) to room temperature, a rare-earth magnet powder having a fine R 2 T 14 M type intermetallic compound phase and excellent magnetic anisotropy having a recrystallized texture can be produced.

【0021】この発明の希土類磁石粉末製造用原料合金
を製造するための出発原料としては、鋳造合金、焼結合
金、超急冷合金、アトマイズ合金、一部あるいは全部非
晶質合金、メカニカルアロイ合金、共還元粉末などいず
れの合金を用いてもよいが、この中でも鋳造合金、一部
あるいは全部非晶質合金またはメカニカルアロイ合金を
用いることが特に好ましい。
Starting materials for producing the raw material alloy for producing a rare earth magnet powder of the present invention include a cast alloy, a sintered alloy, a super-quenched alloy, an atomized alloy, a partially or entirely amorphous alloy, a mechanical alloy alloy, Although any alloy such as a co-reduced powder may be used, it is particularly preferable to use a cast alloy, a partially or entirely amorphous alloy or a mechanical alloy alloy.

【0022】[0022]

【発明の実施の形態】実施例1 高周波真空溶解炉を用いて溶解し、得られた溶湯を鋳造
し、表1に示される成分組成のR−T−M系合金a〜j
の鋳塊を製造し、このR−T−M系合金a〜jの鋳塊か
ら10mm以下の角のブロックを作製し、このブロック
を2×10-3Torr以下の真空雰囲気中、温度113
0℃、30時間保持の条件で均質化処理を行った。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 A molten metal obtained by melting using a high-frequency vacuum melting furnace was cast, and an RTM alloy a to j having a component composition shown in Table 1 was obtained.
From the ingots of the R-T-M-based alloys a to j, and a block having a square of 10 mm or less is produced. The block is placed in a vacuum atmosphere of 2 × 10 −3 Torr or less at a temperature of 113 mm or less.
Homogenization treatment was performed under the conditions of 0 ° C. and holding for 30 hours.

【0023】[0023]

【表1】 [Table 1]

【0024】得られたブロックをそれぞれ表2〜4に示
される条件で室温から昇温または昇温し保持する昇温処
理を施したのち、表2〜4に示される圧力の水素雰囲気
中、保持温度1および保持温度2の二段階保持温度条件
で水素吸蔵処理を行い、引き続いて表2〜4に示される
条件で不活性ガス熱処理を行い、その後、表2〜4に示
される条件でArガスで強制的に室温まで冷却し、本発
明希土類磁石粉末製造用原料合金(以下、本発明原料と
いう)1〜30を作製した。
The obtained blocks are subjected to a temperature-raising treatment in which the temperature is raised or raised from room temperature under the conditions shown in Tables 2 to 4, and then kept in a hydrogen atmosphere at the pressures shown in Tables 2 to 4. Hydrogen storage treatment was performed under two-stage holding temperature conditions of temperature 1 and holding temperature 2, followed by inert gas heat treatment under the conditions shown in Tables 2 to 4, and then Ar gas under the conditions shown in Tables 2 to 4. To forcibly cool to room temperature, to produce raw material alloys (hereinafter referred to as raw materials of the present invention) 1 to 30 of the present invention for producing rare earth magnet powder.

【0025】[0025]

【表2】 [Table 2]

【0026】[0026]

【表3】 [Table 3]

【0027】[0027]

【表4】 [Table 4]

【0028】これら本発明原料1〜30を透過電子顕微
鏡で組織観察を行い、Mを含有するRの水素化物からな
るMR水素化物相の内部に分散しているg層の有無およ
びTE相の有無を調べ、その結果を表5〜表7に示し
た。
The structures of the raw materials 1 to 30 of the present invention were observed with a transmission electron microscope, and the presence or absence of a g layer and the presence or absence of a TE phase in an MR hydride phase composed of an R hydride containing M were observed. And the results are shown in Tables 5 to 7.

【0029】さらに、本発明原料1〜30を大気中、温
度:30℃、湿度:70%にて60日保管した後、1×
10-2Torrの真空雰囲気中、温度:850℃、1時
間保持の条件で脱水素処理を行い、ついでArガスによ
り急冷したのち粉砕して200μm以下の希土類磁石粉
末を製造した。この希土類磁石粉末の組織を観察したと
ころ、微細なR2 14M型金属間化合物相の再結晶集合
組織を有しており、この希土類磁石粉末を40kOeの
磁場中で配向処理し、振動試料型磁束計で磁気特性を測
定し、その結果を表5〜表7に示した。
Further, the raw materials 1 to 30 of the present invention were stored in the atmosphere at a temperature of 30 ° C. and a humidity of 70% for 60 days, and then 1 ×
A dehydrogenation treatment was performed in a vacuum atmosphere of 10 -2 Torr at a temperature of 850 ° C. for 1 hour, followed by rapid cooling with Ar gas and pulverization to produce a rare earth magnet powder of 200 μm or less. Observation of the structure of the rare earth magnet powder revealed that it had a fine recrystallized texture of the R 2 T 14 M type intermetallic compound phase. This rare earth magnet powder was subjected to orientation treatment in a magnetic field of 40 kOe. The magnetic properties were measured with a magnetic flux meter, and the results are shown in Tables 5 to 7.

【0030】[0030]

【表5】 [Table 5]

【0031】[0031]

【表6】 [Table 6]

【0032】[0032]

【表7】 [Table 7]

【0033】実施例2 実施例1で作製した表1に示される成分組成のR−T−
M系合金a〜jのブロックを表8〜10に示される条件
で室温から昇温または昇温し保持する昇温処理を施した
のち、表8〜10に示される圧力の水素雰囲気中、表8
〜10に示される保持温度条件で水素吸蔵処理を行い、
引き続いて表8〜10に示される条件で不活性ガス熱処
理を行い、その後、表8〜表10に示される条件でAr
ガスで強制的に室温まで冷却し、本発明原料31〜60
を作製した。
Example 2 The R-T- having the component composition shown in Table 1 prepared in Example 1
After subjecting the blocks of the M-based alloys a to j to a temperature increase or a temperature increase from room temperature under the conditions shown in Tables 8 to 10, and then holding them in a hydrogen atmosphere at a pressure shown in Tables 8 to 10, 8
Perform hydrogen storage treatment under the holding temperature conditions shown in
Subsequently, an inert gas heat treatment is performed under the conditions shown in Tables 8 to 10, and then, under the conditions shown in Tables 8 to 10,
The mixture was forcibly cooled to room temperature with a gas,
Was prepared.

【0034】[0034]

【表8】 [Table 8]

【0035】[0035]

【表9】 [Table 9]

【0036】[0036]

【表10】 [Table 10]

【0037】これら本発明原料31〜60を透過電子顕
微鏡で組織観察を行い、MR水素化物相の内部に分散し
ているg層の有無およびTE相の有無を調べ、その結果
を表11〜13に示した。本発明原料31〜40で認め
られたTE相について電子線解析EDX分析の結果、表
11に示した格子定数と組成比を有する相であった。
The structures of the raw materials 31 to 60 of the present invention were observed with a transmission electron microscope to determine the presence or absence of a g layer and the presence of a TE phase dispersed inside the MR hydride phase. It was shown to. As a result of electron beam EDX analysis of the TE phase observed in the raw materials 31 to 40 of the present invention, the TE phase was a phase having a lattice constant and a composition ratio shown in Table 11.

【0038】さらに、本発明原料31〜60を大気中、
温度:30℃、湿度:70%にて60日保管した後、1
×10-2Torrの真空雰囲気中、温度:850℃、1
時間保持の条件で脱水素処理を行い、ついでArガスに
より急冷したのち粉砕して200μm以下の希土類磁石
粉末を製造した。この希土類磁石粉末の組織を観察した
ところ、微細なR2 14M型金属間化合物相の再結晶集
合組織を有しており、この希土類磁石粉末を40kOe
の磁場中で配向処理し、振動試料型磁束計で磁気特性を
測定し、その結果を表11〜13に示した。
Furthermore, the raw materials 31 to 60 of the present invention are
After storing for 60 days at a temperature of 30 ° C. and a humidity of 70%,
× 10 −2 Torr in a vacuum atmosphere, temperature: 850 ° C., 1
A dehydrogenation treatment was performed under the condition of holding time, and then quenched with Ar gas and then pulverized to produce a rare earth magnet powder of 200 μm or less. Observation of the structure of the rare-earth magnet powder revealed that it had a fine recrystallized texture of the R 2 T 14 M-type intermetallic compound phase.
And the magnetic properties were measured with a vibrating sample magnetometer, and the results are shown in Tables 11 to 13.

【0039】[0039]

【表11】 [Table 11]

【0040】[0040]

【表12】 [Table 12]

【0041】[0041]

【表13】 [Table 13]

【0042】従来例1 実施例1で作製した表1に示される成分組成のR−T−
M系合金a〜jの均質化処理したブロックを表14に示
される条件で水素雰囲気中および不活性ガス雰囲気中で
処理することにより従来原料1〜10を製造した。
Conventional Example 1 R-T- having the component composition shown in Table 1 prepared in Example 1
Conventional raw materials 1 to 10 were produced by treating the homogenized blocks of the M-based alloys a to j in a hydrogen atmosphere and an inert gas atmosphere under the conditions shown in Table 14.

【0043】これら従来原料1〜10を大気中、温度:
30℃、湿度:70%にて60日保管した後、1×10
-2Torrの真空雰囲気中、温度:850℃、1時間保
持の条件で脱水素処理を行い、ついでArガスにより急
冷したのち粉砕して200μm以下の希土類磁石粉末を
製造した。この希土類磁石粉末の組織を観察したとこ
ろ、微細なR2 14M型金属間化合物相の再結晶集合組
織を有しており、この希土類磁石粉末を40kOeの磁
場中で配向処理し、振動試料型磁束計で磁気特性を測定
し、その結果を表15に示した。
These conventional materials 1 to 10 were placed in the atmosphere at a temperature of:
After storage at 30 ° C., humidity: 70% for 60 days, 1 × 10
A dehydrogenation treatment was carried out in a vacuum atmosphere of -2 Torr and at a temperature of 850 ° C. for 1 hour, followed by rapid cooling with Ar gas and pulverization to produce a rare earth magnet powder of 200 μm or less. Observation of the structure of the rare earth magnet powder revealed that it had a fine recrystallized texture of the R 2 T 14 M type intermetallic compound phase. This rare earth magnet powder was subjected to orientation treatment in a magnetic field of 40 kOe. The magnetic properties were measured with a magnetic flux meter, and the results are shown in Table 15.

【0044】[0044]

【表14】 [Table 14]

【0045】[0045]

【表15】 [Table 15]

【0046】表1〜15に示される結果から、表1の合
金aを使用し、この発明の方法で製造したg相、または
g相およびTE相を有する本発明原料1、11、31お
よび41を脱水素処理し、急冷し、200μm以下に粉
砕することにより得られた希土類磁石粉末の磁気特性
は、同じ表1の合金aを使用し、従来の方法で製造した
従来原料1を脱水素処理し、急冷し、200μm以下に
粉砕することにより得られた希土類磁石粉末の磁気特性
よりも優れていることが分かる。
From the results shown in Tables 1 to 15, raw materials 1, 11, 31, and 41 of the present invention having g phase or g phase and TE phase produced by the method of the present invention using alloy a of Table 1 The magnetic properties of the rare earth magnet powder obtained by dehydrogenating, quenching and pulverizing the powder to 200 μm or less show that the conventional raw material 1 produced by the conventional method using the alloy a shown in Table 1 and the conventional method was used. Then, it is found that the magnetic properties of the rare earth magnet powder obtained by quenching and pulverizing to 200 μm or less are superior to those of the rare earth magnet powder.

【0047】同様に、表1の合金b〜jをそれぞれ使用
し、この発明の方法で製造したg相、またはg相および
TE相を有する本発明原料を脱水素処理し、急冷し、2
00μm以下に粉砕することにより得られた希土類磁石
粉末の磁気特性は、同じ表1の合金b〜jをそれぞれ使
用し、従来の方法で製造した従来原料を脱水素処理し、
急冷し、200μm以下に粉砕することにより得られた
希土類磁石粉末の磁気特性よりも優れていることが分か
る。
Similarly, using each of the alloys b to j in Table 1, the raw material of the present invention having the g phase or the g phase and the TE phase produced by the method of the present invention is subjected to dehydrogenation treatment, quenched, and cooled.
The magnetic properties of the rare-earth magnet powder obtained by pulverizing to less than or equal to 00 μm are obtained by dehydrogenating a conventional raw material produced by a conventional method using each of the same alloys b to j in Table 1.
It can be seen that the magnetic properties of the rare earth magnet powder obtained by quenching and pulverizing to 200 μm or less are superior.

【0048】[0048]

【発明の効果】上述のように、この発明のg相、または
g相およびTE相を有する原料合金を脱水素処理して得
られた希土類磁石粉末の磁気特性は、従来の原料合金を
脱水素処理して得られた希土類磁石粉末の磁気特性より
も優れているところから、従来よりも優れた希土類磁石
粉末を提供することができ、産業上優れた効果を奏する
ものである。
As described above, the magnetic properties of the rare earth magnet powder obtained by subjecting the raw material alloy having the g phase or the g phase and the TE phase of the present invention to dehydrogenation treatment are as follows. Since it is superior to the magnetic properties of the rare-earth magnet powder obtained by the treatment, it is possible to provide a rare-earth magnet powder which is superior to the conventional one, and has excellent industrial effects.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の希土類磁石粉末製造用原料合金の組
織写生図である。
FIG. 1 is a structural sketch of a raw material alloy for producing a rare earth magnet powder according to the present invention.

【図2】この発明の希土類磁石粉末製造用原料合金の組
織写生図である。
FIG. 2 is a structural sketch of a raw material alloy for producing a rare earth magnet powder according to the present invention.

【図3】この発明の希土類磁石粉末製造用原料合金の製
造パターン図である。
FIG. 3 is a production pattern diagram of a raw material alloy for producing a rare earth magnet powder according to the present invention.

【図4】この発明の希土類磁石粉末製造用原料合金の製
造パターン図である。
FIG. 4 is a production pattern diagram of a raw material alloy for producing a rare earth magnet powder of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 沖 憲典 福岡県春日市春日公園6−1 九州大学 総合理工学研究科 (72)発明者 桑野 範之 福岡県春日市春日公園6−1 九州大学 総合理工学研究科 (72)発明者 板倉 賢 福岡県春日市春日公園6−1 九州大学 総合理工学研究科 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Noriyuki Oki 6-1 Kasuga Park, Kasuga City, Fukuoka Prefecture Graduate School of Science and Engineering, Kyushu University (72) Noriyuki Kuwano 6-1 Kasuga Park, Kasuga City, Fukuoka Prefecture Kyushu University Graduate School of Science (72) Inventor Ken Itakura 6-1 Kasuga Park, Kasuga City, Fukuoka Prefecture Kyushu University Graduate School of Science and Engineering

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 Yを含む少なくとも1種の希土類元素
(以下、Rで示す)と、 Fe、またはFeを主成分とし一部をCo、Niで置換
した成分(以下、Tで示す)と、 B、またはBのうち一部をCで置換した成分(以下、M
で示す)と、を主成分とする合金(以下、この合金をR
−T−M系合金という)の素地中に、 平均粒径:0.002〜20μmのMを含有するRの水
素化物からなる相(以下、MR水素化物相という)の内
部に、前記MR水素化物と整合的な関係にあり得る結晶
構造を有する相(以下、g相という)が分散している構
成の相(以下、この相を内部分散相という)が島状に分
散している組織を有することを特徴とする希土類磁石粉
末製造用原料合金。
1. At least one rare earth element containing Y (hereinafter referred to as R), Fe or a component containing Fe as a main component and partially substituting Co or Ni (hereinafter referred to as T), B or a component obtained by partially replacing B with C (hereinafter referred to as M
) And an alloy containing as a main component (hereinafter, this alloy is referred to as R
-TM-based alloy), the above-mentioned MR hydrogen is contained inside a phase composed of R hydride containing M having an average particle size of 0.002 to 20 µm (hereinafter referred to as MR hydride phase). A structure in which a phase having a crystal structure (hereinafter, referred to as a g-phase) that can be in a coherent relationship with the oxide is dispersed (hereinafter, this phase is referred to as an internally dispersed phase) is dispersed in an island shape. A raw material alloy for producing a rare earth magnet powder, comprising:
【請求項2】 Rと、Tと、Mを主成分とする組成のR
−T−M系合金の素地中に、 MR水素化物相の内部にg相が分散している構成の内部
分散相が島状に分散して存在し、 さらに格子定数がa=0.65〜0.85nm,c=
0.90〜1.10nmの正方晶系結晶構造を有しかつ
(R+M)/Tが0.13〜0.30の組成比を有する
相(以下、TE相という)が分散している組織を有する
ことを特徴とする希土類磁石粉末製造用原料合金。
2. A composition comprising R, T, and M as main components.
An internal dispersed phase having a structure in which the g phase is dispersed inside the MR hydride phase exists in the form of islands dispersed in the base of the -TM-based alloy, and the lattice constant is a = 0.65 to 0.65. 0.85 nm, c =
A structure in which a phase having a tetragonal crystal structure of 0.90 to 1.10 nm and a composition ratio of (R + M) / T of 0.13 to 0.30 (hereinafter referred to as TE phase) is dispersed. A raw material alloy for producing a rare earth magnet powder, comprising:
【請求項3】 前記TE相は、前記MR水素化物相の内
部にg相が分散している構成の内部分散相の周囲を一部
包囲する状態で分散していることを特徴とする請求項2
記載の希土類磁石粉末製造用原料合金。
3. The method according to claim 2, wherein the TE phase is dispersed so as to partially surround the internally dispersed phase having a structure in which the g phase is dispersed inside the MR hydride phase. 2
A raw material alloy for producing a rare earth magnet powder as described above.
【請求項4】 前記MR水素化物相は、M:0.1〜5
0原子%を含むRの水素化物であることを特徴とする請
求項1、2または3記載の希土類磁石粉末製造用原料合
金。
4. The MR hydride phase according to claim 1, wherein M: 0.1-5.
4. The raw material alloy for producing a rare earth magnet powder according to claim 1, which is a hydride of R containing 0 atomic%.
【請求項5】 前記MR水素化物相は、M:0.1〜5
0原子%を含みかつ30原子%以下(0を含まず)のT
およびAを含むRの水素化物であることを特徴とする請
求項1、2または3記載の希土類磁石粉末製造用原料合
金。
5. The MR hydride phase, wherein M: 0.1 to 5
T containing 0 atomic% and not more than 30 atomic% (excluding 0)
4. The raw material alloy for producing a rare earth magnet powder according to claim 1, which is a hydride of R containing A and A.
【請求項6】 前記MR水素化物相の内部にg相が分散
している構成の内部分散相は、球状または球形に近い形
状をした粒状(以下、球形粒状という)を有することを
特徴とする請求項1、2または3記載の希土類磁石粉末
製造用原料合金。
6. The internally dispersed phase having a structure in which the g phase is dispersed inside the MR hydride phase has a spherical or nearly spherical shape (hereinafter, referred to as a spherical particle). The raw material alloy for producing a rare earth magnet powder according to claim 1, 2 or 3.
【請求項7】 前記MR水素化物相の内部にg相が分散
している構成の内部分散相は、紡錘形もしくは楕円球形
またはそれらに近い形状をした粒状(以下、紡錘形粒状
という)を有することを特徴とする請求項1、2または
3記載の希土類磁石粉末製造用原料合金。
7. The internally dispersed phase having a structure in which the g phase is dispersed inside the MR hydride phase has a spindle shape, an ellipsoidal spherical shape, or a granular shape close to them (hereinafter, referred to as a spindle-shaped granular shape). A raw material alloy for producing a rare earth magnet powder according to claim 1, 2 or 3.
【請求項8】 前記MR水素化物相の内部にg相が分散
している構成の内部分散相は、球形粒状および紡錘形粒
状を有することを特徴とする請求項1、2または3記載
の希土類磁石粉末製造用原料合金。
8. The rare earth magnet according to claim 1, wherein the internally dispersed phase having a structure in which the g phase is dispersed inside the MR hydride phase has a spherical shape and a spindle shape. Raw material alloy for powder production.
【請求項9】 R−T−M系合金インゴットを、 非酸化性雰囲気中で室温から温度:500℃未満までの
所定の温度に昇温、または昇温し保持したのち、 水素または水素と不活性ガスの混合雰囲気中、温度:5
00〜750℃に昇温し保持し、さらに水素または水素
と不活性ガスの混合雰囲気中、温度:750〜1000
℃に昇温し保持することによりR−T−M系合金インゴ
ットに水素を吸蔵させる水素吸蔵処理を施し、 引き続いて水素吸蔵処理を施したR−T−M系合金イン
ゴットを不活性ガス雰囲気中で500〜1000℃に保
持の不活性ガス熱処理を施し、 ついで、不活性ガス雰囲気中で室温まで冷却する冷却処
理を施すことを特徴とする希土類磁石粉末製造用原料合
金の製造方法。
9. An RTM alloy ingot is heated to a predetermined temperature from room temperature to a temperature of less than 500 ° C. in a non-oxidizing atmosphere, or is heated and maintained, and then is mixed with hydrogen or hydrogen. In a mixed atmosphere of active gas, temperature: 5
The temperature is raised to and maintained at 00 to 750 ° C., and further, in a hydrogen or mixed atmosphere of hydrogen and an inert gas, at a temperature of 750 to 1000
C. The hydrogen ingot is subjected to a hydrogen occlusion treatment in which the RTM alloy ingot is occluded by raising the temperature to and maintained at a temperature of .degree. C. Subsequently, the RTM alloy ingot subjected to the hydrogen occlusion treatment is placed in an inert gas atmosphere. And performing a cooling treatment of cooling to room temperature in an inert gas atmosphere. 2. A method for producing a raw material alloy for producing a rare earth magnet powder, comprising the steps of:
【請求項10】 R−T−M系合金インゴットを、 非酸化性雰囲気中で室温から温度:500℃未満までの
所定の温度に昇温、または昇温し保持したのち、 水素または水素と不活性ガスの混合雰囲気中で温度:7
50〜1000℃に昇温し保持することによりR−T−
M系合金インゴットに水素を吸蔵させる水素吸蔵処理を
施し、 引き続いて水素吸蔵処理を施したR−T−M系合金イン
ゴットを不活性ガス雰囲気中で500〜1000℃に保
持の不活性ガス熱処理を施し、 ついで、不活性ガス雰囲気中で室温まで冷却する冷却処
理を施すことを特徴とする希土類磁石粉末製造用原料合
金の製造方法。
10. An RTM-based alloy ingot is heated in a non-oxidizing atmosphere to a predetermined temperature from room temperature to a temperature of less than 500 ° C., or is heated and maintained, and then is mixed with hydrogen or hydrogen. Temperature: 7 in a mixed atmosphere of active gas
By raising the temperature to 50 to 1000 ° C. and holding it, the RT-
The M-based alloy ingot is subjected to a hydrogen storage treatment for absorbing hydrogen, and then the R-TM-based alloy ingot subjected to the hydrogen storage treatment is subjected to an inert gas heat treatment at 500 to 1000 ° C. in an inert gas atmosphere. And then subjecting the alloy to a cooling treatment for cooling to room temperature in an inert gas atmosphere.
【請求項11】 前記R−T−M系合金インゴットは、
真空またはAr雰囲気中、温度:600〜1200℃に
保持することにより均質化処理したR−T−M系合金イ
ンゴットであることを特徴とする請求項9または10記
載の希土類磁石粉末製造用原料合金の製造方法。
11. The RTM-based alloy ingot,
The raw material alloy for producing a rare earth magnet powder according to claim 9 or 10, which is an RTM-based alloy ingot that has been homogenized by maintaining the temperature in a vacuum or Ar atmosphere at a temperature of 600 to 1200C. Manufacturing method.
【請求項12】 前記不活性ガス熱処理における不活性
ガス雰囲気は、圧力:0.5〜11atmの範囲内にあ
る不活性ガス雰囲気であることを特徴とする請求項9ま
たは10記載の希土類磁石粉末製造用原料合金の製造方
法。
12. The rare earth magnet powder according to claim 9, wherein the inert gas atmosphere in the inert gas heat treatment is an inert gas atmosphere within a pressure range of 0.5 to 11 atm. Production method of raw material alloy for production.
【請求項13】 前記不活性ガス熱処理後の冷却は、5
00℃までを30〜500℃/min.の冷却速度で行
うことを特徴とする請求項9または10記載の希土類磁
石粉末製造用原料合金の製造方法。
13. The cooling after the heat treatment with the inert gas is 5%.
00 ° C to 30 to 500 ° C / min. The method for producing a raw material alloy for producing a rare earth magnet powder according to claim 9, wherein the cooling is performed at a cooling rate of:
JP10059646A 1997-09-26 1998-03-11 Raw alloy for manufacture of rare earth magnetic powder, and its production Withdrawn JPH11158588A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10059646A JPH11158588A (en) 1997-09-26 1998-03-11 Raw alloy for manufacture of rare earth magnetic powder, and its production

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP26186297 1997-09-26
JP9-261862 1997-09-26
JP10059646A JPH11158588A (en) 1997-09-26 1998-03-11 Raw alloy for manufacture of rare earth magnetic powder, and its production

Publications (1)

Publication Number Publication Date
JPH11158588A true JPH11158588A (en) 1999-06-15

Family

ID=26400705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10059646A Withdrawn JPH11158588A (en) 1997-09-26 1998-03-11 Raw alloy for manufacture of rare earth magnetic powder, and its production

Country Status (1)

Country Link
JP (1) JPH11158588A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011137218A (en) * 2009-12-04 2011-07-14 Sumitomo Electric Ind Ltd Powder for magnet
JP2011236498A (en) * 2010-04-15 2011-11-24 Sumitomo Electric Ind Ltd Powder for magnet
CN102665970A (en) * 2010-05-19 2012-09-12 住友电气工业株式会社 Powder for magnetic member, powder compact, and magnetic member
JP2012216807A (en) * 2011-03-29 2012-11-08 Hitachi Metals Ltd Method for manufacturing r-t-b-based permanent magnet
JP2012216804A (en) * 2011-03-28 2012-11-08 Hitachi Metals Ltd Method for manufacturing r-t-b-based permanent magnet

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9076584B2 (en) 2009-12-04 2015-07-07 Sumitomo Electric Industries, Ltd. Powder for magnet
CN102639266A (en) * 2009-12-04 2012-08-15 住友电气工业株式会社 Powder for magnet
KR20120115490A (en) * 2009-12-04 2012-10-18 스미토모덴키고교가부시키가이샤 Powder for magnet
US9435012B2 (en) 2009-12-04 2016-09-06 Sumitomo Electric Industries, Ltd. Method for producing powder for magnet
JP2011137218A (en) * 2009-12-04 2011-07-14 Sumitomo Electric Ind Ltd Powder for magnet
US9129730B1 (en) 2009-12-04 2015-09-08 Sumitomo Electric Industries, Ltd. Rare-earth-iron-based alloy material
JP2011236498A (en) * 2010-04-15 2011-11-24 Sumitomo Electric Ind Ltd Powder for magnet
CN102510782A (en) * 2010-04-15 2012-06-20 住友电气工业株式会社 Powder for magnet
US9460836B2 (en) 2010-04-15 2016-10-04 Sumitomo Electric Industries, Ltd. Powder for magnet
US9314843B2 (en) 2010-04-15 2016-04-19 Sumitomo Electric Industries, Ltd. Powder for magnet
CN103151130A (en) * 2010-05-19 2013-06-12 住友电气工业株式会社 Powder for magnetic member, powder compact, and magnetic member
KR101362036B1 (en) * 2010-05-19 2014-02-11 스미토모덴키고교가부시키가이샤 Powder for magnetic member, powder compact, and magnetic member
US9196403B2 (en) 2010-05-19 2015-11-24 Sumitomo Electric Industries, Ltd. Powder for magnetic member, powder compact, and magnetic member
CN102665970A (en) * 2010-05-19 2012-09-12 住友电气工业株式会社 Powder for magnetic member, powder compact, and magnetic member
JP2012216804A (en) * 2011-03-28 2012-11-08 Hitachi Metals Ltd Method for manufacturing r-t-b-based permanent magnet
JP2012216807A (en) * 2011-03-29 2012-11-08 Hitachi Metals Ltd Method for manufacturing r-t-b-based permanent magnet

Similar Documents

Publication Publication Date Title
JP6229783B2 (en) Method for producing microcrystalline alloy intermediate product and microcrystalline alloy intermediate product
JP3452254B2 (en) Method for producing anisotropic magnet powder, raw material powder for anisotropic magnet powder, and bonded magnet
JP4788690B2 (en) R-Fe-B rare earth sintered magnet and method for producing the same
JP6471669B2 (en) Manufacturing method of RTB-based magnet
TWI738932B (en) R-Fe-B series sintered magnet and its manufacturing method
JP2011086830A (en) R-Fe-B-BASED RARE EARTH SINTERED MAGNET AND METHOD OF PRODUCING THE SAME
JP2009260290A (en) Method of manufacturing r-fe-b system anisotropic bulk magnet
JP6691666B2 (en) Method for manufacturing RTB magnet
JPH11158588A (en) Raw alloy for manufacture of rare earth magnetic powder, and its production
JP6508447B1 (en) Method of manufacturing RTB based sintered magnet
JP3368295B2 (en) Method for producing anisotropic rare earth alloy powder for permanent magnet
JP7533424B2 (en) Manufacturing method of rare earth sintered magnet
JPH024901A (en) Manufacture of rare earth element-fe-b series alloy magnet powder
JP3237053B2 (en) Rare earth magnet material powder having excellent magnetic properties and method for producing the same
JP6691667B2 (en) Method for manufacturing RTB magnet
JP2564492B2 (en) Manufacturing method of rare earth-Fe-B cast permanent magnet
JP3567720B2 (en) Raw material alloy for producing rare earth magnet powder and method for producing the same
JPH0776708A (en) Production of anisotropic rare earth alloy powder for permanent magnet
JP2001524604A (en) Manufacturing method of magnetic alloy powder
JP3562138B2 (en) Raw material alloy for manufacturing rare earth magnet powder
JP2746223B2 (en) Rare earth-Fe-B cast permanent magnet
JP3204025B2 (en) Raw material alloy for manufacturing rare earth magnet powder
JPH06310316A (en) Rare earth-fe-c-n intermetallic compound magnetic material powder and its manufacture
JPH09143514A (en) Production of rare earth magnetic alloy powder and neodymium-iron-boron base spheroidal alloy magnetic powder
JP3562597B2 (en) Raw material alloy for producing rare earth magnet powder

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050607