JP3562138B2 - Raw material alloy for manufacturing rare earth magnet powder - Google Patents

Raw material alloy for manufacturing rare earth magnet powder Download PDF

Info

Publication number
JP3562138B2
JP3562138B2 JP14662796A JP14662796A JP3562138B2 JP 3562138 B2 JP3562138 B2 JP 3562138B2 JP 14662796 A JP14662796 A JP 14662796A JP 14662796 A JP14662796 A JP 14662796A JP 3562138 B2 JP3562138 B2 JP 3562138B2
Authority
JP
Japan
Prior art keywords
phase
raw material
alloy
magnet powder
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14662796A
Other languages
Japanese (ja)
Other versions
JPH09310102A (en
Inventor
亮治 中山
耕一郎 森本
紀一 駒田
憲典 沖
範之 桑野
賢 板倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP14662796A priority Critical patent/JP3562138B2/en
Publication of JPH09310102A publication Critical patent/JPH09310102A/en
Application granted granted Critical
Publication of JP3562138B2 publication Critical patent/JP3562138B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0579Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B with exchange spin coupling between hard and soft nanophases, e.g. nanocomposite spring magnets

Description

【0001】
【発明の属する技術分野】
この発明は、希土類磁石粉末を製造するための原料合金に関するものである。
【0002】
【従来の技術】
微細な希土類金属間化合物相の集合組織からなる希土類磁石粉末を製造するには、R14B金属間化合物相を500〜1000℃の水素中でRFe14B相に水素を吸蔵させて、RH,FeおよびFeBの3相に相変態させ、続けて同じ温度領域で脱水素を行うと、上記水素吸蔵により発生したRH,FeおよびFeBの3相はRFe14B相に再変態し、微細なRFe14B金属間化合物の再結晶集合組織となり、優れた磁気特性を示すようになることは知られている[特開平3−129702号公報、日本金属学会秋季大会一般講演概要(1989,P367)などを参照]。
【0003】
この製法は、RFe14B金属間化合物相の水素化(Hydrogenation )、相分解(Decomposition )、脱水素化(Desorption)および再結合(Recombination )の工程からなるところからHDDR処理法と呼ばれており、この方法は、Feの一部をCo,Ni,Al,Ga,Si,V,Zr,Hfのうちの1種または2種で置換した成分(以下、Tで示す)からなるR14B金属間化合物相についても、同様に500〜1000℃で水素化させて相変態させ、続けて同じ温度領域で脱水素を行うとR14B相に再変態し、磁気異方性に優れた再結晶集合組織が得られることも知られている(特開平3−129702号公報、特開平3−129703号公報参照)。
【0004】
また、水素吸蔵処理により変態したRH,T,TBの3相を脱水素処理することにより、一層安定かつ異方的にR14B相へ再変態させる方法として、R14B金属間化合物相を水素ガス雰囲気中、500〜1000℃に保持して水素を吸蔵せしめたのち、一旦100℃以下まで冷却し、次いで、真空中にて500〜1000℃まで再加熱して脱水素する方法も知られている(特開平5−166617号公報参照)。
【0005】
【発明が解決しようとする課題】
しかし、R14B金属間化合物がRH,TおよびTBに相変態する500℃〜1000℃の温度範囲で水素吸蔵処理し、引き続きその温度範囲で脱水素処理すると、常に高温で処理されるために異常な粒成長が起こり、均一で微細な再結晶集合組織が得られない場合があり、したがって、に十分な磁気特性を有する希土類磁石粉末は得られない場合がある。
【0006】
そのために、上記特開平5−166617号公報に見られるように、水素吸蔵処理したのち、一旦100℃以下に急冷し、次いで真空中、500〜1000℃に再加熱して脱水素処理する方法はある程度の粒成長抑制効果はあるが、一旦100℃以下に急冷して水素吸蔵した合金を真空中、500〜1000℃に再加熱すると脱水素後のRFe14B相の粒成長は著しく早くなる場合があり、したがって、すでに知られている500〜1000℃で水素吸蔵処理に続いて脱水素処理する方法に比べて、粒成長抑制効果は十分なものではなく、十分な磁気特性を有する希土類磁石粉末は得られない。さらに、従来の希土類磁石粉末を製造するための原料合金は、数時間程度の保管に対しては、酸化などの構造変化が起こらないが、それよりも長期間保管すると、酸化などの構造変化によって、原料合金から得られる磁石粉末の磁気特性が劣化することがあった。
【0007】
【課題を解決するための手段】
そこで、本発明者等は、従来よりも一層磁気特性に優れた希土類磁石粉末を得るべく研究を行った結果、
従来よりも均一で微細な再結晶集合組織を有する一層磁気特性に優れた希土類磁石粉末を得るには、水素吸蔵処理した原料合金の組織が大きく影響を及ぼし、その水素吸蔵処理した原料合金は、
R:Yを含む希土類元素、
T:Fe、またはFeを主成分とし一部をCo,Niで置換した成分、
M:B、またはBのうちの一部をCで置換した成分、
A:Al,Ga,Si,Ti,V,Cr,Zr,Nb,Mo,Hf,Ta,Wのうちの少なくとも1種以上とすると、
これらR,T,MおよびAを含み、残部不可避不純物からなるR−T−M−A系合金において、合金素地中に、少なくとも平均粒径:0.002〜20μmを有する第1相とこの第1相の周囲を包囲するリム状の第2相からなる複合粒子が分散している組織を有し、この複合粒子を構成する上記第1相は、(R 1-x-y x (T,A) y )H z (ただし、0.001≦x≦0.5、0<y≦0.3、x+y≦0.7、0<z≦2.5)の組成を有するMを含有するRの粒状の水素化物(以下、Mを含有するRの粒状の水素化物という)からなり、さらに上記第2相は、少なくとも一部または全部がR2 T14M型の正方晶構造を有する相からなる原料合金であることが好ましく、
この原料合金を温度:500〜1000℃で強制的な脱水素処理すると、粒成長が著しく抑制された、均一で微細なA成分を含有するR2 T14M相の再結晶集合組織を有する磁気異方性に優れた希土類磁石粉末が得られ、さらに原料合金を長期間保管後に上記脱水素処理を行っても、得られる磁石粉末の磁気特性劣化がほとんどないという知見を得たのである。
【0008】
この発明は、かかる研究結果に基づいてなされたものであって、
R,T,MおよびAを含むR−T−M−A系合金の合金素地中に、少なくとも平均粒径:0.002〜20μmを有する第1相とこの第1相の周囲を包囲するリム状の第2相からなる複合粒子が分散している組織を有し、この複合粒子を構成する上記第1相は、Mを含有するRの粒状の水素化物からなり、さらに上記第2相は、少なくとも一部または全部がR2 T14M型の正方晶構造を有する相からなる希土類磁石粉末製造用原料合金に特徴を有するものである。
【0009】
複合粒子を構成する上記第1相のMを含有するRの粒状の水素化物は、球形形状をした粒状(以下、球形粒状という)であったり、紡錘形形状をした粒状(以下、紡錘形粒状という)であったり、さらに球形粒状および紡錘形粒状が共存していたりしてもよい。
上記球形粒状および/または紡錘形状の第1相は、いずれもリム状の第2相で包囲されて複合粒子を形成している。
したがって、この発明の希土類磁石合金製造用原料合金は、(a)第1相のMを含有するRの球形粒状の水素化物をリム状の第2相で包囲した複合粒子が素地中に分散した組織、(b)第1相のMを含有するRの紡錘形粒状の水素化物をリム状の第2相で包囲してなる複合粒子が素地中に分散した組織、並びに(c)上記(a)および(b)の組織が共存した組織を有することを特徴とするものである。
複合粒子を構成する第1相のMを含有するRの粒状の水素化物は、紡錘形粒状であることが最も好ましく、紡錘形粒状および球形粒状の共存が次に好ましく、球形粒状であることがその次に好ましい。
この発明の希土類磁石粉末製造用原料合金のR−T−M−A系合金の合金素地中に存在する上記複合粒子以外に、平均粒径:0.002〜20μmの棒状または紡錘状のMを含有するRの水素化物がリム状の第2相に包囲されることなく単独相で混在していることがある。この単独相で混在するMを含有するRの水素化物は微量である方が好ましく、その混在割合は10%以下の微量であることが好ましいが、この単独相が複合粒子とともに分散している組織を有する希土類磁石粉末製造用原料合金もこの発明に含まれる。なお、この発明の希土類磁石粉末製造用原料合金には、合金素地中の相として、Mを含有するRの水素化物相とリム状の第2相の他にT2 M型の相なども存在する。
【0010】
複合粒子を構成する上記第1相のMを含有するRの水素化物の大きさは平均粒径:0.002〜20μm(好ましくは0.002〜3μm、さらに好ましくは0.002〜1μm)の範囲内にあり、微細であるほど好ましいが、平均粒径が0.002μmよりも小さいと第1相および第2相から複合粒子とならなくなるので好ましくない。複合粒子を構成する上記第1相のMを含有するRの水素化物は、M:0.1〜50原子%を含むRの水素化物であることが好ましく、M:0.1〜50原子%を含みかつ30原子%以下(0を含まず)のTおよびAを含むRの水素化物であることが一層好ましく、さらに(R1−x−y (T,A))H(ただし、0.001≦x≦0.5、0<y≦0.3、x+y≦0.7、0<z≦2.5)の組成を有する水素化物であることがさらに一層好ましい。上記第2相は、少なくとも一部がR14M型の正方晶構造を有する相であることが好ましいが、全部がR14M型の正方晶構造を有する相であることが一層好ましい。また、第2相のR14M型の正方晶構造を有する相は、成分としてAを一部含有しても良く、水素化物であっても良い。合金素地はTを主成分とする相であり、合金素地中には、上記第1相と第2相の他にFeB型構造の相が存在してもよい。
【0011】
この発明の希土類磁石粉末製造用原料合金のRはYを含む希土類元素のうち少なくとも1種以上であるが、希土類元素のうちでもRはNd,Pr,Dy,La,Ceが特に好ましく、さらにAはZr,Ga,Hf,Nb,Ta,Al,Siのうちの少なくとも1種以上であることが特に好ましい。
【0012】
この発明の原料合金を500〜1000℃で脱水素すると、A成分を含むR14MタイプのC軸方向が一定方向に揃った再結晶集合組織を有する優れた磁気異方性磁石粉末が得られる。
【0013】
この発明の希土類磁石粉末製造用原料合金を製造するには、先ずR−T−M−A系合金インゴットを用意し、必要に応じて900〜1200℃で均質化処理を行なう。このR−T−M−A系合金インゴットを水素または水素と不活性ガスの混合雰囲気中、750〜1000℃の範囲で水素吸蔵の第1処理を施したのち第1処理に続けて実質的にArガス雰囲気中に保持して100〜700℃の範囲内の温度に冷却し、この100〜700℃に保持したのち昇温する第2処理を施し、この第2処理に続けて雰囲気を水素または水素と不活性ガスの混合雰囲気にし、第1処理と同じ条件の750〜1000℃に保持した後、室温まで冷却する第3処理を施す方法により製造することができる。しかし、この発明はこの方法に限定されるものではない。
【0014】
いずれにしても、水素または水素と不活性ガスの混合雰囲気中、温度:750〜1000℃保持の第1処理を施したのち、実質的にArガス雰囲気中、100〜700℃の範囲内の温度に保持し、さらに水素または水素と不活性ガスの混合雰囲気中、温度:750〜1000℃保持の第3処理を施すことによりこの発明の希土類磁石粉末製造用原料合金を製造するすることができ、水素または水素と不活性ガスの混合雰囲気中、温度:750〜1000℃保持の水素吸蔵処理の途中で、実質的にArガス雰囲気中、温度:100〜700℃の範囲内の温度に保持することが必要である。この第2処理の雰囲気は、原料合金から放出される水素が若干含まれることがあるが、実質的にはAr雰囲気である。100℃未満あるいは700℃を越えるとMを含有するRの水素化物あるいはリム状の第2相が形成され難いので好ましくない。上記100〜700℃に保持する時間は、原料の種類にもよるが、0.1〜20時間(好ましくは1〜5時間)の範囲内である。
【0015】
この発明の希土類磁石粉末製造用原料合金を製造するための第1処理、第2処理および第3処理を含む水素吸蔵処理パターンを図1示した。
【0016】
この発明の希土類磁石粉末製造用原料合金を製造するための出発原料としては、鋳造合金、焼結合金、超急冷合金、アトマイズ合金、一部あるいは全部非晶質合金、メカニカルアロイ合金、共還元粉末などいずれの合金を用いてもよいが、この中でも鋳造合金、一部あるいは全部非晶質合金またはメカニカルアロイ合金を用いることが特に好ましい。
【0017】
このようにして得られたこの発明の希土類磁石合金製造用原料合金の組織は、素地中にMを含有するRの粒状の水素化物からなる第1相とこの第1相の周囲を包囲するリム状の第2相からなる複合粒子が分散しており、この複合粒子の第1相はMを含有するRの粒状の水素化物、第2相は少なくとも一部または全部が全体がR14M型の正方晶構造を有する相からなるものである。この複合組織により希土類磁石粉末を製造するための原料合金として長期保管することができると考えられる。
【0018】
なお、図1において、この発明の希土類磁石粉末製造用原料合金を製造するための第1処理、第2処理および第3処理を含む水素吸蔵処理パターンを示したが、この発明の水素吸蔵処理パターンは上記図1に限定されるものではなく、種々に変形した水素吸蔵処理パターンを採用することができる。
【0019】
【発明の実施の形態】
実施例1
表1の成分組成を有する合金A〜Jを用意し、この合金A〜JをAr雰囲気のプラズマアーク溶解炉にて溶解した。上記合金A〜Jの溶湯のうち合金A〜Jの溶湯を鋳造してインゴットを作製し、このインゴットを表1に示される条件で均質化処理し、ついで粉砕して表1に示される寸法のブロックまたは粉末を作製した。
【0020】
得られた表1に示される合金A〜Jのブロックまたは粉末を、表2に示される条件で第1処理、第2処理および第3処理を施すことにより本発明希土類磁石粉末製造用原料合金(以下、本発明原料という)1〜10および比較希土類磁石粉末製造用原料合金(以下、比較原料という)1〜3を作製した。
【0021】
さらに、表1に示される合金Aのブロックを表2に示される条件で水素吸蔵処理することにより従来希土類磁石粉末製造用原料合金(以下、従来原料という)を作製した。
【0022】
これら本発明原料1〜10、比較原料1〜3および従来原料を透過電子顕微鏡で組織観察を行い、Mを含有するRの水素化物からなる第1相の平均粒径、および形状の観察を行い、その結果を表3に示した。さらに、分析透過電子顕微鏡にて第1相の定量分析を行い、第1相を包囲したリム状のR14M型の正方晶構造を少なくとも一部または全部有する第2相の有無を調べ、その結果を表3に示した。また、原料合金の水素量を分析して(R1−x−y (T,A))Hの形で表した水素量比Hを算出し、(R1−x−y (T,A))Hにおけるx、yおよびzを表3に示した。
【0023】
【表1】

Figure 0003562138
【0024】
【表2】
Figure 0003562138
【0025】
【表3】
Figure 0003562138
【0026】
表3に示される本発明原料1〜10、比較原料1〜3および従来原料を大気中、温度:30℃、湿度:50%にて60日保管した後、1×10−5torrの真空雰囲気になるまで、表4および表5に示される条件で脱水素処理を行い、急冷し、ついで粉砕して磁石粉末とした。これら磁石粉末の組織を観察したところ、再結晶粒が集合した再結晶集合組織を有しており、この磁石粉末を15KOeの磁場中で配向させ残留磁化および保磁力(iHc)を振動試料型磁束計で測定し、その結果についても表4および表5に示した。
【0027】
【表4】
Figure 0003562138
【0028】
【表5】
Figure 0003562138
【0029】
表2〜表5に示される結果から、平均粒径:0.002〜20μmの第1相をリム状の第2相で包囲している複合粒子が分散した組織を有する本発明原料1〜10を脱水素処理して得られた希土類磁石粉末は優れた磁気特性を示すことがわかる。しかし第2処理の温度が100℃未満で処理した比較原料1、第2処理の温度が700℃を越えた条件で処理した比較原料2および第2処理の雰囲気を水素雰囲気で行った比較原料3、並びに通常の水素吸蔵処理した従来原料をそれぞれ脱水素処理して得られた希土類磁石粉末の磁気特性は劣化していることがわかる。
【0030】
【発明の効果】
上述のように、この発明の方法で製造した希土類磁石粉末製造用原料合金は、長期保管しておいて、必要量だけ脱水素処理することにより優れた磁気特性を有する希土類磁石粉末を得ることができるなど産業上すぐれた効果を奏するものである。
【図面の簡単な説明】
【図1】この発明の希土類磁石粉末製造用原料合金を製造するための水素吸蔵処理パターンである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a raw material alloy for producing a rare earth magnet powder.
[0002]
[Prior art]
In order to produce a rare earth magnet powder having a texture of a fine rare earth intermetallic compound phase, the R 2 F 14 B intermetallic compound phase is caused to absorb hydrogen in the R 2 Fe 14 B phase in hydrogen at 500 to 1000 ° C. Then, when the phase is transformed into three phases of RH 2 , Fe and Fe 2 B and then dehydrogenated in the same temperature range, the three phases of RH 2 , Fe and Fe 2 B generated by the above-mentioned hydrogen absorption become R 2 It is known that it re-transforms into a Fe 14 B phase, becomes a recrystallized texture of a fine R 2 Fe 14 B intermetallic compound, and exhibits excellent magnetic properties [Japanese Patent Application Laid-Open No. 3-129702, General Lecture Summary of the Japan Institute of Metals Autumn Meeting (1989, P367)].
[0003]
This method is called the HDDR treatment method because it comprises the steps of hydrogenation, phase decomposition, dehydrogenation (Desorption), and recombination (Recombination) of the R 2 Fe 14 B intermetallic compound phase. In this method, R 2 is composed of a component in which a part of Fe is replaced with one or two of Co, Ni, Al, Ga, Si, V, Zr, and Hf (hereinafter, referred to as T). The T 14 B intermetallic compound phase is similarly hydrogenated at 500 to 1000 ° C. to undergo phase transformation, and subsequently dehydrogenated in the same temperature range, re-transforms into the R 2 T 14 B phase, and has a magnetic anisotropy. It is also known that a recrystallized texture having excellent properties can be obtained (see JP-A-3-129702 and JP-A-3-129703).
[0004]
As a method for more stably and anisotropically retransforming into the R 2 T 14 B phase by subjecting the three phases RH 2 , T and T 2 B transformed by the hydrogen storage treatment to dehydrogenation treatment, R 2 T The 14B intermetallic compound phase is kept at 500 to 1000 ° C. in a hydrogen gas atmosphere to absorb hydrogen, then cooled once to 100 ° C. or lower, and then reheated to 500 to 1000 ° C. in vacuum. A method for dehydrogenation is also known (see JP-A-5-166617).
[0005]
[Problems to be solved by the invention]
However, when the R 2 T 14 B intermetallic compound undergoes a hydrogen storage treatment at a temperature in the range of 500 ° C. to 1000 ° C. where the R 2 T 14 B intermetallic compound transforms into RH 2 , T and T 2 B, and then a dehydrogenation treatment in that temperature range, it is always high temperature Due to the treatment, abnormal grain growth may occur, and a uniform and fine recrystallized texture may not be obtained. Therefore, a rare earth magnet powder having sufficient magnetic properties may not be obtained.
[0006]
For this purpose, as described in JP-A-5-166617, a method of dehydrogenating by hydrogen absorbing treatment, then rapidly cooling to 100 ° C. or lower, and then reheating to 500 to 1000 ° C. in vacuum. Although there is a certain degree of grain growth suppression effect, once the alloy that has been quenched and cooled rapidly to 100 ° C. or less and re-heated to 500 to 1000 ° C. in vacuum, the grain growth of the R 2 Fe 14 B phase after dehydrogenation is extremely fast Therefore, the effect of suppressing grain growth is not sufficient as compared with the already known method of performing a hydrogen storage treatment at 500 to 1000 ° C. followed by a dehydrogenation treatment, and a rare earth element having sufficient magnetic properties No magnet powder is obtained. Furthermore, conventional raw material alloys for producing rare earth magnet powder do not undergo structural changes such as oxidation when stored for several hours, but when stored for a longer period of time, due to structural changes such as oxidation. In some cases, the magnetic properties of the magnet powder obtained from the raw material alloy deteriorated.
[0007]
[Means for Solving the Problems]
Therefore, the present inventors have conducted research to obtain a rare earth magnet powder having more excellent magnetic properties than before, and as a result,
In order to obtain a rare-earth magnet powder having a more uniform and fine recrystallized texture and a more excellent magnetic property than before, the structure of the hydrogen-absorbed raw material alloy has a great effect.
R: a rare earth element containing Y,
T: Fe or a component mainly composed of Fe and partially substituted with Co or Ni;
M: B or a component obtained by substituting a part of B with C;
A: If at least one of Al, Ga, Si, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, and W,
In the R-T-M-A alloy containing R, T, M and A and the balance of unavoidable impurities, a first phase having at least an average particle diameter of 0.002 to 20 μm and It has a structure in which composite particles composed of a rim-shaped second phase surrounding the periphery of one phase are dispersed, and the first phase constituting the composite particles is (R 1-xy M x (T, A ) Y ) H z (where 0.001 ≦ x ≦ 0.5, 0 <y ≦ 0.3, x + y ≦ 0.7, 0 <z ≦ 2.5) The second phase is a raw material alloy comprising a granular hydride (hereinafter, referred to as a granular hydride of R containing M) , and at least part or all of which is a phase having a tetragonal structure of R2 T14M type. Is preferably
When this raw material alloy is forcibly dehydrogenated at a temperature of 500 to 1000 ° C., a magnetic anisotropy having a recrystallized texture of an R2 T14 M phase containing a uniform and fine A component, in which grain growth is significantly suppressed. It has been found that even when the above-mentioned dehydrogenation treatment is carried out after storing the raw material alloy for a long period of time, the magnetic properties of the obtained magnet powder are hardly deteriorated.
[0008]
The present invention has been made based on such research results,
A first phase having at least an average particle size of 0.002 to 20 μm and a rim surrounding the first phase in an RTMA-based alloy containing R, T, M and A Having a structure in which composite particles composed of a second phase are dispersed, the first phase constituting the composite particles is composed of a granular hydride of R containing M, and the second phase is , Characterized in that it is a raw material alloy for producing a rare earth magnet powder, at least partially or wholly of a phase having a tetragonal structure of the R2 T14 M type.
[0009]
The granular hydride of R containing M of the first phase constituting the composite particles may be spherical granular (hereinafter referred to as spherical granular) or spindle-shaped granular (hereinafter referred to as spindle granular). Or spherical and spindle-shaped granules may coexist.
Each of the spherical granular and / or spindle-shaped first phases is surrounded by the rim-shaped second phase to form composite particles.
Therefore, in the raw material alloy for producing a rare earth magnet alloy of the present invention, (a) composite particles in which a spherical spherical hydride of R containing M of the first phase is surrounded by a rim-shaped second phase are dispersed in the matrix. Structure, (b) a structure in which composite particles comprising a spindle-shaped granular hydride of R containing M of the first phase surrounded by a rim-shaped second phase are dispersed in a matrix, and (c) the above (a) And (b) have a coexisting tissue.
The granular hydride of R containing M of the first phase constituting the composite particles is most preferably spindle-shaped granules, the spindle-shaped particles and the spherical particles preferably coexist, and the spherical particles next. Preferred.
In addition to the above composite particles present in the alloy base material of the RTMA-based alloy as the raw material alloy for producing a rare earth magnet powder of the present invention, a rod-shaped or spindle-shaped M having an average particle diameter of 0.002 to 20 μm is used. The contained hydride of R may be mixed in a single phase without being surrounded by the rim-shaped second phase. It is preferable that the hydride of M containing M mixed in the single phase is trace amount, and the mixing ratio is preferably a trace amount of 10% or less, but the structure in which the single phase is dispersed together with the composite particles is preferred. The present invention also includes a raw alloy for producing a rare earth magnet powder having the following. In the raw material alloy for producing a rare earth magnet powder according to the present invention, as a phase in the alloy base, a T2M type phase and the like exist in addition to the R hydride phase containing M and the second rim phase. .
[0010]
The size of the hydride of R containing M of the first phase constituting the composite particles has an average particle diameter of 0.002 to 20 μm (preferably 0.002 to 3 μm, more preferably 0.002 to 1 μm). It is preferable that the average particle diameter is smaller than 0.002 μm because the first phase and the second phase do not form composite particles. The hydride of R containing M of the first phase constituting the composite particles is preferably a hydride of R containing M: 0.1 to 50 at%, and M: 0.1 to 50 at%. More preferably, it is a hydride of R containing 30 atomic% or less (not including 0) of T and A, and furthermore, (R 1-xy M x (T, A) y ) H z ( However, a hydride having a composition of 0.001 ≦ x ≦ 0.5, 0 <y ≦ 0.3, x + y ≦ 0.7, and 0 <z ≦ 2.5) is still more preferable. The second phase, at least partially, but preferably a phase having a tetragonal structure of R 2 T 14 M-type, more that all of a phase having a tetragonal structure of R 2 T 14 M type preferable. Further, the second phase having an R 2 T 14 M-type tetragonal structure may partially contain A as a component, or may be a hydride. The alloy base is a phase containing T as a main component, and a phase having an Fe 2 B type structure may be present in the alloy base in addition to the first phase and the second phase.
[0011]
R of the raw material alloy for producing a rare earth magnet powder of the present invention is at least one or more of the rare earth elements containing Y, and among the rare earth elements, R is particularly preferably Nd, Pr, Dy, La, Ce, and more preferably A Is particularly preferably at least one of Zr, Ga, Hf, Nb, Ta, Al and Si.
[0012]
When the raw material alloy of the present invention is dehydrogenated at 500 to 1000 ° C., an excellent magnetic anisotropic magnet powder having a recrystallized texture in which the C axis direction of the R 2 T 14 M type containing the A component is aligned in a certain direction is obtained. can get.
[0013]
In order to produce the raw material alloy for producing a rare earth magnet powder of the present invention, first, an RTMA-based alloy ingot is prepared and, if necessary, homogenized at 900 to 1200 ° C. This RTMA-based alloy ingot is subjected to a first treatment of hydrogen storage in a range of 750 to 1000 ° C. in an atmosphere of hydrogen or a mixed atmosphere of hydrogen and an inert gas, and subsequently, the first treatment is substantially continued. A second process of maintaining the temperature in an Ar gas atmosphere and cooling to a temperature in the range of 100 to 700 ° C., maintaining the temperature in the range of 100 to 700 ° C., and then raising the temperature is performed. It can be manufactured by a method in which a mixed atmosphere of hydrogen and an inert gas is used, the temperature is maintained at 750 to 1000 ° C. under the same conditions as in the first process, and then a third process is performed to cool to room temperature. However, the invention is not limited to this method.
[0014]
In any case, after performing the first treatment at a temperature of 750 to 1000 ° C. in an atmosphere of hydrogen or a mixture of hydrogen and an inert gas, a temperature substantially in the range of 100 to 700 ° C. in an Ar gas atmosphere. , And further subjected to a third treatment at a temperature of 750 to 1000 ° C. in an atmosphere of hydrogen or a mixture of hydrogen and an inert gas, whereby the raw material alloy for producing a rare earth magnet powder of the present invention can be produced. In the course of hydrogen storage at a temperature of 750 to 1000 ° C. in an atmosphere of hydrogen or a mixture of hydrogen and an inert gas, the temperature is substantially maintained in a range of 100 to 700 ° C. in an Ar gas atmosphere. is necessary. The atmosphere of the second treatment may contain some hydrogen released from the raw material alloy, but is substantially an Ar atmosphere. If the temperature is lower than 100 ° C. or higher than 700 ° C., it is not preferable because a hydride of R containing M or a rim-like second phase is difficult to be formed. The time for maintaining the temperature at 100 to 700 ° C. depends on the type of the raw material, but is in the range of 0.1 to 20 hours (preferably 1 to 5 hours).
[0015]
FIG. 1 shows a hydrogen storage treatment pattern including a first treatment, a second treatment, and a third treatment for producing a raw material alloy for producing a rare earth magnet powder according to the present invention.
[0016]
Starting materials for producing the raw material alloy for producing a rare earth magnet powder of the present invention include a cast alloy, a sintered alloy, a super-quenched alloy, an atomized alloy, a partially or entirely amorphous alloy, a mechanical alloy alloy, and a co-reduced powder. Although any of these alloys may be used, it is particularly preferable to use a cast alloy, a partially or entirely amorphous alloy or a mechanical alloy alloy.
[0017]
The structure of the raw material alloy for producing a rare earth magnet alloy of the present invention thus obtained is composed of a first phase composed of granular hydride of R containing M in the base material and a rim surrounding the first phase. Composite particles composed of a second phase are dispersed. The first phase of the composite particles is a granular hydride of R containing M, and the second phase is at least partially or wholly entirely composed of R 2 T 14. It is composed of a phase having an M-type tetragonal structure. It is considered that this composite structure enables long-term storage as a raw material alloy for producing rare earth magnet powder.
[0018]
FIG. 1 shows a hydrogen storage pattern including a first process, a second process, and a third process for manufacturing a raw material alloy for manufacturing a rare earth magnet powder according to the present invention. Is not limited to FIG. 1 described above, and variously modified hydrogen storage processing patterns can be adopted.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
Example 1
Alloys A to J having the component compositions shown in Table 1 were prepared, and the alloys A to J were melted in a plasma arc melting furnace in an Ar atmosphere. Of the alloys A to J, the melts of the alloys A to J were cast to produce ingots, and the ingots were homogenized under the conditions shown in Table 1 and then pulverized to obtain the dimensions shown in Table 1. A block or powder was made.
[0020]
By subjecting the obtained blocks or powders of the alloys A to J shown in Table 1 to the first treatment, the second treatment and the third treatment under the conditions shown in Table 2, the raw material alloy for producing the rare earth magnet powder of the present invention ( Hereinafter, raw materials of the present invention (referred to as “raw materials of the present invention”) 1 to 10 and raw material alloys (hereinafter, referred to as comparative raw materials) 1 to 3 for producing comparative rare earth magnet powders were prepared.
[0021]
Further, a block of alloy A shown in Table 1 was subjected to hydrogen occlusion treatment under the conditions shown in Table 2 to prepare a raw material alloy for producing a rare earth magnet powder (hereinafter, referred to as a conventional raw material).
[0022]
The structure of these raw materials 1 to 10 of the present invention, comparative raw materials 1 to 3 and conventional raw materials is observed with a transmission electron microscope, and the average particle size and shape of the first phase composed of a hydride of R containing M are observed. Table 3 shows the results. Further, quantitative analysis of the first phase is performed by an analytical transmission electron microscope, and the presence or absence of the second phase having at least a part or all of a rim-shaped R 2 T 14 M tetragonal structure surrounding the first phase is examined. Table 3 shows the results. Further, by analyzing the hydrogen content of the material alloy (R 1-x-y M x (T, A) y) was calculated hydrogen amount ratio H z, expressed in the form of H z, (R 1-x -y Table 3 shows x, y, and z of M x (T, A) y ) H z .
[0023]
[Table 1]
Figure 0003562138
[0024]
[Table 2]
Figure 0003562138
[0025]
[Table 3]
Figure 0003562138
[0026]
The raw materials 1 to 10 of the present invention, the comparative raw materials 1 to 3 and the conventional raw materials shown in Table 3 were stored in the air at a temperature of 30 ° C. and a humidity of 50% for 60 days, and then a vacuum atmosphere of 1 × 10 −5 torr was obtained. , A dehydrogenation treatment was performed under the conditions shown in Tables 4 and 5, followed by rapid cooling, followed by pulverization to obtain magnet powder. Observation of the structure of these magnet powders revealed that they had a recrystallized texture in which recrystallized grains were aggregated. This magnet powder was oriented in a magnetic field of 15 KOe, and the remanent magnetization and coercive force (iHc) were measured using a vibrating sample type magnetic flux. The results were shown in Tables 4 and 5.
[0027]
[Table 4]
Figure 0003562138
[0028]
[Table 5]
Figure 0003562138
[0029]
From the results shown in Tables 2 to 5, the raw materials 1 to 10 of the present invention having a structure in which the composite particles surrounding the first phase having an average particle size of 0.002 to 20 μm with the rim-shaped second phase are dispersed. It can be seen that the rare earth magnet powder obtained by dehydrogenation shows excellent magnetic properties. However, comparative raw material 1 processed at a temperature of the second processing lower than 100 ° C., comparative raw material 2 processed at a temperature of the second processing exceeding 700 ° C., and comparative raw material 3 processed at a second processing atmosphere in a hydrogen atmosphere It can be seen that the magnetic properties of the rare earth magnet powder obtained by dehydrogenating the conventional raw materials subjected to the ordinary hydrogen storage treatment and the conventional hydrogen storage treatment are degraded.
[0030]
【The invention's effect】
As described above, the rare-earth magnet powder-producing raw material alloy produced by the method of the present invention can be stored for a long period of time, and a rare-earth magnet powder having excellent magnetic properties can be obtained by dehydrogenating only a required amount. It has excellent industrial effects.
[Brief description of the drawings]
FIG. 1 is a hydrogen storage pattern for producing a raw alloy for producing a rare earth magnet powder according to the present invention.

Claims (5)

R:Yを含む希土類元素、
T:Fe、またはFeを主成分とし一部をCo、Niで置換した成分、
M:B、またはBのうち一部をCで置換した成分、
A:Al,Ga,Si,Ti,V,Cr,Zr,Nb,Mo,Hf,Ta,Wのうちの少なくとも1種以上とすると、
これらR,T,MおよびAを含み、残部不可避不純物からなるR−T−M−A系合金において、合金素地中に、少なくとも平均粒径:0.002〜20μmを有する第1相とこの第1相の周囲を包囲するリム状の第2相からなる複合粒子が分散している組織を有し、この複合粒子を構成する上記第1相は、(R 1-x-y x (T,A) y )H z (ただし、0.001≦x≦0.5、0<y≦0.3、x+y≦0.7、0<z≦2.5)の組成を有するMを含有するRの粒状の水素化物(以下、Mを含有するRの粒状の水素化物という)からなり、さらに上記第2相は、少なくとも一部または全部がR2 T14M型の正方晶構造を有する相からなることを特徴とする希土類磁石粉末製造用原料合金。
R: a rare earth element containing Y,
T: Fe or a component mainly composed of Fe and partially substituted with Co or Ni;
M: B or a component in which a part of B is substituted with C,
A: If at least one of Al, Ga, Si, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, and W,
In the R-T-M-A alloy containing R, T, M and A and the balance of unavoidable impurities, a first phase having at least an average particle diameter of 0.002 to 20 μm and It has a structure in which composite particles composed of a rim-shaped second phase surrounding the periphery of one phase are dispersed, and the first phase constituting the composite particles is (R 1-xy M x (T, A ) Y ) H z (where 0.001 ≦ x ≦ 0.5, 0 <y ≦ 0.3, x + y ≦ 0.7, 0 <z ≦ 2.5) The second phase is composed of a granular hydride (hereinafter, referred to as a granular hydride of R containing M) , and the second phase is at least partially or entirely composed of a phase having a tetragonal structure of R2 T14M type. Alloy for the production of rare earth magnet powder.
上記複合粒子を構成する第1相のMを含有するRの粒状の水素化物は、球形形状をした粒状(以下、球形粒状という)であることを特徴とする請求項1記載の希土類磁石粉末製造用原料合金。The rare-earth magnet powder production according to claim 1, wherein the granular hydride of R containing M of the first phase constituting the composite particles is a spherical particle (hereinafter referred to as a spherical particle). Raw material alloy. 上記複合粒子を構成する第1相のMを含有するRの粒状の水素化物は、紡錘形形状をした粒状(以下、紡錘形粒状という)であることを特徴とする請求項1記載の希土類磁石粉末製造用原料合金。2. The rare-earth magnet powder production according to claim 1, wherein the granular hydride of R containing M of the first phase constituting the composite particles is a spindle-shaped particle (hereinafter, referred to as a spindle-shaped particle). 3. Raw material alloy. 上記複合粒子を構成する第1相のMを含有するRの粒状の水素化物は、球形粒状および紡錘形粒状であることを特徴とする請求項1記載の希土類磁石粉末製造用原料合金。The raw material alloy for producing a rare earth magnet powder according to claim 1, wherein the granular hydride of R containing M of the first phase constituting the composite particles is spherical and spindle-shaped. 請求項1、2、3または4記載の複合粒子と、平均粒径:0.002〜20μmのMを含有するRの棒状または紡錘形状をした水素化物単独相粒子とが上記R−T−M−A系合金の素地中に混在して分散していることを特徴とする希土類磁石粉末製造用原料合金。The composite particles according to claim 1, 2, 3 or 4, and the R-T-M comprising a rod-shaped or spindle-shaped hydride single-phase particle containing M having an average particle diameter of 0.002 to 20 µm. A raw material alloy for producing a rare earth magnet powder, wherein the raw material alloy is mixed and dispersed in a base material of an A-based alloy.
JP14662796A 1996-05-16 1996-05-16 Raw material alloy for manufacturing rare earth magnet powder Expired - Fee Related JP3562138B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14662796A JP3562138B2 (en) 1996-05-16 1996-05-16 Raw material alloy for manufacturing rare earth magnet powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14662796A JP3562138B2 (en) 1996-05-16 1996-05-16 Raw material alloy for manufacturing rare earth magnet powder

Publications (2)

Publication Number Publication Date
JPH09310102A JPH09310102A (en) 1997-12-02
JP3562138B2 true JP3562138B2 (en) 2004-09-08

Family

ID=15412018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14662796A Expired - Fee Related JP3562138B2 (en) 1996-05-16 1996-05-16 Raw material alloy for manufacturing rare earth magnet powder

Country Status (1)

Country Link
JP (1) JP3562138B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1115125A3 (en) * 2000-01-06 2002-05-02 Seiko Epson Corporation Magnetic powder and isotropic bonded magnet
JP2001267111A (en) 2000-01-14 2001-09-28 Seiko Epson Corp Magnet powder and isotropic bonded magnet

Also Published As

Publication number Publication date
JPH09310102A (en) 1997-12-02

Similar Documents

Publication Publication Date Title
JP2000188213A (en) R-t-b sintered permanent magnet
WO2004029996A1 (en) R-t-b based rare earth element permanent magnet
JP2009260290A (en) Method of manufacturing r-fe-b system anisotropic bulk magnet
SI9300639A (en) Magnetic powder of type Fe - RARE EARTH - B and correspondent magnets and its method of preparation
JP2024020341A (en) Anisotropic rare earth sintered magnet and its manufacturing method
JPWO2004029999A1 (en) R-T-B rare earth permanent magnet
JP3303044B2 (en) Permanent magnet and its manufacturing method
JP3562138B2 (en) Raw material alloy for manufacturing rare earth magnet powder
JP2022077979A (en) Manufacturing method of rare earth sintered magnet
JP2564492B2 (en) Manufacturing method of rare earth-Fe-B cast permanent magnet
JP4650218B2 (en) Method for producing rare earth magnet powder
JP3204025B2 (en) Raw material alloy for manufacturing rare earth magnet powder
JP3567720B2 (en) Raw material alloy for producing rare earth magnet powder and method for producing the same
WO2021193334A1 (en) Anisotropic rare earth sintered magnet and method for producing same
JPH11158588A (en) Raw alloy for manufacture of rare earth magnetic powder, and its production
JP7226281B2 (en) rare earth sintered magnet
JP2623731B2 (en) Manufacturing method of rare earth-Fe-B based anisotropic permanent magnet
JP3562597B2 (en) Raw material alloy for producing rare earth magnet powder
JP7243609B2 (en) rare earth sintered magnet
JP3353461B2 (en) Raw material alloy for manufacturing rare earth magnet powder
JPH02192102A (en) Permanent magnet
WO2019182039A1 (en) Rare earth magnet
JP2024031021A (en) Manufacturing method of rare earth magnet powder
JPH0252413B2 (en)
JPH06224015A (en) Manufacture of rare earth-fe-n intermetallic compound magnetic material particle and magnetic material powder of rare earth-fe-n intermetallic compound produced by same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20040120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040524

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees