JPWO2004029999A1 - R-T-B rare earth permanent magnet - Google Patents

R-T-B rare earth permanent magnet Download PDF

Info

Publication number
JPWO2004029999A1
JPWO2004029999A1 JP2004539583A JP2004539583A JPWO2004029999A1 JP WO2004029999 A1 JPWO2004029999 A1 JP WO2004029999A1 JP 2004539583 A JP2004539583 A JP 2004539583A JP 2004539583 A JP2004539583 A JP 2004539583A JP WO2004029999 A1 JPWO2004029999 A1 JP WO2004029999A1
Authority
JP
Japan
Prior art keywords
phase
rare earth
permanent magnet
alloy
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004539583A
Other languages
Japanese (ja)
Other versions
JP4076178B2 (en
Inventor
石坂 力
力 石坂
剛一 西澤
剛一 西澤
日高 徹也
徹也 日高
亮 福野
亮 福野
内田 信也
信也 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Publication of JPWO2004029999A1 publication Critical patent/JPWO2004029999A1/en
Application granted granted Critical
Publication of JP4076178B2 publication Critical patent/JP4076178B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0207Using a mixture of prealloyed powders or a master alloy
    • C22C33/0228Using a mixture of prealloyed powders or a master alloy comprising other non-metallic compounds or more than 5% of graphite
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0557Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Abstract

R2T14B相(Rは希土類元素の1種又は2種以上(但し希土類元素はYを含む概念である)、TはFe又はFe及びCoを必須とする1種又は2種以上の遷移金属元素)からなる主相と、主相よりRを多く含む粒界相とを含む焼結体からなり、R2T14B相内にZrに富む生成物を存在させるようにした。Zrに富む生成物は、板状又は針状の形態を有している。そして、この生成物が存在しているR−T−B系希土類永久磁石によれば、磁気特性の低下を最小限に抑えつつ粒成長を抑制し、かつ広い焼結温度幅を得ることができる。From the R2T14B phase (R is one or more rare earth elements (however, the rare earth element is a concept including Y), and T is one or more transition metal elements essential to Fe, Fe and Co) And a sintered body containing a grain boundary phase containing more R than the main phase, and a Zr-rich product is present in the R2T14B phase. The product rich in Zr has a plate-like or needle-like form. And according to the R-T-B rare earth permanent magnet in which this product exists, it is possible to suppress grain growth while minimizing deterioration of magnetic properties and to obtain a wide sintering temperature range. .

Description

本発明は、R(Rは希土類元素の1種又は2種以上、但し希土類元素はYを含む概念である)、T(TはFe又はFe及びCoを必須とする少なくとも1種以上の遷移金属元素)及びB(ホウ素)を主成分とするR−T−B系希土類永久磁石に関する。  The present invention relates to R (R is one or more of rare earth elements, where the rare earth element is a concept including Y), T (T is at least one or more transition metals essentially comprising Fe or Fe and Co) Element) and an RTB-based rare earth permanent magnet mainly composed of B (boron).

希土類永久磁石の中でもR−T−B系希土類永久磁石は、磁気特性に優れていること、主成分であるNdが資源的に豊富で比較的安価であることから、需要は年々、増大している。
R−T−B系希土類永久磁石の磁気特性を向上するための研究開発も精力的に行われている。例えば、特開平1−219143号公報では、R−T−B系希土類永久磁石に0.02〜0.5at%のCuを添加することにより、磁気特性が向上し、熱処理条件も改善されることが報告されている。しかしながら、特開平1−219143号公報に記載の方法は、高性能磁石に要求されるような高磁気特性、具体的には高い保磁力(HcJ)及び残留磁束密度(Br)を得るには不十分であった。
ここで、焼結で得られるR−T−B系希土類永久磁石の磁気特性は焼結温度に依存するところがある。その一方、工業的生産規模においては焼結炉内の全域で加熱温度を均一にすることは困難である。したがって、R−T−B系希土類永久磁石において、焼結温度が変動しても所望する磁気特性を得ることが要求される。ここで、所望する磁気特性を得ることのできる温度範囲を焼結温度幅ということにする。
R−T−B系希土類永久磁石をさらに高性能なものにするためには、合金中の酸素量を低下させることが必要である。しかし、合金中の酸素量を低下させると焼結工程において異常粒成長が起こりやすく、角形比が低下する。合金中の酸素が形成している酸化物が結晶粒の成長を抑制しているためである。
そこで磁気特性を向上する手段として、Cuを含有するR−T−B系希土類永久磁石に新たな元素を添加する方法が検討されている。特開2000−234151号公報では、高い保磁力及び残留磁束密度を得るために、Zr及び/又はCrを添加する報告がなされている。
同様に特開2002−75717号公報では、Co、Al、Cu、さらにZr、Nb又はHfを含有するR−T−B系希土類永久磁石中に微細なZrB化合物、NbB化合物又はHfB化合物(以下、M−B化合物)を均一に分散して析出させることにより、焼結過程における粒成長を抑制し、磁気特性と焼結温度幅を改善する報告がなされている。
特開2002−75717号公報によれば、M−B化合物を分散・析出することによって焼結温度幅が拡大されている。しかしながら、特開2002−75717号公報に開示される実施例3−1では焼結温度幅が20℃程度と、狭い。よって、量産炉などで高い磁気特性を得るには、さらに焼結温度幅を広げることが望ましい。また十分広い焼結温度幅を得るためには、Zr添加量を増やすことが有効である。ところが、Zr添加量の増大にともなって残留磁束密度は低下し、本来目的とする高特性は得られない。
そこで本発明は、磁気特性の低下を最小限に抑えつつ粒成長を抑制し、かつ焼結温度幅をさらに改善できるR−T−B系希土類永久磁石を提供することを目的とする。
Among rare earth permanent magnets, RTB rare earth permanent magnets are excellent in magnetic properties, and Nd as a main component is abundant in resources and relatively inexpensive. Yes.
Research and development for improving the magnetic properties of R-T-B rare earth permanent magnets has also been vigorously conducted. For example, in JP-A-1-219143, by adding 0.02 to 0.5 at% Cu to an RTB-based rare earth permanent magnet, the magnetic properties are improved and the heat treatment conditions are also improved. Has been reported. However, the method described in Japanese Patent Application Laid-Open No. 1-219143 is not effective for obtaining high magnetic properties as required for high performance magnets, specifically, high coercive force (HcJ) and residual magnetic flux density (Br). It was enough.
Here, the magnetic properties of the R-T-B rare earth permanent magnet obtained by sintering depend on the sintering temperature. On the other hand, on an industrial production scale, it is difficult to make the heating temperature uniform throughout the sintering furnace. Therefore, the R-T-B rare earth permanent magnet is required to obtain desired magnetic characteristics even if the sintering temperature varies. Here, the temperature range in which the desired magnetic characteristics can be obtained is referred to as a sintering temperature range.
In order to further improve the performance of the R-T-B rare earth permanent magnet, it is necessary to reduce the amount of oxygen in the alloy. However, when the amount of oxygen in the alloy is reduced, abnormal grain growth is likely to occur in the sintering process, and the squareness ratio is reduced. This is because the oxide formed by oxygen in the alloy suppresses the growth of crystal grains.
Therefore, as a means for improving the magnetic characteristics, a method of adding a new element to an RTB-based rare earth permanent magnet containing Cu has been studied. In Japanese Unexamined Patent Publication No. 2000-234151, there is a report of adding Zr and / or Cr in order to obtain a high coercive force and residual magnetic flux density.
Similarly, in JP-A-2002-75717, a fine ZrB compound, NbB compound or HfB compound (hereinafter referred to as “Rt-B” type rare earth permanent magnet containing Co, Al, Cu, and Zr, Nb or Hf) It has been reported that by uniformly dispersing and precipitating (MB compound), grain growth in the sintering process is suppressed and magnetic characteristics and sintering temperature range are improved.
According to JP 2002-75717 A, the sintering temperature range is expanded by dispersing and precipitating the MB compound. However, in Example 3-1, disclosed in JP-A-2002-75717, the sintering temperature width is as narrow as about 20 ° C. Therefore, it is desirable to further widen the sintering temperature range in order to obtain high magnetic characteristics in a mass production furnace or the like. In order to obtain a sufficiently wide sintering temperature range, it is effective to increase the amount of Zr added. However, the residual magnetic flux density decreases as the amount of Zr added increases, and the intended high characteristics cannot be obtained.
Therefore, an object of the present invention is to provide an R-T-B rare earth permanent magnet that can suppress grain growth while minimizing deterioration in magnetic properties and can further improve the sintering temperature range.

本発明者はR−T−B系希土類永久磁石の主相を構成するR14B相内にZrに富む生成物が存在している場合に、磁気特性の低下を最小限に抑えつつ粒成長を抑制し、かつ焼結温度幅を改善できることを知見した。すなわち、本発明は、R14B相(Rは希土類元素の1種又は2種以上(但し希土類元素はYを含む概念である)、TはFe又はFe及びCoを必須とする1種又は2種以上の遷移金属元素)からなる主相と、主相よりRを多く含む粒界相とを含む焼結体からなり、R14B相内にZrに富む生成物が存在することを特徴とするR−T−B系希土類永久磁石を提供する。
本発明のR−T−B系希土類永久磁石において、Zrに富む生成物は、板状又は針状の形態を有している。
本発明のR−T−B系希土類永久磁石において、焼結体中に含まれる酸素量が2000ppm以下であることが望ましい。R14B相内にZrに富む生成物が存在することによる粒成長の抑制及び焼結温度幅の拡大という効果は、焼結体中に含まれる酸素量が2000ppm以下と低酸素量の場合に顕著となるからである。
本発明のR−T−B系希土類永久磁石において、R:28〜33wt%、B:0.5〜1.5wt%、Al:0.03〜0.3wt%、Cu:0.3wt%以下(0を含まず)、Zr:0.05〜0.2wt%、Co:4wt%以下(0を含まず)、残部実質的にFeからなる組成とすることが望ましい。
また本発明のR−T−B系希土類永久磁石において、Zrを0.1〜0.15wt%の範囲内で含有させることがより望ましい。
The inventor of the present invention minimizes the deterioration of magnetic properties when a Zr-rich product is present in the R 2 T 14 B phase constituting the main phase of the R-T-B system rare earth permanent magnet. It has been found that the grain growth can be suppressed and the sintering temperature range can be improved. That is, the present invention relates to an R 2 T 14 B phase (R is one or more rare earth elements (however, the rare earth element is a concept including Y), and T is one element in which Fe or Fe and Co are essential. Or a sintered body including a main phase composed of two or more transition metal elements) and a grain boundary phase containing more R than the main phase, and a Zr-rich product exists in the R 2 T 14 B phase. An R-T-B rare earth permanent magnet is provided.
In the RTB-based rare earth permanent magnet of the present invention, the Zr-rich product has a plate-like or needle-like form.
In the R-T-B rare earth permanent magnet of the present invention, it is desirable that the amount of oxygen contained in the sintered body is 2000 ppm or less. The effects of suppressing grain growth and expanding the sintering temperature range due to the presence of a Zr-rich product in the R 2 T 14 B phase are as follows. The amount of oxygen contained in the sintered body is as low as 2000 ppm or less. It is because it becomes remarkable in the case.
In the R-T-B rare earth permanent magnet of the present invention, R: 28 to 33 wt%, B: 0.5 to 1.5 wt%, Al: 0.03 to 0.3 wt%, Cu: 0.3 wt% or less (Zr is not included), Zr: 0.05 to 0.2 wt%, Co: 4 wt% or less (not including 0), and the balance is preferably substantially composed of Fe.
In the R-T-B rare earth permanent magnet of the present invention, it is more desirable to contain Zr within a range of 0.1 to 0.15 wt%.

第1図は第1実施例で用いた低R合金及び高R合金の組合せ並びに得られた永久磁石の組成を示す図表、第2図は第1実施例で得られた永久磁石の磁気特性を示す図表、第3図は第1実施例で得られた永久磁石の添加元素M(Zr或いはTi)量と残留磁束密度(Br)との関係を示すグラフ、第4図は第1実施例で得られた永久磁石の添加元素M(Zr或いはTi)量と保磁力(HcJ)との関係を示すグラフ、第5図は第1実施例で得られた永久磁石の添加元素M(Zr或いはTi)量と角形比(Hk/HcJ)との関係を示すグラフ、第6図は実施例1の試料(Zr量が0.10wt%の試料)のTEM(Transmission Electron Microscope:透過型電子顕微鏡)写真、第7図(a)は実施例1の試料(Zr量が0.10wt%の試料)に存在する生成物のEDS(Energy Dispersiveon X−ray Fluorescence Spectroscopymeter:エネルギ分散型X線分析装置分光法)プロファイルを示す図、第7図(b)は実施例1の試料(Zr量が0.10wt%の試料)におけるR14B相のEDSプロファイルを示す図、第8図は実施例1の試料(Zr量が0.10wt%の試料)のTEM高分解能写真、第9図は実施例1の試料(Zr量が0.10wt%の試料)のTEM写真、第10図は実施例1の試料(Zr量が0.10wt%の試料)のTEM写真、第11図(a)は実施例1の試料(Zr量が0.10wt%の試料)のEPMA(Electron Probe Micro Analyzer:電子線マイクロアナライザ)によるZrマッピング結果を示す写真(下段)及びZrマッピング結果(下段)と同一視野の組成像を示す写真(上段)、第11図(b)は比較例2の試料(Zr量が0.10wt%の試料)のEPMAによるZrマッピング結果を示す写真(下段)及びZrマッピング結果(下段)と同一視野の組成像を示す写真(上段)、第12図は第2実施例で得られた永久磁石の磁気特性を示す図表、第13図は第2実施例における焼結温度と残留磁束密度(Br)の関係を示すグラフ、第14図は第2実施例における焼結温度と保磁力(HcJ)の関係を示すグラフ、第15図は第2実施例における焼結温度と角形比(Hk/HcJ)の関係を示すグラフ、第16図は第2実施例において、各焼結温度における残留磁束密度(Br)と角形比(Hk/HcJ)を対応させたグラフ、第17図は第3実施例で用いた低R合金及び高R合金の組合せ並びに得られた永久磁石の組成を示す図表、第18図は第3実施例で得られた永久磁石の磁気特性を示す図表、第19図は第4実施例で用いた低R合金及び高R合金の組合せ並びに得られた永久磁石の組成を示す図表、第20図は第4実施例で得られた永久磁石の磁気特性を示す図表である。FIG. 1 is a chart showing the combination of the low R alloy and high R alloy used in the first embodiment and the composition of the obtained permanent magnet, and FIG. 2 shows the magnetic characteristics of the permanent magnet obtained in the first embodiment. FIG. 3 is a graph showing the relationship between the amount of additive element M (Zr or Ti) of the permanent magnet obtained in the first embodiment and the residual magnetic flux density (Br), and FIG. 4 is a graph showing the first embodiment. FIG. 5 is a graph showing the relationship between the amount of additive element M (Zr or Ti) of the obtained permanent magnet and the coercive force (HcJ), and FIG. 5 shows the additive element M (Zr or Ti) of the permanent magnet obtained in the first embodiment. ) Is a graph showing the relationship between the amount and the squareness ratio (Hk / HcJ), FIG. 6 is a TEM (Transmission Electron Microscope) photo of the sample of Example 1 (Zr amount is 0.10 wt%). FIG. 7 (a) shows the sample of Example 1. FIG. 7 (b) shows an EDS (Energy Dispersiveon X-ray Fluorescence Spectroscopy) profile of a product existing in a sample having a Zr content of 0.10 wt%. FIG. 8 is a diagram showing an EDS profile of the R 2 T 14 B phase in sample No. 1 (sample with a Zr content of 0.10 wt%), and FIG. 8 shows a TEM of the sample of Example 1 (sample with a Zr content of 0.10 wt%). FIG. 9 is a high-resolution photograph, FIG. 9 is a TEM photograph of the sample of Example 1 (Zr amount is 0.10 wt%), and FIG. 10 is a TEM of the sample of Example 1 (Zr amount is 0.10 wt%). FIG. 11 (a) is a photograph of EPMA (Electron Probe Micro An) of the sample of Example 1 (sample with a Zr content of 0.10 wt%). lyzer: a photograph showing the Zr mapping result (electron beam microanalyzer) (bottom), a photograph showing the composition image of the same field of view as the Zr mapping result (bottom), FIG. 11 (b) is a sample of Comparative Example 2 ( A sample showing the Zr mapping result by EPMA (a sample having a Zr amount of 0.10 wt%) (bottom) and a photo showing the composition image of the same field of view as the Zr mapping result (bottom), FIG. 12 shows the second embodiment. FIG. 13 is a graph showing the relationship between the sintering temperature and the residual magnetic flux density (Br) in the second embodiment, and FIG. 14 is the sintering temperature in the second embodiment. FIG. 15 is a graph showing the relationship between the sintering temperature and the squareness ratio (Hk / HcJ) in the second embodiment, and FIG. 16 is a graph showing the relationship between the coercive force (HcJ) and the coercivity (HcJ). To freeze temperature FIG. 17 shows the combination of the low R alloy and the high R alloy used in the third embodiment and the composition of the obtained permanent magnet. FIG. 17 is a graph corresponding to the residual magnetic flux density (Br) and the squareness ratio (Hk / HcJ). FIG. 18 is a chart showing the magnetic characteristics of the permanent magnet obtained in the third embodiment. FIG. 19 is a combination of the low R alloy and the high R alloy used in the fourth embodiment and the permanent magnet obtained. FIG. 20 is a chart showing the magnetic properties of the permanent magnets obtained in the fourth embodiment.

以下に本発明の実施の形態について説明する。
<組織>
本発明によって得られる希土類永久磁石は、よく知られているように、R14B相(Rは希土類元素の1種又は2種以上(但し希土類元素はYを含む概念である)、TはFe又はFe及びCoを必須とする遷移金属元素の1種又は2種以上)からなる主相と、この主相よりRを多く含む粒界相とを少なくとも含んでいる。本発明は、このR14B相内にZrに富む生成物が存在していることを特徴としている。この生成物が存在しているR−T−B系希土類永久磁石は、磁気特性の低下を最小限に抑えつつ粒成長を抑制し、かつ広い焼結温度幅を得ることができる。この生成物は、R14B相内に存在していることが必要であるが、全てのR14B相内に存在することを要件とするものでない。また、この生成物は粒界相に存在していても良い。但し、粒界相にのみZrに富む生成物が存在している場合には、本発明の効果を享受することはできない。
R−T−B系希土類永久磁石において、R14B相内に生成物を形成する添加元素として、従来からTiが知られている(例えばJ.Appl.Phys.69(1991)6055)。本発明者はZr及びTiを添加することによってR14B相内に生成物を形成すると、焼結温度幅の拡大に有効であるとの知見を得た。ここで、Zrの場合には、焼結温度幅の拡大という効果を十分に発揮する量を添加しても、磁気特性、具体的には残留磁束密度(Br)の低下をほとんど起こすことがない。一方、Tiの場合は、焼結温度幅の拡大という効果を十分に発揮する量を添加すると、残留磁束密度(Br)の低下が著しく、実施上好ましくないことが明らかとなった。以上のように、生成物の組成をZrに富む組成とすることにより、高特性の永久磁石が、広い焼結温度幅において安定して製造することが可能となる。
Zrに富む生成物をR14B相内に存在させるためには、製法上のいくつかの要件があることを本発明者は確認した。本発明による永久磁石の製造方法の一連の工程については後述するとして、ここでは、Zrに富む生成物がR B相内に存在するための要件について説明する。
R−T−B系希土類永久磁石の製造方法としては、所望する組成と一致する単一の合金を出発原料とする方法(以下、単一法という)と、異なる組成を有する複数の合金を出発原料とする方法(以下、混合法という)の二つが存在する。混合法は、典型的には、R14B相を主体とする合金(低R合金)と、低R合金よりRを多く含む合金(高R合金)とを出発原料とする。
本発明者は、低R合金及び高R合金のいずれかにZrを含有させてR−T−B系希土類永久磁石を得た。その結果、低R合金にZrを含有させて永久磁石を作製した場合には、Zrに富む生成物がR14B相内に存在することを確認した。一方、高R合金にZrを含有させた場合にはZrに富む生成物がR B相内に存在しないことを確認した。
また、低R合金にZrを含有させた場合であっても、低R合金の段階でZrに富む生成物がR14B相内に存在していると、焼結後においてはZrに富む生成物は焼結組織中の三重点にあるRリッチ相(粒界相)に存在するが、R14B相内にはZrに富む生成物を確認することができなかった。したがって、R−T−β系希土類永久磁石のR14B相内にZrに富む生成物を存在させるためには、原料合金の段階でR14B相内にZrに富む生成物を存在させないことが重要である。
そのためには、原料合金の製造方法に配慮する必要がある。低R合金をストリップキャスト法で作製する場合には、冷却ロールの周速を制御する必要がある。冷却ロールの周速が遅い場合には、α−Feの析出を招くとともに、Zrに富む生成物が低R合金のR14B相内に生成される。本発明者の検討によると、冷却ロールの周速が1.0〜1.8m/sの範囲にあれば、Zrに富む生成物がR14B相内に存在しない低R合金を得ることができる。そしてこの低R合金を用いることにより、高い磁気特性の永久磁石を得ることができる。
また、Zrに富む生成物がR14B相内に存在しない低R合金を得ても、これに熱処理を加え、それを原料合金として用いることは、本発明にとって望ましくない。低R合金の組織を改変するような温度域(およそ700℃以上)で熱処理を加えることにより、低R合金のR14B相内にZrに富む生成物が生成されてしまうからである。
<化学組成>
次に、本発明によるR−T−B系希土類永久磁石の望ましい化学組成について説明する。ここでいう化学組成は焼結後における化学組成をいう。
本発明の希土類永久磁石は、Rを25〜35wt%含有する。
ここで、Rは、La,Ce,Pr,Nd,Sm,Eu,Gd,Tb,Dy,Ho,Er,Yb,Lu及びYからなるグループから選択される1種又は2種以上である。Rの量が25wt%未満であると、希土類永久磁石の主相となるR14B相の生成が十分ではない。このため、軟磁性を持つα−Feなどが析出し、保磁力が著しく低下する。一方、Rの量が35wt%を超えると主相であるR14B相の体積比率が低下し、残留磁束密度が低下する。またRの量が35wt%を超えるとRが酸素と反応し、含有する酸素量が増え、これに伴い保磁力発生に有効なRリッチ相が減少し、保磁力の低下を招く。したがって、Rの量は25〜35wt%とする。望ましいRの量は28〜33wt%、さらに望ましいRの量は29〜32wt%である。
Ndは資源的に豊富で比較的安価であることから、Rとしての主成分をNdとすることが好ましい。またDyはR14B相の異方性磁界を増加させ、保磁力を向上させる上で有効である。よって、RとしてNd及びDyを選択し、Nd及びDyの合計を25〜33wt%とすることが望ましい。そして、この範囲において、Dyの量は0.1〜8wt%が望ましい。Dyは、残留磁束密度及び保磁力のいずれを重視するかによって上記範囲内においてその量を定めることが望ましい。つまり、高い残留磁束密度を得たい場合にはDy量を0.1〜3.5wt%とし、高い保磁力を得たい場合にはDy量を3.5〜8wt%とすることが望ましい。
また、本発明の希土類永久磁石は、ホウ素(B)を0.5〜4.5wt%含有する。Bが0.5wt%未満の場合には高い保磁力を得ることができない。但し、Bが4.5wt%を超えると残留磁束密度が低下する傾向がある。したがって、上限を4.5wt%とする。望ましいBの量は0.5〜1.5wt%、さらに望ましいBの量は0.8〜1.2wt%である。
本発明のR−T−B系希土類永久磁石は、Al及びCuの1種又は2種を0.02〜0.6wt%の範囲で含有することができる。この範囲でAl及びCuの1種又は2種を含有させることにより、得られる永久磁石の高保磁力化、高耐食性化、温度特性の改善が可能となる。Alを添加する場合において、望ましいAlの量は0.03〜0.3wt%、さらに望ましいAlの量は0.05〜0.25wt%である。また、Cuを添加する場合において、Cuの量は0.3wt%以下(0を含まず)、望ましくは0.15wt%以下(0を含まず)、さらに望ましいCuの量は0.03〜0.08wt%である。
本発明のR−T−B系希土類永久磁石は、R14B相内にZrに富む生成物を生成させるために、Zrを0.03〜0.25wt%含有することが望ましい。R−T−B系希土類永久磁石の磁気特性向上を図るために酸素含有量を低減する際に、Zrは焼結過程での結晶粒の異常成長を抑制する効果を発揮し、焼結体の組織を均一かつ微細にする。したがって、Zrは酸素量が低い場合にその効果が顕著になる。Zrの望ましい量は0.05〜0.2wt%、さらに望ましい量は0.1〜0.15wt%である。
本発明のR−T−B系希土類永久磁石は、その酸素量を2000ppm以下とする。酸素量が多いと非磁性成分である酸化物相が増大して、磁気特性を低下させる。そこで本発明では、焼結体中に含まれる酸素量を、2000ppm以下、望ましくは1500ppm以下、さらに望ましくは1000ppm以下とする。但し、単純に酸素量を低下させたのでは、粒成長抑制効果を有していた酸化物相が減少し、焼結時に十分な密度上昇を得る過程で粒成長が容易に起こる。そこで、本発明では、焼結過程での結晶粒の異常成長を抑制する効果を発揮するZrを、R−T−B系希土類永久磁石中に所定量含有させる。
本発明のR−T−B系希土類永久磁石は、Coを4wt%以下(0を含まず)、望ましくは0.1〜2.0wt%、さらに望ましくは0.3〜1.0wt%含有する。CoはFeと同様の相を形成するが、キュリー温度の向上、粒界相の耐食性向上に効果がある。
<製造方法>
次に、本発明によるR−T−B系希土類永久磁石の好適な製造方法について説明する。
本実施の形態では、R14B相を主体とする合金(低R合金)と、低R合金よりRを多く含む合金(高R合金)とを用いて本発明に係る希土類永久磁石を製造する方法について示す。
はじめに、原料金属を真空又は不活性ガス、好ましくはAr雰囲気中でストリップキャスティングすることにより、低R合金及び高R合金を得る。ここで、前述したように、得られたストリップ、特に低R合金ストリップには、Zrに富む生成物がR14B相内に生成しないように配慮する必要がある。具体的には、冷却ロールの周速を1.0〜1.8m/sの範囲とする。望ましい冷却ロールの周速は1.2〜1.5m/sである。
Zrに富む生成物が存在しないR14B相を有する低R合金を得てから後述する焼結工程までの間、当該生成物をR14B相内に生成させない、つまり当該R14B相の形態を維持させることが本発明にとって重要である。例えば、水素粉砕から始まる粉砕工程の前に、低R合金を700℃以上に加熱保持する熱処理を行なうことは避けることが望ましい。この点については、後述する第1実施例にてさらに言及する。
本実施の形態で特徴的な事項は、Zrを低R合金から添加するという点である。これは、<組織>の欄で説明したように、Zrに富む生成物がR14B相内に生じていない低R合金からZrを添加することにより、R−T−B系希土類永久磁石のR14B相内にZrに富む生成物を存在させることができるからである。低R合金には、希土類元素、Fe、Co及びBの他に、Cu及びAlを含有させることができる。また、高R合金には、希土類元素、Fe、Co及びBの他に、Cu及びAlを含有させることができる。
低R合金及び高R合金が作製された後、これらの原料合金は別々に又は一緒に粉砕される。粉砕工程には、粗粉砕工程と微粉砕工程とがある。まず、原料合金を、それぞれ粒径数百μm程度になるまで粗粉砕する。粗粉砕は、スタンプミル、ジョークラッシャー、ブラウンミル等を用い、不活性ガス雰囲気中にて行なうことが望ましい。粗粉砕性を向上させるために、水素を吸蔵させた後、粗粉砕を行なうことが効果的である。また、水素吸蔵を行なった後に、水素を放出させ、更に粗粉砕を行なうこともできる。
粗粉砕工程後、微粉砕工程に移る。微粉砕は、主にジェットミルが用いられ、粒径数百μm程度の粗粉砕粉末が、平均粒径3〜5μmになるまで粉砕される。ジェットミルは、高圧の不活性ガス(例えば窒素ガス)を狭いノズルより開放して高速のガス流を発生させ、この高速のガス流により粗粉砕粉末を加速し、粗粉砕粉末同士の衝突やターゲットあるいは容器壁との衝突を発生させて粉砕する方法である。
微粉砕工程において低R合金及び高R合金を別々に粉砕した場合には、微粉砕された低R合金粉末及び高R合金粉末とを窒素雰囲気中で混合する。低R合金粉末及び高R合金粉末の混合比率は、重量比で80:20〜97:3程度とすればよい。同様に、低R合金及び高R合金を一緒に粉砕する場合の混合比率も重量比で80:20〜97:3程度とすればよい。微粉砕時に、ステアリン酸亜鉛等の添加剤を0.01〜0.3wt%程度添加することにより、成形時に配向性の高い微粉を得ることができる。
次いで、低R合金粉末及び高R合金粉末からなる混合粉末を、電磁石に抱かれた金型内に充填し、磁場印加によってその結晶軸を配向させた状態で磁場中成形する。この磁場中成形は、12.0〜17.0kOeの磁場中で、0.7〜1.5t/cm前後の圧力で行なえばよい。
磁場中成形後、その成形体を真空又は不活性ガス雰囲気中で焼結する。焼結温度は、組成、粉砕方法、粒度と粒度分布の違い等、諸条件により調整する必要があるが、1000〜1100℃で1〜5時間程度焼結すればよい。本発明では、この焼結工程においてR14B相内にZrに富む生成物を生成させる。低R合金の段階で存在していないZrに富む生成物が焼結後に生成されるメカニズムは明らかでないが、低R合金の段階でR14B相内に固溶していたZrが焼結工程中にR14B相内に析出する可能性がある。
焼結後、得られた焼結体に時効処理を施すことができる。時効処理は、保磁力を制御する上で重要である。時効処理を2段に分けて行なう場合には、800℃近傍、600℃近傍での所定時間の保持が有効である。800℃近傍での熱処理を焼結後に行なうと、保磁力が増大するため、混合法においては特に有効である。また、600℃近傍の熱処理で保磁力が大きく増加するため、時効処理を1段で行なう場合には、600℃近傍の時効処理を施すとよい。
Embodiments of the present invention will be described below.
<Organization>
As is well known, the rare earth permanent magnet obtained by the present invention has an R 2 T 14 B phase (R is one or more rare earth elements (however, the rare earth element is a concept including Y), T Includes at least a main phase composed of Fe or one or more transition metal elements essential for Fe and Co) and a grain boundary phase containing more R than the main phase. The present invention is characterized in that a Zr-rich product is present in the R 2 T 14 B phase. The RTB-based rare earth permanent magnet in which this product is present can suppress grain growth while minimizing deterioration in magnetic properties, and can obtain a wide sintering temperature range. The product, it is necessary to be present in the R 2 T 14 B Aiuchi, not intended to require that present in all R 2 T 14 B Aiuchi. Moreover, this product may exist in the grain boundary phase. However, when the product rich in Zr exists only in the grain boundary phase, the effect of the present invention cannot be enjoyed.
In an R-T-B rare earth permanent magnet, Ti is conventionally known as an additive element for forming a product in the R 2 T 14 B phase (for example, J. Appl. Phys. 69 (1991) 6055). . The present inventor has found that if a product is formed in the R 2 T 14 B phase by adding Zr and Ti, it is effective in expanding the sintering temperature range. Here, in the case of Zr, even if an amount that sufficiently exhibits the effect of widening the sintering temperature range is added, the magnetic characteristics, specifically, the residual magnetic flux density (Br) is hardly lowered. . On the other hand, in the case of Ti, it has been clarified that the residual magnetic flux density (Br) is remarkably lowered when an amount that sufficiently exhibits the effect of widening the sintering temperature range is added, which is not preferable in practice. As described above, by making the composition of the product rich in Zr, a high-performance permanent magnet can be stably manufactured in a wide sintering temperature range.
The present inventors have confirmed that there are several manufacturing requirements for the Zr-rich product to be present in the R 2 T 14 B phase. As a series of steps of the method for manufacturing a permanent magnet according to the present invention will be described later, here, the requirements for the presence of a Zr-rich product in the R 2 T 1 4 B phase will be described.
As a manufacturing method of the R-T-B system rare earth permanent magnet, a method using a single alloy having a desired composition as a starting material (hereinafter referred to as a single method) and a plurality of alloys having different compositions are started. There are two methods (hereinafter referred to as mixing method) as raw materials. Typically, the mixing method uses an alloy mainly composed of the R 2 T 14 B phase (low R alloy) and an alloy containing more R than the low R alloy (high R alloy) as starting materials.
The inventor of the present invention obtained an RTB-based rare earth permanent magnet by containing Zr in either a low R alloy or a high R alloy. As a result, it was confirmed that when a permanent magnet was produced by containing Zr in a low R alloy, a Zr-rich product was present in the R 2 T 14 B phase. Meanwhile, product-rich Zr if was contained Zr, it was confirmed that does not exist in the R 2 T 1 4 B Aiuchi to high R alloys.
Further, even when Zr is contained in the low R alloy, if a Zr-rich product is present in the R 2 T 14 B phase at the stage of the low R alloy, the Zr will be changed to Zr after sintering. A rich product exists in the R-rich phase (grain boundary phase) at the triple point in the sintered structure, but a Zr-rich product could not be confirmed in the R 2 T 14 B phase. Therefore, in order to present a product rich in Zr to R-T-beta type R 2 T 14 B rare earth permanent magnet Aiuchi, the product-rich Zr in the material alloy stage R 2 T 14 B Aiuchi It is important not to exist.
For that purpose, it is necessary to consider the manufacturing method of the raw material alloy. When producing a low R alloy by strip casting, it is necessary to control the peripheral speed of the cooling roll. When the peripheral speed of the cooling roll is low, α-Fe is precipitated and a Zr-rich product is generated in the R 2 T 14 B phase of the low R alloy. According to the study of the present inventors, when the peripheral speed of the cooling roll is in the range of 1.0 to 1.8 m / s, a low R alloy in which a product rich in Zr does not exist in the R 2 T 14 B phase is obtained. be able to. By using this low R alloy, a permanent magnet having high magnetic properties can be obtained.
Moreover, even if a low R alloy in which a Zr-rich product does not exist in the R 2 T 14 B phase is obtained, it is not desirable for the present invention to add heat treatment to the alloy and use it as a raw material alloy. This is because a product rich in Zr is generated in the R 2 T 14 B phase of the low R alloy by performing heat treatment in a temperature range (approximately 700 ° C. or higher) that modifies the structure of the low R alloy. .
<Chemical composition>
Next, the desirable chemical composition of the RTB-based rare earth permanent magnet according to the present invention will be described. The chemical composition here refers to the chemical composition after sintering.
The rare earth permanent magnet of the present invention contains 25 to 35 wt% of R.
Here, R is one or more selected from the group consisting of La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, Lu, and Y. When the amount of R is less than 25 wt%, the generation of the R 2 T 14 B phase that is the main phase of the rare earth permanent magnet is not sufficient. For this reason, α-Fe or the like having soft magnetism is precipitated, and the coercive force is remarkably lowered. On the other hand, when the amount of R exceeds 35 wt%, the volume ratio of the R 2 T 14 B phase, which is the main phase, decreases, and the residual magnetic flux density decreases. On the other hand, when the amount of R exceeds 35 wt%, R reacts with oxygen, and the amount of oxygen contained increases, resulting in a decrease in the R-rich phase effective for generating coercive force, leading to a decrease in coercive force. Therefore, the amount of R is set to 25 to 35 wt%. A desirable amount of R is 28 to 33 wt%, and a more desirable amount of R is 29 to 32 wt%.
Since Nd is abundant in resources and relatively inexpensive, it is preferable that the main component as R is Nd. Dy is effective in increasing the anisotropic magnetic field of the R 2 T 14 B phase and improving the coercive force. Therefore, it is desirable that Nd and Dy are selected as R and the total of Nd and Dy is 25 to 33 wt%. In this range, the amount of Dy is preferably 0.1 to 8 wt%. It is desirable to determine the amount of Dy within the above range depending on which of the residual magnetic flux density and the coercive force is important. That is, when it is desired to obtain a high residual magnetic flux density, the Dy amount is preferably 0.1 to 3.5 wt%, and when a high coercive force is desired, the Dy amount is desirably 3.5 to 8 wt%.
The rare earth permanent magnet of the present invention contains 0.5 to 4.5 wt% of boron (B). When B is less than 0.5 wt%, a high coercive force cannot be obtained. However, when B exceeds 4.5 wt%, the residual magnetic flux density tends to decrease. Therefore, the upper limit is 4.5 wt%. A desirable amount of B is 0.5 to 1.5 wt%, and a more desirable amount of B is 0.8 to 1.2 wt%.
The RTB-based rare earth permanent magnet of the present invention can contain one or two of Al and Cu in a range of 0.02 to 0.6 wt%. By including one or two of Al and Cu in this range, it is possible to increase the coercive force, the corrosion resistance, and the temperature characteristics of the obtained permanent magnet. In the case of adding Al, a desirable amount of Al is 0.03 to 0.3 wt%, and a more desirable amount of Al is 0.05 to 0.25 wt%. In addition, in the case of adding Cu, the amount of Cu is 0.3 wt% or less (excluding 0), desirably 0.15 wt% or less (not including 0), and the more desirable amount of Cu is 0.03 to 0 0.08 wt%.
The RTB-based rare earth permanent magnet of the present invention preferably contains 0.03 to 0.25 wt% of Zr in order to generate a Zr-rich product in the R 2 T 14 B phase. When the oxygen content is reduced in order to improve the magnetic properties of the R-T-B rare earth permanent magnet, Zr exhibits the effect of suppressing abnormal growth of crystal grains during the sintering process. Make the tissue uniform and fine. Therefore, Zr has a remarkable effect when the amount of oxygen is low. A desirable amount of Zr is 0.05 to 0.2 wt%, and a more desirable amount is 0.1 to 0.15 wt%.
The RTB-based rare earth permanent magnet of the present invention has an oxygen content of 2000 ppm or less. When the amount of oxygen is large, the oxide phase, which is a nonmagnetic component, increases and the magnetic properties are deteriorated. Therefore, in the present invention, the amount of oxygen contained in the sintered body is set to 2000 ppm or less, desirably 1500 ppm or less, and more desirably 1000 ppm or less. However, when the oxygen amount is simply reduced, the oxide phase having the effect of suppressing grain growth decreases, and grain growth easily occurs in the process of obtaining a sufficient density increase during sintering. Therefore, in the present invention, a predetermined amount of Zr that exhibits the effect of suppressing abnormal growth of crystal grains during the sintering process is contained in the R-T-B system rare earth permanent magnet.
The R-T-B rare earth permanent magnet of the present invention contains 4 wt% or less of Co (not including 0), preferably 0.1 to 2.0 wt%, more preferably 0.3 to 1.0 wt%. . Co forms the same phase as Fe, but is effective in improving the Curie temperature and improving the corrosion resistance of the grain boundary phase.
<Manufacturing method>
Next, the suitable manufacturing method of the RTB system rare earth permanent magnet by this invention is demonstrated.
In the present embodiment, the rare earth permanent magnet according to the present invention is made using an alloy mainly composed of the R 2 T 14 B phase (low R alloy) and an alloy containing more R than the low R alloy (high R alloy). A manufacturing method will be described.
First, a low R alloy and a high R alloy are obtained by strip casting the raw metal in a vacuum or an inert gas, preferably in an Ar atmosphere. Here, as described above, in the obtained strip, particularly the low R alloy strip, care must be taken so that no Zr-rich product is generated in the R 2 T 14 B phase. Specifically, the peripheral speed of the cooling roll is set to a range of 1.0 to 1.8 m / s. A desirable peripheral speed of the cooling roll is 1.2 to 1.5 m / s.
Until sintering step described below after obtaining the low R alloys having the R 2 T 14 B phase is product no rich Zr, not to produce the product in R 2 T 14 B Aiuchi, i.e. the R It is important for the present invention to maintain the morphology of the 2 T 14 B phase. For example, it is desirable to avoid performing a heat treatment in which the low R alloy is heated and maintained at 700 ° C. or higher before the pulverization process starting from hydrogen pulverization. This point will be further described in the first embodiment described later.
A characteristic feature of the present embodiment is that Zr is added from a low R alloy. This is because, as explained in the section of <Structure>, by adding Zr from a low R alloy in which a Zr-rich product is not generated in the R 2 T 14 B phase, the R—T—B system rare earth permanent This is because a Zr-rich product can be present in the R 2 T 14 B phase of the magnet. In addition to rare earth elements, Fe, Co and B, the low R alloy can contain Cu and Al. In addition to the rare earth elements, Fe, Co and B, the high R alloy can contain Cu and Al.
After the low R and high R alloys are made, these raw alloys are ground separately or together. The pulverization process includes a coarse pulverization process and a fine pulverization process. First, the raw material alloys are coarsely pulverized until each particle size becomes about several hundred μm. The coarse pulverization is desirably performed in an inert gas atmosphere using a stamp mill, a jaw crusher, a brown mill or the like. In order to improve the coarse pulverization property, it is effective to perform coarse pulverization after occlusion of hydrogen. In addition, hydrogen can be released after hydrogen storage and further coarse pulverization can be performed.
After the coarse pulverization process, the process proceeds to the fine pulverization process. In the fine pulverization, a jet mill is mainly used, and a coarsely pulverized powder having a particle diameter of about several hundreds of micrometers is pulverized until the average particle diameter becomes 3 to 5 μm. The jet mill opens a high-pressure inert gas (for example, nitrogen gas) from a narrow nozzle to generate a high-speed gas flow, and the high-speed gas flow accelerates the coarsely pulverized powder. Or it is the method of generating and colliding with a container wall.
When the low R alloy and the high R alloy are separately pulverized in the fine pulverization step, the finely pulverized low R alloy powder and high R alloy powder are mixed in a nitrogen atmosphere. The mixing ratio of the low R alloy powder and the high R alloy powder may be about 80:20 to 97: 3 by weight. Similarly, the mixing ratio when the low R alloy and the high R alloy are pulverized together may be about 80:20 to 97: 3 by weight. By adding about 0.01 to 0.3 wt% of additives such as zinc stearate at the time of fine pulverization, fine powder having high orientation can be obtained at the time of molding.
Next, the mixed powder composed of the low R alloy powder and the high R alloy powder is filled in a mold held by an electromagnet and molded in a magnetic field with its crystal axis oriented by applying a magnetic field. The forming in the magnetic field may be performed at a pressure of about 0.7 to 1.5 t / cm 2 in a magnetic field of 12.0 to 17.0 kOe.
After molding in a magnetic field, the compact is sintered in a vacuum or an inert gas atmosphere. Although it is necessary to adjust sintering temperature by various conditions, such as a composition, a grinding | pulverization method, a difference of a particle size and a particle size distribution, what is necessary is just to sinter at 1000-1100 degreeC for about 1 to 5 hours. In the present invention, a Zr-rich product is produced in the R 2 T 14 B phase in this sintering step. The mechanism by which Zr-rich products that do not exist at the low R alloy stage are formed after sintering is not clear, but Zr that was dissolved in the R 2 T 14 B phase at the low R alloy stage is not baked. There is a possibility of precipitation in the R 2 T 14 B phase during the setting process.
After sintering, the obtained sintered body can be subjected to an aging treatment. The aging treatment is important for controlling the coercive force. In the case where the aging treatment is performed in two stages, holding for a predetermined time at around 800 ° C. and around 600 ° C. is effective. When the heat treatment at around 800 ° C. is performed after sintering, the coercive force increases, which is particularly effective in the mixing method. In addition, since the coercive force is greatly increased by heat treatment near 600 ° C., when aging treatment is performed in one stage, it is preferable to perform aging treatment near 600 ° C.

<第1実施例>
下記の製造工程により、R−T−B系希土類永久磁石を製造した。
1)原料合金
ストリップキャスト法により、第1図に示す組成及び厚さを有する原料合金(ストリップ)を作製した。ロール周速は、低R合金については1.5m/sとし、高R合金については0.6m/sとした。但し、第1図の比較例3にかかる低R合金については、ロール周速を0.6m/sとした。合金の厚みは50個の鋳片(ストリップ)の厚みを測定した平均値である。なお、第1図の実施例1にかかる低R合金にはR14B相内にZrに富む生成物(以下、相内生成物)が確認されなかったのに対し、比較例3にかかる低R合金では相内生成物がR14B相内に存在することが確認された。
2)水素粉砕工程
室温にて水素を吸蔵させた後、Ar雰囲気中で600℃×1時間の脱水素を行なう、水素粉砕処理を行なった。
高磁気特性を得るべく、本実験では焼結体酸素量を2000ppm以下に抑えるために、水素粉砕(粉砕処理後の回収)から焼結(焼結炉に投入する)までの各工程の雰囲気を、100ppm未満の酸素濃度に抑えてある。
3)混合・粉砕工程
通常、粗粉砕と微粉砕による2段粉砕を行っているが、本実施例では粗粉砕工程を省いている。
微粉砕を行なう前にステアリン酸亜鉛を0.05wt%添加し、第1図に示す実施例1、比較例1〜比較例3の組合せで低R合金と高R合金とをナウターミキサーで30分間混合した。なお、実施例1、比較例1〜比較例3のいずれについても、低R合金と高R合金との混合比率は90:10である。
その後、ジェットミルにて平均粒径4.8〜5.1μmまで微粉砕を行なった。
4)成形工程
得られた微粉末を15.0kOeの磁場中で1.2t/cmの圧力で成形を行い、成形体を得た。
5)焼結、時効工程
この成形体を真空中において1070℃で4時間焼結した後、急冷した。次いで得られた焼結体に800℃×1時間と550℃×2.5時間(ともにAr雰囲気中)の2段時効処理を施した。
得られた永久磁石についてB−Hトレーサにより磁気特性を測定した。その結果を第2図〜第5図に示す。なお、第2図〜第5図において、Brは残留磁束密度、HcJは保磁力、「Hk/HcJ」は角形比を示す。角形比(Hk/HcJ)は磁石性能の指標となるものであり、磁気ヒステリシスループの第2象限における角張の度合いを表す。なおHkは、磁気ヒステリシスループの第2象限において、磁束密度が残留磁束密度の90%になるときの外部磁界強度である。第2図〜第5図において、相内生成物が確認されたものに○を、確認されなかったものに×を付してある。相内生成物の確認は、TEM(Transmission Electron Microscope:透過型電子顕微鏡(日本電子(株)製JEM−3010))による観察に基づいている。観察試料はイオンミリング法により作製し、R14B相のC面を観察した。なお、得られた焼結体の化学組成は第1図の「焼結体組成」の欄に示してある。また、比較例3には相内生成物は確認されなかったが、粒界相にZrに富む生成物が確認された。
第2図及び第5図より、相内生成物が確認されたR−T−B系希土類永久磁石(実施例1、比較例1)においては、異常な粒成長が抑制されており、少量の添加元素M(Zr或いはTi)によって角形比(Hk/HcJ)が改善されることがわかる。但し、第3図に示すように添加元素MとしてTiを選択した場合には、残留磁束密度(Br)の低下が著しい。また、相内生成物が確認されなかったR−T−B系希土類永久磁石(比較例2、比較例3)においても、0.2wt%と多量のZrの添加によって角形比(Hk/HcJ)は向上するが(第5図参照)、やはり残留磁束密度(Br)の低下が大きい(第3図参照)。以上のように、相内生成物の確認されたR−T−B系希土類永久磁石は、残留磁束密度(Br)の低下を抑制しつつ、高い角形比(Hk/HcJ)を得ることができる。
なお、低R合金の段階でR14B相内に相内生成物が確認されている比較例3について、そのR−T−B系希土類永久磁石に相内生成物が存在しない理由は以下のとおりと推測される。低R合金の段階でR14B相内に生成されたZrに富む生成物(相内生成物)は非常に大きく成長している。この生成物は水素粉砕処理によっても体積膨張を起こさないと推定され、そのために水素粉砕時にR14B相と当該生成物の界面で割れが生じているものと解される。この状態で粉砕工程に供されると、当該生成物はR14B相と分離される結果、当該生成物はR14B相内に含まれることなくR14B相と独立に存在する。したがって、比較例3によるR−T−B系希土類永久磁石は、焼結過程を経ても、その粒界相にのみZrに富む生成物が存在するようになるものと考えられる。
実施例1によるZr量が0.10wt%のR−T−B系希土類永久磁石について上記と同様にしてTEMによる観察を行った。観察結果を第6図〜第8図に示す。なお、第6図はZr量が0.10wt%の試料のTEM写真、第7図は当該試料に存在する生成物及び当該試料におけるR14B相のEDS(Energy Dispersiveon X−ray Fluorescence Spectroscopymeter:エネルギ分散型X線分析装置分光法)プロファイル、第8図は当該試料のTEM高分解能写真である。
第6図に示すように、R14B相内に、軸比の大きな相内生成物が確認できる。この生成物は、板状又は針状の形態を有している。なお、第6図は試料の断面を観察したものであるから、相内生成物が板状であるか針状であるかを特定することは困難である。他の試料の観察結果及び第8図をも考慮すると、相内生成物は数100nmの長さ、数nm〜15nmの幅を有している。この相内生成物の詳細な化学組成は不明確であるが、第7図(a)より、この相内生成物は少なくともZrに富むことが確認できる。また、他の試料の観察結果では、軸比の大きな相内生成物の他に、第9図及び第10図に示すように、不定形、円形の相内生成物を観察することもできる。なお、実施例1においては20個の結晶粒(R14B相)を観察した結果、その内に6個の結晶粒に相内生成物が観察できた。それに対して、比較例2では20個の結晶粒(R14B相)全てについて相内生成物は観察されなかった。
第11図(a)の下段に、実施例1のZr量が0.10wt%の試料のEPMA(Electron Probe Micro Analyzer:電子線マイクロアナライザ)によるZrマッピング結果を示す。第11図(a)の上段に、第11図(a)の下段に示したZrマッピング結果と同一視野の組成像を示す。また、第11図(b)の下段に、比較例2のZr量が0.10wt%の試料のEPMAによるZrマッピング結果を示す。第11図(b)の上段に、第11図(b)の下段に示したZrマッピング結果と同一視野の組成像を示す。
TEMによる観察結果と同様に、第11図(a)から、実施例1は、Zrに富むR14B相が存在すること、及び粒界相にもZrが存在することがわかる。これに対して、第11図(b)から、比較例2にはZrに富むR14B相は確認されず、Zrは粒界相のみに存在している。
<第2実施例>
焼結体組成の添加元素M(Zr或いはTi)量を0.10wt%とした試料について1010℃〜1090℃の温度範囲でそれぞれ4時間焼結した以外は第1実施例と同様にしてR−T−B系希土類永久磁石を得た。得られた永久磁石について第1実施例と同様にして磁気特性を測定した。その結果を第12図に示す。また、焼結温度に対する磁気特性の変化を第13図〜第15図に示す。また、各焼結温度における磁気特性を、残留磁束密度(Br)に対する角形比(Hk/HcJ)としてプロットしたものを第16図に示す。
第12図〜第16図に示すように、添加元素MとしてZrを添加することで相内生成物が得られた場合に、広い焼結温度範囲で高磁気特性が安定して得られることがわかる。具体的には、本発明による実施例2では、1030〜1090℃の焼結温度範囲において、13.9kG以上の残留磁束密度(Br)、13.0kOe以上の保磁力(HcJ)及び95%以上の角形比(Hk/HcJ)を得ることができる。添加元素MとしてTiを添加すると残留磁束密度(Br)が低下し(比較例4)、また相内生成物が存在しない場合には角形比(Hk/HcJ)が悪く、焼結温度幅も狭い(比較例5)。
<第3実施例>
ロール周速を0.6〜1.8m/sとしてストリップキャスト法により、第17図に示す組成及び厚さを有する4種の低R合金、2種の高R合金を作製した。そして第17図に示す組合せによって4種類のR−T−B系希土類永久磁石を得た。なお、試料A〜Dのいずれについても、低R合金と高R合金の混合比率は90:10である。第17図に示す低R合金と高R合金を第1実施例と同様に水素粉砕した。水素粉砕処理後、0.05wt%のオレイン酸ブチルを添加し、低R合金及び高R合金を第17図に示す組合せによりナウターミキサーで30分混合した。その後ジェットミルにて平均粒径4.1μmに微粉砕した。得られた微粉末を第1実施例と同様の条件で磁場中成形後、1010〜1090℃で4時間焼結を行った。次いで、800℃で1時間と550℃で2.5時間の2段時効処理を行った。得られた焼結体の組成、酸素量、窒素量を第17図に、また磁気特性を第18図に示す。
第18図に示すように、試料Aにおいては、1030〜1070℃の温度範囲において14.0kG以上の残留磁束密度(Br)、13.0kOe以上の保磁力(HcJ)及び95%以上の角形比(Hk/HcJ)を得ることができる。
試料Aに比べてNd含有量の低い試料B及び試料Cにおいては、1030〜1090℃の温度範囲において14.0kG以上の残留磁束密度(Br)、13.5kOe以上の保磁力(HcJ)及び95%以上の角形比(Hk/HcJ)を得ることができる。
試料Aに比べてDy量の多い試料Dにおいては、1030〜1070℃の温度範囲において13.5kG以上の残留磁束密度(Br)、15.5kOe以上の保磁力(HcJ)及び95%以上の角形比(Hk/HcJ)を得ることができる。
また、1050℃で焼結した試料をTEMによる観察を行った結果、全ての試料で、相内生成物が観察された。
以上の結果より、相内生成物が存在する場合、高い磁気特性を40℃以上の広い焼結温度幅で安定して得ることができる。
<第4実施例>
2種の低R合金、2種の高R合金をストリップキャスト法により作製し、第19図に示す組合せによって2種類のR−T−B系希土類永久磁石を得た。なお、試料Eについては、低R合金と高R合金の混合比率は90:10である。一方、試料Fについては、低R合金と高R合金の混合比率は80:20である。第19図に示す低R合金と高R合金を第1実施例と同様に水素粉砕した。水素粉砕処理後、0.05wt%のオレイン酸ブチルを添加し、低R合金及び高R合金を第19図に示す組合せによりナウターミキサーで30分混合した。その後ジェットミルにて平均粒径4.0μmに微粉砕した。得られた微粉末を第1実施例と同様の条件で磁場中成形後、試料Eについては1070℃で4時間、試料Fについては1020℃で4時間、それぞれ焼結を行った。次いで、試料E、試料Fのそれぞれについて800℃で1時間と550℃で2.5時間の2段時効処理を行った。得られた焼結体の組成、酸素量、窒素量を第19図に、また磁気特性を第20図に示す。なお、比較の便宜のために、第3実施例で作製した試料A〜Dの磁気特性も、第20図に併せて示す。
試料A〜Fのように構成元素を変動させても、13.8kG以上の残留磁束密度(Br)、13.0kOe以上の保磁力(HcJ)及び95%以上の角形比(Hk/HcJ)を得ることができた。
<First embodiment>
An RTB-based rare earth permanent magnet was manufactured by the following manufacturing process.
1) Raw Material Alloy A raw material alloy (strip) having the composition and thickness shown in FIG. 1 was produced by strip casting. The roll peripheral speed was 1.5 m / s for the low R alloy and 0.6 m / s for the high R alloy. However, for the low R alloy according to Comparative Example 3 in FIG. 1, the roll peripheral speed was set to 0.6 m / s. The thickness of the alloy is an average value obtained by measuring the thickness of 50 slabs (strips). In addition, in the low R alloy according to Example 1 of FIG. 1, a Zr-rich product (hereinafter referred to as an in-phase product) was not confirmed in the R 2 T 14 B phase. In such a low R alloy, it was confirmed that the in-phase product was present in the R 2 T 14 B phase.
2) Hydrogen pulverization step After occluding hydrogen at room temperature, a hydrogen pulverization treatment was performed in which dehydrogenation was performed at 600 ° C. for 1 hour in an Ar atmosphere.
In order to obtain high magnetic properties, in this experiment, the atmosphere of each process from hydrogen crushing (recovery after the crushing process) to sintering (put into the sintering furnace) was controlled in order to keep the sintered body oxygen amount to 2000 ppm or less. The oxygen concentration is less than 100 ppm.
3) Mixing / Pulverizing Step Usually, two-stage pulverization by coarse pulverization and fine pulverization is performed.
Before the pulverization, 0.05 wt% of zinc stearate is added, and a low R alloy and a high R alloy are combined with a Nauta mixer in the combination of Example 1 and Comparative Examples 1 to 3 shown in FIG. Mixed for minutes. In all of Example 1 and Comparative Examples 1 to 3, the mixing ratio of the low R alloy to the high R alloy is 90:10.
Then, it was finely pulverized to an average particle size of 4.8 to 5.1 μm with a jet mill.
4) Molding step The obtained fine powder was molded at a pressure of 1.2 t / cm 2 in a magnetic field of 15.0 kOe to obtain a molded body.
5) Sintering and aging process This molded body was sintered in a vacuum at 1070 ° C for 4 hours and then rapidly cooled. Next, the obtained sintered body was subjected to a two-stage aging treatment of 800 ° C. × 1 hour and 550 ° C. × 2.5 hours (both in an Ar atmosphere).
Magnetic properties of the obtained permanent magnet were measured with a BH tracer. The results are shown in FIGS. 2 to 5, Br is the residual magnetic flux density, HcJ is the coercive force, and "Hk / HcJ" is the squareness ratio. The squareness ratio (Hk / HcJ) is an index of magnet performance and represents the degree of angularity in the second quadrant of the magnetic hysteresis loop. Hk is the external magnetic field strength when the magnetic flux density is 90% of the residual magnetic flux density in the second quadrant of the magnetic hysteresis loop. In FIG. 2 to FIG. 5, “O” is given to those in which the in-phase product is confirmed, and “X” is given to those not confirmed. The confirmation of the in-phase product is based on observation with a TEM (Transmission Electron Microscope: JEM-3010 manufactured by JEOL Ltd.). The observation sample was prepared by an ion milling method, and the C plane of the R 2 T 14 B phase was observed. The chemical composition of the obtained sintered body is shown in the column of “sintered body composition” in FIG. In Comparative Example 3, no in-phase product was confirmed, but a Zr-rich product was confirmed in the grain boundary phase.
From FIG. 2 and FIG. 5, in the R-T-B system rare earth permanent magnet (Example 1, Comparative Example 1) in which the in-phase product was confirmed, abnormal grain growth was suppressed, and a small amount It can be seen that the squareness ratio (Hk / HcJ) is improved by the additive element M (Zr or Ti). However, when Ti is selected as the additive element M as shown in FIG. 3, the residual magnetic flux density (Br) is significantly reduced. In addition, in the R-T-B system rare earth permanent magnets (Comparative Example 2 and Comparative Example 3) in which no in-phase product was confirmed, the squareness ratio (Hk / HcJ) was increased by adding a large amount of 0.2 wt% Zr. However, the residual magnetic flux density (Br) is greatly reduced (see FIG. 3). As described above, the RTB-based rare earth permanent magnet in which the in-phase product is confirmed can obtain a high squareness ratio (Hk / HcJ) while suppressing a decrease in the residual magnetic flux density (Br). .
Regarding Comparative Example 3 in which an in-phase product is confirmed in the R 2 T 14 B phase at the stage of the low R alloy, the reason why the in-phase product does not exist in the RTB-based rare earth permanent magnet is as follows. Presumed as follows. The Zr-rich product (intra-phase product) produced in the R 2 T 14 B phase at the low R alloy stage is growing very large. It is presumed that this product does not cause volume expansion even by the hydrogen pulverization treatment. Therefore, it is understood that cracks occur at the interface between the R 2 T 14 B phase and the product during hydrogen pulverization. When subjected to a milling process in this state, the product results to be separated from the R 2 T 14 B phase, the product is a R 2 T 14 B phase without being included in the R 2 T 14 B Aiuchi It exists independently. Therefore, it is considered that the RTB-based rare earth permanent magnet according to Comparative Example 3 has a Zr-rich product only in the grain boundary phase even after the sintering process.
The R-T-B rare earth permanent magnet having a Zr content of 0.10 wt% according to Example 1 was observed by TEM in the same manner as described above. The observation results are shown in FIGS. 6 is a TEM photograph of a sample having a Zr amount of 0.10 wt%, and FIG. 7 is a product present in the sample and an R 2 T 14 B phase EDS (Energy Dispersive X-ray Fluorescence Spectroscopymeter in the sample). : Energy dispersive X-ray analyzer spectroscopy) profile, FIG. 8 is a TEM high resolution photograph of the sample.
As shown in FIG. 6, an in-phase product having a large axial ratio can be confirmed in the R 2 T 14 B phase. This product has a plate-like or needle-like form. Since FIG. 6 is an observation of the cross section of the sample, it is difficult to specify whether the in-phase product is plate-shaped or needle-shaped. Considering the observation results of other samples and FIG. 8, the in-phase product has a length of several hundred nm and a width of several nm to 15 nm. Although the detailed chemical composition of the in-phase product is unclear, it can be confirmed from FIG. 7A that the in-phase product is at least rich in Zr. Further, in the observation results of other samples, in addition to the in-phase product having a large axial ratio, as shown in FIG. 9 and FIG. 10, it is also possible to observe indefinite and circular in-phase products. In Example 1, 20 crystal grains (R 2 T 14 B phase) were observed. As a result, in-phase products could be observed in 6 crystal grains. In contrast, in Comparative Example 2, no in-phase product was observed for all 20 crystal grains (R 2 T 14 B phase).
The lower part of FIG. 11 (a) shows the Zr mapping result by EPMA (Electron Probe Micro Analyzer) of the sample having the Zr amount of 0.10 wt% in Example 1. The upper part of FIG. 11 (a) shows a composition image having the same field of view as the Zr mapping result shown in the lower part of FIG. 11 (a). The lower part of FIG. 11 (b) shows the Zr mapping result by EPMA of the sample of Comparative Example 2 having a Zr amount of 0.10 wt%. The upper part of FIG. 11B shows a composition image having the same field of view as the Zr mapping result shown in the lower part of FIG. 11B.
Similar to the observation result by TEM, FIG. 11 (a) shows that in Example 1, the R 2 T 14 B phase rich in Zr is present, and that Zr is also present in the grain boundary phase. On the other hand, from FIG. 11B, Zr-rich R 2 T 14 B phase is not confirmed in Comparative Example 2, and Zr exists only in the grain boundary phase.
<Second embodiment>
A sample in which the amount of additive element M (Zr or Ti) in the sintered body composition was set to 0.10 wt% was the same as in the first example except that each sample was sintered at a temperature range of 1010 ° C. to 1090 ° C. for 4 hours. A T-B rare earth permanent magnet was obtained. The magnetic properties of the obtained permanent magnet were measured in the same manner as in the first example. The results are shown in FIG. Moreover, the change of the magnetic characteristic with respect to sintering temperature is shown in FIGS. FIG. 16 shows a plot of the magnetic characteristics at each sintering temperature as a squareness ratio (Hk / HcJ) with respect to the residual magnetic flux density (Br).
As shown in FIGS. 12 to 16, when an in-phase product is obtained by adding Zr as the additive element M, high magnetic properties can be stably obtained over a wide sintering temperature range. Recognize. Specifically, in Example 2 according to the present invention, in a sintering temperature range of 1030 to 1090 ° C., a residual magnetic flux density (Br) of 13.9 kG or more, a coercive force (HcJ) of 13.0 kOe or more, and 95% or more. The squareness ratio (Hk / HcJ) can be obtained. When Ti is added as the additive element M, the residual magnetic flux density (Br) is reduced (Comparative Example 4), and when there is no in-phase product, the squareness ratio (Hk / HcJ) is poor and the sintering temperature range is narrow. (Comparative Example 5).
<Third embodiment>
Four kinds of low R alloys and two kinds of high R alloys having the composition and thickness shown in FIG. 17 were prepared by strip casting at a roll peripheral speed of 0.6 to 1.8 m / s. And four types of RTB system rare earth permanent magnets were obtained by the combination shown in FIG. In any of samples A to D, the mixing ratio of the low R alloy and the high R alloy is 90:10. The low R alloy and high R alloy shown in FIG. 17 were hydrogen crushed in the same manner as in the first example. After the hydrogen pulverization treatment, 0.05 wt% butyl oleate was added, and the low R alloy and the high R alloy were mixed for 30 minutes with a Nauta mixer according to the combination shown in FIG. Thereafter, it was pulverized to an average particle size of 4.1 μm by a jet mill. The obtained fine powder was molded in a magnetic field under the same conditions as in Example 1, and then sintered at 1010 to 1090 ° C. for 4 hours. Next, a two-stage aging treatment was performed at 800 ° C. for 1 hour and 550 ° C. for 2.5 hours. The composition, oxygen content, and nitrogen content of the obtained sintered body are shown in FIG. 17, and the magnetic properties are shown in FIG.
As shown in FIG. 18, sample A has a residual magnetic flux density (Br) of 14.0 kG or more in a temperature range of 1030 to 1070 ° C., a coercive force (HcJ) of 13.0 kOe or more, and a squareness ratio of 95% or more. (Hk / HcJ) can be obtained.
In Sample B and Sample C, which have a lower Nd content than Sample A, the residual magnetic flux density (Br) of 14.0 kG or higher and the coercive force (HcJ) of 95 or higher in the temperature range of 1030 to 1090 ° C. and 95 % Or more squareness ratio (Hk / HcJ) can be obtained.
In the sample D having a larger Dy amount than the sample A, the residual magnetic flux density (Br) of 13.5 kG or more, the coercive force (HcJ) of 15.5 kOe or more, and the square of 95% or more in the temperature range of 1030 to 1070 ° C. A ratio (Hk / HcJ) can be obtained.
As a result of TEM observation of the samples sintered at 1050 ° C., in-phase products were observed in all the samples.
From the above results, when the in-phase product is present, high magnetic properties can be stably obtained with a wide sintering temperature range of 40 ° C. or more.
<Fourth embodiment>
Two types of low R alloys and two types of high R alloys were produced by strip casting, and two types of RTB-based rare earth permanent magnets were obtained by the combination shown in FIG. For sample E, the mixing ratio of the low R alloy to the high R alloy is 90:10. On the other hand, for sample F, the mixing ratio of the low R alloy and the high R alloy is 80:20. The low R alloy and high R alloy shown in FIG. 19 were hydrogen crushed in the same manner as in the first example. After the hydrogen pulverization treatment, 0.05 wt% butyl oleate was added, and the low R alloy and the high R alloy were mixed for 30 minutes with a Nauta mixer according to the combination shown in FIG. Thereafter, it was pulverized to a mean particle size of 4.0 μm by a jet mill. The obtained fine powder was molded in a magnetic field under the same conditions as in Example 1, and then sintered for 10 hours at 1070 ° C. for sample E and 4 hours at 1020 ° C. for sample F. Next, two-stage aging treatment was performed for each of Sample E and Sample F at 800 ° C. for 1 hour and 550 ° C. for 2.5 hours. The composition, oxygen content, and nitrogen content of the obtained sintered body are shown in FIG. 19, and the magnetic properties are shown in FIG. For convenience of comparison, the magnetic characteristics of samples A to D produced in the third example are also shown in FIG.
Even if the constituent elements are changed as in Samples A to F, the residual magnetic flux density (Br) of 13.8 kG or more, the coercive force (HcJ) of 13.0 kOe or more, and the squareness ratio (Hk / HcJ) of 95% or more. I was able to get it.

以上詳述したように、R−T−B系希土類永久磁石の主相を構成するR14B相内にZrに富む生成物を存在させることで、磁気特性の低下を最小限に抑えつつ粒成長を抑制することができる。また本発明によれば、40℃以上の焼結温度幅を確保することができるため、加熱温度ムラが生じやすい大型の焼結炉を用いた場合でも、安定して高い磁気特性を有するR−T−B系希土類永久磁石を容易に得ることができる。As described above in detail, the presence of a Zr-rich product in the R 2 T 14 B phase constituting the main phase of the R-T-B rare earth permanent magnet minimizes the deterioration of the magnetic properties. In addition, grain growth can be suppressed. In addition, according to the present invention, since a sintering temperature range of 40 ° C. or more can be secured, even when a large-sized sintering furnace in which uneven heating temperature is likely to occur is used, R- having stable and high magnetic properties. A TB rare earth permanent magnet can be easily obtained.

Claims (5)

14B相(Rは希土類元素の1種又は2種以上(但し希土類元素はYを含む概念である)、TはFe又はFe及びCoを必須とする1種又は2種以上の遷移金属元素)からなる主相と、
前記主相よりRを多く含む粒界相とを含む焼結体からなり、
前記R14B相内にZrに富む生成物が存在することを特徴とするR−T−B系希土類永久磁石。
R 2 T 14 B phase (R is one or more rare earth elements (however, the rare earth element is a concept including Y), T is one or two or more transitions essentially comprising Fe, Fe and Co) A main phase composed of a metal element),
A sintered body containing a grain boundary phase containing more R than the main phase,
An RTB-based rare earth permanent magnet characterized in that a product rich in Zr is present in the R 2 T 14 B phase.
前記生成物は、板状又は針状であることを特徴とする請求項1に記載のR−T−B系希土類永久磁石。The RTB rare earth permanent magnet according to claim 1, wherein the product is plate-shaped or needle-shaped. 前記焼結体中に含まれる酸素量が2000ppm以下であることを特徴とする請求項1に記載のR−T−B系希土類永久磁石。The RTB rare earth permanent magnet according to claim 1, wherein the amount of oxygen contained in the sintered body is 2000 ppm or less. 前記焼結体は、R:28〜33wt%、B:0.5〜1.5wt%、Al:0.03〜0.3wt%、Cu:0.3wt%以下(0を含まず)、Zr:0.05〜0.2wt%、Co:4wt%以下(0を含まず)、残部実質的にFeからなる組成を有することを特徴とする請求項1に記載のR−T−B系希土類永久磁石。The sintered body contains R: 28 to 33 wt%, B: 0.5 to 1.5 wt%, Al: 0.03 to 0.3 wt%, Cu: 0.3 wt% or less (not including 0), Zr The R-T-B system rare earth according to claim 1, having a composition of 0.05 to 0.2 wt%, Co: 4 wt% or less (excluding 0), and the balance substantially consisting of Fe permanent magnet. 前記焼結体において、Zr:0.1〜0.15wt%であることを特徴とする請求項4に記載のR−T−B系希土類永久磁石。5. The RTB-based rare earth permanent magnet according to claim 4, wherein in the sintered body, Zr is 0.1 to 0.15 wt%.
JP2004539583A 2002-09-30 2003-09-30 R-T-B rare earth permanent magnet Expired - Lifetime JP4076178B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2002287033 2002-09-30
JP2002287033 2002-09-30
JP2003092890 2003-03-28
JP2003092890 2003-03-28
PCT/JP2003/012491 WO2004029999A1 (en) 2002-09-30 2003-09-30 R-t-b based rare earth element permanent magnet

Publications (2)

Publication Number Publication Date
JPWO2004029999A1 true JPWO2004029999A1 (en) 2006-01-26
JP4076178B2 JP4076178B2 (en) 2008-04-16

Family

ID=32044658

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2004539584A Expired - Lifetime JP4076179B2 (en) 2002-09-30 2003-09-30 Method for producing RTB-based rare earth permanent magnet
JP2004539583A Expired - Lifetime JP4076178B2 (en) 2002-09-30 2003-09-30 R-T-B rare earth permanent magnet

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2004539584A Expired - Lifetime JP4076179B2 (en) 2002-09-30 2003-09-30 Method for producing RTB-based rare earth permanent magnet

Country Status (5)

Country Link
EP (2) EP1460650B1 (en)
JP (2) JP4076179B2 (en)
CN (2) CN1295713C (en)
DE (2) DE60317460T2 (en)
WO (2) WO2004029999A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7199690B2 (en) 2003-03-27 2007-04-03 Tdk Corporation R-T-B system rare earth permanent magnet
CN100366363C (en) * 2004-04-30 2008-02-06 株式会社新王磁材 Methods for producing raw material alloy for rare earth magnet, powder and sintered magnet
JP4618437B2 (en) * 2006-03-30 2011-01-26 Tdk株式会社 Method for producing rare earth permanent magnet and raw material alloy thereof
CN101471165B (en) * 2007-12-26 2012-09-19 北京中科三环高技术股份有限公司 NbFeB sintered rare earth permanent magnet alloy and method for producing the same
CN101819841A (en) * 2010-05-17 2010-09-01 上海交通大学 Neodymium iron boron magnetic material and preparation method thereof
DE112013003109T5 (en) * 2012-06-22 2015-02-26 Tdk Corp. Sintered magnet
JP6314380B2 (en) * 2013-07-23 2018-04-25 Tdk株式会社 Rare earth magnet, electric motor, and device including electric motor
CN106782971A (en) * 2016-12-05 2017-05-31 湖南航天磁电有限责任公司 A kind of NdFeB material and preparation method thereof
WO2018121112A1 (en) * 2016-12-29 2018-07-05 北京中科三环高技术股份有限公司 Fine grain rare earth alloy casting piece, preparation method, and rotary cooling roller device
CN107358998A (en) * 2017-07-20 2017-11-17 杭州乐荣电线电器有限公司 Flat anti-interference foldable soft data line

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0242187B1 (en) * 1986-04-15 1992-06-03 TDK Corporation Permanent magnet and method of producing same
JPH01103805A (en) * 1987-07-30 1989-04-20 Tdk Corp Permanent magnet
JPH01196104A (en) * 1988-02-01 1989-08-07 Tdk Corp Manufacture of rare earth alloy magnet
US4895607A (en) * 1988-07-25 1990-01-23 Kubota, Ltd. Iron-neodymium-boron permanent magnet alloys prepared by consolidation of amorphous powders
JP3724513B2 (en) * 1993-11-02 2005-12-07 Tdk株式会社 Method for manufacturing permanent magnet
JP3367726B2 (en) * 1993-11-08 2003-01-20 ティーディーケイ株式会社 Manufacturing method of permanent magnet
US5858123A (en) * 1995-07-12 1999-01-12 Hitachi Metals, Ltd. Rare earth permanent magnet and method for producing the same
JP3237053B2 (en) * 1996-07-25 2001-12-10 三菱マテリアル株式会社 Rare earth magnet material powder having excellent magnetic properties and method for producing the same
JP2891215B2 (en) * 1996-12-17 1999-05-17 三菱マテリアル株式会社 Method for producing rare earth-B-Fe based sintered magnet excellent in corrosion resistance and magnetic properties
JPH10259459A (en) * 1997-01-14 1998-09-29 Mitsubishi Materials Corp Raw material alloy for producing rare earth magnet powder and production of rare earth magnet powder using this raw material alloy
JPH1064712A (en) * 1997-07-18 1998-03-06 Hitachi Metals Ltd R-fe-b rare earth sintered magnet
CN1094991C (en) * 1998-08-28 2002-11-27 昭和电工株式会社 Alloy for use in preparation of R-T-B-based sintered magnet and process for preparing R-T-B-based sintered magnet
EP0994493B1 (en) * 1998-10-14 2003-09-10 Hitachi Metals, Ltd. R-T-B sintered permanent magnet
DE69916764T2 (en) * 1998-12-15 2005-03-31 Shin-Etsu Chemical Co., Ltd. Rare earth / iron / boron based alloy for permanent magnet
JP3951099B2 (en) * 2000-06-13 2007-08-01 信越化学工業株式会社 R-Fe-B rare earth permanent magnet material
EP1164599B1 (en) * 2000-06-13 2007-12-05 Shin-Etsu Chemical Co., Ltd. R-Fe-B base permanent magnet materials
JP2002164239A (en) * 2000-09-14 2002-06-07 Hitachi Metals Ltd Manufacturing method of rare earth sintered magnet, ring magnet, and arc segment magnet
JP3452254B2 (en) * 2000-09-20 2003-09-29 愛知製鋼株式会社 Method for producing anisotropic magnet powder, raw material powder for anisotropic magnet powder, and bonded magnet

Also Published As

Publication number Publication date
CN1295713C (en) 2007-01-17
DE60317460T2 (en) 2008-09-18
CN1572005A (en) 2005-01-26
DE60317460D1 (en) 2007-12-27
EP1460650A1 (en) 2004-09-22
JPWO2004030000A1 (en) 2006-01-26
JP4076178B2 (en) 2008-04-16
CN1572006A (en) 2005-01-26
WO2004030000A1 (en) 2004-04-08
EP1460650A4 (en) 2005-03-30
CN100334662C (en) 2007-08-29
DE60311960T2 (en) 2007-10-31
EP1460651B1 (en) 2007-02-21
EP1460651A4 (en) 2005-03-23
DE60311960D1 (en) 2007-04-05
WO2004029999A1 (en) 2004-04-08
EP1460650B1 (en) 2007-11-14
EP1460651A1 (en) 2004-09-22
JP4076179B2 (en) 2008-04-16

Similar Documents

Publication Publication Date Title
JP4076175B2 (en) R-T-B rare earth permanent magnet
JP4076177B2 (en) Method for producing RTB-based rare earth permanent magnet
US6811620B2 (en) R-T-B system rare earth permanent magnet
WO2005001856A1 (en) R-t-b based rare earth permanent magnet and method for production thereof
JP4076178B2 (en) R-T-B rare earth permanent magnet
JP5288276B2 (en) Manufacturing method of RTB-based permanent magnet
JP4766452B2 (en) Rare earth permanent magnet
US7314531B2 (en) R-T-B system rare earth permanent magnet
JP4702522B2 (en) R-T-B system sintered magnet and manufacturing method thereof
JP6623998B2 (en) Method for producing RTB based sintered magnet
JP2007250605A (en) Method for manufacturing r-t-b-based rare-earth permanent magnet
JP4556727B2 (en) Manufacturing method of rare earth sintered magnet
JP4529180B2 (en) Rare earth permanent magnet
JP4534553B2 (en) R-T-B system sintered magnet and manufacturing method thereof
JP2005159053A (en) Method for manufacturing r-t-b-based permanent magnet
JP2006100434A (en) Method of manufacturing r-t-b based rare earth permanent magnet
JP2005286174A (en) R-t-b-based sintered magnet
JP2005286173A (en) R-t-b based sintered magnet
JP4706900B2 (en) Rare earth permanent magnet manufacturing method
JP2005159052A (en) R-t-b-based permanent magnet and its manufacturing method
JP2005286176A (en) R-t-b-based sintered magnet and its manufacturing method
JP2005159054A (en) Method of manufacturing r-t-b-based permanent magnet

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070718

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080125

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4076178

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140208

Year of fee payment: 6

EXPY Cancellation because of completion of term