JP2891215B2 - Method for producing rare earth-B-Fe based sintered magnet excellent in corrosion resistance and magnetic properties - Google Patents

Method for producing rare earth-B-Fe based sintered magnet excellent in corrosion resistance and magnetic properties

Info

Publication number
JP2891215B2
JP2891215B2 JP8336990A JP33699096A JP2891215B2 JP 2891215 B2 JP2891215 B2 JP 2891215B2 JP 8336990 A JP8336990 A JP 8336990A JP 33699096 A JP33699096 A JP 33699096A JP 2891215 B2 JP2891215 B2 JP 2891215B2
Authority
JP
Japan
Prior art keywords
magnetic properties
corrosion resistance
powder
phase
sintered magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP8336990A
Other languages
Japanese (ja)
Other versions
JPH09223617A (en
Inventor
宗明 渡辺
拓夫 武下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP8336990A priority Critical patent/JP2891215B2/en
Publication of JPH09223617A publication Critical patent/JPH09223617A/en
Application granted granted Critical
Publication of JP2891215B2 publication Critical patent/JP2891215B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、耐食性および磁
気特性にすぐれた希土類−B−Fe系焼結磁石の製造方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a rare earth-B-Fe sintered magnet having excellent corrosion resistance and magnetic properties.

【0002】[0002]

【従来の技術】近年、従来のSm−Co系磁石に比べ
て、より高い磁気特性を有し、かつ資源的にも高価なS
mやCoを必ずしも含まない、Yを含む希土類元素のう
ち少なくとも1種(以上、Rで示す)、BおよびFeを
必須成分とするR−B−Fe系永久磁石が発明された。
このR−B−Fe系永久磁石は、その優れた磁気特性を
有する一方で、非常に腐食され易く、それに伴う磁気特
性の劣化が著しいという欠点を合わせ持っている。
2. Description of the Related Art In recent years, compared to conventional Sm-Co based magnets, S
An R—B—Fe permanent magnet has been invented, which does not necessarily include m or Co, and at least one of the rare earth elements including Y (hereinafter, referred to as R), and B and Fe as essential components.
While this RB-Fe-based permanent magnet has excellent magnetic properties, it also has the drawback that it is very susceptible to corrosion and the magnetic properties are significantly deteriorated accordingly.

【0003】このR−B−Fe系永久磁石は、所定のR
−B−Fe系合金粉末を圧縮成形し、焼結することによ
り製造されるものであるが、このR−B−Fe系永久磁
石の組成は、図1に示されているように、R2 Fe14
相:a、上記R2 Fe14B相の粒界部分に存在するRリ
ッチ相(R95Fe5 相、R75Fe25相などから構成され
ていると言われている):b、およびRFe4 4 相か
らなるBリッチ相:cから主として構成されており、上
記腐食の原因は、主として粒界部分に存在するRリッチ
相:bが腐食されやすい相であるために、Rリッチ相:
bを介して粒界腐食が内部に進行することによるものと
言われている。
This RB-Fe-based permanent magnet has a predetermined R
The -B-Fe-based alloy powder by compression molding, but are those prepared by sintering, the composition of the R-B-Fe permanent magnets, as shown in FIG. 1, R 2 Fe 14 B
Phase: a, R-rich phase existing at the grain boundary portion of the R 2 Fe 14 B phase (it is said to be composed of R 95 Fe 5 phase, R 75 Fe 25 phase, etc.): b, and RFe B-rich phase consisting of 4 B 4 phase: is composed mainly of c, the cause of the corrosion, R-rich phase mainly present in the grain boundary portion: b because it is being susceptible phase corrosion, R-rich phase:
It is said that intergranular corrosion proceeds inside through b.

【0004】これらの対策として、特開昭61−185
910号公報では、R−B−Fe系永久磁石の表面にZ
nの薄膜を拡散形成する方法、特開昭61−27030
8号公報では、R−B−Fe系永久磁石の表面層を除去
したのち、Alの薄膜を被着させる方法、さらに特開昭
63−77104号公報では、R−B−Fe系永久磁石
の表面にエポキシ樹脂、熱硬化型アクリル樹脂、アルキ
ド樹脂、メラミン樹脂、シリコン樹脂等の塗装用合成樹
脂等の耐酸化性樹脂を塗布する方法が開示されている。
As a countermeasure against these problems, Japanese Patent Laid-Open Publication No.
In JP-A-910, the surface of an RB-Fe-based permanent magnet is
Method for diffusing and forming a thin film of n.
In Japanese Patent Application Laid-Open No. 8-78, a method of removing a surface layer of an RB-Fe-based permanent magnet and then depositing an Al thin film is disclosed. A method is disclosed in which an oxidation-resistant resin such as a synthetic resin for coating such as an epoxy resin, a thermosetting acrylic resin, an alkyd resin, a melamine resin, and a silicone resin is applied to the surface.

【0005】[0005]

【発明が解決しようとする課題】ところが、上記従来の
技術で述べられているR−B−Fe系永久磁石の防食方
法は、いずれも上記永久磁石の表面にZn,Al、また
は合成樹脂等の耐食性のある保護膜を被着させるもの
で、磁石の製造工程とは別の工程が必要となり、工程が
複雑化する上にコスト高となり、さらに、上記合成樹脂
保護膜は厚さがあるために特に小型磁石製品の寸法精度
を悪くする。いずれにしても上記防食方法は上記永久磁
石の外部を腐食等に対して保護するにすぎず、上記保護
膜がはく離したりまたは亀裂が生じたりした場合には、
それらの個所から内部に腐食が浸透し、内部的な腐食は
防止できず、それに伴って磁気特性も劣化するという問
題点があった。
However, the RB-Fe-based permanent magnet anticorrosion methods described in the above-mentioned prior art are all provided on the surface of the permanent magnet with Zn, Al, synthetic resin or the like. A protective film with corrosion resistance is applied, and a separate process from the magnet manufacturing process is required, which complicates the process and increases the cost.In addition, since the synthetic resin protective film has a thickness, In particular, the dimensional accuracy of small magnet products is deteriorated. In any case, the anticorrosion method only protects the outside of the permanent magnet against corrosion and the like, and when the protective film is peeled or cracked,
There is a problem that corrosion penetrates into the inside from these places, and that internal corrosion cannot be prevented, and the magnetic properties deteriorate accordingly.

【0006】[0006]

【課題を解決するための手段】そこで、本発明者等は、
耐食性にすぐれ、かつ磁気特性にもすぐれたR−B−F
e系焼結磁石を製造すべく研究を行った結果、R−B−
Fe系合金粉末と、Ni,Co,Mn,Cr,Ti,
V,Al,Ga,In,Zr,Hf,Ta,Nb,M
o,Si,ReおよびWのうち少なくとも1種(以下、
Mという)の水素化物粉末を配合し混合して混合粉末と
し、これら混合粉末を成形して成形体を作製し、得られ
た成形体を焼結すると、R2 Fe14B相(以下、主相と
いう)と上記主相のまわりにMが20〜90原子%を含
有した粒界相を有する組織のR−B−Fe系焼結磁石が
得られ、このR−B−Fe系焼結磁石はすぐれた耐食性
および磁気特性を示す、という知見を得たのである。
Means for Solving the Problems Accordingly, the present inventors have
RBF with excellent corrosion resistance and excellent magnetic properties
As a result of research to produce e-based sintered magnets, RB-
Fe-based alloy powder, Ni, Co, Mn, Cr, Ti,
V, Al, Ga, In, Zr, Hf, Ta, Nb, M
at least one of o, Si, Re and W (hereinafter, referred to as
M) is mixed and mixed to form a mixed powder. The mixed powder is molded to form a compact, and the resulting compact is sintered to obtain an R 2 Fe 14 B phase (hereinafter referred to as “main phase”). Phase) and an RB-Fe-based sintered magnet having a structure having a grain boundary phase containing 20 to 90 atomic% of M around the main phase, and the RB-Fe-based sintered magnet is obtained. Have been found to exhibit excellent corrosion resistance and magnetic properties.

【0007】この発明は、かかる知見にもとづいてなさ
れたものであって、R−B−Fe系合金粉末とMの水素
化物粉末を配合し、混合して混合粉末とし、これら混合
粉末を成形して成形体を作製し、得られた成形体を焼結
する耐食性および磁気特性に優れた希土類−B−Fe系
焼結磁石の製造方法、に特徴を有するものである。
The present invention has been made on the basis of this finding, and comprises mixing an RB-Fe alloy powder and a hydride powder of M to form a mixed powder, and molding the mixed powder. And a method for producing a rare-earth-B-Fe-based sintered magnet having excellent corrosion resistance and magnetic properties for sintering the obtained molded body.

【0008】上記Mが粒界相に20原子%未満含まれて
いても十分な耐食性が得られず、一方、粒界相にMが9
0原子%を越えて含有させようとすると、製造中に上記
Mは主相にも拡散侵入するために耐食性は向上するが磁
気特性が大幅に低下するので好ましくない。
[0008] Even if the above M is contained in the grain boundary phase in less than 20 atomic%, sufficient corrosion resistance cannot be obtained.
If the content is more than 0 atomic%, the M is diffused and penetrates into the main phase during the production, so that the corrosion resistance is improved, but the magnetic properties are significantly reduced, which is not preferable.

【0009】上記Mを含有した粒界相は図1に示される
Rリッチ相よりも腐食しにくい相であり、この腐食しに
くい粒界相は焼結過程での結晶粒の成長を抑制し高密度
化させる作用を有するために耐食性および磁気特性が共
に優れたR−B−Fe系焼結磁石が得られるものと考え
られる。
The M-containing grain boundary phase is a phase that is less likely to corrode than the R-rich phase shown in FIG. It is considered that an RB-Fe sintered magnet excellent in both corrosion resistance and magnetic properties due to the action of increasing the density can be obtained.

【0010】この発明の粒界相にM:20〜90原子%
を含む希土類−B−Fe系焼結磁石は、所定の組成を有
するR−B−Fe系合金粉末にMの水素化物粉末を0.
0005〜3重量%配合し、混合して得られた混合粉末
を、成形し、非酸化性雰囲気中、温度:900〜120
0℃で焼結することにより製造される。上記R−B−F
e系合金粉末に混合する粉末は、Mの超微粉末よりもM
の水素化物粉末の方が好ましい。Mの超微粉末は焼結中
にR2 Fe14B相に拡散するが、Mの水素化物粉末はR
2 Fe14B相に拡散する量が少なく、焼結中にMの水素
化物の水素は放出され、Mのみが粒界相に残留する。
In the grain boundary phase of the present invention, M: 20 to 90 atomic%
The rare-earth-B-Fe-based sintered magnet containing 0.1% of hydride powder of M is added to an R-B-Fe-based alloy powder having a predetermined composition.
The mixed powder obtained by blending and mixing 0005 to 3% by weight is molded and molded in a non-oxidizing atmosphere at a temperature of 900 to 120.
It is manufactured by sintering at 0 ° C. The above RBF
The powder to be mixed with the e-based alloy powder is M
Is more preferable. While the ultrafine powder of M diffuses into the R 2 Fe 14 B phase during sintering, the hydride powder of M
The amount of diffusion into the 2 Fe 14 B phase is small, and the hydrogen of the hydride of M is released during sintering, and only M remains in the grain boundary phase.

【0011】このようにして製造された希土類−B−F
e系焼結磁石は、必要に応じて非酸化性雰囲気中、温
度:400〜700℃で熱処理してもよい。
The rare earth-BF thus produced
The e-based sintered magnet may be heat-treated at a temperature of 400 to 700 ° C. in a non-oxidizing atmosphere as necessary.

【0012】[0012]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

実施例1〜7および従来例 まず、15%Nd−8%B−残Fe(但し%は原子%)
となるように溶解し、合金インゴットを作製した。この
合金インゴットをアルゴン雰囲気中で温度:1050
℃、20時間保持の熱処理を行ったあと、粉砕し、平均
粒径:35μmのR−B−Fe系合金粉末を用意した。
Examples 1 to 7 and Conventional Example First, 15% Nd-8% B-residual Fe (% is atomic%)
To obtain an alloy ingot. This alloy ingot was heated in an argon atmosphere at a temperature of 1050.
After performing a heat treatment at a temperature of 20 ° C. for 20 hours, pulverization was performed to prepare an RB-Fe alloy powder having an average particle diameter of 35 μm.

【0013】さらに添加粉末として、ZrH2 粉末(平
均粒径:1.3μm)、TaH2 粉末(平均粒径:1.
5μm)、TiH2 粉末(平均粒径:1.3μm)、N
bH2 粉末(平均粒径:1.3μm)、VH粉末(平均
粒径:1.5μm)およびHfH2 粉末(平均粒径1.
3μm)を用意し、これら粉末を上記15%Nd−8%
B−残Fe(但し、%は、原子%)のR−B−Fe系合
金粉末と0.0005〜3重量%の範囲内の所定割合と
なるように配合し、混合して混合粉末とし、これら混合
粉末を成形圧:2t/cm2 で磁場中(14KOe)にて
成形し、たて:20mm×横:20mm×高さ:15mmの成
形体を作製した。これら成形体を真空中(10-5Torr)
で10℃/min の昇温速度にて加熱し、温度:1080
℃、2時間保持の条件で焼結し、100℃/min の冷却
速度で冷却した。
Further, ZrH 2 powder (average particle size: 1.3 μm) and TaH 2 powder (average particle size: 1.3 μm) are used as additive powders.
5 μm), TiH 2 powder (average particle size: 1.3 μm), N
bH 2 powder (average particle size: 1.3 μm), VH powder (average particle size: 1.5 μm) and HfH 2 powder (average particle size: 1.
3 μm), and these powders are mixed with the above 15% Nd-8%
B-remaining Fe (however,% is atomic%) is blended with the R-B-Fe-based alloy powder in a predetermined ratio within the range of 0.0005 to 3% by weight, and mixed to form a mixed powder; These mixed powders were molded at a molding pressure of 2 t / cm 2 in a magnetic field (14 KOe) to produce a molded body having a length of 20 mm, a width of 20 mm and a height of 15 mm. These compacts are placed in a vacuum (10 -5 Torr)
At a heating rate of 10 ° C./min at a temperature of 1080
The mixture was sintered at a temperature of 2 ° C. for 2 hours and cooled at a cooling rate of 100 ° C./min.

【0014】この焼結体を加熱速度:100℃/min で
加熱し、温度:620℃、2時間保持したのち、100
℃/min の冷却速度で冷却し熱処理した。
The sintered body is heated at a heating rate of 100 ° C./min, and maintained at a temperature of 620 ° C. for 2 hours.
It was cooled at a cooling rate of ° C / min and heat-treated.

【0015】この熱処理した焼結体の組織を調べたとこ
ろ、R2 Fe14B相および粒界相からなり、図1とほぼ
同一の組織を有しており、上記粒界相の組成を、STE
Mにより測定してその結果を表1に示した。さらに、上
記焼結体の磁気特性を測定し、この焼結体を温度:60
℃、湿度:90%の大気中に1000時間放置して耐食
試験を行なった後、再度、磁気特性を測定するとともに
錆の発生状況を目視により観察し、これらの結果を表1
に示した。表1において、耐食試験前に測定した磁気特
性の測定値を「耐食試験前」の欄に、耐食試験後に測定
した磁気特性の測定値を「耐食試験後」の欄に示した。
Examination of the structure of the heat-treated sintered body revealed that the sintered body was composed of an R 2 Fe 14 B phase and a grain boundary phase, and had almost the same structure as that shown in FIG. STE
The results are shown in Table 1. Further, the magnetic properties of the sintered body were measured, and the sintered body was heated at a temperature of 60.
After standing in an atmosphere of 90 ° C. and humidity of 90% for 1000 hours to conduct a corrosion resistance test, the magnetic properties were measured again, and the occurrence of rust was visually observed. The results are shown in Table 1.
It was shown to. In Table 1, the measured values of the magnetic properties measured before the corrosion test were shown in the column "Before the corrosion test", and the measured values of the magnetic properties measured after the corrosion test were shown in the column "After the corrosion test".

【0016】[0016]

【表1】 [Table 1]

【0017】表1の結果から、実施例で得られたこの発
明の粒界相に金属元素が存在している希土類−B−Fe
系焼結磁石は、従来例で得られた粒界相に金属元素の存
在しないR−B−Fe系焼結磁石と比べて、磁気特性に
優れているとともに耐食性にもすぐれていることがわか
る。
From the results shown in Table 1, it can be seen that the rare-earth-B-Fe in which the metal element is present in the grain boundary phase of the present invention obtained in the examples.
It can be seen that the sintered magnet based on the conventional example has excellent magnetic properties and excellent corrosion resistance compared to the RB-Fe based sintered magnet having no metal element in the grain boundary phase obtained in the conventional example. .

【0018】[0018]

【発明の効果】この発明の製造方法で得られたR−B−
Fe系焼結磁石は表面処理する必要がなく、また焼結磁
石の磁気特性の劣化が少ないので、この磁石を組み込ん
だ装置の性能の低下が防止されるという産業上すぐれた
効果を奏するものである。
The RB- obtained by the production method of the present invention.
Fe-based sintered magnets do not need to be surface-treated, and the magnetic properties of the sintered magnets are not significantly deteriorated. is there.

【図面の簡単な説明】[Brief description of the drawings]

【図1】R−B−Fe系焼結磁石の組織図である。FIG. 1 is a structural diagram of an RB-Fe-based sintered magnet.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01F 1/08 C22C 33/02 C22C 38/00 303 C22C 38/00 304 H01F 1/053 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 6 , DB name) H01F 1/08 C22C 33/02 C22C 38/00 303 C22C 38/00 304 H01F 1/053

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 R−B−Fe系合金粉末(Rは、Yを含
む希土類元素のうち1種または2種以上)と、Ni,C
o,Mn,Cr,Ti,V,Al,Ga,In,Zr,
Hf,Ta,Nb,Mo,Si,ReおよびWのうち少
なくとも1種の水素化物粉末を配合し、混合して混合粉
末とし、これら混合粉末を成形して成形体を作製し、得
られた成形体を焼結することを特徴とする耐食性および
磁気特性に優れた希土類−B−Fe系焼結磁石の製造方
法。
1. An RB—Fe-based alloy powder (R is one or more of rare earth elements including Y), Ni, C
o, Mn, Cr, Ti, V, Al, Ga, In, Zr,
A hydride powder of at least one of Hf, Ta, Nb, Mo, Si, Re and W is blended and mixed to form a mixed powder, and the mixed powder is molded to form a molded body. A method for producing a rare earth-B-Fe sintered magnet having excellent corrosion resistance and magnetic properties, characterized by sintering a body.
JP8336990A 1996-12-17 1996-12-17 Method for producing rare earth-B-Fe based sintered magnet excellent in corrosion resistance and magnetic properties Expired - Fee Related JP2891215B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8336990A JP2891215B2 (en) 1996-12-17 1996-12-17 Method for producing rare earth-B-Fe based sintered magnet excellent in corrosion resistance and magnetic properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8336990A JP2891215B2 (en) 1996-12-17 1996-12-17 Method for producing rare earth-B-Fe based sintered magnet excellent in corrosion resistance and magnetic properties

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP1119991A Division JP2663626B2 (en) 1989-05-12 1989-05-12 Rare earth-B-Fe based sintered magnet with excellent corrosion resistance and magnetic properties

Publications (2)

Publication Number Publication Date
JPH09223617A JPH09223617A (en) 1997-08-26
JP2891215B2 true JP2891215B2 (en) 1999-05-17

Family

ID=18304458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8336990A Expired - Fee Related JP2891215B2 (en) 1996-12-17 1996-12-17 Method for producing rare earth-B-Fe based sintered magnet excellent in corrosion resistance and magnetic properties

Country Status (1)

Country Link
JP (1) JP2891215B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7311788B2 (en) * 2002-09-30 2007-12-25 Tdk Corporation R-T-B system rare earth permanent magnet
US7255751B2 (en) * 2002-09-30 2007-08-14 Tdk Corporation Method for manufacturing R-T-B system rare earth permanent magnet
DE60317460T2 (en) * 2002-09-30 2008-09-18 Tdk Corp. RARE TERMINAL PERMANENT MAGNET ON R-T-B BASE
US7199690B2 (en) 2003-03-27 2007-04-03 Tdk Corporation R-T-B system rare earth permanent magnet
JP5472236B2 (en) * 2011-08-23 2014-04-16 トヨタ自動車株式会社 Rare earth magnet manufacturing method and rare earth magnet
JP6255977B2 (en) * 2013-03-28 2018-01-10 Tdk株式会社 Rare earth magnets
CN105118655A (en) * 2015-09-16 2015-12-02 安徽万磁电子有限公司 Method for preparing high-coercivity magnet by modifying nano zinc powder crystal boundary
CN111312462B (en) * 2020-02-29 2021-08-27 厦门钨业股份有限公司 Neodymium-iron-boron material and preparation method and application thereof
CN111326306B (en) * 2020-02-29 2021-08-27 厦门钨业股份有限公司 R-T-B series permanent magnetic material and preparation method and application thereof
CN111326304B (en) * 2020-02-29 2021-08-27 厦门钨业股份有限公司 Rare earth permanent magnetic material and preparation method and application thereof
CN115359988A (en) * 2022-08-24 2022-11-18 宁波爱维森材料研发科技有限公司 High-performance cerium-containing rare earth permanent magnet and preparation method thereof

Also Published As

Publication number Publication date
JPH09223617A (en) 1997-08-26

Similar Documents

Publication Publication Date Title
JP7412484B2 (en) Grain boundary engineering of sintered magnetic alloys and compositions derived therefrom
JP4692634B2 (en) Magnet manufacturing method
CN107251176B (en) The manufacturing method of R-T-B based sintered magnet
JP6075605B2 (en) Soft magnetic material and manufacturing method thereof
US5567891A (en) Rare earth element-metal-hydrogen-boron permanent magnet
JPWO2016133071A1 (en) Method for producing RTB-based sintered magnet
JP3405806B2 (en) Magnet and manufacturing method thereof
JP2891215B2 (en) Method for producing rare earth-B-Fe based sintered magnet excellent in corrosion resistance and magnetic properties
JP2018093202A (en) R-t-b based permanent magnet
JP7314513B2 (en) RFeB sintered magnet
JP6743549B2 (en) R-T-B system sintered magnet
EP3401933A1 (en) Mn-Bi-BASED MAGNETIC POWDER, METHOD FOR PRODUCING SAME, COMPOUND FOR BOND MAGNET, BOND MAGNET, Mn-Bi-BASED METAL MAGNET AND METHOD FOR PRODUCING SAME
JP3865180B2 (en) Heat-resistant rare earth alloy anisotropic magnet powder
JP7247670B2 (en) RTB permanent magnet and manufacturing method thereof
CN105074852B (en) RFeB systems method of manufacturing sintered magnet and RFeB systems sintered magnet
US5114502A (en) Magnetic materials and process for producing the same
JP2018174314A (en) R-T-B based sintered magnet
JP2018160669A (en) R-t-b based rare earth magnet
JP4784173B2 (en) Rare earth magnet and manufacturing method thereof
JP2663626B2 (en) Rare earth-B-Fe based sintered magnet with excellent corrosion resistance and magnetic properties
CN108630367A (en) R-t-b based rare earth magnet
JPH03250607A (en) Corrosive resistant rare earth-transition metal magnet and its manufacture
JP2940623B2 (en) Method for producing rare earth-B-Fe sintered magnet excellent in corrosion resistance and magnetic properties
JP2600374B2 (en) Method for producing rare earth-B-Fe sintered magnet excellent in corrosion resistance and magnetic properties
JP2581179B2 (en) Method for producing rare earth-B-Fe sintered magnet with excellent corrosion resistance

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990126

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees