JP2663626B2 - Rare earth-B-Fe based sintered magnet with excellent corrosion resistance and magnetic properties - Google Patents
Rare earth-B-Fe based sintered magnet with excellent corrosion resistance and magnetic propertiesInfo
- Publication number
- JP2663626B2 JP2663626B2 JP1119991A JP11999189A JP2663626B2 JP 2663626 B2 JP2663626 B2 JP 2663626B2 JP 1119991 A JP1119991 A JP 1119991A JP 11999189 A JP11999189 A JP 11999189A JP 2663626 B2 JP2663626 B2 JP 2663626B2
- Authority
- JP
- Japan
- Prior art keywords
- grain boundary
- phase
- magnetic properties
- sintered magnet
- corrosion resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/057—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
- H01F1/0571—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
- H01F1/0575—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
- H01F1/0577—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
Landscapes
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Hard Magnetic Materials (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、耐食性および磁気特性にすぐれた希土類
−B−Fe系焼結磁石に関するものである。Description: TECHNICAL FIELD The present invention relates to a rare earth-B-Fe sintered magnet having excellent corrosion resistance and magnetic properties.
近年、従来のSm−Co系磁石に比べて、より高い磁気特
性を有し、かつ資源的にも高価なSmやCoを必ずしも含ま
ない、Yを含む希土類元素のうち少なくとも1種(以
上、Rで示す)、BおよびFeを必須成分とするR−B−
Fe系永久磁石が発明された。このR−B−Fe系永久磁石
は、その優れた磁気特性を有する一方で、非常に腐食さ
れ易く、それに伴う磁気特性の劣化が著しいという欠点
を合わせ持っている。In recent years, compared to conventional Sm-Co based magnets, it has higher magnetic characteristics and does not necessarily contain expensive Sm or Co as a resource. ), R-B- containing B and Fe as essential components.
Fe-based permanent magnet was invented. While this RB-Fe-based permanent magnet has excellent magnetic properties, it also has the drawback that it is very susceptible to corrosion and the magnetic properties are significantly degraded accordingly.
このR−B−Fe系永久磁石は、所定のR−B−Fe系合
金粉末を圧縮成形し、焼結することにより製造されるも
のであるが、このR−B−Fe系永久磁石の組成は、第1
図に示されているように、R2Fe14B相:a、上記R2Fe14B相
の粒界部分に存在するRリッチ相(R95Fe5相、R75Fe25
相などから構成されていると言われている):b、および
RFe4B4相からなるBリッチ相:cから主として構成されて
おり、上記腐食の原因は、主として粒界部分に存在する
Rリッチ相:bが腐食されやすい相であるために、Rリッ
チ相:bを介して粒界腐食が内部に進行することによるも
のと言われている。This RB-Fe-based permanent magnet is manufactured by compression molding and sintering a predetermined RB-Fe-based alloy powder. Is the first
As shown in FIG, R 2 Fe 14 B phase: a, R-rich phase present at the grain boundary portion of the R 2 Fe 14 B phase (R 95 Fe 5 phase, R 75 Fe 25
Phase, etc.): b, and
RFe 4 B B-rich phase composed of 4 phases: mainly composed of c. The cause of the above-mentioned corrosion is mainly the R-rich phase existing in the grain boundary portion: b is a phase that is easily corroded, It is said that intergranular corrosion proceeds through: b.
これらの対策として、特開昭61−185910号公報では、
R−B−Fe系永久磁石の表面にZnの薄膜を拡散形成する
方法、特開昭61−270308号公報では、R−B−Fe系永久
磁石の表面層を除去したのち、Alの薄膜を被着させる方
法、さらに特開昭63−77104号公報では、R−B−Fe系
永久磁石の表面にエポキシ樹脂、熱硬化型アクリル樹
脂、アルキド樹脂、メラミン樹脂、シリコン樹脂等の塗
装用合成樹脂等の耐酸化性樹脂を塗布する方法が開示さ
れている。As a countermeasure for these, in JP-A-61-185910,
In a method of diffusing and forming a Zn thin film on the surface of an RB-Fe permanent magnet, Japanese Patent Application Laid-Open No. 61-270308 discloses a method of removing a surface layer of an RB-Fe permanent magnet and then removing an Al thin film. According to the method of attaching, furthermore, JP-A-63-77104 discloses a coating synthetic resin such as an epoxy resin, a thermosetting acrylic resin, an alkyd resin, a melamine resin, and a silicone resin on the surface of an RB-Fe-based permanent magnet. A method of applying an oxidation-resistant resin such as the above is disclosed.
ところが、上記従来の技術で述べられているR−B−
Fe系永久磁石の防食方法は、いずれも上記永久磁石の表
面にZn,Al、または合成樹脂等の耐食性のある保護膜を
被着させるもので、磁石の製造工程とは別の工程が必要
となり、工程が複雑化する上にコスト高となり、さら
に、上記合成樹脂保護膜は厚さがあるために特に小型磁
石製品の寸法精度を悪くする。いずれにしても上記防食
方法は上記永久磁石の外部を腐食等に対して保護するに
すぎず、上記保護膜ははく離したりまたは亀裂が生じた
りした場合には、それらの個所から内部に腐食が浸透
し、内部的に腐食は防止できず、それに伴って磁気特性
も劣化するという問題点があった。However, the RB-
The anticorrosion method for Fe-based permanent magnets involves applying a corrosion-resistant protective film such as Zn, Al, or synthetic resin on the surface of the permanent magnet, and requires a separate process from the magnet manufacturing process. In addition, the process becomes complicated and the cost is increased. Further, the thickness of the synthetic resin protective film deteriorates the dimensional accuracy of a small magnet product in particular. In any case, the anti-corrosion method only protects the outside of the permanent magnet against corrosion and the like, and when the protective film is peeled off or cracked, corrosion is caused from those places to the inside. There is a problem in that it cannot permeate and prevent corrosion internally, and the magnetic properties also deteriorate accordingly.
そこで、本発明者等は、耐食性にすぐれ、かつ磁気特
性にもすぐれたR−B−Fe系焼結磁石を製造すべく研究
を行った結果、 R2Fe14B相(以下、主相という)と上記主相のまわり
に存在する粒界相とからなる組織を有するR−B−Fe系
焼結磁石であって、 (a) 粒界相に、Ni,Co,Mn,Cr,Ti,V,Al,Ga,In,Zr,Hf,
Ta,Nb,Mo,Si,ReおよびWのうち少なくとも1種(以下、
Mという)が20〜55原子%を含有し、さらに酸素:30〜7
0原子%を含有した粒界相を有する希土類−B−Fe系焼
結磁石はすぐれた耐食性を有する、 (b) 粒界相のMの一部をRで置換してもよく、した
がって粒界相にMおよびRを合計で20〜55原子%を含有
し、さらに酸素:30〜70原子%を含有した粒界相を有す
る希土類−Fe−B系焼結磁石もすぐれた耐食性を有す
る、 という知見を得たのである。Therefore, the present inventors conducted research to produce an RB-Fe-based sintered magnet having excellent corrosion resistance and excellent magnetic properties. As a result, an R 2 Fe 14 B phase (hereinafter referred to as a main phase) was obtained. ) And a grain boundary phase present around the main phase, wherein the grain boundary phase comprises: (a) Ni, Co, Mn, Cr, Ti, V, Al, Ga, In, Zr, Hf,
At least one of Ta, Nb, Mo, Si, Re and W (hereinafter, referred to as
M) contains 20-55 atomic% and oxygen: 30-7
A rare earth-B-Fe sintered magnet having a grain boundary phase containing 0 atomic% has excellent corrosion resistance. (B) A part of M of the grain boundary phase may be replaced by R, and therefore, the grain boundary A rare earth-Fe-B based sintered magnet having a grain boundary phase containing a total of 20 to 55 atomic% of M and R in the phase and further containing 30 to 70 atomic% of oxygen also has excellent corrosion resistance. He gained the knowledge.
この発明は、かかる知見にもとづいてなされたもので
あって、 (1) 主相と粒界相からなるR−B−Fe系焼結磁石に
おいて、上記粒界相は、 M:20〜55原子%、 酸素:30〜70原子%、 を含む粒界相である耐食性および磁気特性にすぐれた希
土類−B−Fe系焼結磁石、 (2) 主相と粒界相からなるR−B−Fe系焼結磁石に
おいて、上記粒界相は、 M+R:20〜55原子%、 酸 素:30〜70原子%、 を含む粒界相である耐食性および磁気特性にすぐれた希
土類−B−Fe系焼結磁石、 に特徴を有するものである。The present invention has been made based on such findings. (1) In an RB-Fe-based sintered magnet including a main phase and a grain boundary phase, the grain boundary phase has M: 20 to 55 atoms. %, Oxygen: 30 to 70 atomic%, a rare earth-B-Fe based sintered magnet excellent in corrosion resistance and magnetic properties, which is a grain boundary phase, (2) RB-Fe consisting of a main phase and a grain boundary phase In the sintered sintered magnet, the above-mentioned grain boundary phase is a rare earth-B-Fe-based sintered material having excellent corrosion resistance and magnetic properties, which is a grain boundary phase containing: M + R: 20 to 55 atomic%, oxygen: 30 to 70 atomic%. The magnet has the following characteristics.
上記Mが粒界相に20原子%未満含まれていても十分な
耐食性が得られず、一方、粒界相にMが55原子%を越え
て含有させようとすると、製造中に上記Mは主相にも拡
散侵入するために耐食性は向上するが磁気特性が大幅に
減少するので好まくない。Even if the above M is contained in the grain boundary phase at less than 20 atomic%, sufficient corrosion resistance cannot be obtained. On the other hand, if the M is contained in the grain boundary phase in an amount exceeding 55 atomic%, the M becomes Corrosion resistance is improved due to diffusion and intrusion into the main phase, but magnetic properties are significantly reduced, which is not preferable.
粒界相に含まれる前記Mは酸素:30〜70原子%と共に
存在することが必要で、粒界相の上記酸素含有量が30原
子%未満では耐食性の一層の向上はなく、一方、70原子
%をこえて含有させると主相にも酸素が拡散し磁気特性
を大幅に低下させるので好ましくない。The M contained in the grain boundary phase must be present together with oxygen: 30 to 70 atomic%. If the oxygen content of the grain boundary phase is less than 30 atomic%, there is no further improvement in corrosion resistance. %, It is not preferable because oxygen diffuses into the main phase and magnetic properties are significantly reduced.
上記MまたはM+Rとともに酸素を含有した粒界相
は、第1図により示されるRリッチ相よりも腐食しにく
い相となり、この腐食しにくい粒界相は焼結過程での結
晶粒の成長を抑制し高密度化させる作用を有するために
耐食性および磁気特性が共に優れた希土類−B−Fe系焼
結磁石が得られるものと考えられる。The grain boundary phase containing oxygen together with the M or M + R becomes a phase that is less likely to corrode than the R-rich phase shown in FIG. 1, and this grain boundary phase that is less likely to corrode suppresses the growth of crystal grains during the sintering process. It is considered that a rare-earth-B-Fe-based sintered magnet excellent in both corrosion resistance and magnetic properties due to the effect of increasing the density can be obtained.
この発明の粒界相に、M:20〜55原子%またはM+R:20
〜55原子%とともに酸素:30〜70原子%を含む希土類−
B−Fe系焼結磁石は、所定の組成を有するR−B−Fe系
合金粉末にMの酸化物粉末またはMの酸化物粉末とのR
の酸化物粉末を0.0005〜2.5重量%配合し混合して得ら
れた混合粉末を、成形し、非酸化性雰囲気中、温度:900
〜1200℃で焼結することにより製造する。In the grain boundary phase of the present invention, M: 20 to 55 atomic% or M + R: 20
Rare earths containing up to 55 atomic percent oxygen and 30 to 70 atomic percent oxygen
The B-Fe-based sintered magnet is obtained by mixing R-B-Fe-based alloy powder having a predetermined composition with M oxide powder or M oxide powder.
A mixed powder obtained by blending and mixing 0.0005 to 2.5% by weight of the oxide powder of the above was molded and molded in a non-oxidizing atmosphere at a temperature of 900.
Manufactured by sintering at ~ 1200 ° C.
このようにして製造した希土類−B−Fe系焼結磁石
は、必要に応じて非酸化性雰囲気中、温度:400〜700℃
で熱処理してもよい。The rare-earth-B-Fe-based sintered magnet manufactured in this manner is optionally heated in a non-oxidizing atmosphere at a temperature of 400 to 700 ° C.
Heat treatment.
つぎに、この発明の実施例について説明する。 Next, an embodiment of the present invention will be described.
実施例1〜15及び従来例 まず、15%Nd−8%B−残Fe(但し%は原子%)とな
るように溶解し、合金インゴットを作製した。こ合金イ
ンゴットをアルゴン雰囲気中で温度:1050℃、20時間保
持の熱処理を行ったあと、粉砕し、平均粒径:35μmの
R−B−Fe糸合金粉末を用意した。Examples 1 to 15 and Conventional Example First, an alloy ingot was prepared by melting to 15% Nd-8% B-remaining Fe (% is atomic%). This alloy ingot was heat-treated at a temperature of 1050 ° C. for 20 hours in an argon atmosphere, and then pulverized to prepare an RB-Fe yarn alloy powder having an average particle size of 35 μm.
一方、添加粉末として、NiO粉末(平均粒径:1.0μ
m)、Co2O3(平均粒径:1.2μm)、MnO2粉末(平均粒
径:1.0μm)、Cr2O3粉末(平均粒径:1.2μm)、TiO2
粉末(平均粒径1.5μm)、V2O5(平均粒径:1.4μ
m)、Al2O3粉末(平均粒経緯:1.2μm)、Ga2O3粉末
(平均粒径:1.2μm)、In2O3粉末(平均粒径:1.4μ
m)、ZrO2粉末(平均粒径:1.2μm)、HfO2粉末(平均
粒径:1.2μm)、Nb2O3粉末(平均粒径:1.3μm)、Dy2
O3(平均粒径:1.2μm)、Y2O3粉末(平均粒径:1.0μ
m)を用意した。On the other hand, NiO powder (average particle size: 1.0μ
m), Co 2 O 3 (average particle size: 1.2 μm), MnO 2 powder (average particle size: 1.0 μm), Cr 2 O 3 powder (average particle size: 1.2 μm), TiO 2
Powder (average particle size 1.5 μm), V 2 O 5 (average particle size: 1.4 μm)
m), Al 2 O 3 powder (average particle size: 1.2 μm), Ga 2 O 3 powder (average particle size: 1.2 μm), In 2 O 3 powder (average particle size: 1.4 μm)
m), ZrO 2 powder (average particle size: 1.2 μm), HfO 2 powder (average particle size: 1.2 μm), Nb 2 O 3 powder (average particle size: 1.3 μm), Dy 2
O 3 (average particle size: 1.2 μm), Y 2 O 3 powder (average particle size: 1.0 μm)
m) was prepared.
上記R−B−Fe系合金粉末と上記酸化物添加粉末のう
ち1種または2種以上を0.0005〜2.5重量%の範囲内で
配合し、混合し、この混合粉末を成形圧:2t/cm2で磁場
中(14KOe)にて成形し、たて:20mm×横:20mm×高さ:15
mmの成形体を作製した。これら成形体を真空中(10-15T
orr)で10℃/minの昇温速度にて加熱し、温度:1080℃、
2時間保持の条件で焼結し、100℃/minの冷却速度で冷
却した。One or more of the RB-Fe-based alloy powder and the oxide-added powder are blended and mixed in a range of 0.0005 to 2.5% by weight, and the mixed powder is molded at a molding pressure of 2 t / cm 2. Molded in a magnetic field (14KOe), vertical: 20mm x side: 20mm x height: 15
A molded body of mm was produced. These compacts are placed in a vacuum (10 -15 T
orr) at 10 ° C / min at a heating rate of 1080 ° C,
It was sintered under the condition of holding for 2 hours and cooled at a cooling rate of 100 ° C./min.
この焼結体を加熱速度:100℃/minで加熱し、温度:620
℃、2時間保持したのち、100℃/minの冷却速度で冷却
し熱処理した。This sintered body is heated at a heating rate of 100 ° C./min, and a temperature of 620
C., and kept at a cooling rate of 100.degree. C./min for heat treatment.
この熱処理した焼結体の組織を調べたところR2Fe14B
相および粒界相からなり、第1図とほぼ同一の組織を有
しており、上記粒界相の組成を、STEMにより測定してそ
の結果を第1表に示した。さらに、上記焼結体の磁気特
性を測定し、この焼結体を温度:60℃、湿度:90%の大気
中に1000時間放置して耐食試験を行なった後、再度、磁
気特性を測定するとともに錆の発生状況を目視により観
察し、これらの結果を第1表に示した。第1表におい
て、耐食試験前に測定した磁気特性の測定値を「耐食試
験前」の欄に、耐食試験後に測定した磁気特性の測定値
を「耐食試験後」の欄に示した。Examination of the structure of the heat-treated sintered body revealed that R 2 Fe 14 B
It has a phase and a grain boundary phase and has almost the same structure as in FIG. 1. The composition of the grain boundary phase was measured by STEM, and the results are shown in Table 1. Further, the magnetic properties of the above sintered body are measured, and the sintered body is left in the air at a temperature of 60 ° C. and a humidity of 90% for 1000 hours to perform a corrosion resistance test, and then the magnetic properties are measured again. At the same time, the occurrence of rust was visually observed, and the results are shown in Table 1. In Table 1, the measured values of the magnetic properties measured before the corrosion test were shown in the column "Before the corrosion test", and the measured values of the magnetic properties measured after the corrosion test were shown in the column "After the corrosion test".
第1表の結果から、粒界相に金属元素および酸素の含
まれない従来例と比べて、粒界相に金属元素と酸素とが
同時に含まれているこの発明の希土類−B−Fe系焼結磁
石は磁気特性に優れているとともに耐食性にもすぐれて
いることがわかる。 From the results shown in Table 1, the rare-earth-B-Fe-based calcination of the present invention in which the grain boundary phase contains the metal element and oxygen at the same time as compared with the conventional example in which the grain boundary phase does not contain the metal element and oxygen. It can be seen that the magnets have excellent magnetic properties and excellent corrosion resistance.
〔発明の効果〕 この発明のR−B−Fe系焼結磁石には表面処理する必
要がなく、また、焼結磁石の磁気特性の劣化が少ないの
で、この磁気を組み込んだ装置の性能の低下が防止され
るという産業上すぐれた効果を奏するものである。[Effects of the Invention] The RB-Fe-based sintered magnet of the present invention does not require a surface treatment, and the magnetic properties of the sintered magnet are hardly deteriorated. This has an industrially superior effect of preventing noise.
第1図は、R−B−Fe系焼結磁石の組織図である。 FIG. 1 is a structural diagram of an RB-Fe based sintered magnet.
Claims (2)
うち1種または2種以上)および上記R2Fe14B相のまわ
りに存在する粒界相とからなる組織を有するR−B−Fe
系焼結磁石であって、上記粒界相は、 Ni,Co,Mn,Cr,Ti,V,Al,Ga,In,Zr,Hf,Ta,Nb,Mo,Si,Reおよ
びWのうち少なくとも1種(以下、Mという):20〜55
原子%、 酸素:30〜70原子%、 を含む粒界相であることを特徴とする耐食性および磁気
特性に優れた希土類−B−Fe系焼結磁石。1. A structure comprising an R 2 Fe 14 B phase (R is one or more of rare earth elements including Y) and a grain boundary phase existing around the R 2 Fe 14 B phase. Having RB-Fe
A sintered sintered magnet, wherein the grain boundary phase is at least one of Ni, Co, Mn, Cr, Ti, V, Al, Ga, In, Zr, Hf, Ta, Nb, Mo, Si, Re and W. 1 type (hereinafter referred to as M): 20-55
A rare earth-B-Fe sintered magnet excellent in corrosion resistance and magnetic properties, characterized in that it is a grain boundary phase containing at least 30 atomic% and oxygen.
存在する粒界相とからなる組織を有するR−B−Fe系焼
結磁石であって、上記粒界相は、 M+R:20〜55原子%、 酸 素:30〜70原子%、 を含む粒界相であることを特徴とする耐食性および磁気
特性に優れた希土類−B−Fe系焼結磁石。2. An RB-Fe-based sintered magnet having a structure consisting of an R 2 Fe 14 B phase and a grain boundary phase present around the R 2 Fe 14 B phase, wherein the grain boundary phase is Is a rare earth-B-Fe sintered magnet excellent in corrosion resistance and magnetic properties, characterized in that it is a grain boundary phase containing: M + R: 20 to 55 atomic%, oxygen: 30 to 70 atomic%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1119991A JP2663626B2 (en) | 1989-05-12 | 1989-05-12 | Rare earth-B-Fe based sintered magnet with excellent corrosion resistance and magnetic properties |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1119991A JP2663626B2 (en) | 1989-05-12 | 1989-05-12 | Rare earth-B-Fe based sintered magnet with excellent corrosion resistance and magnetic properties |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8336990A Division JP2891215B2 (en) | 1996-12-17 | 1996-12-17 | Method for producing rare earth-B-Fe based sintered magnet excellent in corrosion resistance and magnetic properties |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0320001A JPH0320001A (en) | 1991-01-29 |
JP2663626B2 true JP2663626B2 (en) | 1997-10-15 |
Family
ID=14775195
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1119991A Expired - Fee Related JP2663626B2 (en) | 1989-05-12 | 1989-05-12 | Rare earth-B-Fe based sintered magnet with excellent corrosion resistance and magnetic properties |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2663626B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111326306A (en) * | 2020-02-29 | 2020-06-23 | 厦门钨业股份有限公司 | R-T-B series permanent magnetic material and preparation method and application thereof |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100771676B1 (en) * | 2000-10-04 | 2007-10-31 | 가부시키가이샤 네오맥스 | Rare earth sintered magnet and method for manufacturing the same |
JP3997413B2 (en) * | 2002-11-14 | 2007-10-24 | 信越化学工業株式会社 | R-Fe-B sintered magnet and method for producing the same |
JP5472236B2 (en) | 2011-08-23 | 2014-04-16 | トヨタ自動車株式会社 | Rare earth magnet manufacturing method and rare earth magnet |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61207545A (en) * | 1985-03-09 | 1986-09-13 | Sumitomo Special Metals Co Ltd | Manufacture of permanent magnet material |
JPH0639662B2 (en) * | 1985-08-28 | 1994-05-25 | 住友特殊金属株式会社 | Permanent magnet material with excellent corrosion resistance |
JPS6274054A (en) * | 1985-09-27 | 1987-04-04 | Hitachi Metals Ltd | Permanent magnet alloy |
-
1989
- 1989-05-12 JP JP1119991A patent/JP2663626B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111326306A (en) * | 2020-02-29 | 2020-06-23 | 厦门钨业股份有限公司 | R-T-B series permanent magnetic material and preparation method and application thereof |
CN111326306B (en) * | 2020-02-29 | 2021-08-27 | 厦门钨业股份有限公司 | R-T-B series permanent magnetic material and preparation method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
JPH0320001A (en) | 1991-01-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3179487B1 (en) | R-(fe,co)-b sintered magnet and making method | |
JP4692634B2 (en) | Magnet manufacturing method | |
EP1705668B1 (en) | Functionally graded rare earth permanent magnet | |
JP6693392B2 (en) | R- (Fe, Co) -B system sintered magnet and its manufacturing method | |
EP3193347A1 (en) | Production method for r-t-b sintered magnet | |
JP6476640B2 (en) | R-T-B sintered magnet | |
EP3594975B1 (en) | Rfeb-based sintered magnet | |
JP7314513B2 (en) | RFeB sintered magnet | |
JP4179973B2 (en) | Manufacturing method of sintered magnet | |
JP2891215B2 (en) | Method for producing rare earth-B-Fe based sintered magnet excellent in corrosion resistance and magnetic properties | |
WO1989012113A1 (en) | SINTERED RARE EARTH ELEMENT-B-Fe-MAGNET AND PROCESS FOR ITS PRODUCTION | |
JP2663626B2 (en) | Rare earth-B-Fe based sintered magnet with excellent corrosion resistance and magnetic properties | |
JPWO2017164312A1 (en) | Rare earth permanent magnet | |
US5447578A (en) | Corrosion-resistant rare earth metal-transition metal series magnets and method of producing the same | |
JP3683260B2 (en) | Rare earth permanent magnet | |
CN102084438B (en) | Corrosion-resistant magnet and method for producing the same | |
JP2006041507A (en) | Sintered magnet | |
JPH03250607A (en) | Corrosive resistant rare earth-transition metal magnet and its manufacture | |
JPS62120002A (en) | Permanent magnet with excellent corrosion resistance | |
Dhakal et al. | Effect of dysprosium-compounds treatment on coercivity of Nd-Fe-B sintered magnets | |
JP2720039B2 (en) | Rare earth magnet material with excellent corrosion resistance | |
JP2586597B2 (en) | Method for producing rare earth-B-Fe sintered magnet excellent in magnetic properties and corrosion resistance | |
JP2581179B2 (en) | Method for producing rare earth-B-Fe sintered magnet with excellent corrosion resistance | |
JP2600374B2 (en) | Method for producing rare earth-B-Fe sintered magnet excellent in corrosion resistance and magnetic properties | |
JP2940623B2 (en) | Method for producing rare earth-B-Fe sintered magnet excellent in corrosion resistance and magnetic properties |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |