JPS62120002A - Permanent magnet with excellent corrosion resistance - Google Patents

Permanent magnet with excellent corrosion resistance

Info

Publication number
JPS62120002A
JPS62120002A JP60260769A JP26076985A JPS62120002A JP S62120002 A JPS62120002 A JP S62120002A JP 60260769 A JP60260769 A JP 60260769A JP 26076985 A JP26076985 A JP 26076985A JP S62120002 A JPS62120002 A JP S62120002A
Authority
JP
Japan
Prior art keywords
permanent magnet
less
magnet
corrosion resistance
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60260769A
Other languages
Japanese (ja)
Other versions
JPH0569282B2 (en
Inventor
Shigeki Hamada
隆樹 浜田
Tetsuharu Hayakawa
早川 徹治
Yutaka Matsuura
裕 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP60260769A priority Critical patent/JPS62120002A/en
Priority to CN85109695A priority patent/CN1007847B/en
Priority to EP85116598A priority patent/EP0190461B1/en
Priority to DE8585116598T priority patent/DE3584243D1/en
Priority to US06/818,238 priority patent/US4837114A/en
Publication of JPS62120002A publication Critical patent/JPS62120002A/en
Priority to US07/360,101 priority patent/US5089066A/en
Priority to US07/740,442 priority patent/US5316595A/en
Publication of JPH0569282B2 publication Critical patent/JPH0569282B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0572Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes with a protective layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/026Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To improve the corrosion resistance of a permanent magnet by providing a vapor-phase plating layer on the permanent magnet which mainly contains R (R is at least one of rare earth elements including Y) B and Fe, and tetragonal crystal of main phase and producing a diffused layer between the plating layer and the magnet. CONSTITUTION:Rare earth elements R used for a permanent magnet material of this invention are included in a range of 8-30atom%. If less than 8atom%, high magnetic property and hence high coercive force is not obtained, and if more than 30atom%, its remaining magnetic flux density Br decreases. B is included in a range of 2-28atom%. If less than 2atom%, high coercive force (iHc) is not obtained, and if more than 28atom%, its remaining magnetic flux density Br decreases. Fe is included in a range of 42-90atom%. If less than 42atom%, the remaining magnetic flux density Br decreases, and if more than 90atom%, high coercive force is not obtained. A thin corrosion resistance film is formed by vapor-phase plating layer forming means on the surface of the magnet of the above components. A diffused layer is formed between the plating layer and the magnet, and heat treated at 250 deg.C or age hardening tempera ture or lower. The thickness of the diffused layer is preferably 0.01-10mum by consider ing the corrosion resistance and the sealability with a base magnet.

Description

【発明の詳細な説明】 利用産業分野 この発明は、R(Rはm、 Pr、 u、 Ho、 T
bのうち少なくとも1種あるいはさらに、La、 Ce
、 Sm。
[Detailed description of the invention] Industrial field of application This invention is applicable to R (R is m, Pr, u, Ho, T
At least one of b or further, La, Ce
, Sm.

Ga、 Er、 Eu、 Tm、 Yb、 Lu、 Y
のうち少なくとも1種からなる)、B、Faを主成分と
する永久磁石に係り、永久磁石体との間に拡散雇を有す
る気相めっき相を被着形成して、永久磁石の耐食性並び
に磁石体成形加工に伴なう磁束の低下を改善した希土類
・ボロン・鉄系永久磁石に関する。
Ga, Er, Eu, Tm, Yb, Lu, Y
A vapor phase plating phase having a diffusion layer is deposited between the permanent magnet body and the permanent magnet to improve the corrosion resistance of the permanent magnet and the magnet. This article relates to a rare earth/boron/iron permanent magnet that improves the reduction in magnetic flux caused by body forming processing.

背景技術 本発明者は先に、高価なStnや伽を含有しない新しい
高性能永久磁石としてFe−B−R系(RはYを含む希
土類元素のうち少なくとも1種)永久磁石を提案したく
特願昭57−145072号)。この永久m石は、Rと
して陶や円を中心とする資源的に豊富な軽希土類を用い
、Feを主成分として25MGOe以上の極めて高いエ
ネルギー積を示す、すぐれた永久磁石である。
BACKGROUND ART The present inventor previously proposed a Fe-BR-based permanent magnet (R is at least one of rare earth elements including Y) as a new high-performance permanent magnet that does not contain expensive Stn or porcelain. (Gan Sho 57-145072). This permanent magnet is an excellent permanent magnet that uses resource-rich light rare earths such as ceramics and circles as R, has Fe as its main component, and exhibits an extremely high energy product of 25 MGOe or more.

しかしながら、上記のすぐれた磁気特性を有するFa 
 B  R系磁気異方性焼結体からなる永久磁石は主成
分として、空気中で酸化し次第に安定な酸化物を生成し
易い希土類元素及び鉄を含有するため、磁気回路に組込
んだ場合に、磁石表面に生成する酸化物により、磁気回
路の出力低下及び磁気回路間のばらつきを惹起し、また
、表面酸化物の脱落による周辺搬器への汚染の問題があ
った。
However, Fa, which has the above-mentioned excellent magnetic properties,
Permanent magnets made of B R-based magnetically anisotropic sintered bodies contain rare earth elements and iron, which tend to oxidize in the air and gradually form stable oxides, so when incorporated into a magnetic circuit, The oxides generated on the magnet surface cause a decrease in the output of the magnetic circuit and variations between the magnetic circuits, and there is also the problem of contamination of surrounding carriers due to the surface oxide falling off.

そこで、出願人は先に、上記のFEI−B−R系永久磁
石の耐食性の改善のため、磁石体表面に無電解めっき法
あるいは電解めっき法により耐食性金属めっき雇を被覆
した永久磁石(特願昭58−162350号)、及び磁
石体表面にスプレー法おるいは浸漬法によって、耐食性
樹脂雇を被覆した永久磁石を提案(特願昭58−171
907@) した。
Therefore, in order to improve the corrosion resistance of the above-mentioned FEI-B-R permanent magnet, the applicant has previously proposed a permanent magnet (patent application 1982-162350), and proposed a permanent magnet in which the surface of the magnet was coated with a corrosion-resistant resin by spraying or dipping (Japanese Patent Application No. 58-171).
907@) I did.

しかし、前者のめつき法では、永久磁石体が焼結体であ
り有孔性のため、この孔内にめっき前処理での酸性溶液
またはアルカリ溶液が残留し、経年変化とともに腐食す
る恐れがあり、また磁石体の耐薬品性が劣るため、めっ
き時に磁石表面が腐食されて密着性・防蝕性が劣る問題
がおった。
However, in the former plating method, since the permanent magnet body is a sintered body and has pores, there is a risk that acidic or alkaline solutions from plating pretreatment remain in the pores, leading to corrosion over time. In addition, since the chemical resistance of the magnet body was poor, the magnet surface was corroded during plating, resulting in poor adhesion and corrosion resistance.

また、後者のスプレー法による樹脂の塗装には方向性が
あるため、被処理物表面全体に均一な樹脂被膜を施すの
に多大の工程2手間を要し、特に形状が複雑な異形磁石
体に均一厚みの被膜を施すことは困難でおり、また、浸
漬法では樹脂被膜厚みが不均一になり、製品寸法精度が
悪い問題があった。
In addition, since resin coating using the latter spray method has a directionality, it takes a lot of time and effort to apply a uniform resin coating to the entire surface of the object, especially for irregularly shaped magnets with complex shapes. It is difficult to apply a coating with a uniform thickness, and the dipping method results in uneven resin coating thickness, resulting in poor product dimensional accuracy.

ざらに、上記のめつき及びスプレー法の持つ欠点を解消
し、長期間にわたって耐食性が安定して得られるFe 
−B −R系永久磁石として、その表面に種々金属また
は合金からなる耐食性気相めっき雇を設けた永久磁石を
提案(特願昭59−278489@)した。この気相め
っきにより、磁石体表面の酸化が抑制され、磁気特性が
劣化することなく、腐蝕性の薬品等を使用、残留させる
ことがないため、長期にわたって安定する利点がおる。
In general, it is possible to eliminate the drawbacks of the above-mentioned plating and spraying methods, and to obtain stable corrosion resistance over a long period of time.
As a -B-R system permanent magnet, we proposed a permanent magnet whose surface was coated with corrosion-resistant vapor phase plating made of various metals or alloys (Japanese Patent Application No. 59-278489@). This vapor phase plating suppresses oxidation on the surface of the magnet body, does not deteriorate the magnetic properties, and does not use or leave corrosive chemicals, so it has the advantage of being stable over a long period of time.

しかし、さらに苛酷な環境にて長期間使用した際に、耐
食性薄膜の劣化や剥がれが懸念される問題があった。
However, when used for a long period of time in a more severe environment, there was a problem in which there was concern that the corrosion-resistant thin film would deteriorate or peel off.

発明の目的 この発明は、希土類・ボロン・鉄を主成分とする新規な
永久磁石材料の耐食性を改善した該永久磁石を目的とし
、また、腐蝕性薬品等を使用、残留させることなく、密
着性、防蝕性にすぐれた耐食性薄膜を、磁石材料表面に
均一厚みでかつ強固に設けた耐食性のすぐたれ永久磁石
を目的としている。
Purpose of the Invention The object of the present invention is to provide a permanent magnet with improved corrosion resistance of a new permanent magnet material mainly composed of rare earth elements, boron, and iron. The purpose of the present invention is to provide a highly corrosion-resistant permanent magnet in which a highly corrosion-resistant thin film is firmly provided on the surface of the magnet material with a uniform thickness.

発明の構成と効果 この発明は、R(RはNa、 Pr、 D!It、 H
O,Thのうち少なくとも1種あるいはさらに、i、C
o、Sm。
Structure and Effects of the Invention This invention provides R (R is Na, Pr, D!It, H
At least one of O, Th or further i, C
o, Sm.

C<、 Er、 Eu、 Tm、 Yb、 Lu、 Y
のうち少なくとも1種からなる)8原子%〜30原子%
、B2原子%〜28原子%、Fe42原子%〜90原子
%を主成分とし主相が正方晶相からなる永久磁石体表面
に、真空蒸着法、イオンスパッタリング法、イオンブレ
ーティング法、イオン蒸着薄膜形成法(IVD) 、あ
るいはプラズマ蒸着薄膜形成法(CVO)等により被着
した、M、Zn 、NL 、Cr 、Cu 、Co 、
Tj、 Nb、  v、 Ta。
C<, Er, Eu, Tm, Yb, Lu, Y
8 at% to 30 at%
, B2 atomic% to 28 atomic%, Fe42 atomic% to 90 atomic% as main components, and the main phase is a tetragonal phase, on the surface of the permanent magnet body, by vacuum evaporation method, ion sputtering method, ion blating method, ion evaporation thin film. M, Zn, NL, Cr, Cu, Co, deposited by IVD (IVD) or CVO (plasma vapor deposition).
Tj, Nb, v, Ta.

Mo、 W、 t’In、などの金属おるいはその合金
等の耐食性気相めっき雇を有し、ざらに、真空中または
大気中にて熱処理を施して、該気相めっき層と永久磁石
体間に拡散雇を生成させたことを特徴とする耐食性のす
ぐたれ永久磁石である。
It has a corrosion-resistant vapor phase plating layer of metals such as Mo, W, t'In, etc. or their alloys, and is heat-treated in a vacuum or in the atmosphere to form a permanent magnet with the vapor phase plating layer. It is a highly corrosion-resistant permanent magnet characterized by the generation of diffused magnetism between bodies.

この発明における気相めっきは、水系永久磁石材料表面
に物理的に吸着させて、均一膜厚で強固に被着形成する
が、該めっき膜は被着に際して柱状に成長するため、成
長粒間に空隙を生じ、この空隙部に水が浸透して発錆す
る恐れがあり、機械的、熱的強度の安定性を欠く問題が
生じることを知見し、これを熱処理による気相めっきと
永久磁石間の拡散層で解決したものである。
The vapor phase plating in this invention physically adsorbs onto the surface of the water-based permanent magnet material and forms a strong coating with a uniform thickness. It was discovered that voids were created, and that water could penetrate into these voids and cause rust, resulting in a problem of mechanical and thermal instability. This problem was solved using a diffusion layer.

すなわち、気相めっきを形成した水系永久磁石に、所定
の熱処理をほどこすことにより、焼結及び溶融効果によ
り、該空隙を埋め、気相めつき相と永久磁石体との間に
、拡散雇を生成させて、磁石層の結晶粒はもちろんのこ
と、結晶粒界への拡散を促すことにより、粒界の耐食性
が向上し、気相めっきのは械的、熱的強度を飛躍的に向
上し、薄膜のはがれヤ発錆が防止できる。また、気相め
っき表面に安定な酸化物不動態を形成させることにより
、極めて苛酷な環境条件での長期間の使用が可能となる
In other words, by subjecting a water-based permanent magnet on which vapor phase plating has been formed to a prescribed heat treatment, the voids are filled by sintering and melting effects, and diffusion heat is created between the vapor phase plating phase and the permanent magnet body. By generating and promoting diffusion not only to the crystal grains of the magnet layer but also to the grain boundaries, the corrosion resistance of the grain boundaries is improved, and the mechanical and thermal strength of vapor phase plating is dramatically improved. This prevents the thin film from peeling off and rusting. Furthermore, by forming a stable oxide passivity on the vapor phase plating surface, it becomes possible to use the product for a long period of time under extremely harsh environmental conditions.

また、気相めっきとその拡散雇を表面に有するこの発明
による永久磁石は、下記の理由により、その保磁力も改
善される利点がおる。
Further, the permanent magnet according to the present invention having vapor phase plating and its diffusion coating on the surface has the advantage that its coercive force is improved for the following reason.

すなわち、FEI−B−R系永久磁石は、主相がNd2
 FEl14 Bの10〃m程度の結晶粒と、それを取
り巻<bCC相とNdrICh相及び少伍のB ric
h相とから構成されている。このうち主相のNd2Fl
1148とbcc相の存在が保磁力発生に大きく関与し
ているが、bcc相はFe  B  R系永久磁石中で
は、Ncirich相と正方品のNd2 Fe12 B
相が存在するときにのみ形成されるものであり、永久磁
石表面ではNd+ Fe114 B正方品化合物のみが
存在して、このbcC相が存在しないため、磁石表面層
の保磁力が低下するのであり、加工により小物や薄物と
した該永久磁石の磁気特性の劣化の原因となっていた。
In other words, the FEI-B-R permanent magnet has a main phase of Nd2.
FEl14 B crystal grains with a diameter of about 10 m and surrounding <bCC phase, NdrICh phase, and a small amount of B ric
h phase. Among these, the main phase Nd2Fl
The presence of 1148 and bcc phase is largely involved in the generation of coercive force, but in FeBR permanent magnets, the bcc phase is the same as the Ncirich phase and the square Nd2Fe12B
It is formed only when a phase exists, and only the Nd + Fe114 B tetragonal compound exists on the surface of the permanent magnet, and this bcC phase is not present, so the coercive force of the magnet surface layer decreases. Processing has caused deterioration in the magnetic properties of the permanent magnets, which have been made small or thin.

ところがこの発明の気相めっき層と永久磁石体との間の
拡散層は、上述部分における結品磁気異方性を向上させ
るため、m石表面での保磁力の低下を防止し、磁気特性
の改善効果をもたらすのである。
However, the diffusion layer between the vapor-phase plating layer and the permanent magnet body of the present invention improves the magnetic anisotropy of the crystal in the above-mentioned portion, prevents the coercive force from decreasing on the stone surface, and improves the magnetic properties. This brings about an improvement effect.

また、前述の如く、永久磁石体の結晶粒界での当該mr
ich相の存在のために薄膜形成が進行せずに錆発生の
要因となっていたが、前記拡散層の生成によりこれが解
消されたのである。
In addition, as mentioned above, the mr at the grain boundaries of the permanent magnet body
Due to the presence of the ich phase, the formation of a thin film did not progress and was a cause of rust, but this problem was resolved by the formation of the diffusion layer.

発明の好ましい実施態様 この発明における耐食性気相めっき雇を磁石材料表面に
形成する方法は、真空蒸着法、イオンスパッタリング法
、イオンブレーティング法、イオン蒸着薄膜形成法(I
VD) 、あるいはプラズマ蒸着薄膜形成法(CVD)
等が採用できる。
Preferred Embodiments of the Invention The method of forming the corrosion-resistant vapor phase plating layer on the surface of the magnet material in this invention includes vacuum evaporation method, ion sputtering method, ion blating method, ion evaporation thin film forming method (I
VD) or plasma vapor deposition thin film formation method (CVD)
etc. can be adopted.

この発明において、上述した気相めっき層形成手段によ
り、永久磁石表面に形成された耐食性薄膜の厚みは、3
0i以下の厚みが得られる。
In this invention, the thickness of the corrosion-resistant thin film formed on the surface of the permanent magnet by the above-mentioned vapor phase plating layer forming means is 3.
A thickness of 0i or less can be obtained.

この発明において、気相めっきと永久磁石間の拡散層の
生成は、大気中または真空中にて熱処理により得られる
が、時効処理を施した永久磁石体に気相めっき処理した
のち、熱処理する場合は、250°C〜時効処理温度以
下の温度条件が好ましい。
In this invention, the formation of a diffusion layer between the vapor phase plating and the permanent magnet is obtained by heat treatment in the air or vacuum, but when heat treatment is performed after vapor phase plating is applied to the aged permanent magnet body, The temperature conditions are preferably from 250°C to the aging treatment temperature.

これは、250’C未満では気相めっきと永久磁石体と
の拡散が充分に行われず、時効処理温度を越えると事前
に施した時効処理効果がなくなるので好ましくないため
でおる。
This is because if the temperature is lower than 250'C, sufficient diffusion between the vapor phase plating and the permanent magnet will not take place, and if it exceeds the aging treatment temperature, the effect of the aging treatment applied in advance will be lost, which is not preferable.

時効処理を施していない永久磁石体に気相めっき処理し
、その後熱処理する場合は、250℃〜気相めつき金属
の融点以下の温度条件が好ましく、熱処理の温度条件に
よっては、熱処理と同時に時効処理を行ない、後続の時
効処理を省略することができる。
When vapor-phase plating is applied to a permanent magnet that has not been subjected to aging treatment, and then heat-treated, the temperature condition is preferably between 250℃ and below the melting point of the vapor-phase plated metal. processing, and the subsequent aging processing can be omitted.

また、この発明による永久v7i石体の時効処理温度は
、1段時効処理を施す場合は、350’Cから焼結温度
以下(900℃〜1200’C)が好ましく、2段時効
処理の場合は、1段目が750’C〜1000℃、2段
目が480’C〜700’Cの条件が好ましい。
Further, the aging treatment temperature of the permanent V7i stone body according to the present invention is preferably from 350'C to below the sintering temperature (900°C to 1200'C) when performing one-stage aging treatment, and when performing two-stage aging treatment, Preferably, the conditions are 750'C to 1000C in the first stage and 480'C to 700'C in the second stage.

時効処理が1段時効処理の場合は、熱処理温度を250
°C以上、時効処理温度以下とするのが好ましく、また
、時効処理が2段時効処理の場合は、250’C以上、
1段目時効処理温度以下の温度条件が好ましい。
If the aging treatment is one-stage aging treatment, the heat treatment temperature should be set to 250℃.
It is preferable to set the temperature to not less than °C and not more than the aging treatment temperature, and if the aging treatment is a two-stage aging treatment, the temperature should be not less than 250'C,
Temperature conditions below the first-stage aging treatment temperature are preferred.

時効処理を施さず、250’Cから気相めっき金属の融
点以下の条件で熱処理を行なっても、磁気特性の点から
、当該熱処理後に時効処理するのが望ましい。
Even if heat treatment is performed at 250'C to below the melting point of the vapor-phase plated metal without aging treatment, it is desirable to carry out aging treatment after the heat treatment in terms of magnetic properties.

さらに、時効処理を施したのちの熱処理条件が、事前の
時効処理温度より高い場合は、磁気特性の点から、再度
時効処理を施す必要がある。
Furthermore, if the heat treatment conditions after the aging treatment are higher than the pre-aging temperature, it is necessary to perform the aging treatment again from the viewpoint of magnetic properties.

また、熱処理時間は、気相めっき金属種類、処理量及び
温度条件により、所要の拡散雇を得るために、適宜選定
することができるが、熱処理時間としては、5分から5
時間が好ましい。
In addition, the heat treatment time can be selected as appropriate to obtain the required diffusion rate depending on the type of metal to be vapor-phase plated, the amount of treatment, and the temperature conditions.
time is preferable.

この発明において、熱処理により気相めっき層と永久磁
石体間に生成される拡散層厚みは、耐食性及び下地磁石
体との密着性を考慮して、0.01項から10μmが好
ましい。
In this invention, the thickness of the diffusion layer formed between the vapor-phase plating layer and the permanent magnet by heat treatment is preferably 0.01 to 10 μm in consideration of corrosion resistance and adhesion to the base magnet.

気相めっき金属が、M、 Cr、 TL等の金属の場合
は、熱処理時、気相めっき層表面に酸化物層が生成され
て、不動態化され、耐食性が一段と改善され、従来より
ざらに苛酷な条件で、長時間の使用ができる。
When the vapor phase plating metal is a metal such as M, Cr, or TL, during heat treatment, an oxide layer is generated on the surface of the vapor phase plating layer, which becomes passivated and the corrosion resistance is further improved. Can be used for long periods of time under harsh conditions.

永久磁石材料の成分限定理由 この発明の永久磁石材料に用いる希土類元素Rは、組成
の8原子%〜30原子%を占めるが、M。
Reason for Limiting Components of Permanent Magnet Material The rare earth element R used in the permanent magnet material of the present invention accounts for 8 to 30 at% of the composition, and M.

円、 u、 Ho、 Thのうち少なくとも1種、おる
いはざらに、La、 Ce、 Sm、 (a、 Er、
 Eu、 Tm、 Yb、 Lu。
At least one of Yen, u, Ho, Th, Orui, La, Ce, Sm, (a, Er,
Eu, Tm, Yb, Lu.

Yのうち少なくとも1種を含むものが好ましい。Those containing at least one type of Y are preferred.

また、通常Rのうち1種をもって足りるが、実用上は2
種以上の混合物(ミツシュメタル、ジジム等)を入手上
の便宜等の理由により用いることができる。
Also, normally one type of R is sufficient, but in practice two types are sufficient.
A mixture of more than one species (Mitushmetal, Didim, etc.) can be used for reasons such as availability.

なお、このRは純希土類元素でなくてもよく、工業上入
手可能な範囲で製造上不可避な不純物を含有するもので
も差支えない。
Note that this R does not have to be a pure rare earth element, and may contain impurities that are unavoidable in production within an industrially available range.

Rは、新規な上記系永久磁石材料における、必須元素で
あって、8原子%未満では、結晶構造がα−鉄と同一構
造の立方晶組織となるため、高磁気特性、特に高保磁力
が得られず、30原子%を越えると、Rリッチな非磁性
相が多くなり、残留磁束密度(Br)が低下して、すぐ
れた特性の永久磁石が得られない。よって、希土類元素
は、8原子%〜30原子%の範囲とする。
R is an essential element in the new above-mentioned permanent magnet material, and when it is less than 8 atomic %, the crystal structure becomes a cubic structure that is the same as α-iron, so high magnetic properties, especially high coercive force, can be obtained. If it exceeds 30 at %, the R-rich nonmagnetic phase increases, the residual magnetic flux density (Br) decreases, and a permanent magnet with excellent properties cannot be obtained. Therefore, the rare earth element is in the range of 8 atomic % to 30 atomic %.

Bは、この発明による永久磁石材料における、必須元素
であって、2原子%未満では、菱面体構造が主相となり
、高い保磁力(iHC)は(qられず、28原子%を越
えると、Bリッチな非磁性相が多くなり、残留磁束密度
(Sr)が低下するため、すぐれた永久磁石が得られな
い。よって、Bは、2原子%〜28原子%の範囲とする
B is an essential element in the permanent magnet material according to the present invention, and when it is less than 2 atomic %, the rhombohedral structure becomes the main phase, and the high coercive force (iHC) is not q, and when it exceeds 28 atomic %, Since the B-rich nonmagnetic phase increases and the residual magnetic flux density (Sr) decreases, an excellent permanent magnet cannot be obtained.Therefore, B is set in a range of 2 atomic % to 28 atomic %.

Feは、新規な上記系永久磁石において、必須元素であ
り、42原子%未満では残留磁束密度(Br)が低下し
、90原子%を越えると、高い保磁力が得られないので
、Feは42原子%〜90原子%の含有とする。
Fe is an essential element in the new above-mentioned permanent magnet.If it is less than 42 at%, the residual magnetic flux density (Br) decreases, and if it exceeds 90 at%, high coercive force cannot be obtained. The content is from atomic % to 90 atomic %.

また、この発明による永久磁石材料において、Feの一
部をらで置換することは、得られる磁石の磁気特性を損
うことなく、温度特性を改善することができるが、Co
置換量がFeの20%を越えると、逆に磁気特性が劣化
するため、好ましくない。Gの置換量がFeとGの合計
量で5原子%〜15原子%の場合は、(Br)は置換し
ない場合に比較して増加するため、高磁束密度を得るた
めに好ましい。
In addition, in the permanent magnet material according to the present invention, replacing a part of Fe with iron can improve the temperature characteristics without impairing the magnetic properties of the resulting magnet.
If the amount of substitution exceeds 20% of Fe, the magnetic properties will deteriorate, which is not preferable. When the amount of G substitution is 5 atomic % to 15 atomic % in total of Fe and G, (Br) increases compared to the case where no substitution is made, which is preferable in order to obtain a high magnetic flux density.

また、この発明による永久磁石材料は、R,B。Further, the permanent magnet material according to the present invention includes R, B.

Feの他、工業的生産上不可避的不純物の存在を許容で
きるが、Bの一部を4.0原子%以下のC13,5原子
%以下のP、2.5原子%以下のS、3.5原子%以下
の髄のうち少なくとも1種、合計量で4.0原子%以下
で置換することにより、永久磁石の製造性改善、低価格
化が可能である。
In addition to Fe, the presence of unavoidable impurities in industrial production can be tolerated, but a portion of B may be 4.0 atomic % or less of C13, 5 atomic % or less of P, 2.5 atomic % or less of S, 3. By substituting at least one of the 5 atomic % or less of the marrow with a total amount of 4.0 atomic % or less, it is possible to improve the manufacturability and reduce the cost of permanent magnets.

また、下記添加元素のうち少なくとも1種は、R−BF
e系永久磁石に対してその保磁力、減磁曲線の角型性を
改善あるいは製造性の改善、低価格化に効果があるため
添加することができる。
In addition, at least one of the following additional elements is R-BF
It can be added to e-based permanent magnets because it is effective in improving the coercive force and squareness of the demagnetization curve, improving manufacturability, and reducing costs.

9.5原子%以下のA1.4.5原子%以下の刊、9.
5原子%以下のV、8.5原子%以下のCr。
A1 of 9.5 atom % or less; publication of 4.5 atom % or less; 9.
V at 5 atomic % or less, Cr at 8.5 atomic % or less.

8.0原子%以下のH眠 5.0原子%以下のBi、9
.5原子%以下のNb、9.5原子%以下のTa、9.
5原子%以下のNo、9.5原子%以下のり、2.5原
子%以下のSb、  7  原子%以下のGe。
8.0 atom% or less of H, 5.0 atom% or less of Bi, 9
.. Nb of 5 atomic % or less, Ta of 9.5 atomic % or less, 9.
5 atomic % or less of No, 9.5 atomic % or less of glue, 2.5 atomic % or less of Sb, 7 atomic % or less of Ge.

3.5原子%以下のSn、  5.5原子%以下のZr
、9.0原子%以下のNi、  9.0原子%以下の8
1.1.1原子%以下のZn15.5原子%以下のHf
Sn of 3.5 atomic% or less, Zr of 5.5 atomic% or less
, 9.0 atom% or less of Ni, 9.0 atom% or less of 8
1.1.1 atomic% or less Zn15.5 atomic% or less Hf
.

のうち少なくとも1種を添加含有、但し、2種以上含有
する場合は、その最大含有量は当該添加元素のうち最大
値を有するものの原子%以下の含有させることにより、
永久磁石の高保磁力化が可能になる。
At least one of these elements is added and contained; however, when two or more types are contained, the maximum content is less than or equal to the atomic percent of the element having the maximum value among the added elements.
It becomes possible to increase the coercive force of permanent magnets.

結晶相は主相が正方品であることが、微細で均一な合金
粉末より、すぐれた磁気特性を有する焼結永久磁石を作
製するのに不可欠である。
It is essential that the main phase of the crystalline phase is a tetragonal one in order to produce a sintered permanent magnet having superior magnetic properties than a fine and uniform alloy powder.

また、この発明の永久磁石は、磁場中プレス成型するこ
とにより磁気的異方性磁石が得られ、また、無磁界中で
プレス成型することにより、磁気的等方性磁石を得るこ
とができる。
Further, the permanent magnet of the present invention can be press-molded in a magnetic field to obtain a magnetically anisotropic magnet, and can be press-molded in a non-magnetic field to obtain a magnetically isotropic magnet.

この発明による永久磁石材料は、保磁力iHc≧1 k
oa、残留磁束密度Br> 4 kG、を示し、最大エ
ネルギー積(BH)maXは、(BH)max≧108
GOeを示し、最大値は25)IGOs以上に達する。
The permanent magnet material according to the present invention has a coercive force iHc≧1 k
oa, the residual magnetic flux density Br > 4 kG, and the maximum energy product (BH) max is (BH) max ≧ 108
GOe, and the maximum value reaches 25) IGOs or more.

また、この発明による永久磁石のRの主成分が、その5
0%以上を出及び円を主とする軽希土類金属が占める場
合で、R12原子%〜20原子%、B44原子〜24原
子%、F874原子%〜80原子%、を主成分とすると
き、(BH)max 35)IGOe以上のすぐれた磁
気特性を示し、特に軽希土類金属がNdの場合には、そ
の最大値が45HGOa以上に遅する。
Further, the main component of R of the permanent magnet according to the present invention is 5
In the case where 0% or more is occupied by light rare earth metals mainly composed of metals, and when the main components are R12 to 20 atom%, B44 to 24 atom%, and F874 to 80 atom%, ( BH) max 35) It exhibits excellent magnetic properties of IGOe or higher, and especially when the light rare earth metal is Nd, its maximum value is delayed to 45HGOa or higher.

また、この発明の永久磁石用合金は、結晶粒径が1〜1
100A1の範囲におる正方品系の結晶構造を有する化
合物を少なくとも50 vo1%以上と、体積比で1%
〜50%の非磁性相(酸化物相を除く)を含むことが望
ましい。
Further, the alloy for permanent magnets of this invention has a crystal grain size of 1 to 1.
At least 50 vol 1% or more of a compound having a tetragonal crystal structure in the range of 100A1, and 1% by volume
It is desirable to include ~50% non-magnetic phase (excluding oxide phase).

実施例 叉塵豊ユ 出発原料として、純度99.9%の電解鉄、B19゜4
%を含有し残部はFB及びM、 SL、 C等の不純物
からなるフェロボロン合金、純度99.7%以上の陶を
使用し、これらを配合後に高周波溶解し、その後水冷銅
鋳型に鋳造し、16.0f11に17.0B77、OF
e (原子%〉なる組成の鋳塊を得た。
Example: As a starting material, electrolytic iron with a purity of 99.9%, B19°4
A ferroboron alloy with a purity of 99.7% or more is used, and the balance is FB and impurities such as M, SL, and C. After blending, the alloy is high-frequency melted, and then cast in a water-cooled copper mold. .0f11 to 17.0B77, OF
An ingot having a composition of e (atomic %) was obtained.

その1炎インゴツトを、スタンプミルにより粗粉砕し、
次にボールミルにより粉砕し、粒度2.8AITnの微
粉末を得た。
The one-flame ingot is coarsely crushed by a stamp mill,
Next, it was pulverized using a ball mill to obtain a fine powder with a particle size of 2.8AITn.

この微粉末を金型に挿入し、15 kOaの磁界中で配
向し、磁界と垂直方向に1.2t、Jの圧力で成形した
This fine powder was inserted into a mold, oriented in a magnetic field of 15 kOa, and molded at a pressure of 1.2 t, J in a direction perpendicular to the magnetic field.

得られた成形体を、1ioo℃、 1時間、 Ar雰囲
気中の条件で焼結し、その後放冷し、ざらにAr中ので
600’C,2時間の時効処理を施して、永久磁石を作
製した。
The obtained compact was sintered at 100°C for 1 hour in an Ar atmosphere, then allowed to cool, and roughly aged in Ar at 600°C for 2 hours to produce a permanent magnet. did.

得られた永久磁石から外径20m1r+X内径10mm
X厚み1.5mm寸法に7個の試験片を切り出した。
The obtained permanent magnet has an outer diameter of 20 m1r + x inner diameter of 10 mm.
Seven test pieces were cut out to a size of 1.5 mm in thickness.

次に、真空度lXl0−5Torrの真空容器内に、上
記試験片を入れ、0.8TorrのArガス中、  4
00Vの電圧で、1分間の逆スパツタをおこなったのち
、前処理として、350℃、 30分間加熱し、300
’Cに降温した。
Next, the above test piece was placed in a vacuum container with a vacuum degree of lXl0-5 Torr, and placed in Ar gas of 0.8 Torr.
After performing reverse sputtering for 1 minute at a voltage of 00V, as a pretreatment, it was heated at 350℃ for 30 minutes and heated to 300℃.
The temperature dropped to 'C.

さらに、コーティング材料である10mmφX10mm
寸法の純度99.99%以上のN片に、0.6△、8に
■の電子ビームを30分間照射して加熱、蒸発させて試
験片に、M薄膜を真空蒸着した。永久磁石表面に形成さ
れたAfha膜厚みは、10.amであった。
Furthermore, the coating material 10mmφX10mm
An N piece with a dimensional purity of 99.99% or more was irradiated with an electron beam of 0.6 Δ, 8 x ■ for 30 minutes, heated and evaporated to vacuum deposit an M thin film on the test piece. The thickness of the Afha film formed on the surface of the permanent magnet is 10. It was am.

M薄膜を設けた試験片に、第1表に示づ゛温度条件で、
1.5時間の熱処理を施した。
The test piece provided with the M thin film was subjected to the following temperature conditions as shown in Table 1.
Heat treatment was performed for 1.5 hours.

この試験片に耐食性試験と耐食性試験後のMH膜の密着
強度試験を行なった。また、耐食性試験後の磁束の低下
率を測定した。試験結果及び測定結果を第1表に示す。
This test piece was subjected to a corrosion resistance test and an adhesion strength test of the MH film after the corrosion resistance test. In addition, the rate of decrease in magnetic flux after the corrosion resistance test was measured. The test results and measurement results are shown in Table 1.

なお試料陽4,5の場合は、熱処理後、再度、600℃
、2時間の時効処理を施してから、各試験。
In addition, in the case of samples positive 4 and 5, after heat treatment, the temperature was increased to 600℃ again.
, each test after 2 hours of aging treatment.

測定を行なった。Measurements were made.

また、比較のため、熱処理を施さない以外は、全く周一
条件で製造した試験片(陽6)と、〃薄膜を設けない切
りだしたままの試験片(陽7)の各試験片にも同一の試
験測定を行ない、試駆結果及び測定結果を第1表に合せ
て示す。
For comparison, the same test specimens were also used, including a test piece manufactured under exactly the same conditions except for no heat treatment (positive 6), and a test piece as cut without a thin film (positive 7). The test results and measurement results are shown in Table 1.

耐食性試験は、上記試験片を80℃の温度、 90%の
湿度の雰囲気に175時間放置した場合の試験片の外観
状況でもって評価した。
The corrosion resistance test was evaluated based on the appearance of the test piece when it was left in an atmosphere of 80° C. and 90% humidity for 175 hours.

また、密着強度試験は、耐食性試験後の上記試験片を、
粘着テープで1mm間隔の折目部分を引張り、薄膜層が
剥離するか否かく無剥離折目数/仝枡目数)で評価した
In addition, in the adhesion strength test, the above test piece after the corrosion resistance test was
Folds spaced at 1 mm intervals were pulled with an adhesive tape, and whether or not the thin film layer peeled was evaluated based on the number of folds without peeling/number of squares.

拡散層厚みは、X線マイクロアナライザーにより測定し
た。
The diffusion layer thickness was measured using an X-ray microanalyzer.

以下余白 第1表 第1表の試験及び測定結果に明らかなように、この発明
による耐食性気相めっき層は、熱処理による拡散雇を有
するため、永久磁石体の酸化が確実に防止されており、
磁気特性の劣化がなく、比較例に対して磁気特性の向上
が著しいことが分る。
As is clear from the test and measurement results in Table 1 below, the corrosion-resistant vapor phase plating layer according to the present invention has a diffusion effect caused by heat treatment, so oxidation of the permanent magnet body is reliably prevented.
It can be seen that there is no deterioration in magnetic properties, and the magnetic properties are significantly improved compared to the comparative example.

Claims (1)

【特許請求の範囲】[Claims]  R(RはNd、Pr、Dy、Ho)、Tbのうち少な
くとも1種あるいはさらに、La、Ce、Sm、Cd、
Er、Eu、Tm、Yb、Lu、Yのうち少なくとも1
種からなる)8原子%〜30原子%、B2原子%〜28
原子%、Fe42原子%〜90原子%を主成分とし主相
が正方晶相からなる永久磁石体表面に、気相めつき雇を
有し、かつ該気相めっき層と永久磁石体間に拡散層を生
成していることを特徴する耐食性のすぐれた永久磁石。
R (R is Nd, Pr, Dy, Ho), at least one of Tb, or furthermore, La, Ce, Sm, Cd,
At least one of Er, Eu, Tm, Yb, Lu, Y
(consisting of seeds) 8 atom% to 30 atom%, B2 atom% to 28 atom%
%, Fe42 atomic % to 90 atomic % is the main component, and the main phase is a tetragonal phase, and has a vapor phase plating layer on the surface of the permanent magnet body, and is diffused between the vapor phase plating layer and the permanent magnet body. A permanent magnet with excellent corrosion resistance, characterized by the fact that it has layers.
JP60260769A 1984-12-24 1985-11-20 Permanent magnet with excellent corrosion resistance Granted JPS62120002A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP60260769A JPS62120002A (en) 1985-11-20 1985-11-20 Permanent magnet with excellent corrosion resistance
CN85109695A CN1007847B (en) 1984-12-24 1985-12-24 Process for producing magnets having improved corrosion resistance
EP85116598A EP0190461B1 (en) 1984-12-24 1985-12-27 Process for producing permanent magnets and permanent magnet
DE8585116598T DE3584243D1 (en) 1984-12-24 1985-12-27 METHOD FOR PRODUCING PERMANENT MAGNETS AND PERMANENT MAGNET.
US06/818,238 US4837114A (en) 1984-12-24 1986-01-13 Process for producing magnets having improved corrosion resistance
US07/360,101 US5089066A (en) 1984-12-24 1989-06-01 Magnets having improved corrosion resistance
US07/740,442 US5316595A (en) 1984-12-24 1991-08-05 Process for producing magnets having improved corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60260769A JPS62120002A (en) 1985-11-20 1985-11-20 Permanent magnet with excellent corrosion resistance

Publications (2)

Publication Number Publication Date
JPS62120002A true JPS62120002A (en) 1987-06-01
JPH0569282B2 JPH0569282B2 (en) 1993-09-30

Family

ID=17352471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60260769A Granted JPS62120002A (en) 1984-12-24 1985-11-20 Permanent magnet with excellent corrosion resistance

Country Status (1)

Country Link
JP (1) JPS62120002A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63453A (en) * 1986-06-20 1988-01-05 Tohoku Metal Ind Ltd Oxidation resistant permanent magnet material and its production
JPS63230852A (en) * 1987-03-18 1988-09-27 Honda Motor Co Ltd Nd-fe-b permanent magnetic material
JPH01117303A (en) * 1987-10-30 1989-05-10 Taiyo Yuden Co Ltd Permanent magnet
JP2005294558A (en) * 2004-03-31 2005-10-20 Tdk Corp Rare earth magnet and manufacturing method thereof
EP1968080A1 (en) * 2005-12-28 2008-09-10 Hitachi Metals, Ltd. Rare earth magnet and method for producing same
JP2009054754A (en) * 2007-08-27 2009-03-12 Hitachi Metals Ltd R-fe-b based rare earth sintered magnet and manufacturing method thereof
JP2013191849A (en) * 2006-09-15 2013-09-26 Inter Metallics Kk Ndfeb sintered magnet

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63453A (en) * 1986-06-20 1988-01-05 Tohoku Metal Ind Ltd Oxidation resistant permanent magnet material and its production
JPS63230852A (en) * 1987-03-18 1988-09-27 Honda Motor Co Ltd Nd-fe-b permanent magnetic material
JPH01117303A (en) * 1987-10-30 1989-05-10 Taiyo Yuden Co Ltd Permanent magnet
JP2005294558A (en) * 2004-03-31 2005-10-20 Tdk Corp Rare earth magnet and manufacturing method thereof
EP1968080A1 (en) * 2005-12-28 2008-09-10 Hitachi Metals, Ltd. Rare earth magnet and method for producing same
EP1968080A4 (en) * 2005-12-28 2009-11-25 Hitachi Metals Ltd Rare earth magnet and method for producing same
US7655325B2 (en) 2005-12-28 2010-02-02 Hitachi Metals, Ltd. Rare earth magnet and method for producing same
JP4915349B2 (en) * 2005-12-28 2012-04-11 日立金属株式会社 Rare earth magnet and manufacturing method thereof
JP2013191849A (en) * 2006-09-15 2013-09-26 Inter Metallics Kk Ndfeb sintered magnet
JP2009054754A (en) * 2007-08-27 2009-03-12 Hitachi Metals Ltd R-fe-b based rare earth sintered magnet and manufacturing method thereof

Also Published As

Publication number Publication date
JPH0569282B2 (en) 1993-09-30

Similar Documents

Publication Publication Date Title
JPS6274048A (en) Permanent magnet material and its production
US6275130B1 (en) Corrosion-resisting permanent magnet and method for producing the same
JPS62192566A (en) Permanent magnet material and its production
JPH04328804A (en) Corrosion-proof permanent magnet and manufacture thereof
JPS62120002A (en) Permanent magnet with excellent corrosion resistance
JPH056322B2 (en)
JPS62188745A (en) Permanent magnet material and its production
JPS63217601A (en) Corrosion-resistant permanent magnet and manufacture thereof
JPS61150201A (en) Permanent magnet with excellent anticorrosion property
JPH0422007B2 (en)
JPS61281850A (en) Permanent magnet material
JPH0422008B2 (en)
JPH0529119A (en) High corrosion-resistant rare earth magnet
JP3208057B2 (en) Corrosion resistant permanent magnet
JPH0554683B2 (en)
JPS63254702A (en) Manufacture of corrosion resisting permanent magnet
JP3234306B2 (en) Corrosion resistant permanent magnet
JPH05226125A (en) Manufacture of highly corrosion-resistant rare-earth magnet
JP3652816B2 (en) Corrosion-resistant permanent magnet and method for manufacturing the same
JPS61270308A (en) Production of permanent magnet material
JP3676513B2 (en) Corrosion-resistant permanent magnet and method for manufacturing the same
JPS61166115A (en) Manufacture of permanent magnet of excellent corrosion-resisting property
JPH0682574B2 (en) Method of manufacturing permanent magnet with excellent corrosion resistance
JPS63255376A (en) Production of corrosion resistant permanent magnet
JP3411605B2 (en) Corrosion resistant permanent magnet

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term