JPH0422007B2 - - Google Patents

Info

Publication number
JPH0422007B2
JPH0422007B2 JP58171908A JP17190883A JPH0422007B2 JP H0422007 B2 JPH0422007 B2 JP H0422007B2 JP 58171908 A JP58171908 A JP 58171908A JP 17190883 A JP17190883 A JP 17190883A JP H0422007 B2 JPH0422007 B2 JP H0422007B2
Authority
JP
Japan
Prior art keywords
permanent magnet
atomic
less
atom
oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58171908A
Other languages
Japanese (ja)
Other versions
JPS6063902A (en
Inventor
Hideya Sakurai
Masato Sagawa
Tetsuharu Hayakawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP58171908A priority Critical patent/JPS6063902A/en
Publication of JPS6063902A publication Critical patent/JPS6063902A/en
Publication of JPH0422007B2 publication Critical patent/JPH0422007B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/026Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 この発明は、R(RはYを含む希土類元素のう
ち少なくとも1種)、B、Feを主成分とする永久
磁石に係り、R−Fe−B系永久磁石体表面に耐
酸化性化成被膜と樹脂層を順次被覆して耐酸化性
を改善した希土類・鉄・ボロン系永久磁石に関す
る。 従来の技術 永久磁石材料は、一般家庭の各種電気製品か
ら、大型コンピユータの周辺端末機器まで、幅広
い分野で使用される極めて重要な電気・電子材料
の一つである。近年の電気・電子機器の小形化、
高効率化の要求にともない、永久磁石材料は益々
高性能化が求められるようになつた。 現在の代表的な永久磁石材料は、アルニコ、ハ
ードフエライトおよび希土類コバルト磁石であ
る。近年のコバルトの原料事情の不安定化に伴な
い、コバルトを20〜30wt%含むアルニコ磁石の
需要は減り、鉄の酸化物を主成分とする安価なハ
ードフエライトが磁石材料の主流を占めるように
なつた。 一方、希土類コバルト磁石はコバルトを50〜
60wt%も含むうえ、希土類鉱石中にあまり含ま
れていないSmを使用するため大変高価であるが、
他の磁石に比べて、磁気特性が格段に高いため、
主として小型で付加価値の高い磁気回路に多用さ
れるようになつた。 そこで、本発明者は先に、高価なSmやCoを必
ずしも含有しない新しい高性能永久磁石としてR
−Fe−B系(RはYを含む希土類元素のうち少
なくとも1種)永久磁石を提案した(特願昭57−
145072号)。 このR−Fe−B系永久磁石は、RとしてNdや
Prを中心とする資源的に豊富な軽希土類を用い、
Feを主成分として25MGOe以上の極めて高いエ
ネルギー積を示すすぐれた永久磁石である。 発明が解決しようとする課題 しかしながら、上記のすぐれた磁気特性を有す
るR−Fe−B系永久磁石は主成分として、空気
中で酸化し次第に酸化物を生成し易い希土類元素
及び鉄を含有するため、R−Fe−B系永久磁石
を磁気回路に組込んだ場合に、磁石表面に生成す
る酸化物により、磁気回路の出力低下及び磁気回
路間のばらつきを惹起し、また、表面酸化物の脱
落による周辺機器への汚染の問題があつた。 この発明は、新規なR−Fe−B系永久磁石の
耐酸化性を改善した希土類・鉄・ボロンを主成分
とする永久磁石の提供を目的としている。 課題を解決するための手段 この発明は、 R(但しはYを含む希土類元素のうち少なくと
も1種)8原子%〜30原子%、 B2原子%〜28原子%、 Fe42原子%〜90原子%を主成分とし、 主相が正方晶相からなる永久磁石体表面に、耐
酸化性化成被膜と樹脂層を順次積層被覆してなる
ことを特徴とするR−Fe−B系永久磁石である。 作 用 この発明は、R−Fe−B系永久磁石表面に生
成する酸化物を抑制するため、該表面に強固かつ
安定な耐酸化性化成被膜を設けたのち樹脂層を積
層形成するものである。 この発明における耐酸化性化成被膜には、燐酸
亜鉛、燐酸マンガン等の燐酸塩被膜、あるいはク
ロム酸塩被膜が好ましく、耐酸化化成被膜厚み
は、燐酸塩被膜の場合は耐酸化性および強度、コ
ストの面から3μm〜10μm、クロム酸塩被膜の場
合は2μm〜5μmが好ましい。 この発明における耐酸化化成層の表面に積層す
る耐酸化性樹脂層には、エポキシ樹脂、熱硬化型
アクリル樹脂、アルキド樹脂、メラミン樹脂、シ
リコン樹脂等の塗料用合成樹脂あるいはこれら樹
脂の複合樹脂であればよく、さらに防錆、塗膜補
強改善の目的で、上記の樹脂中に、酸化亜鉛、ク
ロム酸亜鉛、鉛丹などの防錆用顔料を含有してい
てもよく、あるいはベンゾトリアゾールを含有す
るものでもよい。 この発明において、耐酸化性樹脂中に含有され
る上記の顔料は、樹脂量に対して、80%以下でよ
く、またベンゾトリアゾール量は樹脂量に対し
て、1%以下の含有でよい。 また、この発明において、永久磁石体表面に被
覆した化成被膜に塗布される耐酸化性樹脂層の被
膜方法としては、ハケ塗り法、スプレー法、浸漬
法、電着法等の一般的な塗装方法により塗布した
のち、焼き付けるものであるが、この樹脂層は
5μm以上あればよく、25μmを越えると製品の寸
法精度を得ることが困難となるため、25μm以下
の厚みが好ましい。 したがつて、この発明は、RとしてNdやPrを
中心とする資源的に豊富な軽希土類を主に用い、
Fe、B、R、を主成分とすることにより、
25MGOe以上の極めて高いエネルギー積並びに
高残留磁束密度、高保磁力を有しかつ高い耐酸化
性を有する、すぐれたR−Fe−B系永久磁石を
安価に得ることができる。 組成限定理由 以下に、この発明による永久磁石の組成限定理
由を説明する。 この発明の永久磁石に用いる希土類元素Rは、
イツトリウムYを包含し軽希土類及び重希土類を
包含する希土類元素であり、これらのうち少なく
とも1種、好ましくはNd、Pr等の軽希土類を主
体として、あるいはNd、Pr等との混合物を用い
る。 すなわち、Rとしては、 ネオジム(Nd)、プラセオジム(Pr)、 ランタン(La)、セリウム(Ce)、 テルビウム(Tb)、ジスプロシウム(Dy)、 ホルミウム(Ho)、エルビウム(Er)、 ユウロビウム(Eu)、サマリウム(Sm)、 ガドリニウム(Gd)、ツリウム(Tm)、 イツテルビウム(Yb)、ルテチウム(Lu)、 イツトリウム(Y)が包含される。 又、通例Rのうち1種をもつて足りるが、実用
上は2種以上の混合物(ミツシユメタル、ジジム
等)を入手上の便宜等の理由により用いることが
でき、Sm、Y、La、Ce、Gd等は他のR、特に
Nd、Pr等との混合物として用いることができ
る。 なお、このRは純希土類元素でなくてもよく、
工業上入手可能な範囲で製造上不可避な不純物を
含有するものでも差支えない。 Rは、新規なR−Fe−B系永久磁石における
必須元素であつて、8原子%未満では結晶構造が
α−鉄と同一構造の立方晶組織となるため高磁気
特性、特に高保磁力が得られず、30原子%を越え
るとRリツチな非磁性相が多くなり、残留磁束密
度Brが低下してすぐれた特性の永久磁石が得ら
れない。よつて、Rは8原子%〜30原子%の範囲
とする。 Bは、新規なR−Fe−B系永久磁石における
必須元素であつて、2原子%未満では菱面体組織
となり高い保磁力(iHc)は得られず、28原子%
を越えるとBリツチな非磁性相が多くなり、残留
磁束密度Brが低下するためすぐれた永久磁石が
得られない。よつて、Bは2原子%〜28原子%の
範囲とする。 Feは、新規なR−Fe−B系永久磁石において
必須元素であり、42原子%未満では残留磁束密度
Brが低下し、90原子%を越えると高い保磁力が
得られないので、Feは42原子%〜90原子%の含
有とする。 また、この発明による永久磁石用合金におい
て、Feの一部をCoで置換することは、得られる
磁石の磁気特性を損うことなく温度特性を改善す
ることができるが、Co置換量がFeの50%を越え
ると、逆に磁気特性が劣化するため、好ましくな
い。 また、この発明による永久磁石は、R、B、
Feの他、工業的生産上不可避的不純物の存在を
許容できるが、FeまたはBの一部を4.0原子%以
下のC、3.5原子%以下のP、2.5原子%以下の
S、3.5原子%以下のCuのうち少なくとも1種、
合計量で4.0原子%以下で置換することにより、
永久磁石の製造性改善、低価格化が可能である。 また、下記添加元素のうち少なくとも1種は、
R−Fe−B系永久磁石に対してその保磁力等を
改善あるいは製造性の改善、低価格化に効果があ
るため添加する。 しかし、保磁力改善のための添加に伴ない残留
磁束密度Brの低下を招来するので、従来のハー
ドフエライト磁石の残留磁束密度と同等以上とな
る範囲での添加が望ましい。 9.5原子%以下のAl、4.5原子%以下のTi、 9.5原子%以下のV、8.5原子%以下のCr、 8.0原子%以下のMn、5原子%以下のBi、 12.5原子%以下のNb、10.5原子%以下のTa、 9.5原子%以下のMo、9.5原子%以下のW、 2.5原子%以下のSb、7原子%以下のGe、 3.5原子%以下のSn、5.5原子%以下のZr、 5.5原子%以下のHfのうち少なくとも1種を添
加含有、但し、2種以上含有する場合は、その最
大含有量は当該添加元素のうち最大値を有するも
のの原子百分比%以下の含有させることにより、
永久磁石の高保磁力化が可能になる。 この発明のR−Fe−B系永久磁石において、
結晶相は主相が正方晶であることが不可欠であ
り、微細で均一な合金粉末を得て、すぐれた磁気
特性を有する焼結永久磁石を作製するのに効果的
である。 また、この発明の永久磁石用合金は、体積比で
1%〜50%の非磁性相(酸化物相を除く)を含む
ことを特徴とし、焼結磁石の場合には粒径が1〜
100μmの範囲にある正方晶系の結晶構造を有す
る化合物を主相とする。 また、この発明のR−Fe−B永久磁石は、磁
場中プレス成型することにより磁気的異方性磁石
が得られ、また、無磁界中でプレス成型すること
により、磁気的等方性磁石を得ることができる。 永久磁石特性 この発明によるR−Fe−B系永久磁石は、保
磁力iHc≧1kOe、残留磁束密度Br≧4kGを示し、
最大エネルギー積(BH)maxはハードフエライ
トと同等以上となり、最も好ましい組成範囲で
は、(BH)max≧10MGOeを示し、最大値は
25MGOe以上に達する。 また、この発明による永久磁石の組成におい
て、Rの主成分がその50%以上を軽希土類金属が
占める場合で、R12原子%〜20原子%、B4原子
%〜24原子%、Fe65原子%〜82原子%を主成分
とするとき、焼結磁石の場合に最もすぐれた磁気
特性を示し、特に軽希土類金属がNdの場合には、
(BH)maxはその最大値が33MGOe以上に達す
る。 実施例 以下に、この発明による実施例を示しその効果
を明らかにする。 出発原料として、純度99.9%の電解鉄、B19.4
%を含有し残部はFe及びAl5.3%、Si0.7%、
C0.03%等の不純物からなるフエロボロン合金、
純度99.7%以上のNdを使用し、これらを高周波
溶解したのち水冷銅鋳型に鋳造した。なお、上記
組成はwt%で示す。 その後インゴツトを、スタンプミルにより35メ
ツシユスルーまでに粗粉砕し、次にボールミルに
より3時間粉砕して粒度3〜10μmの微粉末を得
た。 この微粉末を金型に挿入し、10kOeの磁界中で
配向し、1.5t/cm2の圧力で成形した。 得られた成形体を、1100℃、1時間、Ar中の
条件で焼結し、その後放冷し、さらにAr中で600
℃、2時間の時効処理を施して、この発明による
永久磁石を作製した。 このときの成分組成は、14Nd−8.5B−77.5Fe
であつた。 得られた永久磁石から15mm×10mm×6mm寸法に
試験片を切り出し、第1表に示すように、各試験
片を脱脂、酸洗後、下記条件の燐酸塩処理A、燐
酸塩処理B、およびクロム酸鉛処理Cを行ない、
その後に各試験片を第1表に示す塗料並びに塗膜
条件で処理した。樹脂塗膜後の各試験片の被膜厚
み、磁気特性、耐酸化性、接着強度、寸法精度を
測定した。測定結果は第2表に示す。
Industrial Application Field This invention relates to a permanent magnet whose main components are R (R is at least one rare earth element including Y), B, and Fe, and the surface of the R-Fe-B permanent magnet is acid-resistant. This invention relates to rare earth/iron/boron based permanent magnets that have improved oxidation resistance by sequentially coating with a chemical conversion film and a resin layer. BACKGROUND ART Permanent magnetic materials are one of the extremely important electrical and electronic materials used in a wide range of fields, from various household appliances to peripheral terminal equipment for large computers. The miniaturization of electrical and electronic equipment in recent years,
With the demand for higher efficiency, permanent magnet materials are required to have increasingly higher performance. Current typical permanent magnet materials are alnico, hard ferrite and rare earth cobalt magnets. As the cobalt raw material situation has become unstable in recent years, the demand for alnico magnets containing 20 to 30 wt% cobalt has decreased, and inexpensive hard ferrite, whose main component is iron oxide, has become the mainstream magnet material. Summer. On the other hand, rare earth cobalt magnets contain cobalt from 50 to
It is very expensive because it contains 60wt% and uses Sm, which is not included in rare earth ores.
Compared to other magnets, the magnetic properties are much higher,
It has come to be used mainly for small, high value-added magnetic circuits. Therefore, the present inventor first developed R as a new high-performance permanent magnet that does not necessarily contain expensive Sm or Co.
-Proposed a permanent magnet of Fe-B system (R is at least one rare earth element including Y) (Patent application 1983-
No. 145072). In this R-Fe-B permanent magnet, R is Nd or
Using resource-rich light rare earths, mainly Pr,
It is an excellent permanent magnet that has Fe as its main component and exhibits an extremely high energy product of over 25 MGOe. Problems to be Solved by the Invention However, the R-Fe-B permanent magnets having the above-mentioned excellent magnetic properties contain rare earth elements and iron, which tend to oxidize in the air and gradually form oxides. When an R-Fe-B permanent magnet is incorporated into a magnetic circuit, oxides generated on the magnet surface cause a decrease in the output of the magnetic circuit and variations between the magnetic circuits, and the surface oxide may fall off. There was a problem of contamination of peripheral equipment due to The object of the present invention is to provide a novel R-Fe-B permanent magnet with improved oxidation resistance and whose main components are rare earth elements, iron, and boron. Means for Solving the Problems This invention contains R (at least one rare earth element including Y) from 8 atomic% to 30 atomic%, B2 atomic% to 28 atomic%, and Fe42 atomic% to 90 atomic%. This is an R-Fe-B permanent magnet characterized in that the surface of a permanent magnet whose main component is a tetragonal phase is coated with an oxidation-resistant chemical coating and a resin layer in this order. Effect: In order to suppress oxides generated on the surface of an R-Fe-B permanent magnet, this invention provides a strong and stable oxidation-resistant chemical conversion coating on the surface, and then forms a resin layer in a laminated manner. . The oxidation-resistant chemical conversion coating in this invention is preferably a phosphate coating such as zinc phosphate or manganese phosphate, or a chromate coating. 3 μm to 10 μm from the surface, preferably 2 μm to 5 μm in the case of a chromate coating. The oxidation-resistant resin layer laminated on the surface of the oxidation-resistant chemical coating in this invention is made of synthetic resins for paints such as epoxy resins, thermosetting acrylic resins, alkyd resins, melamine resins, and silicone resins, or composite resins of these resins. In addition, for the purpose of rust prevention and improving paint film reinforcement, the above resin may contain rust preventive pigments such as zinc oxide, zinc chromate, red lead, or benzotriazole. It may be something you do. In this invention, the above-mentioned pigment contained in the oxidation-resistant resin may be contained in an amount of 80% or less based on the amount of the resin, and the amount of benzotriazole may be contained in an amount of 1% or less based on the amount of the resin. In addition, in this invention, as a coating method for the oxidation-resistant resin layer applied to the chemical conversion coating coated on the surface of the permanent magnet, general coating methods such as brush coating, spraying, dipping, and electrodeposition are used. This resin layer is applied by baking and then baked.
It is sufficient that the thickness is 5 μm or more; if it exceeds 25 μm, it becomes difficult to obtain dimensional accuracy of the product, so a thickness of 25 μm or less is preferable. Therefore, this invention mainly uses resource-rich light rare earths, mainly Nd and Pr, as R.
By using Fe, B, and R as the main components,
An excellent R-Fe-B permanent magnet having an extremely high energy product of 25 MGOe or more, high residual magnetic flux density, high coercive force, and high oxidation resistance can be obtained at a low cost. Reasons for limiting the composition The reasons for limiting the composition of the permanent magnet according to the present invention will be explained below. The rare earth element R used in the permanent magnet of this invention is
It is a rare earth element that includes yttrium Y, light rare earth elements, and heavy rare earth elements, and at least one of these elements, preferably a light rare earth element such as Nd or Pr, or a mixture with Nd, Pr, etc. is used. That is, R includes neodymium (Nd), praseodymium (Pr), lanthanum (La), cerium (Ce), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), and eurobium (Eu). , samarium (Sm), gadolinium (Gd), thulium (Tm), ytterbium (Yb), lutetium (Lu), and yttrium (Y). In addition, it is usually sufficient to have one type of R, but in practice, a mixture of two or more types (Mitsushimetal, didymium, etc.) can be used for reasons such as availability, Sm, Y, La, Ce, Gd etc. are other R, especially
It can be used as a mixture with Nd, Pr, etc. Note that this R may not be a pure rare earth element,
It may contain impurities that are unavoidable during production within an industrially available range. R is an essential element in new R-Fe-B permanent magnets, and if it is less than 8 atomic %, the crystal structure becomes cubic, which is the same structure as α-iron, resulting in high magnetic properties, especially high coercive force. If it exceeds 30 atomic %, the R-rich nonmagnetic phase increases, the residual magnetic flux density Br decreases, and a permanent magnet with excellent characteristics cannot be obtained. Therefore, R should be in the range of 8 atomic % to 30 atomic %. B is an essential element in the new R-Fe-B permanent magnet, and if it is less than 2 atom%, it will form a rhombohedral structure and high coercive force (iHc) cannot be obtained;
If it exceeds Br, the amount of B-rich nonmagnetic phase increases and the residual magnetic flux density Br decreases, making it impossible to obtain an excellent permanent magnet. Therefore, B should be in the range of 2 atomic % to 28 atomic %. Fe is an essential element in new R-Fe-B permanent magnets, and if it is less than 42 at%, the residual magnetic flux density
If Br decreases and exceeds 90 atomic %, high coercive force cannot be obtained, so Fe is contained in a range of 42 atomic % to 90 atomic %. In addition, in the alloy for permanent magnets according to the present invention, replacing a portion of Fe with Co can improve the temperature characteristics without impairing the magnetic properties of the resulting magnet, but the amount of Co substitution is If it exceeds 50%, the magnetic properties will deteriorate, which is not preferable. Further, the permanent magnet according to the present invention has R, B,
In addition to Fe, the presence of unavoidable impurities in industrial production can be tolerated, but a portion of Fe or B can be replaced with 4.0 atomic% or less C, 3.5 atomic% or less P, 2.5 atomic% or less S, 3.5 atomic% or less At least one type of Cu,
By substituting a total amount of 4.0 at% or less,
It is possible to improve the manufacturability and lower the cost of permanent magnets. In addition, at least one of the following additional elements is
It is added to R-Fe-B permanent magnets because it is effective in improving coercive force, etc., improving manufacturability, and reducing costs. However, addition to improve coercive force causes a decrease in residual magnetic flux density Br, so it is desirable to add in a range that is equal to or higher than the residual magnetic flux density of conventional hard ferrite magnets. Al less than 9.5 atom%, Ti less than 4.5 atom%, V less than 9.5 atom%, Cr less than 8.5 atom%, Mn less than 8.0 atom%, Bi less than 5 atom%, Nb less than 12.5 atom%, 10.5 Ta less than 9.5 atom%, Mo less than 9.5 atom%, W less than 9.5 atom%, Sb less than 2.5 atom%, Ge less than 7 atom%, Sn less than 3.5 atom%, Zr less than 5.5 atom%, 5.5 atom % or less of Hf.However, if two or more types are contained, the maximum content is less than the atomic percentage of the element having the maximum value among the added elements.
It becomes possible to increase the coercive force of permanent magnets. In the R-Fe-B permanent magnet of this invention,
It is essential that the main crystalline phase be tetragonal, which is effective in obtaining a fine and uniform alloy powder and producing a sintered permanent magnet with excellent magnetic properties. Further, the alloy for permanent magnets of the present invention is characterized by containing a non-magnetic phase (excluding oxide phase) of 1% to 50% by volume, and in the case of a sintered magnet, the particle size is 1 to 50%.
The main phase is a compound with a tetragonal crystal structure in the range of 100 μm. Furthermore, the R-Fe-B permanent magnet of the present invention can be press-molded in a magnetic field to obtain a magnetically anisotropic magnet, and press-molded in a no-magnetic field to obtain a magnetically isotropic magnet. Obtainable. Permanent Magnet Characteristics The R-Fe-B permanent magnet according to the present invention exhibits a coercive force iHc≧1kOe, a residual magnetic flux density Br≧4kG,
The maximum energy product (BH)max is equal to or higher than that of hard ferrite, and in the most preferable composition range, (BH)max≧10MGOe, and the maximum value is
Reach over 25MGOe. In addition, in the composition of the permanent magnet according to the present invention, when the main component of R is 50% or more of light rare earth metals, R12 atomic% to 20 atomic%, B4 atomic% to 24 atomic%, Fe65 atomic% to 82 atomic%. When the main component is Nd, sintered magnets exhibit the best magnetic properties, especially when the light rare earth metal is Nd.
(BH)max reaches its maximum value of 33MGOe or more. Examples Examples according to the present invention will be shown below to clarify its effects. As a starting material, electrolytic iron with a purity of 99.9%, B19.4
%, the balance is Fe and Al5.3%, Si0.7%,
Feroboron alloy consisting of impurities such as C0.03%,
Nd with a purity of 99.7% or higher was used, and after being high-frequency melted, it was cast into a water-cooled copper mold. Note that the above composition is expressed in wt%. Thereafter, the ingot was coarsely ground with a stamp mill to a throughput of 35 meshes, and then ground with a ball mill for 3 hours to obtain a fine powder with a particle size of 3 to 10 μm. This fine powder was inserted into a mold, oriented in a magnetic field of 10 kOe, and molded under a pressure of 1.5 t/cm 2 . The obtained compact was sintered at 1100°C for 1 hour in Ar, then allowed to cool, and then sintered in Ar for 600°C.
A permanent magnet according to the present invention was produced by subjecting it to an aging treatment at ℃ for 2 hours. The composition at this time is 14Nd−8.5B−77.5Fe
It was hot. A test piece was cut out from the obtained permanent magnet into a size of 15 mm x 10 mm x 6 mm, and as shown in Table 1, each test piece was degreased, pickled, and then subjected to phosphate treatment A, phosphate treatment B, and phosphate treatment under the following conditions. Perform lead chromate treatment C,
Thereafter, each test piece was treated with the paint and coating conditions shown in Table 1. The coating thickness, magnetic properties, oxidation resistance, adhesive strength, and dimensional accuracy of each test piece after resin coating were measured. The measurement results are shown in Table 2.

【表】【table】

【表】【table】

【表】 耐酸化性試験は、上記試験片を60℃の温度、90
%の湿度の雰囲気に3日間放置した場合の試験片
の酸化増量をもつて評価した。 接着強度試験は、化成処理後に塗膜処理した上
記試験片を、保持板にアラルダイトAW−106(商
品名)なる接着剤で接着した後、試験片にアムス
ラー試験機により剪断力を加えて、単位面積当り
の接着強度を測定した。 寸法精度は、塗膜処理後の試験片の寸法を測定
し、その(最大値)−(最小値)=Rを以て表す。 また、比較のため、本発明の実施例と同一成分
の試験片を化成処理及び塗膜処理の積層処理する
ことなく、酸化試験として上記と同一の60℃、湿
度90%の雰囲気中に、1日間、2目間、3日間放
置した場合の各試料の酸化増量及び酸化膜厚(最
大酸化膜厚値)で評価し、第3表に示す。
[Table] In the oxidation resistance test, the above specimen was heated at 60°C and 90°C.
The test piece was evaluated based on the oxidation weight increase when the test piece was left in an atmosphere with a humidity of 30% for 3 days. In the adhesive strength test, the above test piece, which has been treated with a coating film after chemical conversion treatment, is adhered to a holding plate using an adhesive called Araldite AW-106 (trade name), and then a shearing force is applied to the test piece using an Amsler tester. The adhesive strength per area was measured. Dimensional accuracy is measured by measuring the dimensions of the test piece after coating treatment, and is expressed as (maximum value) - (minimum value) = R. For comparison, a test piece with the same components as the example of the present invention was subjected to an oxidation test in the same atmosphere at 60°C and 90% humidity as above, without being subjected to chemical conversion treatment or lamination treatment of coating film treatment. The oxidation weight gain and oxide film thickness (maximum oxide film thickness value) of each sample when left for 1 day, 2 days, and 3 days were evaluated, and the results are shown in Table 3.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 発明の効果 実施例より明らかなように、比較の無処理試料
は短期間の酸化試験で、磁石合金の表面に酸化被
膜が生成し、時間の経過とともに酸化が内部に進
行し、その結果、磁気特性が劣化したことを確認
した。また、磁気回路に組込まれた比較例磁石の
酸化に伴なう酸化被膜の増大は、磁気回路の空〓
を益々狭くし、最終的には前記空〓部は0とな
り、磁気回路の出力低下、さらには作動困難を来
たすこととなる。 これに対して、この発明によるR−Fe−B系
永久磁石は、接着強度の高い耐酸化性化成被膜と
樹脂層を有するため、第2表に示す如く、耐酸化
性にすぐれていることが明らかである。従つて、
この発明による耐酸化性化成被膜と樹脂層を有す
るR−Fe−B系永久磁石を磁気回路等に組込ん
だ場合に出力特性の安定化及び信頼性の向上にき
わめて有効である。
[Table] Effects of the invention As is clear from the examples, an oxide film was formed on the surface of the magnet alloy in the comparative untreated sample during the short-term oxidation test, and oxidation progressed inside as time progressed. As a result, it was confirmed that the magnetic properties had deteriorated. In addition, the increase in the oxide film due to oxidation of the comparative example magnet incorporated in the magnetic circuit is caused by
becomes narrower and narrower, and eventually the void becomes zero, resulting in a decrease in the output of the magnetic circuit and further causing difficulty in operation. On the other hand, the R-Fe-B permanent magnet according to the present invention has an oxidation-resistant chemical coating with high adhesive strength and a resin layer, so it has excellent oxidation resistance as shown in Table 2. it is obvious. Therefore,
When the R-Fe-B permanent magnet having an oxidation-resistant chemical conversion coating and a resin layer according to the present invention is incorporated into a magnetic circuit or the like, it is extremely effective in stabilizing output characteristics and improving reliability.

Claims (1)

【特許請求の範囲】 1 R(但しRはYを含む希土類元素のうち少な
くとも1種)8原子%〜30原子%、 B2原子%〜28原子%、 Fe42原子%〜90原子%を主成分とし、 主相が正方晶相からなる永久磁石体表面に耐酸
化性化成被膜と樹脂層を順次積層被覆してなるこ
とを特徴とする永久磁石。
[Claims] 1 R (wherein R is at least one rare earth element including Y) 8 to 30 atom%, B2 to 28 atom%, and Fe42 to 90 atom% as main components , A permanent magnet characterized in that the surface of a permanent magnet whose main phase is a tetragonal phase is coated with an oxidation-resistant chemical coating and a resin layer in sequence.
JP58171908A 1983-09-17 1983-09-17 Permanent magnet superior in resistance to oxidation Granted JPS6063902A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58171908A JPS6063902A (en) 1983-09-17 1983-09-17 Permanent magnet superior in resistance to oxidation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58171908A JPS6063902A (en) 1983-09-17 1983-09-17 Permanent magnet superior in resistance to oxidation

Publications (2)

Publication Number Publication Date
JPS6063902A JPS6063902A (en) 1985-04-12
JPH0422007B2 true JPH0422007B2 (en) 1992-04-15

Family

ID=15932053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58171908A Granted JPS6063902A (en) 1983-09-17 1983-09-17 Permanent magnet superior in resistance to oxidation

Country Status (1)

Country Link
JP (1) JPS6063902A (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3789829T2 (en) * 1986-06-06 1994-09-01 Seiko Instr Inc Rare earth iron magnet and manufacturing process.
US4935080A (en) * 1988-01-29 1990-06-19 Kollmorgen Corporation Protection and bonding of neodymium-boron-iron magnets used in the formation of magnet assemblies
JPH079846B2 (en) * 1989-02-09 1995-02-01 日立金属株式会社 Permanent magnet having good corrosion resistance and method for producing the same
JP2844270B2 (en) * 1991-05-11 1999-01-06 住友特殊金属株式会社 Permanent magnet with excellent corrosion resistance
JP3208057B2 (en) * 1996-02-16 2001-09-10 住友特殊金属株式会社 Corrosion resistant permanent magnet
JP4678118B2 (en) * 2000-07-17 2011-04-27 日立金属株式会社 Coated R-T-B magnet and method for manufacturing the same
WO2005093766A1 (en) 2004-03-26 2005-10-06 Tdk Corporation Rare earth magnet, method for producing same and method for producing multilayer body
WO2005096326A1 (en) 2004-03-31 2005-10-13 Tdk Corporation Rare earth magnet and method for manufacturing same
JP4582501B2 (en) * 2004-11-30 2010-11-17 Tdk株式会社 Small ring magnet, manufacturing method thereof, and moving magnet type motor using the same
JP4972975B2 (en) * 2005-03-29 2012-07-11 Tdk株式会社 Rare earth magnet and manufacturing method thereof
JP2019096868A (en) * 2017-11-24 2019-06-20 Tdk株式会社 Magnet and motor using the same

Also Published As

Publication number Publication date
JPS6063902A (en) 1985-04-12

Similar Documents

Publication Publication Date Title
JPH0374012B2 (en)
EP0134305B2 (en) Permanent magnet
EP0134304B1 (en) Permanent magnets
JP2844269B2 (en) Corrosion resistant permanent magnet and method for producing the same
JPH056322B2 (en)
JPH0422007B2 (en)
JPH053722B2 (en)
JPH0422010B2 (en)
JP2791659B2 (en) Manufacturing method of corrosion resistant permanent magnet
JPH0422008B2 (en)
JP2610798B2 (en) Permanent magnet material
JPH0569282B2 (en)
JP3108400B2 (en) Permanent magnet with excellent corrosion resistance
JPH0422006B2 (en)
JP3208057B2 (en) Corrosion resistant permanent magnet
JPH0445573B2 (en)
JPH0536495B2 (en)
JPH0554683B2 (en)
JPH0752685B2 (en) Corrosion resistant permanent magnet
JPH0346963B2 (en)
JPH0536494B2 (en)
JP3234306B2 (en) Corrosion resistant permanent magnet
JPH089752B2 (en) Method for manufacturing R1R2FeCoB-based permanent magnet
JPS6377104A (en) Rare-earth magnet excellent in corrosion resistance
JPH0644523B2 (en) Permanent magnet having excellent corrosion resistance and method of manufacturing the same