JP2844269B2 - Corrosion resistant permanent magnet and method for producing the same - Google Patents
Corrosion resistant permanent magnet and method for producing the sameInfo
- Publication number
- JP2844269B2 JP2844269B2 JP3124870A JP12487091A JP2844269B2 JP 2844269 B2 JP2844269 B2 JP 2844269B2 JP 3124870 A JP3124870 A JP 3124870A JP 12487091 A JP12487091 A JP 12487091A JP 2844269 B2 JP2844269 B2 JP 2844269B2
- Authority
- JP
- Japan
- Prior art keywords
- permanent magnet
- phase
- magnet
- tetragonal
- atomic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0253—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
- H01F41/026—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Environmental & Geological Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Hard Magnetic Materials (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
Description
【0001】[0001]
【産業上の利用分野】この発明は、高磁気特性を有しか
つ耐食性にすぐれたFe−B−R系永久磁石に係り、研
削加工後に熱処理を施し、磁石表面を水分に対して安定
な化合物に変化させ、耐食性を著しく向上させたFe−
B−R系永久磁石とその製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Fe-BR permanent magnet having high magnetic properties and excellent corrosion resistance, which is subjected to heat treatment after grinding to make the surface of the magnet stable against moisture. To the Fe-
The present invention relates to a BR permanent magnet and a method for manufacturing the same.
【0002】[0002]
【従来の技術】今日、高性能永久磁石として代表的なF
e−B−R系永久磁石(特開昭59−46008号)
は、三元系正方晶化合物の主相とRリッチ相を有する組
織にて高磁石特性を発現し、iHcが25kOe以上、
(BH)maxが45MGOe以上と従来の高性能希土
類コバルト磁石と比較しても、格段に高い高性能を発揮
する。また、用途に応じ、選定された種々の磁石特性を
発揮するよう、種々組成のFe−B−R系永久磁石が提
案されている。2. Description of the Related Art Today, F is a typical high-performance permanent magnet.
e-B-R Permanent Magnet (JP-A-59-46008)
Exhibits high magnet properties in a structure having a main phase of a ternary tetragonal compound and an R-rich phase, iHc of 25 kOe or more,
(BH) max is not less than 45 MGOe, exhibiting a remarkably high performance even when compared with conventional high performance rare earth cobalt magnets. Further, Fe-BR-based permanent magnets of various compositions have been proposed so as to exhibit various magnet properties selected according to applications.
【0003】しかしながら、上記のすぐれた磁気特性を
有するFe−B−R系永久磁石は主成分として、空気中
で酸化あるいは水酸化し次第に酸化物あるいは水酸化物
を生成し易い希土類元素及び鉄を含有するため、Fe−
B−R系永久磁石を磁気回路に組込んだ場合に磁石表面
に生成する酸化物あるいは水酸化物により、磁気回路の
出力低下及び磁気回路間の磁性のばらつきを惹起し、ま
た、表面に生成した酸化物の脱落による周辺機器への汚
染の問題があった。[0003] However, the Fe-BR-based permanent magnet having the excellent magnetic properties described above is mainly composed of a rare earth element and iron, which are easily oxidized or hydroxylated in the air to produce oxides or hydroxides gradually. Fe-
Oxide or hydroxide generated on the magnet surface when a BR permanent magnet is incorporated into a magnetic circuit causes a reduction in the output of the magnetic circuit and a variation in magnetism between the magnetic circuits, and also causes the generation on the surface. There is a problem of contamination of peripheral devices due to the dropout of the oxides.
【0004】そこで、上記のFe−B−R系永久磁石の
耐食性の改善のため、磁石体表面に無電解めっき法ある
いは電解めっき法により耐食性金属めっき層を被覆した
り、耐食性樹脂を浸漬法や塗布法にてコーティングした
り、気相成膜法にてAl等の耐食性金属、合金被膜を形
成したり、耐食性金属薄片を含む樹脂層を被着形成した
り、異種の耐食性被膜を積層形成するなどの耐食性被膜
を設ける技術が提案された。Therefore, in order to improve the corrosion resistance of the above-mentioned Fe-BR permanent magnet, the surface of the magnet body is coated with a corrosion-resistant metal plating layer by an electroless plating method or an electrolytic plating method, or a corrosion-resistant resin is immersed. Coating by a coating method, forming a corrosion resistant metal or alloy film such as Al by a vapor phase film forming method, forming a resin layer containing a corrosion resistant metal flake, or laminating different kinds of corrosion resistant films. A technique for providing a corrosion-resistant coating such as the above has been proposed.
【0005】[0005]
【発明が解決しようとする課題】無電解めっき法あるい
は電解めっき法は、酸性あるいはアルカリ性溶液中で処
理する為、磁石表面が腐食され磁気特性の劣化およびば
らつきを生じるばかりでなく、めっき被膜にピンホール
が存在するため、塩水噴霧テストなどの過酷な試験に対
しては十分な耐食性が得られない。In the electroless plating method or the electrolytic plating method, the treatment is carried out in an acidic or alkaline solution, so that the magnet surface is not only corroded to cause deterioration and variation in magnetic characteristics, but also a pin is formed on the plating film. Due to the presence of holes, sufficient corrosion resistance cannot be obtained for severe tests such as a salt spray test.
【0006】一方、耐食性樹脂を浸漬法や塗布法あるい
は電着法でコーティングした場合、ピンホールは存在し
ないが、樹脂被膜の透水率が金属被膜と比較して大きい
ため十分な耐食性が得られない問題があった。On the other hand, when a corrosion resistant resin is coated by a dipping method, a coating method, or an electrodeposition method, no pinholes exist, but sufficient corrosion resistance cannot be obtained because the water permeability of the resin film is larger than that of a metal film. There was a problem.
【0007】この発明は、Fe−B−R系永久磁石の耐
食性の向上を目的とし、特に樹脂塗装を施したFe−B
−R系永久磁石の耐食性を向上させるだけでなく、樹脂
塗装被膜の薄膜化を行い表面処理時間などの削減が可能
な耐食性Fe−B−R系永久磁石の提供を目的としてい
る。SUMMARY OF THE INVENTION The present invention aims at improving the corrosion resistance of Fe-BR based permanent magnets,
It is an object of the present invention to provide a corrosion-resistant Fe-BR-based permanent magnet capable of not only improving the corrosion resistance of a -R permanent magnet but also reducing the surface treatment time by reducing the thickness of a resin coating film.
【0008】[0008]
【課題を解決するための手段】この発明は、R10〜3
0原子%、B2〜28原子%、Fe65〜80原子%を
主成分として主相が正方晶相からなり、磁石体表面に露
出する正方晶相の表層にα−Fe、その外側にFeO、
次にFe3O4、最外層にα−Fe2O3が順次形成され、
露出する正方晶の粒界相はR2O3(Hexagona
l)相からなる厚さ1〜20μmの表面層を有するか、
あるいはさらにこの磁石体表面に耐酸化性樹脂層を有す
ることを特徴とする耐食性永久磁石である。According to the present invention, R10-3
The main phase is composed of a tetragonal phase containing 0 atomic%, B2 to 28 atomic% and Fe65 to 80 atomic% as main components, and α-Fe is formed on the surface of the tetragonal phase exposed on the surface of the magnet body, and FeO is formed on the outside thereof.
Next, Fe 3 O 4 and α-Fe 2 O 3 are sequentially formed in the outermost layer,
The exposed tetragonal grain boundary phase is R 2 O 3 (Hexagona).
1) having a surface layer having a thickness of 1 to 20 μm comprising a phase ,
Alternatively, the magnet body has an oxidation-resistant resin layer on the surface.
A corrosion-resistant permanent magnet, characterized in that that.
【0009】また、この発明は、R10〜30原子%、
B2〜28原子%、Fe65〜80原子%を主成分とす
るFe−B−R系永久磁石の製造方法において、磁石体
の研削加工後、真空中あるいは不活性ガス中で時効処理
した後、大気中あるいは酸素濃度0.1vol%以上の
酸化性雰囲気中で200〜350℃にて15分〜12時
間熱処理することにより、磁石体表面に露出する正方晶
相の表層にα−Fe、その外側にFeO、次にFe
3 O 4 、最外層にα−Fe 2 O 3 が順次形成され、露出する
正方晶の粒界相はR 2 O 3 (Hexagonal)相から
なる厚さ1〜20μmの表面層を有する耐食性永久磁石
を得るか、あるいはさらにこの磁石体表面に耐酸化性樹
脂層を被覆形成して耐食性永久磁石を得ることを特徴と
する耐食性永久磁石の製造方法である。Further, the present invention provides a method for producing a compound comprising:
B-28 at%, Fe 65-80 at% as main components
In a method of manufacturing an Fe-BR based permanent magnet,
After grinding, aging treatment in vacuum or inert gas
After that, in the atmosphere or oxygen concentration 0.1 vol% or more
15 minutes to 12:00 at 200 to 350 ° C in an oxidizing atmosphere
Heat treatment duringThe tetragonal crystal exposed on the magnet body surface
Α-Fe on the surface of the phase, FeO on the outside, then Fe
Three O Four , The outermost layer is α-Fe Two O Three Are sequentially formed and exposed
The tetragonal grain boundary phase is R Two O Three (Hexagonal) phase
Corrosion-resistant permanent magnet having a surface layer having a thickness of 1 to 20 μm
Or an oxidation-resistant resin
Obtain a corrosion-resistant permanent magnet by coating a grease layerIt is characterized by
This is a method for producing a corrosion-resistant permanent magnet.
【0010】[0010]
【作用】この発明は、Fe−B−R系永久磁石の耐食性
ならびに表面処理後の耐食性を向上させることを目的に
種々検討した結果、得られた磁石体を研削加工したの
ち、真空中あるいは不活性雰囲気中で時効処理を行った
後、大気中あるいは酸素濃度0.1vol%以上の酸化
性雰囲気中で熱処理することにより、磁石体表面に露出
する正方晶相の表層にα−Fe、その外側にFeO、F
e3O4、最外層にα−Fe2O3が形成され、露出する正
方晶の粒界相がR2O3(Hexagonal)に変化し
磁石表面が不動態化され、磁石体自体の耐食性が向上す
るだけでなく、耐酸化性樹脂を表面処理した後の耐食性
も向上することを知見し、この発明を完成したものであ
る。The present invention has been studied in order to improve the corrosion resistance of Fe-BR permanent magnets and the corrosion resistance after surface treatment. After aging treatment in an active atmosphere, heat treatment is performed in the air or in an oxidizing atmosphere having an oxygen concentration of 0.1 vol% or more, so that the surface layer of the tetragonal phase exposed on the surface of the magnet body has α-Fe, FeO, F
e 3 O 4 , α-Fe 2 O 3 is formed in the outermost layer, the exposed tetragonal grain boundary phase changes to R 2 O 3 (Hexagonal), the magnet surface is passivated, and the corrosion resistance of the magnet body itself The present invention has been found not only to improve the corrosion resistance, but also to improve the corrosion resistance after the surface treatment of the oxidation-resistant resin.
【0011】この発明によるFe−B−R系永久磁石
は、主相が正方晶相からなり、熱処理により磁石体表面
に露出する正方晶相の表層にα−Fe、その外側にFe
O、Fe3O4、最外層にα−Fe2O3を形成し、露出す
る正方晶の粒界相をR2O3(Hexagonal)相と
なしたことを特徴とするが、表面に露出する正方晶の表
層に設ける特定の4層及び露出する正方晶の粒界相の総
厚みは、耐食性の向上効果を得るために少なくとも1μ
m以上の厚みが必要である。また、α−Fe、FeO、
Fe3O4、α−Fe2O3の厚みは1〜10μm厚みが好
ましく、粒界相に生成させるR2O3(Hexagona
l)相の厚みは1〜20μm厚みが好ましい。磁石体表
面の表面層の厚みを1〜20μmに限定した理由は、1
μm未満では耐食性の向上効果が不十分であり、20μ
mを越えると表面層の磁性が失われ磁気特性が劣化する
ためである。In the Fe-BR-based permanent magnet according to the present invention, the main phase consists of a tetragonal phase, α-Fe is exposed on the surface of the tetragonal phase exposed on the surface of the magnet body by heat treatment, and Fe is
O, Fe 3 O 4 , α-Fe 2 O 3 formed in the outermost layer, and the exposed tetragonal grain boundary phase was changed to an R 2 O 3 (Hexagonal) phase. The total thickness of the specific four layers and the exposed tetragonal grain boundary phase provided on the tetragonal surface layer to be formed is at least 1 μm in order to obtain the effect of improving corrosion resistance.
m or more. Also, α-Fe, FeO,
The thickness of Fe 3 O 4 and α-Fe 2 O 3 is preferably 1 to 10 μm, and R 2 O 3 (Hexagona) formed in the grain boundary phase is preferable.
l) The thickness of the phase is preferably 1 to 20 μm. The reason for limiting the thickness of the surface layer on the surface of the magnet body to 1 to 20 μm is as follows.
If less than μm, the effect of improving corrosion resistance is insufficient, and
If it exceeds m, the magnetism of the surface layer is lost and the magnetic properties deteriorate.
【0012】組成限定理由 Rは、Fe−B−R系永久磁石における必須元素であっ
て、10原子%未満では高磁気特性、特に高保磁力が得
られず、30原子%を越えるとRリッチな非磁性相が多
くなり、残留磁束密度 (Br)が低下して、すぐれた
特性の永久磁石が得られず、Rは10原子%〜30原子
%の範囲とする。またRは、Nd、Pr、Dy、Ho、
Tbのうち少なくとも1種、あるいはさらにLa、C
e、Sm、Gd、Er、Eu、Tm、Yb、Lu、Yの
うち少なくとも1種を含むものが好ましい。Reasons for limiting composition R is an essential element in the Fe-BR based permanent magnet. If it is less than 10 atomic%, high magnetic properties, especially high coercive force cannot be obtained, and if it exceeds 30 atomic%, it becomes R-rich. The non-magnetic phase increases, the residual magnetic flux density (Br) decreases, and a permanent magnet with excellent characteristics cannot be obtained, and R is set in the range of 10 to 30 atomic%. R is Nd, Pr, Dy, Ho,
At least one of Tb, or La, C
Those containing at least one of e, Sm, Gd, Er, Eu, Tm, Yb, Lu, and Y are preferable.
【0013】Bは、該系永久磁石における必須元素であ
って、 2原子%未満では、菱面体構造が主相となり高
い保磁力(iHc)は得られず、28原子%を越えると
Bリッチな非磁性相が多くなり残留磁束密度 (Br)
が低下するため、すぐれた永久磁石が得られず、Bは2
原子%〜28原子%の範囲とする。B is an essential element in the permanent magnet. If the content is less than 2 atomic%, the rhombohedral structure becomes the main phase and a high coercive force (iHc) cannot be obtained. Non-magnetic phase increases and residual magnetic flux density (Br)
, A good permanent magnet could not be obtained, and B was 2
The range is from atomic% to 28 atomic%.
【0014】Fe は、該系永久磁石における必須元素
であって、65原子%未満では残留磁束密度 (Br)
が低下し、80原子%を越えると高い保磁力が得られな
いので、Fe は65原子%〜80原子%の含有とす
る。さらに、Feの一部をCoで置換したり、特性の改
善のため種々の添加元素を含有させることができる。[0014] Fe is an essential element in the permanent magnet, and when it is less than 65 atomic%, the residual magnetic flux density (Br)
Is reduced, and if it exceeds 80 atomic%, a high coercive force cannot be obtained, so Fe is contained in an amount of 65 atomic% to 80 atomic%. Further, a part of Fe can be replaced by Co, or various additive elements can be contained for improving characteristics.
【0015】製造方法 この発明の特徴である特定組成、組織からなる磁石体表
面層の形成方法として、焼結永久磁石の場合、工業的生
産には以下の熱処理方法が好ましい。成形体を真空中あ
るいは不活性雰囲気中にて焼結した後、切断、研削等の
加工工程を施した後、真空中あるいは不活性ガス中で時
効処理を行い、さらに大気中あるいは少なくとも酸素濃
度が0.1vol%以上の酸化性雰囲気中で熱処理す
る。Manufacturing Method As a method of forming a magnet body surface layer having a specific composition and structure, which is a feature of the present invention, in the case of a sintered permanent magnet, the following heat treatment method is preferable for industrial production. After sintering the molded body in a vacuum or an inert atmosphere, after performing processing steps such as cutting and grinding, aging treatment is performed in a vacuum or an inert gas, and further in the air or at least an oxygen concentration. Heat treatment is performed in an oxidizing atmosphere of 0.1 vol% or more.
【0016】該系永久磁石成形体を450〜700℃で
15分以上保持する時効処理により、表面に露出する正
方晶相の表層にα−Fe、その外側にFeO、Fe
3O4、最外層にα−Fe2O3が形成され、露出する正方
晶の粒界相はR2O3(Hexagonal)相に変化す
るが、該表面層厚みが1μm未満と薄く十分な耐食性が
得られない。また、時効処理を長時間実施することによ
り該表面層を1μm厚み以上にすることができるが、工
業生産では長時間の時効処理は実用的ではなく、磁石特
性を劣化させるため、450〜700℃、15分〜5時
間の時効処理したのち、後述の酸化性雰囲気中の熱処理
を施すことにより、磁石特性を劣化させることなく該表
面層厚みを1〜20μmにできる。By aging treatment of the permanent magnet compact at 450 to 700 ° C. for 15 minutes or more, α-Fe is exposed on the surface of the tetragonal phase exposed on the surface, and FeO and Fe
3 O 4 , α-Fe 2 O 3 is formed in the outermost layer, and the exposed tetragonal grain boundary phase changes to R 2 O 3 (Hexagonal) phase, but the thickness of the surface layer is less than 1 μm and is sufficiently small. Corrosion resistance cannot be obtained. Further, by performing the aging treatment for a long time, the surface layer can be made to have a thickness of 1 μm or more. However, in industrial production, the aging treatment for a long time is not practical and deteriorates the magnet properties. After the aging treatment for 15 minutes to 5 hours, a heat treatment in an oxidizing atmosphere described below can be performed to reduce the surface layer thickness to 1 to 20 μm without deteriorating the magnet characteristics.
【0017】酸化性雰囲気中の熱処理は、大気中あるい
は少なくとも酸素濃度が0.1vol%以上の酸化性雰
囲気中で行うもので、処理温度が200℃未満ではα−
Fe、FeO、Fe3O4、α−Fe2O3及びR2O3(H
exagonal)相の厚みを1μm以上とするのに長
時間を要して効率が悪く、また、処理温度が350℃を
越えると酸化が急激に進行し、内部への酸素拡散が増加
して磁石特性が劣化するだけでなく、表面層が脆くなり
好ましくないため、200〜350℃の範囲とする。よ
り好ましい処理温度は250〜300℃である。The heat treatment in an oxidizing atmosphere is performed in the air or in an oxidizing atmosphere having an oxygen concentration of at least 0.1 vol%.
Fe, FeO, Fe 3 O 4 , α-Fe 2 O 3 and R 2 O 3 (H
It takes a long time to make the thickness of the exagonal phase 1 μm or more, resulting in poor efficiency. When the treatment temperature exceeds 350 ° C., oxidation proceeds rapidly, and oxygen diffusion into the inside increases, so that magnet properties are increased. Not only deteriorates but also the surface layer becomes brittle, which is not preferable. A more preferred processing temperature is from 250 to 300 ° C.
【0018】酸化性雰囲気中の熱処理時間は、15分未
満ではα−Fe、FeO、Fe3O4、α−Fe2O3及び
R2O3(Hexagonal)相の厚みを1μm以上と
することができず、12時間を越えると酸化が進行しす
ぎて内部への酸素拡散が増加し、磁石特性が劣化するだ
けでなく、表面層が脆くなり好ましくないため、15分
〜12時間の範囲とする。より好ましい処理時間は1〜
8時間である。If the heat treatment time in the oxidizing atmosphere is less than 15 minutes, the thickness of the α-Fe, FeO, Fe 3 O 4 , α-Fe 2 O 3 and R 2 O 3 (Hexagonal) phases should be 1 μm or more. If it exceeds 12 hours, oxidation proceeds too much and oxygen diffusion to the inside increases, not only deteriorating the magnet properties, but also making the surface layer brittle, which is not preferable. I do. A more preferred treatment time is 1 to
8 hours.
【0019】この発明によりFe−B−R磁石の耐食性
に著しく向上するが、さらに浸漬法、スプレー法、電着
法等により、耐酸化性樹脂を被着させるとなお一層耐食
性が向上する。この発明において、浸漬法、スプレー法
により被着する樹脂としては、エポキシ樹脂、ウレタン
樹脂、弗素樹脂、フラン樹脂、ポリシロキサン樹脂等が
好ましく、電着法により被着する樹脂としては、エポキ
シ樹脂、アクリル樹脂等が好ましい。According to the present invention, the corrosion resistance of the Fe—BR magnet is remarkably improved. However, when an oxidation resistant resin is further applied by a dipping method, a spray method, an electrodeposition method or the like, the corrosion resistance is further improved. In the present invention, as the resin to be applied by the immersion method or the spray method, an epoxy resin, a urethane resin, a fluorine resin, a furan resin, a polysiloxane resin, or the like is preferable. As the resin to be applied by the electrodeposition method, an epoxy resin, Acrylic resin and the like are preferred.
【0020】[0020]
【実施例】実施例1 出発原料として、純度99.9%の電解鉄、フェロボロ
ン合金、純度99.7%以上のNd、Dy、Coを使用
してこれらを配合後、高周波溶解して鋳造し、14Nd
−0.5Dy−7B−3Co−残Fe(at%)なる組
成の鋳塊を得た。その後インゴットを粗粉砕、次に微粉
砕し、平均粒度3μmの微粉末を得た。この微粉末を金
型に挿入して12kOeの磁界中で配向し、磁界と直角
方向に1.5ton/cm2の圧力で成形し、10cm
×5cm×厚み6mm寸法の成形体を得た。EXAMPLES Example 1 As starting materials, electrolytic iron having a purity of 99.9%, ferroboron alloy, Nd, Dy, and Co having a purity of 99.7% or more were blended, and then high-frequency melted and cast. , 14Nd
An ingot having a composition of -0.5Dy-7B-3Co-remaining Fe (at%) was obtained. Thereafter, the ingot was coarsely ground and then finely ground to obtain a fine powder having an average particle size of 3 μm. This fine powder is inserted into a mold, oriented in a magnetic field of 12 kOe, molded at a pressure of 1.5 ton / cm 2 in a direction perpendicular to the magnetic field, and
A molded body having dimensions of 5 cm x 6 mm was obtained.
【0021】得られた成形体を1100℃、3時間、A
r雰囲気中の条件で焼結し、冷却後にダイヤモンド砥石
で7cm×3.5cm×厚み4mm寸法の磁石体に研削
した後、溶剤にて洗浄し乾燥させた後、真空中、530
℃×2時間の時効処理を施した。その後大気中、250
℃×2時間の酸化性雰囲気中熱処理を施してこの発明の
永久磁石を作製した。なお、得られた永久磁石表面に露
出している正方晶表面に生成されたα−Fe、FeO、
Fe3O4、α−Fe2O3の厚みは5μmで、R2O3(H
exagonal)相の厚みは10μmであった。The obtained molded body was heated at 1100 ° C. for 3 hours at A
After sintering under the condition in an atmosphere of r, cooling and grinding into a magnet having a size of 7 cm × 3.5 cm × 4 mm in thickness with a diamond grindstone, washing and drying with a solvent,
Aging treatment was performed at 2 ° C. for 2 hours. Then in the atmosphere, 250
The permanent magnet of the present invention was manufactured by performing heat treatment in an oxidizing atmosphere at 2 ° C. × 2 hours. It should be noted that α-Fe, FeO, generated on the tetragonal surface exposed on the obtained permanent magnet surface,
The thicknesses of Fe 3 O 4 and α-Fe 2 O 3 are 5 μm, and R 2 O 3 (H
The thickness of the exagonal phase was 10 μm.
【0022】得られた永久磁石体の磁石特性及び磁石体
を80℃、相対湿度90%の雰囲気中に100時間放置
した後の酸化増量及び磁石特性を測定し表1に示す。ま
た磁石体表面に結露することを防止するため、予め10
0℃に加温した後、80℃相対湿度90%の雰囲気に1
00時間放置したのち、純水中で超音波洗浄を施し、磁
石体表面の腐食生成物を除去し、100℃にて乾燥した
後の重量減少量及び磁石特性を調べた結果を表2に示
す。The magnet properties of the obtained permanent magnet body and the increase in oxidation and the magnet properties after the magnet body was left in an atmosphere at 80 ° C. and a relative humidity of 90% for 100 hours were measured, and the results are shown in Table 1. In order to prevent dew condensation on the magnet body surface,
After heating to 0 ° C., the atmosphere was placed at 80 ° C. and 90% relative humidity.
After standing for 00 hours, ultrasonic cleaning was performed in pure water to remove corrosion products on the surface of the magnet body, and the weight loss and the magnet properties after drying at 100 ° C. were examined. .
【0023】比較例1 この発明による酸化性雰囲気中熱処理を施さない以外
は、実施例1と全く同様方法で製造して同一組成の永久
磁石体を得た。比較磁石を80℃、相対温度90%の雰
囲気に100時間放置した後の酸化増量および磁石特性
の測定結果を表1に示す、また予め100℃に加温後、
80℃、相対温度90%の雰囲気に100時間放置した
のち、実施例1と同様の手法で測定した重量減少量およ
び磁石特性を表2に示す。Comparative Example 1 A permanent magnet having the same composition was obtained in the same manner as in Example 1 except that the heat treatment was not performed in an oxidizing atmosphere according to the present invention. Table 1 shows the results of measurement of the increase in oxidation and magnet properties after leaving the comparative magnet in an atmosphere at 80 ° C. and a relative temperature of 90% for 100 hours.
Table 2 shows the weight loss and magnet properties measured in the same manner as in Example 1 after being left in an atmosphere at 80 ° C. and a relative temperature of 90% for 100 hours.
【0024】実施例2 実施例1と全く同様方法にて製造して得られたこの発明
の永久磁石体に、スプレー塗装によりエポキシ樹脂を被
着させ、焼付けをして20μmの樹脂層を有する磁石体
を得た。得られた磁石体を80℃、相対温度90%の雰
囲気に1000時間放置した後の発錆状況を表3に示
す。Embodiment 2 An epoxy resin is applied to the permanent magnet body of the present invention obtained by the same method as that of Embodiment 1 by spray coating and baked to form a magnet having a resin layer of 20 μm. I got a body. Table 3 shows the rusting state after leaving the obtained magnet body in an atmosphere at 80 ° C. and a relative temperature of 90% for 1000 hours.
【0025】比較例2 酸化性雰囲気中熱処理を施さない以外は、実施例1と全
く同様方法にて製造して得られた比較永久磁石体に、実
施例2と同様の塗装を施して同様の試験を行い、その発
錆状況を調べて表3に示す。Comparative Example 2 A comparative permanent magnet body produced and produced in exactly the same manner as in Example 1 except that no heat treatment was performed in an oxidizing atmosphere was subjected to the same coating as in Example 2, A test was conducted, and the rusting state was examined.
【0026】[0026]
【表1】 [Table 1]
【0027】[0027]
【表2】 [Table 2]
【0028】[0028]
【表3】 [Table 3]
【0029】[0029]
【発明の効果】この発明は、Fe−B−R系永久磁石体
を研削加工したのち、真空中あるいは不活性雰囲気中で
時効処理を行い、さらに、大気中あるいは酸素濃度0.
1vol%以上の酸化性雰囲気中で熱処理することによ
り、磁石体表面に露出する正方晶相の表層にα−Fe、
その外側にFeO、Fe3O4、最外層にα−Fe2O3が
形成され、露出する正方晶の粒界相がR2O3(Hexa
gonal)に変化し磁石表面が不動態化され、実施例
に明らかように、磁石体自体の耐食性が著しく向上する
だけでなく、耐酸化性樹脂を表面処理した後の耐食性も
向上する。さらに、Fe−B−R系永久磁石自体の耐食
性を向上させることができたため、樹脂塗装被膜の厚み
を薄くでき、塗装処理時間の短縮及び表面処理コストの
低減ができる。According to the present invention, after the Fe-BR-based permanent magnet body is ground, it is subjected to aging treatment in a vacuum or in an inert atmosphere, and is further subjected to aging treatment in the atmosphere or at an oxygen concentration of 0.
By performing a heat treatment in an oxidizing atmosphere of 1 vol% or more, α-Fe,
FeO and Fe 3 O 4 are formed on the outside and α-Fe 2 O 3 is formed on the outermost layer, and the exposed tetragonal grain boundary phase is R 2 O 3 (Hexa
gonal) and the surface of the magnet is passivated. As is clear from the examples, not only the corrosion resistance of the magnet body itself is significantly improved, but also the corrosion resistance after the surface treatment of the oxidation-resistant resin is improved. Furthermore, since the corrosion resistance of the Fe-BR based permanent magnet itself could be improved, the thickness of the resin coating film can be reduced, and the coating processing time can be reduced and the surface treatment cost can be reduced.
Claims (4)
%、Fe65〜80原子%を主成分として主相が正方晶
相からなり、磁石体表面に露出する正方晶相の表層にα
−Fe、その外側にFeO、次にFe3O4、最外層にα
−Fe2O3が順次形成され、露出する正方晶の粒界相は
R2O3(Hexagonal)相からなる厚さ1〜20
μmの表面層を有することを特徴とする耐食性永久磁
石。1. A tetragonal phase mainly composed of 10 to 30 atomic% of R, 2 to 28 atomic% of B and 65 to 80 atomic% of Fe, and α is formed on the surface of the tetragonal phase exposed on the surface of the magnet body.
-Fe, FeO on the outside, then Fe 3 O 4 , α on the outermost layer
-Fe 2 O 3 is sequentially formed, and the exposed tetragonal grain boundary phase has an R 2 O 3 (Hexagonal) phase having a thickness of 1 to 20.
A corrosion-resistant permanent magnet having a surface layer of μm.
%、Fe65〜80原子%を主成分として主相が正方晶
相からなり、磁石体表面に露出する正方晶相の表層にα
−Fe、その外側にFeO、次にFe 3 O 4 、最外層にα
−Fe 2 O 3 が順次形成され、露出する正方晶の粒界相は
R 2 O 3 (Hexagonal)相からなる厚さ1〜20
μmの表面層を有し、さらにこの磁石体表面に耐酸化性
樹脂層を有することを特徴とする耐食性永久磁石。2. 10 to 30 atom% of R, 2 to 28 atom of B
%, The main phase is tetragonal with 65 to 80 atomic% Fe
Phase, and the surface layer of the tetragonal phase exposed on the magnet body surface has α
-Fe, FeO on the outside, then Fe 3 O 4 , α on the outermost layer
-Fe 2 O 3 is sequentially formed, and the exposed tetragonal grain boundary phase is
R 2 O 3 (Hexagonal) phase thickness 1 to 20
A corrosion-resistant permanent magnet having a μm surface layer and further having an oxidation-resistant resin layer on the surface of the magnet body.
%、Fe65〜80原子%を主成分とするFe−B−R
系永久磁石の製造方法において、磁石体の研削加工後、
真空中あるいは不活性ガス中で時効処理した後、大気中
あるいは酸素濃度0.1vol%以上の酸化性雰囲気中
で200〜350℃にて15分〜12時間熱処理するこ
とを特徴とする耐食性永久磁石の製造方法。3. An Fe—BR containing R 10 to 30 at%, B 2 to 28 at%, and Fe 65 to 80 at% as main components.
In the method of manufacturing a permanent magnet, after grinding the magnet body,
After had in vacuo the aging treatment in an inert gas, the corrosion resistance, characterized in that the heat treatment 15 minutes to 12 hours at 200 to 350 ° C. in or oxygen concentration 0.1 vol% or more oxidizing atmosphere in the air Manufacturing method of permanent magnet.
%、Fe65〜80原子%を主成分とするFe−B−R
系永久磁石の製造方法において、磁石体の研削加工後、
真空中あるいは不活性ガス中で時効処理した後、大気中
あるいは酸素濃度0.1vol%以上の酸化性雰囲気中
で200〜350℃にて15分〜12時間熱処理した
後、得られた磁石体表面に耐酸化性樹脂層を被覆形成す
ることを特徴とする耐食性永久磁石の製造方法。 4. R10 to 30 atom%, B2 to 28 atom
%, Fe-BR with Fe-80 atomic% as a main component
In the method of manufacturing a permanent magnet, after grinding the magnet body,
After aging in vacuum or inert gas,
Or in an oxidizing atmosphere with an oxygen concentration of 0.1 vol% or more
And heat treated at 200-350 ° C. for 15 minutes to 12 hours
After that, the surface of the obtained magnet body is coated with an oxidation-resistant resin layer.
A method for producing a corrosion-resistant permanent magnet, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3124870A JP2844269B2 (en) | 1991-04-26 | 1991-04-26 | Corrosion resistant permanent magnet and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3124870A JP2844269B2 (en) | 1991-04-26 | 1991-04-26 | Corrosion resistant permanent magnet and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04328804A JPH04328804A (en) | 1992-11-17 |
JP2844269B2 true JP2844269B2 (en) | 1999-01-06 |
Family
ID=14896140
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3124870A Expired - Lifetime JP2844269B2 (en) | 1991-04-26 | 1991-04-26 | Corrosion resistant permanent magnet and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2844269B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012002412A1 (en) | 2010-06-30 | 2012-01-05 | 日立金属株式会社 | Method of producing surface-modified rare earth sintered magnet |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4747462B2 (en) * | 2001-08-10 | 2011-08-17 | 日立金属株式会社 | Method for producing rare earth-based permanent magnet having deposited film on surface |
EP1744331B1 (en) * | 2004-03-31 | 2016-06-29 | TDK Corporation | Rare earth magnet and method for manufacturing same |
CN1898757B (en) * | 2004-10-19 | 2010-05-05 | 信越化学工业株式会社 | Method for producing rare earth permanent magnet material |
JP2006156853A (en) * | 2004-11-30 | 2006-06-15 | Tdk Corp | Rare earth magnet |
MY141999A (en) | 2005-03-23 | 2010-08-16 | Shinetsu Chemical Co | Functionally graded rare earth permanent magnet |
TWI364765B (en) * | 2005-03-23 | 2012-05-21 | Shinetsu Chemical Co | Rare earth permanent magnet |
TWI413136B (en) | 2005-03-23 | 2013-10-21 | Shinetsu Chemical Co | Rare earth permanent magnet |
JP4656325B2 (en) * | 2005-07-22 | 2011-03-23 | 信越化学工業株式会社 | Rare earth permanent magnet, manufacturing method thereof, and permanent magnet rotating machine |
JP4665694B2 (en) * | 2005-09-30 | 2011-04-06 | Tdk株式会社 | Rare earth magnet manufacturing method |
JP2007207936A (en) * | 2006-01-31 | 2007-08-16 | Tdk Corp | Rare earth permanent magnet |
JP4753030B2 (en) * | 2006-04-14 | 2011-08-17 | 信越化学工業株式会社 | Method for producing rare earth permanent magnet material |
US7955443B2 (en) | 2006-04-14 | 2011-06-07 | Shin-Etsu Chemical Co., Ltd. | Method for preparing rare earth permanent magnet material |
JP4656323B2 (en) | 2006-04-14 | 2011-03-23 | 信越化学工業株式会社 | Method for producing rare earth permanent magnet material |
JP4811143B2 (en) * | 2006-06-08 | 2011-11-09 | 日立金属株式会社 | R-Fe-B rare earth sintered magnet and method for producing the same |
JP4840606B2 (en) | 2006-11-17 | 2011-12-21 | 信越化学工業株式会社 | Rare earth permanent magnet manufacturing method |
JP5098390B2 (en) * | 2007-03-27 | 2012-12-12 | Tdk株式会社 | Rare earth magnets |
JP5326746B2 (en) * | 2009-03-26 | 2013-10-30 | 日立金属株式会社 | Method for producing surface-modified R-Fe-B sintered magnet |
JP5146552B2 (en) * | 2011-01-20 | 2013-02-20 | 日立金属株式会社 | R-Fe-B rare earth sintered magnet and method for producing the same |
JP6037213B2 (en) * | 2012-09-20 | 2016-12-07 | 日立金属株式会社 | Method for producing surface-modified R-Fe-B sintered magnet |
JP6195435B2 (en) * | 2012-10-05 | 2017-09-13 | 小林 博 | Method for producing corrosion-resistant rare earth magnet |
CN111739705A (en) * | 2020-07-17 | 2020-10-02 | 福建省长汀金龙稀土有限公司 | R-T-B magnet material, R-T-B material and preparation method thereof |
-
1991
- 1991-04-26 JP JP3124870A patent/JP2844269B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012002412A1 (en) | 2010-06-30 | 2012-01-05 | 日立金属株式会社 | Method of producing surface-modified rare earth sintered magnet |
Also Published As
Publication number | Publication date |
---|---|
JPH04328804A (en) | 1992-11-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2844269B2 (en) | Corrosion resistant permanent magnet and method for producing the same | |
JP3471876B2 (en) | Rare earth magnet with excellent corrosion resistance and method of manufacturing the same | |
JPH0374012B2 (en) | ||
US6275130B1 (en) | Corrosion-resisting permanent magnet and method for producing the same | |
JP2791659B2 (en) | Manufacturing method of corrosion resistant permanent magnet | |
JPH056322B2 (en) | ||
JPH0422007B2 (en) | ||
JP2006245183A (en) | Iron powder covered with laminated oxide film | |
JPH0518895B2 (en) | ||
JP6759649B2 (en) | Rare earth magnets and motors | |
JPH0422008B2 (en) | ||
JPH0569282B2 (en) | ||
JP3208057B2 (en) | Corrosion resistant permanent magnet | |
JP2553843B2 (en) | Method of manufacturing permanent magnet with excellent corrosion resistance | |
JPH0445573B2 (en) | ||
JPH09289108A (en) | R-fe-b permanent magnet having electric insulating film excellent in adhesion and its manufacture | |
JPH0554683B2 (en) | ||
JPS6377103A (en) | Rare-earth magnet excellent in corrosion resistance and manufacture thereof | |
JP3234306B2 (en) | Corrosion resistant permanent magnet | |
JPS63254702A (en) | Manufacture of corrosion resisting permanent magnet | |
JP2720038B2 (en) | Manufacturing method of permanent magnet | |
JP2003007519A (en) | Magnetic core equipped with magnetic bias magnet and inductance part using the same | |
JP3411605B2 (en) | Corrosion resistant permanent magnet | |
JPS63166944A (en) | Corrosion-resisting permanent magnet | |
JPS63255376A (en) | Production of corrosion resistant permanent magnet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071030 Year of fee payment: 9 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081030 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091030 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101030 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101030 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111030 Year of fee payment: 13 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111030 Year of fee payment: 13 |