JPH0576521B2 - - Google Patents

Info

Publication number
JPH0576521B2
JPH0576521B2 JP60110793A JP11079385A JPH0576521B2 JP H0576521 B2 JPH0576521 B2 JP H0576521B2 JP 60110793 A JP60110793 A JP 60110793A JP 11079385 A JP11079385 A JP 11079385A JP H0576521 B2 JPH0576521 B2 JP H0576521B2
Authority
JP
Japan
Prior art keywords
permanent magnet
atomic
less
atom
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60110793A
Other languages
Japanese (ja)
Other versions
JPS61270308A (en
Inventor
Shigeki Hamada
Tetsuharu Hayakawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP60110793A priority Critical patent/JPS61270308A/en
Priority to CN85109695A priority patent/CN1007847B/en
Priority to DE8585116598T priority patent/DE3584243D1/en
Priority to EP85116598A priority patent/EP0190461B1/en
Priority to US06/818,238 priority patent/US4837114A/en
Publication of JPS61270308A publication Critical patent/JPS61270308A/en
Priority to US07/360,101 priority patent/US5089066A/en
Priority to US07/740,442 priority patent/US5316595A/en
Publication of JPH0576521B2 publication Critical patent/JPH0576521B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

利用産業分野 この発明は、Fe−B−R系永久磁石材料の製
造方法に係り、焼結永久磁石表面の少なくとも1
主面に残存する黒皮、あるいは磁石表面の研削加
工等に伴なう磁石特性の劣化を防止し、さらに磁
石材料の耐食性を改善したFe−B−R系永久磁
石材料の製造方法に関する。 背景技術 現在の代表的な永久磁石材料は、アルニコ、ハ
ードフエライトおよび希土類コバルト磁石であ
る。この希土類コバルト磁石は、磁気特性が格段
にすぐれているため、多種用途に利用されている
が、主成分のSm、Coは共に資源的に不足し、か
つ高価であり、今後長期間にわたつて、安定して
多量に供給されることは困難である。 そのため、磁気特性がすぐれ、かつ安価で、さ
らに資源的に豊富で今後の安定供給が可能な組成
元素からなる永久磁石材料が切望されてきた。 本出願人は先に、高価なSmやCoを含有しない
新しい高性能永久磁石としてFe−B−R系(R
はYを含む希土類元素のうち少なくとも1種)永
久磁石を提案した(特開昭59−46008号、特開昭
59−64733号、特開昭59−89401号、特開昭59−
132104号)。この永久磁石は、RとしてNdやPr
を中心とする資源的に豊富な軽希土類を用い、
B、Feを主成分として25MGOe以上、最高では
45MGOe以上にも達する極めて高いエネルギー
積を示す、すぐれた永久磁石である。 最近、磁気回路の高性能化、小形化に伴ない、
Fe−B−R系永久磁石材料が益々注目されてき
た。かかる用途の永久磁石材料を製造するには、
成型焼結した焼結磁石表面の凹凸や歪みを除去す
るため、あるいは表面酸化層を除去するため、さ
らには磁気回路に組込むために、磁石体の全面あ
るいは所要表面を切削加工する必要があり、加工
には外周刃切断機、内周刃切断機、表面研削機、
センタレスグラインダー、ラツピングマシン等が
使用される。 しかしながら、上記装置にてFe−B−R系永
久磁石材料を研削加工すると、Fe−B−R系永
久磁石材料は、主成分として、空気中で極めて酸
化しやすく、直ちに安定な酸化物を生成する希土
類元素及び鉄を含有するため、発熱したり大気と
加工面との接触により酸化層が生成し、磁気特性
の劣化を招来する問題があつた。 また、Fe−B−R系磁気異方性焼結体からな
る永久磁石を、磁気回路に組込んだ場合に、磁石
表面に生成する酸化物により、磁気回路の出力低
下及び磁気回路間のばらつきを惹起し、また、表
面酸化物の脱落による周辺機器への汚染の問題が
あつた。 そこで、出願人は先に、上記のFe−B−R系
永久磁石の耐食性の改善のため、磁石体表面に無
電解めつき法あるいは電解めつき法により耐食性
金属めつき層を被覆した永久磁石(特願昭58−
162350号)及び磁石体表面にスプレー法あるいは
浸漬法によつて耐食性樹脂層を被覆した永久磁石
を提案(特願昭58−171907号)した。 しかし、前者のめつき法では永久磁石体が焼結
体である有孔性のため、この孔内にめつき前処理
で酸性溶液またはアルカリ性溶液が残留し、経年
変化とともに発錆する恐れがあり、また磁石体の
耐薬品性が劣るため、めつき時に磁石表面が腐食
されて密着性・防食性が劣る問題があつた。 また後者のスプレー法による樹脂の塗装には方
向性があるため、被処理物表面全体に均一な樹脂
被膜を施すのに多大の工程、手間を要し、特に形
状が複雑な異形磁石体に均一厚みの被膜を施すこ
とは困難であり、また浸漬法では樹脂被膜厚みが
不均一になり、製品寸法制度が悪い問題があつ
た。 発明の目的 この発明は、希土類・ボロン・鉄を主成分とす
る新規な永久磁石材料において、焼結磁石体の切
削加工に伴なう磁気特性の劣化を改善し、さら
に、腐蝕性薬品等を使用あるいは接触させること
なく、密着性、防蝕性にすぐれた耐食性薄膜層を
被着させた永久磁石材料の製造方法を目的として
いる。 発明の構成と効果 この発明は、 R(RはNd、Pr、Dy、Ho、Tbのうち少なく
とも1種あるいはさらに、La、Ce、Sm、Gd、
Er、Eu、Tm、Yb、Lu、Yのうち少なくとも1
種からなる)10原子%〜30原子%、B2原子%〜
28原子%、 Fe65原子%〜80原子%を主成分とし、 主相が正方晶からなる焼結永久磁石体の表面
に、モース硬度5以上の硬質粉末を加圧気体とと
もに噴射し、上記磁石体の表面層を除去したの
ち、上記磁石体表面にAl薄膜層を被着したこと
を特徴とする永久磁石材料の製造方法である。 記述すれば、この発明は、焼結磁石体表面に、
所要性状からなる硬質粉末を、加圧気体ととも
に、噴射し、焼結磁石体の黒皮、酸化層や加工歪
層等の表面層を除去したのち、清浄化された磁石
体表面にAl薄膜層を被着し、酸化や切削加工に
ともなう磁石特性の劣化を改善し、さらに、材料
と表面薄膜層との密着性の改善ならびに材料の耐
食性の改善を図つたものである。 また、この発明の永久磁石材料は平均結晶粒径
が1〜80μmの範囲にある正方晶系の結晶構造を
有する化合物を主相とし、体積比で1%〜50%の
非磁性相(酸化物相を除く)を含むことを特徴と
する。 この発明の製造方法は、RとしてNdやPrを中
心とする資源的に豊富な軽希土類を用い、B、
Feを主成分として25MGOe以上、最高では
45MGOe以上にも達する極めて高いエネルギー
積並びに、高残留磁束密度、高保磁力を示す、す
ぐれた永久磁石であり、かつ研削加工及び酸化層
による磁気特性の劣化を防止し、かつ防蝕性にす
ぐれたAl薄膜を表面に安定被着したFe−B−R
系永久磁石材料を、安価に得ることができる。 この発明において、モース硬度5以上の硬質粉
末としては、Al2O3系、炭化けい素系、ZrO2系、
炭化硼素系、ガーネツト系等の粉末があり、硬度
の高いAl2O3系粉末が好ましい。 硬質粉末のモース硬度が、5未満では、研削力
が小さすぎて、研削処理時間に長時間を要して好
ましくない。 この発明において、硬質粉末の平均粒奴は20μ
m〜350μmが好ましく、20μm未満では、研削力
が小さすぎて研削に長時間を要し、また、350μ
mを越えると、焼結磁石体表面の面粗度が粗くな
りすぎ、研削量が不均一となり、好ましくない。 硬質粉末の噴射条件としては、圧力1.0Kg/cm2
未満では、研削処理に長時間を要し、また、圧力
6.0Kg/cm2を越えると磁石体表面の研削量が不均
一となり、面粗度の劣化が懸念されるため、加圧
気体の圧力は1.0Kg/cm2〜6.0Kg/cm2の範囲が好ま
しい。 さらに、噴射時間が0.5分間未満では、研削量
が小さくかつ不均一であり、また、60分を越える
と磁石体表面の研削量が多くなり、面粗度が悪化
するため、0.5分〜60分の噴射時間が好ましい。 また、硬質粉末の噴射用加圧流体としては、空
気あるいはAr、N2ガス等の不活性ガスが利用で
きるが、磁石体の酸化防止のためには、不活性ガ
スが好ましく、また、空気を用いる場合は、除湿
を行なつた空気が望ましい。 この発明において、焼結磁石体の酸化表面相を
除去した清掃表面に、Al層を被着させるには、
真空蒸着、スパツタリング、イオンプレーテイン
グ等の薄膜形成方法が適宜選定利用できる。ま
た、薄膜層の厚みは、薄膜層の剥離あるいは機械
的強度の低下並びに防蝕性の確保等を考慮して、
30μm以下の厚みが好ましく、最も好ましくは5μ
m〜25μmの層厚みである。 永久磁石材料の成分限定理由 この発明の永久磁石材料に用いる希土類元素R
は、組成の10原子%〜30原子%を占めるが、Nd、
Pr、Dy、Ho、Toのうち少なくとも1種、ある
いはさらにLu、Ce、Sm、Gd、Er、Eu、Tm、
Yb、La、Yのうち少なくとも1種を含むものが
好ましい。 また、通常Rのうち1種をもつて足りるが、実
用上は2種以上の混合物(ミツシユメタル、ジジ
ム等)を入手上の便宜等の理由により用いること
ができる。 なお、このRは希土類元素でなくてもよく、工
業上入手可能な範囲で製造上不可避な不純物を含
有するものでも差支えない。 Rは、新規な上記系永久磁石材料における、必
須元素であつて、10原子%未満では、結晶構造が
α−鉄と同一構造の立方晶組織となるため、高磁
気特性、特に高保磁力が得られず、30原子%を越
えると、Rリツチは非磁性相が多くなり、残留磁
束密度(Br)が低下して、すぐれた特性の永久
磁石が得られない。よつて、希土類元素は、10原
子%〜30原子%の範囲とする。 Bは、この発明による永久磁石材料における、
必須元素であつて、2原子%未満では、菱面体構
造が主相となり、高い保持力(iHc)は得られ
ず、28原子%を越えると、Bリツチな非磁性相が
多くなり、残留磁束密度(Br)が低下するため、
すぐれた永久磁石が得られない。よつて、Bは、
2原子%〜28原子%の範囲とする。 Feは、新規な上記系永久磁石において、必須
元素であり、65原子%未満では残留磁束密度
(Br)が低下し、80原子%を越えると、高い保持
力が得られないので、Feは65原子%〜80原子%
の含有とする。 また、この発明による永久磁石材料において、
Feの一部をCoで置換することは、得られる磁石
の磁気特性を損うことなく、温度特性を改善する
ことができるが、Co置換量がFeの20%を越える
と、逆に磁気特性が劣化するため、好ましくな
い。Coの置換量がFeとCoの合計量で5原子%〜
15原子%の場合は、(Br)は置換しない場合に比
較して増加するため、高磁束密度を得るために好
ましい。 また、この発明による永久磁石材料は、R、
B、Feの他、工業的生産上不可避的不純物の存
在を許容できるが、Bの一部を4.0原子%以下の
C、3.5原子%以下のP、2.5原子%以下のS、3.5
原子%以下のCuのうち少なくとも1種、合計量
で40原子%以下で置換することにより、永久磁石
の製造性改善、低価格化が可能である。 また、下記添加元素のうち少なくとも、1種
は、R−B−Fe系永久磁石に対してその保磁力、
減磁曲線の角型性を改善あるいは製造性の改善、
低価格化に効果があるため添加することができ
る。しかし、保持力改善のための添加に伴ない残
留磁束密度(Br)の低下を招来するので、従来
のハードフエライト磁石の残留磁束密度と同等以
上となる範囲での添加が望ましい。 9.5原子%以下のAl、4.5原子%以下のTi、 9.5原子%以下のV、8.5原子%以下のCr、 8.0原子%以下のMn、5.0原子%以下のBi、 9.5原子%以下のMb、9.5原子%以下のTa、 9.5原子%以下のMo、9.5原子%以下のW、 2.5原子%以下のSb、7原子%以下のGe、 3.5原子%以下のSn、5.5原子%以下のZr、 9.0原子%以下のNi、9.0原子%以下のSi、 1.1原子%以下のZn、5.5原子%以下のHf、 のうち少なくとも1種を添加含有、但し、2種以
上含有する場合は、その最大含有量は当該添加元
素のうち最大値を有するものの原子%以下の含有
させることにより、永久磁石の高保磁力化が可能
になる。 結晶相は主相が正方晶であることが、微細で均
一な合金粉末より、すぐれた磁気特性を有する焼
結永久磁石を作製するのに不可欠である。 また、この発明の永久磁石は、磁場中プレス成
型することにより磁気的異方性磁石が得られ、ま
た、無磁界中でプレス成型することにより、磁気
的等方性磁石を得ることができる。 この発明による永久磁石材料は、保磁力iHc≧
1KOe、残留磁束密度Br>4kG、を示し、最大エ
ネルギー積(BH)maxは、最も好ましい組成範
囲では、(BH)max≧10MGOeを示し、最大値
は25MGOe以上に達する。 また、この発明永久磁石材料のRの主成分がそ
の50%以上をNd及びPrを主とする軽希土類金属
で占める場合で、R12原子%〜20原子%、B4原
子%〜24原子%、Fe74原子%〜80原子%、を主
成分とするとき、(BH)max35MGOe以上のす
ぐれた磁気特性を示し、特に軽希土類金属がNd
の場合には、その最大値が45MGOe以上に達す
る。 実施例 実施例 1 出発原料として、純度99.9%の電解鉄、フエロ
ボロン合金、純度99.7%以上のNdを使用し、こ
れらを配合後高周波溶解し、その後水冷銅鋳型に
鋳造し、16.0Nd7.0B77.0Feなる組成の鋳塊を得
た。 その後このインゴツトを、スタンプミルにより
粗粉砕し、次にボールミルにより微粉砕し、平均
粒度2.8μmの微粉末を得た。 この微粉末を金型に挿入し、15kOeの磁界中で
配向し、磁界に平行方向に、1.2t/cm2の圧力で成
形した。 得られた成形体を、1100℃、1時間、Ar雰囲
気中、の条件で焼結し、長さ25mm×幅40mm×厚み
30mm寸法の焼結体を得た。 さらにAr中での800℃、1時間と630℃、1.5時
間の2段時効処理を施した。 上記の永久磁石体を、大気中で、ダイヤモンド
#200番を砥石として、回転数2400rpm、送り速
度5mm/minで、長さ5mm×幅10mm×厚み3mm寸
法に切出した。 さらに、この切出し試料に、平均粒径50μm、
モース硬度12のAl2O3硬質粉末を用いて、圧力3.0
Kg/cm2、N2ガスの加圧気体とともに、15分間噴
射する条件のグリツトブラストを施し、上記磁石
体の表面層を除去した。 次に、真空度5×10-5Torrの真空容器内に、
上記試料を入れ、Arガスを送入し、1×
10-2TorrのArガス中、400Vの電圧で20分間の放
電を行なつた後、引続き、コーテイング材料とし
て、純度99.99%のAl板を用い、これを加熱し、
蒸発Alをイオン化し、これらイオン化粒子が電
界に引かれて、陰極を構成する前記試験片に付着
し、Al薄膜を形成した。試験片表面に形成した
薄膜厚みは20μmであつた。 上記イオン・プレーテイング条件は、電圧
1.5kV、15分間処理であつた。 この試験片に耐食性試験と耐食性試験後の薄膜
の密着強度試験を行なつた。また、耐食性試験前
後の磁気特性を測定した。試験結果及び測定結果
は第1表に示す。 また、比較のため、上記試験片に、トリクレン
にて3分間溶剤脱脂し、5%NaOHにて60℃、
3分間のアルカリ脱脂した後、2%HClにて室
温、10秒間の酸洗しワツト浴にて、電流密度
4A/dm2、浴温度60℃、20分間の条件にて、電
気ニツケルめつきを行ない表面に20μm厚みのニ
ツケルめつき層を有する比較試験片(比較例)を
得た。この試験片に上記の実施例1と同一の試験
及び測定を行ない、その結果を同様に第1表に示
す。 耐食性試験は、上記試験片を60℃の温度90%の
湿度の雰囲気に、500時間放置した場合の試験片
外観状況でもつて評価した。 また、密着強度試験は、耐食性試験後の上記試
験片を、破断して破断面を観察することで評価し
た。
Field of Application The present invention relates to a method for producing Fe-BR permanent magnet material, in which at least one part of the surface of a sintered permanent magnet is
The present invention relates to a method for manufacturing Fe-BR permanent magnet material that prevents deterioration of magnetic properties due to black scale remaining on the main surface or grinding of the magnet surface, and further improves the corrosion resistance of the magnet material. BACKGROUND ART Current representative permanent magnet materials are alnico, hard ferrite and rare earth cobalt magnets. This rare earth cobalt magnet has extremely excellent magnetic properties and is used for a variety of purposes, but the main components, Sm and Co, are both scarce and expensive, so they will not be used for a long time. , it is difficult to stably supply it in large quantities. Therefore, there has been a strong desire for a permanent magnet material that has excellent magnetic properties, is inexpensive, and is composed of constituent elements that are abundant in resources and can be stably supplied in the future. The applicant has previously proposed a new high-performance permanent magnet that does not contain expensive Sm or Co.
proposed a permanent magnet (at least one rare earth element containing Y) (Japanese Patent Application Laid-Open No. 59-46008,
No. 59-64733, JP-A-59-89401, JP-A-59-
No. 132104). This permanent magnet is made of Nd or Pr as R.
Using light rare earths, which are rich in resources, mainly
B, 25MGOe or more with Fe as the main component, at the highest
It is an excellent permanent magnet that exhibits an extremely high energy product reaching over 45MGOe. Recently, with the improvement in performance and miniaturization of magnetic circuits,
Fe-BR-based permanent magnet materials have been attracting more and more attention. To manufacture permanent magnet materials for such uses,
In order to remove irregularities and distortions on the surface of a sintered magnet that has been shaped and sintered, to remove a surface oxidation layer, and to incorporate it into a magnetic circuit, it is necessary to cut the entire surface or the required surface of the magnet body. For processing, we use external blade cutting machines, internal blade cutting machines, surface grinding machines,
Centerless grinders, wrapping machines, etc. are used. However, when Fe-BR-based permanent magnet material is ground using the above-mentioned device, the Fe-BR-based permanent magnet material is extremely easily oxidized in the air as a main component, and immediately produces stable oxides. Since it contains rare earth elements and iron, it generates heat and an oxide layer is formed due to contact with the atmosphere and the machined surface, resulting in a problem of deterioration of magnetic properties. In addition, when a permanent magnet made of an Fe-BR-based magnetically anisotropic sintered body is incorporated into a magnetic circuit, oxides generated on the magnet surface may cause a decrease in the output of the magnetic circuit and variations between the magnetic circuits. There was also the problem of contamination of peripheral equipment due to shedding of surface oxides. Therefore, in order to improve the corrosion resistance of the above-mentioned Fe-BR-based permanent magnet, the applicant first developed a permanent magnet whose surface was coated with a corrosion-resistant metal plating layer by electroless plating or electrolytic plating. (Special application 1982-
162350) and a permanent magnet whose surface was coated with a corrosion-resistant resin layer by spraying or dipping (Japanese Patent Application No. 171907/1982). However, in the former plating method, since the permanent magnet body is a porous sintered body, acidic or alkaline solutions remain in the holes during plating pretreatment, and there is a risk of rusting over time. In addition, since the chemical resistance of the magnet body is poor, the magnet surface is corroded during plating, resulting in poor adhesion and corrosion resistance. Furthermore, since resin coating using the latter spray method is directional, it takes a lot of steps and effort to apply a uniform resin coating to the entire surface of the object to be treated, especially on irregularly shaped magnets with complex shapes. It is difficult to apply a thick coating, and the dipping method results in uneven resin coating thickness, resulting in poor product dimensional accuracy. Purpose of the invention The present invention improves the deterioration of magnetic properties caused by cutting of a sintered magnet body in a new permanent magnet material whose main components are rare earth elements, boron, and iron. The object of the present invention is to provide a method for producing a permanent magnet material on which a corrosion-resistant thin film layer with excellent adhesion and corrosion resistance is deposited without using or contacting the material. Structure and Effects of the Invention This invention provides R (R is at least one of Nd, Pr, Dy, Ho, Tb, or furthermore, La, Ce, Sm, Gd,
At least one of Er, Eu, Tm, Yb, Lu, Y
(consisting of seeds) 10 atomic% ~ 30 atomic%, B2 atomic% ~
Hard powder with a Mohs hardness of 5 or more is injected together with pressurized gas onto the surface of a sintered permanent magnet body whose main components are 28 at% and 65 at% to 80 at% of Fe and whose main phase is tetragonal. This is a method for producing a permanent magnet material, characterized in that after removing the surface layer, an Al thin film layer is deposited on the surface of the magnet body. To describe it, the present invention provides the following features:
Hard powder with desired properties is injected together with pressurized gas to remove surface layers such as black crust, oxidation layer, and strained layer from the sintered magnet, and then an Al thin film layer is applied to the cleaned magnet surface. This is intended to improve the deterioration of magnetic properties caused by oxidation and cutting, as well as to improve the adhesion between the material and the surface thin film layer, as well as the corrosion resistance of the material. In addition, the permanent magnet material of the present invention has a compound having a tetragonal crystal structure with an average crystal grain size in the range of 1 to 80 μm as the main phase, and a nonmagnetic phase (oxide (excluding phases). The manufacturing method of this invention uses resource-rich light rare earths such as Nd and Pr as R, and B,
25MGOe or more with Fe as the main component, at the highest
It is an excellent permanent magnet that exhibits an extremely high energy product exceeding 45MGOe, high residual magnetic flux density, and high coercive force.Al Fe-BR with a thin film stably adhered to the surface
permanent magnet materials can be obtained at low cost. In this invention, hard powders having a Mohs hardness of 5 or more include Al 2 O 3 based, silicon carbide based, ZrO 2 based,
There are boron carbide-based powders, garnet-based powders, etc., and Al 2 O 3- based powders with high hardness are preferred. If the Mohs hardness of the hard powder is less than 5, the grinding force is too small and the grinding process takes a long time, which is not preferable. In this invention, the average grain size of the hard powder is 20μ
m to 350 μm is preferable; if it is less than 20 μm, the grinding force is too small and it takes a long time to grind;
If it exceeds m, the surface roughness of the sintered magnet surface will become too rough and the amount of grinding will become non-uniform, which is not preferable. The injection conditions for hard powder are a pressure of 1.0Kg/cm 2
If the grinding process is less than
If it exceeds 6.0Kg/cm 2 , the amount of grinding on the magnet surface will become uneven , and there is a concern that the surface roughness will deteriorate. preferable. Furthermore, if the injection time is less than 0.5 minutes, the amount of grinding will be small and uneven, and if it exceeds 60 minutes, the amount of grinding on the magnet surface will increase and the surface roughness will worsen. A preferred injection time is . In addition, air or an inert gas such as Ar or N2 gas can be used as the pressurized fluid for injecting the hard powder, but in order to prevent oxidation of the magnet body, an inert gas is preferable. If used, it is desirable to use dehumidified air. In this invention, in order to deposit an Al layer on the cleaned surface of the sintered magnet from which the oxidized surface phase has been removed,
Thin film forming methods such as vacuum evaporation, sputtering, and ion plating can be selected and used as appropriate. In addition, the thickness of the thin film layer is determined by taking into account peeling of the thin film layer, reduction in mechanical strength, and ensuring corrosion resistance.
A thickness of 30 μm or less is preferred, most preferably 5 μm.
The layer thickness is from m to 25 μm. Reason for limiting the components of the permanent magnet material Rare earth element R used in the permanent magnet material of this invention
accounts for 10 to 30 atom% of the composition, but Nd,
At least one of Pr, Dy, Ho, To, or additionally Lu, Ce, Sm, Gd, Er, Eu, Tm,
Those containing at least one of Yb, La, and Y are preferred. Further, although it is usually sufficient to use one type of R, in practice, a mixture of two or more types (mitsumetal, dididium, etc.) can be used for reasons such as convenience of availability. Note that R does not need to be a rare earth element, and may contain impurities that are unavoidable in production within an industrially available range. R is an essential element in the new above-mentioned permanent magnet material, and if it is less than 10 atomic %, the crystal structure becomes cubic, which is the same structure as α-iron, so high magnetic properties, especially high coercive force, can be obtained. If the R-rich content exceeds 30 atom %, the non-magnetic phase increases, the residual magnetic flux density (Br) decreases, and a permanent magnet with excellent properties cannot be obtained. Therefore, the rare earth element is in the range of 10 atomic % to 30 atomic %. B is a permanent magnet material according to the present invention,
It is an essential element, and if it is less than 2 atomic %, the rhombohedral structure becomes the main phase and high coercive force (iHc) cannot be obtained, and if it exceeds 28 atomic %, the B-rich nonmagnetic phase increases and the residual magnetic flux is Because the density (Br) decreases,
An excellent permanent magnet cannot be obtained. Therefore, B is
The content should be in the range of 2 atomic % to 28 atomic %. Fe is an essential element in the new above-mentioned permanent magnet.If it is less than 65 at%, the residual magnetic flux density (Br) decreases, and if it exceeds 80 at%, high coercive force cannot be obtained. atomic% ~ 80 atomic%
Contains. Further, in the permanent magnet material according to the present invention,
Replacing a portion of Fe with Co can improve the temperature characteristics of the obtained magnet without impairing its magnetic properties, but if the Co substitution amount exceeds 20% of Fe, the magnetic properties is undesirable because it causes deterioration. Co substitution amount is 5 atomic% or more in total amount of Fe and Co
In the case of 15 atomic %, (Br) increases compared to the case without substitution, which is preferable for obtaining a high magnetic flux density. Further, the permanent magnet material according to the present invention has R,
In addition to B and Fe, the presence of unavoidable impurities in industrial production can be tolerated, but a part of B can be replaced by 4.0 atom% or less of C, 3.5 atom% or less of P, 2.5 atom% or less of S, 3.5
By substituting at least one type of Cu in a total amount of 40 atomic % or less, it is possible to improve the manufacturability of permanent magnets and reduce the cost. In addition, at least one of the following additive elements has a coercive force for the R-B-Fe permanent magnet,
Improving the squareness of the demagnetization curve or improving manufacturability,
It can be added because it is effective in reducing costs. However, addition to improve coercive force causes a decrease in residual magnetic flux density (Br), so it is desirable to add in a range that is equal to or higher than the residual magnetic flux density of conventional hard ferrite magnets. Al less than 9.5 atom%, Ti less than 4.5 atom%, V less than 9.5 atom%, Cr less than 8.5 atom%, Mn less than 8.0 atom%, Bi less than 5.0 atom%, Mb less than 9.5 atom%, 9.5 Ta less than 9.5 atom%, Mo less than 9.5 atom%, W less than 9.5 atom%, Sb less than 2.5 atom%, Ge less than 7 atom%, Sn less than 3.5 atom%, Zr less than 5.5 atom%, 9.0 atom % or less Ni, 9.0 atomic % or less Si, 1.1 atomic % or less Zn, 5.5 atomic % or less Hf.However, if two or more types are contained, the maximum content is By including the additive element having the maximum value at atomic % or less, it is possible to increase the coercive force of the permanent magnet. It is essential that the main crystalline phase be tetragonal in order to produce a sintered permanent magnet with superior magnetic properties than a fine and uniform alloy powder. Further, the permanent magnet of the present invention can be press-molded in a magnetic field to obtain a magnetically anisotropic magnet, and can be press-molded in a non-magnetic field to obtain a magnetically isotropic magnet. The permanent magnet material according to this invention has a coercive force iHc≧
1KOe, residual magnetic flux density Br>4kG, and the maximum energy product (BH) max is (BH)max≧10MGOe in the most preferable composition range, and the maximum value reaches 25MGOe or more. In addition, when the main component of R in the permanent magnet material of this invention is 50% or more of light rare earth metals mainly consisting of Nd and Pr, R12 atomic% to 20 atomic%, B4 atomic% to 24 atomic%, Fe74 When the main component is (BH) max35MGOe or more, it shows excellent magnetic properties, especially light rare earth metals such as Nd
In this case, the maximum value reaches 45MGOe or more. Examples Example 1 As starting materials, electrolytic iron with a purity of 99.9%, ferroboron alloy, and Nd with a purity of 99.7% or more are used. After mixing these, they are high-frequency melted, and then cast in a water-cooled copper mold to produce a product of 16.0Nd7.0B77. An ingot with a composition of 0Fe was obtained. Thereafter, this ingot was coarsely ground using a stamp mill, and then finely ground using a ball mill to obtain a fine powder with an average particle size of 2.8 μm. This fine powder was inserted into a mold, oriented in a magnetic field of 15 kOe, and molded at a pressure of 1.2 t/cm 2 in a direction parallel to the magnetic field. The obtained molded body was sintered at 1100°C for 1 hour in an Ar atmosphere to obtain a size of 25 mm in length x 40 mm in width x thickness.
A sintered body with a size of 30 mm was obtained. Furthermore, two-stage aging treatment was performed in Ar at 800°C for 1 hour and at 630°C for 1.5 hours. The above permanent magnet was cut into a size of 5 mm in length, 10 mm in width, and 3 mm in thickness using a #200 diamond as a grindstone at a rotation speed of 2400 rpm and a feed rate of 5 mm/min in the atmosphere. Furthermore, this cut sample had an average particle size of 50 μm,
Using Al 2 O 3 hard powder with Mohs hardness of 12, pressure 3.0
Grit blasting was performed for 15 minutes with pressurized gas of Kg/cm 2 and N 2 gas to remove the surface layer of the magnet. Next, in a vacuum container with a vacuum degree of 5 × 10 -5 Torr,
Place the above sample, supply Ar gas, and
After discharging for 20 minutes at a voltage of 400 V in Ar gas at 10 -2 Torr, a 99.99% pure Al plate was used as the coating material and heated.
The evaporated Al was ionized, and these ionized particles were attracted by the electric field and adhered to the test piece constituting the cathode, forming an Al thin film. The thickness of the thin film formed on the surface of the test piece was 20 μm. The above ion plating conditions are
The treatment was at 1.5 kV for 15 minutes. This test piece was subjected to a corrosion resistance test and a thin film adhesion strength test after the corrosion resistance test. In addition, the magnetic properties before and after the corrosion resistance test were measured. The test results and measurement results are shown in Table 1. For comparison, the above test piece was solvent degreased for 3 minutes with trichloride, 60°C with 5% NaOH,
After degreasing with alkaline for 3 minutes, pickling with 2% HCl at room temperature for 10 seconds and reducing the current density in Watts bath.
Electric nickel plating was carried out under the conditions of 4 A/dm 2 , bath temperature of 60° C., and 20 minutes to obtain a comparative test piece (comparative example) having a 20 μm thick nickel plating layer on the surface. This test piece was subjected to the same tests and measurements as in Example 1 above, and the results are also shown in Table 1. The corrosion resistance test was performed by evaluating the appearance of the test piece after it was left in an atmosphere of 60° C., 90% humidity, and 90% humidity for 500 hours. Further, the adhesion strength test was evaluated by breaking the above-mentioned test piece after the corrosion resistance test and observing the fracture surface.

【表】 第1表より明らかなように、この発明方法によ
り、切削加工あるいは切削加工による磁気特性の
劣化が改善され、さらに、耐食性にすぐれた永久
磁石が得られ、その効果が著しいことが分る。
[Table] As is clear from Table 1, the method of the present invention improves the deterioration of magnetic properties caused by cutting or cutting, and also provides a permanent magnet with excellent corrosion resistance. Ru.

Claims (1)

【特許請求の範囲】[Claims] 1 R(RはNd、Pr、Dy、Ho、Tbのうち少な
くとも1種あるいはさらに、La、Ce、Sm、Gd、
Er、Eu、Tm、Yb、Lu、Yのうち少なくとも1
種からなる)10原子%〜30原子%、B2原子%〜
28原子%、Fe65原子%〜80原子%を主成分とし、
主相が正方晶からなる焼結永久磁石体の表面に、
モース硬度5以上の硬質粉末を加圧気体とともに
噴射し、上記磁石体の表面層を除去したのち、上
記磁石体表面にAl薄膜層を被着したことを特徴
とする永久磁石材料の製造方法。
1 R (R is at least one of Nd, Pr, Dy, Ho, Tb, or in addition, La, Ce, Sm, Gd,
At least one of Er, Eu, Tm, Yb, Lu, Y
(consisting of seeds) 10 atomic% ~ 30 atomic%, B2 atomic% ~
The main components are 28 at%, Fe65 at% to 80 at%,
On the surface of a sintered permanent magnet whose main phase is tetragonal,
A method for producing a permanent magnet material, characterized in that a hard powder having a Mohs hardness of 5 or more is injected together with pressurized gas to remove the surface layer of the magnet body, and then an Al thin film layer is deposited on the surface of the magnet body.
JP60110793A 1984-12-24 1985-05-23 Production of permanent magnet material Granted JPS61270308A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP60110793A JPS61270308A (en) 1985-05-23 1985-05-23 Production of permanent magnet material
CN85109695A CN1007847B (en) 1984-12-24 1985-12-24 Process for producing magnets having improved corrosion resistance
DE8585116598T DE3584243D1 (en) 1984-12-24 1985-12-27 METHOD FOR PRODUCING PERMANENT MAGNETS AND PERMANENT MAGNET.
EP85116598A EP0190461B1 (en) 1984-12-24 1985-12-27 Process for producing permanent magnets and permanent magnet
US06/818,238 US4837114A (en) 1984-12-24 1986-01-13 Process for producing magnets having improved corrosion resistance
US07/360,101 US5089066A (en) 1984-12-24 1989-06-01 Magnets having improved corrosion resistance
US07/740,442 US5316595A (en) 1984-12-24 1991-08-05 Process for producing magnets having improved corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60110793A JPS61270308A (en) 1985-05-23 1985-05-23 Production of permanent magnet material

Publications (2)

Publication Number Publication Date
JPS61270308A JPS61270308A (en) 1986-11-29
JPH0576521B2 true JPH0576521B2 (en) 1993-10-22

Family

ID=14544774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60110793A Granted JPS61270308A (en) 1984-12-24 1985-05-23 Production of permanent magnet material

Country Status (1)

Country Link
JP (1) JPS61270308A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11307328A (en) * 1998-04-16 1999-11-05 Sumitomo Special Metals Co Ltd Corrosion resistant permanent magnet and its manufacture
WO2005093766A1 (en) 2004-03-26 2005-10-06 Tdk Corporation Rare earth magnet, method for producing same and method for producing multilayer body

Also Published As

Publication number Publication date
JPS61270308A (en) 1986-11-29

Similar Documents

Publication Publication Date Title
JP4702549B2 (en) Rare earth permanent magnet
JP6090589B2 (en) Rare earth permanent magnet manufacturing method
JPH0374012B2 (en)
JPS6274048A (en) Permanent magnet material and its production
WO2014034849A1 (en) Production method for rare earth permanent magnet
EP0991085A1 (en) Corrosion-resisting permanent magnet and method for producing the same
JPH056322B2 (en)
JPS63217601A (en) Corrosion-resistant permanent magnet and manufacture thereof
JPH0569282B2 (en)
JPH0613211A (en) Permanent magnet having excellent corrosion resistance and manufacture thereof
JPH0535216B2 (en)
JPH0576521B2 (en)
JPS6377103A (en) Rare-earth magnet excellent in corrosion resistance and manufacture thereof
JPH0422008B2 (en)
JPH0945567A (en) Rare earth-iron-boron permanent magnet manufacturing method
JPH0545045B2 (en)
JP3208057B2 (en) Corrosion resistant permanent magnet
JPH0554683B2 (en)
JPH0569283B2 (en)
JPH0646603B2 (en) Permanent magnet having excellent corrosion resistance and method of manufacturing the same
JP2631492B2 (en) Manufacturing method of corrosion resistant permanent magnet
JPH0666173B2 (en) Permanent magnet having excellent corrosion resistance and method of manufacturing the same
JPH10256012A (en) Permanent magnet with excellent corrosion resistance
JPH0560241B2 (en)
JPS63255376A (en) Production of corrosion resistant permanent magnet

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term