JPH0646603B2 - Permanent magnet having excellent corrosion resistance and method of manufacturing the same - Google Patents

Permanent magnet having excellent corrosion resistance and method of manufacturing the same

Info

Publication number
JPH0646603B2
JPH0646603B2 JP60260771A JP26077185A JPH0646603B2 JP H0646603 B2 JPH0646603 B2 JP H0646603B2 JP 60260771 A JP60260771 A JP 60260771A JP 26077185 A JP26077185 A JP 26077185A JP H0646603 B2 JPH0646603 B2 JP H0646603B2
Authority
JP
Japan
Prior art keywords
permanent magnet
atom
corrosion resistance
thin film
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60260771A
Other languages
Japanese (ja)
Other versions
JPS62120004A (en
Inventor
隆樹 浜田
徹治 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP60260771A priority Critical patent/JPH0646603B2/en
Priority to CN85109695A priority patent/CN1007847B/en
Priority to EP85116598A priority patent/EP0190461B1/en
Priority to DE8585116598T priority patent/DE3584243D1/en
Priority to US06/818,238 priority patent/US4837114A/en
Publication of JPS62120004A publication Critical patent/JPS62120004A/en
Priority to US07/360,101 priority patent/US5089066A/en
Priority to US07/740,442 priority patent/US5316595A/en
Publication of JPH0646603B2 publication Critical patent/JPH0646603B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/026Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0572Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes with a protective layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、耐食性にすぐれたFe-B-R系永久磁石とその
製造方法に係り、磁石表面の研削加工等に伴なう磁石特
性の劣化を防止し、さらに磁石材料の耐食性被膜の密着
性並びに被膜の微細孔による耐食性の劣化を改善した耐
食性のすぐれたFe-B-R系永久磁石とその製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Fe-BR permanent magnet excellent in corrosion resistance and a method for manufacturing the same, and prevents deterioration of magnet characteristics due to grinding of a magnet surface. Further, the present invention relates to a Fe-BR permanent magnet having excellent corrosion resistance in which adhesion of a corrosion resistant coating of a magnetic material and deterioration of corrosion resistance due to fine pores in the coating are improved, and a manufacturing method thereof.

従来の技術 現在の代表的な永久磁石材料は、アルニコ、ハードフェ
ライトおよび希土類コバルト磁石であるが、磁気特性が
すぐれかつ安価で、さらに資源的に豊富で今後の安定供
給が可能な組成元素からなる永久磁石材料が切望されて
きた。
Conventional technology Typical representative permanent magnet materials at present are alnico, hard ferrite, and rare earth cobalt magnets, but they are composed of composition elements that have excellent magnetic properties, are inexpensive, are abundant in resources, and can be stably supplied in the future. Permanent magnet materials have long been desired.

本出願人は先に、高価なSmやCoを含有しない新しい高性
能永久磁石としてFe-B-R系(RはYを含む希土類元素の
うち少なくとも1種)永久磁石を提案した(特開昭59-4
6008号、特開昭59-64733号、特開昭59-89401号、特開昭
59-132104号)。
The present applicant has previously proposed a Fe-BR-based (R is at least one of rare earth elements including Y) permanent magnet as a new high-performance permanent magnet that does not contain expensive Sm or Co (JP-A-59-59). Four
6008, JP 59-64733, JP 59-89401, JP Sho
59-132104).

この永久磁石は、RとしてNdやPrを中心とする資源
的に豊富な軽希土類を用い、B,Feを主成分として25MGOe
以上、最高では45MGOe以上にも達する極めて高いエネル
ギー積を示す、すぐれた永久磁石である。
This permanent magnet uses light rare earth, which is rich in resources centered on Nd and Pr as R, and contains 25 MGOe containing B and Fe as main components.
As mentioned above, it is an excellent permanent magnet with an extremely high energy product that reaches 45 MGOe or more at the highest.

最近、磁気回路の高性能化、小形化に伴ないFe-B-R系永
久磁石材料が益々注目されてきた。かかる用途の永久磁
石材料を製造するには、例えば、成形焼結した焼結磁石
体の場合には、該磁石体表面の凹凸や歪みを除去するた
め、あるいは表面酸化層を除去するため、さらには磁気
回路に組込むために、磁石体の全面あるいは所要表面を
切削加工あるいは研削加工する必要があり、加工には外
周刃切断機、内周刃切断機、表面研削機、センタレスグ
ラインダー、ラッピングマシン等が使用される。
Recently, Fe-BR based permanent magnet materials have attracted more and more attention as the performance and size of magnetic circuits have been reduced. To produce a permanent magnet material for such use, for example, in the case of a sintered magnet body that has been molded and sintered, in order to remove irregularities and distortion on the surface of the magnet body, or to remove a surface oxide layer, In order to incorporate into the magnetic circuit, it is necessary to cut or grind the entire surface of the magnet body or the required surface.For processing, outer peripheral blade cutting machine, inner peripheral blade cutting machine, surface grinding machine, centerless grinder, lapping machine, etc. Is used.

しかしながら、Fe-B-R系永久磁石材料を切削または研削
加工すると、Fe-B-R系永久磁石材料は、主成分として、
空気中で極めて酸化しやすく、直ちに安定な酸化物を生
成する希土類元素及び鉄を含有するため、発熱したり大
気と加工面との接触により酸化層が生成し、磁気特性の
劣化を招来する問題があった。
However, when the Fe-BR permanent magnet material is cut or ground, the Fe-BR permanent magnet material is
Since it contains rare earth elements and iron that are easily oxidized in air and immediately generate stable oxides, an oxide layer is generated due to heat generation or contact between the atmosphere and the processed surface, which causes deterioration of magnetic properties. was there.

また、Fe-B-R系永久磁石を磁気回路に組込んだ場合に、
磁気表面に生成する酸化物により、磁気回路の出力低下
及び磁気回路間の特性にばらつきを惹起し、また、表面
酸化物の脱落による周辺機器への汚染の問題があった。
Also, when Fe-BR permanent magnet is incorporated in the magnetic circuit,
The oxide generated on the magnetic surface causes a decrease in output of the magnetic circuit and a variation in characteristics between the magnetic circuits, and there is a problem that peripheral devices are contaminated due to the dropping of the surface oxide.

発明が解決しようとする課題 そこで、出願人は先に、上記のFe-B-R系永久磁石の耐食
性の改善のため、磁石体表面に無電解めっき法あるいは
電解めっき法により耐食性金属めっき層を被覆した永久
磁石(特願昭58-162350号)及び磁石体表面にスプレー
法あるいは浸漬法によって耐食性樹脂層を被覆した永久
磁石を提案(特願昭58-171907号)した。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention Therefore, in order to improve the corrosion resistance of the Fe-BR permanent magnet, the applicant previously coated a corrosion-resistant metal plating layer on the surface of the magnet body by electroless plating or electrolytic plating. We have proposed a permanent magnet (Japanese Patent Application No. 58-162350) and a permanent magnet whose surface is coated with a corrosion resistant resin layer by a spray method or an immersion method (Japanese Patent Application No. 58-171907).

しかし、前者のめっき法では永久磁石体が焼結体の場
合、該焼結体が有孔性のため、この孔内にめっき前処理
で酸性溶液またはアルカリ性溶液が残留し、経年変化と
ともに発錆する恐れがあり、また磁石体の耐薬品性が劣
るため、めっき時に磁石表面が腐食されて密着性・防食
性が劣る問題があった。
However, in the former plating method, when the permanent magnet body is a sintered body, since the sintered body is porous, an acidic solution or an alkaline solution remains in this hole during the plating pretreatment, causing rusting over time. In addition, since the magnet body is inferior in chemical resistance, the magnet surface is corroded during plating, resulting in poor adhesion and corrosion resistance.

また、後者のスプレー法による樹脂の塗装には方向性が
あるため、被処理物表面全体に均一な樹脂被膜を施すの
に多大の工程、手間を要し、特に形状が複雑な異形磁石
体に均一厚みの被膜を施すことは困難であり、また浸漬
法では樹脂被膜厚みが不均一になり、製品寸法精度が悪
い問題があった。
In addition, since the latter method of resin coating has directionality, it takes a lot of steps and labor to apply a uniform resin coating on the entire surface of the object to be processed, especially for a deformed magnet body with a complicated shape. It is difficult to apply a coating having a uniform thickness, and the dipping method causes a non-uniform resin coating thickness, resulting in poor product dimensional accuracy.

このため発明者らは、Fe-B-R系永久磁石の耐食性を改善
する方法として、焼結磁石体表面に、特定粒径,硬度を
有する硬質粉末によるグリッドブラストを施した後、薄
膜形成技術にて、磁石体表面にAl薄膜層を被着した永久
磁石材料(特願昭60-110793号,特願昭60-200890号)を
提案した。
Therefore, as a method for improving the corrosion resistance of Fe-BR permanent magnets, the inventors have used a thin film forming technique after grid blasting with a hard powder having a specific particle size and hardness on the surface of the sintered magnet body. , And proposed a permanent magnet material (Japanese Patent Application No. 60-110793, Japanese Patent Application No. 60-200890) in which an Al thin film layer is deposited on the surface of the magnet body.

これにより、Fe-B-R系永久磁石は著しく耐食性を増した
が、上記Al薄膜は、蒸着法等において、蒸発したAl粒子
が、磁石体表面に堆積して形成されるため、密度不足を
生じ、薄膜内に微細孔が存在し、例えば、この薄膜上に
クロム酸塩被膜を形成しても微細孔の完全な消失は不可
能であり、長期間にわたる使用において、局部的にAl薄
膜が剥離したり、薄膜層に亀裂を生じたりし、局部的な
錆発生が懸念される問題があった。
As a result, the Fe-BR permanent magnet has significantly increased corrosion resistance, but the Al thin film is formed by vapor deposition Al particles being deposited on the surface of the magnet body in a vapor deposition method or the like, resulting in insufficient density, There are micropores in the thin film.For example, it is impossible to completely eliminate the micropores even if a chromate film is formed on this thin film, and the Al thin film peels off locally during long-term use. There is a problem that local thin film layer may be cracked or local rust may occur.

この発明は、希土類・ボロン・鉄を主成分とする新規な
永久磁石材料において、磁石体の研削加工に伴なう磁気
特性の劣化を改善し、さらに、腐蝕性薬品等を使用ある
いは接触させることなく、密着性、防蝕性を向上させ、
さらに薄膜内の微細孔を消失させた耐食性薄膜層表面を
有し、極めて苛酷な環境条件でも長期間使用できる耐食
性にすぐれた永久磁石とその製造方法の提供を目的とし
ている。
The present invention is a novel permanent magnet material mainly composed of rare earth, boron and iron, which improves the deterioration of magnetic properties associated with the grinding process of the magnet body, and further uses or contacts corrosive chemicals. Without improving adhesion and corrosion resistance,
Further, it is an object of the present invention to provide a permanent magnet having a corrosion-resistant thin film layer surface in which fine pores in the thin film are eliminated and having excellent corrosion resistance that can be used for a long time even under extremely harsh environmental conditions, and a method for producing the same.

課題を解決するための手段 この発明は、R(RはNd,Pr,Dy,Ho,Tbのうち少なくとも1
種あるいはさらに、La,Ce,Sm,Gd,Er,Eu,Tm,Yb,Lu,Yのう
ち少なくとも1種からなる)10%〜30原子%、 B2原子%〜28原子%、 Fe65原子%〜80原子%を主成分とし、主相が正方晶相か
らなる永久磁石体の表面に、 耐食性気相AlあるいはZnめっき層とその上のクロム酸塩
被膜層を有し、 さらに、上記気相めっき層及びクロム酸塩被膜層の微細
孔内に充填された樹脂を有することを特徴とする耐食性
のすぐれた永久磁石である。
Means for Solving the Problems The present invention provides R (R is at least one of Nd, Pr, Dy, Ho, and Tb).
(Or at least one of La, Ce, Sm, Gd, Er, Eu, Tm, Yb, Lu, Y) 10% to 30 atom%, B2 atom% to 28 atom%, Fe65 atom% to Corrosion resistant vapor phase Al or Zn plating layer and chromate coating layer on it are formed on the surface of a permanent magnet body whose main phase is tetragonal phase with 80 atomic% as the main component. A permanent magnet having excellent corrosion resistance, characterized in that it has a resin filled in the micropores of the layer and the chromate coating layer.

さらに、この発明は、 R(RはNd,Pr,Dy,Ho,Tbのうち少なくとも1種あるいはさ
らに、La,Ce,Sm,Gd,Er,Eu,Tm,Yb,Lu,Yのうち少なくとも
1種からなる)10%〜30原子%、 B2原子%〜28原子%、 Fe65原子%〜80原子%を主成分とし、主相が正方晶相か
らなる焼結永久磁石体の表面に、 気相AlまたはZnめっき処理を施したのち、クロム酸塩処
理を施し、 さらに該磁石体表面に熱硬化性樹脂を含浸させ、その後
熱硬化処理することを特徴とする耐食性のすぐれた永久
磁石の製造方法である。
Further, the present invention provides R (R is at least one of Nd, Pr, Dy, Ho and Tb, or at least one of La, Ce, Sm, Gd, Er, Eu, Tm, Yb, Lu and Y. (Comprising seeds) 10% to 30 atom%, B2 atom% to 28 atom%, Fe65 atom% to 80 atom% as main components, and the main phase is a tetragonal phase. A method for producing a permanent magnet having excellent corrosion resistance, which is characterized by performing a chromate treatment after the Al or Zn plating treatment, further impregnating the surface of the magnet with a thermosetting resin, and then performing a thermosetting treatment. Is.

発明の好ましい実施態様 この発明において、焼結磁石体の酸化表面層を除去した
清浄表面に、気相めっき薄膜層を被着させるには、真空
蒸着、スパッタリング、イオンプレーティング等の薄膜
形成方法が適宜選定利用できる。また、気相めっき材料
としては、Alあるいはの金属あるいはその合金が好まし
い。
Preferred Embodiments of the Invention In the present invention, a thin film forming method such as vacuum deposition, sputtering, or ion plating is used to deposit a vapor-phase plated thin film layer on the clean surface of the sintered magnet body from which the oxidized surface layer has been removed. Can be selected and used as appropriate. The vapor plating material is preferably Al or a metal or alloy thereof.

さらに、薄膜層の厚みは、薄膜層の剥離あるいは機械的
強度の低下並びに防蝕性の確保等を考慮して、30μm以
下の厚みが好ましく、さらに好ましくは5μm〜25μm
の層厚みである。
Furthermore, the thickness of the thin film layer is preferably 30 μm or less, more preferably 5 μm to 25 μm, in consideration of peeling of the thin film layer, deterioration of mechanical strength, and ensuring of corrosion resistance.
Is the layer thickness.

また、気相めっき薄膜層上に被着するクロム酸塩被膜厚
みは、1μm〜5μmが好ましく、その外観は、明るい
玉虫色から黄金色を帯びた黄褐色に仕上げるのが好まし
い。
The thickness of the chromate film deposited on the vapor-phase plated thin film layer is preferably 1 μm to 5 μm, and its appearance is preferably finished from a bright iridescent color to a golden brownish yellowish brown.

この発明において、クロム酸塩被膜及び気相めっき薄膜
層の微細孔内に、含浸させる樹脂としては、アルコール
溶性で分子量の小さい熱硬化性フェノール樹脂が好まし
く、熱硬化条件としては、含浸する熱硬化性樹脂の種類
により適宜選定できる。
In the present invention, as the resin to be impregnated into the micropores of the chromate film and the vapor-phase plated thin film layer, alcohol-soluble and small molecular weight thermosetting phenolic resin is preferable, and the thermosetting conditions include thermosetting impregnation. It can be appropriately selected depending on the type of the resin.

また、熱硬化処理は、熱硬化性樹脂を含浸させた磁石体
表面を溶剤または水で洗浄し、乾燥を行なったのちに施
すことが好ましい。
The thermosetting treatment is preferably performed after the surface of the magnet body impregnated with the thermosetting resin is washed with a solvent or water and dried.

さらに、熱硬化性樹脂の該薄膜微細孔への含浸方法とし
ては、浸漬含浸法、真空含浸法、真空加圧含浸法が採用
でき、不純物等を微細孔へ含浸させないように、真空中
等で実施されれば、その手段、条件は適宜選定できる。
Further, as a method of impregnating the thin film micropores with the thermosetting resin, an immersion impregnation method, a vacuum impregnation method, or a vacuum pressure impregnation method can be adopted, and the method is performed in a vacuum or the like so as not to impregnate the micropores with impurities or the like. If so, the means and conditions can be appropriately selected.

この発明において、気相めっき相の被着前の磁石体表面
に所要形状からなる硬質粉末を加圧気体とともに噴射す
るグリットブラストを行なうことは、焼結磁石体の黒
皮、酸化層や加工歪層等の表面層を除去して、表面を清
浄化させて後工程で被着する気相めっき層の耐食性を向
上させることができるため、有効な処理である。
In the present invention, grit blasting in which a hard powder having a required shape is jetted together with a pressurized gas onto the surface of the magnet body before the deposition of the vapor phase plating phase is performed by the black skin of the sintered magnet body, the oxide layer or the processing strain. This is an effective treatment because the surface layer such as a layer can be removed to clean the surface and improve the corrosion resistance of the vapor phase plating layer deposited in a later step.

ショットブラストに使用するモース硬度5以上の不定形
硬質粉末としては、Al2O3系、炭化けい素系、ZrO2系、
炭化硼素系、ガーネット系等の粉末があり、硬度の高い
Al2O3系粉末が好ましい。
As the amorphous hard powder having a Mohs hardness of 5 or more used for shot blasting, Al 2 O 3 system, silicon carbide system, ZrO 2 system,
High hardness due to powders of boron carbide and garnet
Al 2 O 3 based powder is preferable.

上記の不定形硬質粉末のモース硬度が、5未満では、研
削力が小さすぎて、研削処理時間に長時間を要して好ま
しくない。
If the Mohs hardness of the above-mentioned amorphous hard powder is less than 5, the grinding force is too small and the grinding process takes a long time, which is not preferable.

また、不定形硬質粉末の平均粒度を 20μm〜350μmとするのは、20μm未満では、研削力
が小さすぎて研削に長時間を要し、また、350μmを越
えると、焼結磁石体表面の面粗度が粗くなりすぎ、研削
量が不均一となり、好ましくないためである。
If the average particle size of the irregular hard powder is 20 μm to 350 μm, the grinding force is too small and it takes a long time to grind if it is less than 20 μm, and if it exceeds 350 μm, the surface of the sintered magnet surface is This is because the roughness becomes too rough and the grinding amount becomes uneven, which is not preferable.

また、不定形硬質粉末の噴射条件として、圧力1.0kg/cm
2未満では、研削処理に長時間を要し、また、圧力6.0kg
/cm2を越えると磁石体表面の研削量が不均一となり、面
粗度の劣化が懸念される。
In addition, as the injection condition of irregular hard powder, pressure 1.0kg / cm
If it is less than 2 , the grinding process takes a long time and the pressure is 6.0 kg.
If it exceeds / cm 2 , the amount of grinding on the surface of the magnet body becomes non-uniform, and there is concern that the surface roughness will deteriorate.

さらに、噴射時間が0.5分間未満では研削量が小さくか
つ不均一であり、また、60分を越えると磁石体表面の研
削量が多くなり、面粗度が悪化して好ましくない。
Further, if the injection time is less than 0.5 minutes, the grinding amount is small and non-uniform, and if it exceeds 60 minutes, the grinding amount on the surface of the magnet body is large and the surface roughness deteriorates, which is not preferable.

また、硬質粉末の噴射用加圧流体としては、空気あるい
はAr、N2ガス等の不活性ガスが利用できるが、磁石体の
酸化防止のためには、不活性ガスが好ましく、また、空
気を用いる場合は、除湿を行なった空気が望ましい。
Further, as the pressurized fluid for jetting the hard powder, air or an inert gas such as Ar or N 2 gas can be used, but an inert gas is preferable for preventing the oxidation of the magnet body, and air is also preferable. When used, dehumidified air is desirable.

さらに、この発明において、気相めっき薄膜層を被着し
た永久磁石体に、所要形状からなる特定の粉末を加圧気
体とともに噴射するショットピーニングを施すことは、
該気層めっき薄膜層の緻密化を計り、材料と表面薄膜層
との密着性を改善でき、有効である。
Further, in the present invention, the permanent magnet body coated with the vapor phase plated thin film layer is subjected to shot peening by injecting a specific powder having a required shape together with a pressurized gas,
This is effective because the air-layer plated thin film layer can be densified to improve the adhesion between the material and the surface thin film layer.

ショットピーニング用粉末としては、モース硬度3以上
の球状硬質粉末を用い、スチールボールやガラスビーズ
等が利用でき、被着した気相めっき薄膜層の硬度と同等
以上の硬度であればよく、ガラスビーズが好ましい。
As the shot peening powder, spherical hard powder having a Mohs hardness of 3 or more can be used, and steel balls, glass beads, etc. can be used, as long as they have hardness equal to or higher than the hardness of the deposited vapor phase plating thin film layer. Is preferred.

ピーニング用球状粉末のモース硬度が、3未満では気相
めっき薄膜層の硬度より小さくなり、ピーニング効果が
得られないため好ましくない。
When the Mohs hardness of the spherical powder for peening is less than 3, it is less than the hardness of the vapor phase plating thin film layer, and the peening effect cannot be obtained, which is not preferable.

また、ピーニング用球状粉末の平均粒度を30μm〜3000
μmとするのは、30μm未満では気相めっき薄膜層に対
する押圧力が小さく処理に長時間を要し、また、3000μ
mを越えると焼結磁石体表面の面粗度が粗くなりすぎ、
仕上面が不均一となり、好ましくないためである。さら
に好ましい平均粒度は、40μmから2000μmである。
Also, the average particle size of the spherical powder for peening is 30 μm to 3000
If the thickness is less than 30 μm, the pressing force against the vapor-phase plated thin film layer is small and the treatment requires a long time.
If it exceeds m, the surface roughness of the sintered magnet body becomes too rough,
This is because the finished surface is not uniform, which is not preferable. A more preferable average particle size is 40 μm to 2000 μm.

また、球状粉末の噴射条件としては、圧力1.0kg/cm2
満では、気相めっき薄膜層に対する押圧力が小さく処理
に長時間を要し、また、圧力5.0kg/cm2を越えると気相
めっき薄膜層への押圧力が不均一となり、面粗度の悪化
を招来する さらに、噴射時間が1分間未満では、全表面を均一に処
理できず、また、噴射時間の上限は、ピーニングの処理
量,処理条件によって決定されるが、60分を越えると、
面粗度が悪化して好ましくない。
Further, as the injection conditions of the spherical powder, if the pressure is less than 1.0 kg / cm 2 , the pressing force against the vapor-phase plated thin film layer is small and it takes a long time to process, and if the pressure exceeds 5.0 kg / cm 2 , the vapor phase The pressing force to the plating thin film layer becomes non-uniform, resulting in deterioration of surface roughness. Furthermore, if the injection time is less than 1 minute, the entire surface cannot be uniformly processed, and the upper limit of the injection time is the peening process. It depends on the amount and processing conditions, but if it exceeds 60 minutes,
The surface roughness deteriorates, which is not preferable.

永久磁石の成分限定理由 この発明の永久磁石に用いる希土類元素Rは、組成の10
原子%〜30原子%を占めるが、Nd,Pr,Dy,Ho,Tbのうち少
なくとも1種、あるいはさらに、La,Ce,Sm,Gd,Er,Eu,T
m,Yb,Lu,Yのうち少なくとも1種を含むものが好まし
い。
Reasons for Limiting Components of Permanent Magnet The rare earth element R used in the permanent magnet of the present invention has a composition of 10
Occupies at least 30 at%, but at least one of Nd, Pr, Dy, Ho, Tb, or even La, Ce, Sm, Gd, Er, Eu, T
Those containing at least one of m, Yb, Lu and Y are preferable.

また、通常Rのうち1種をもって足りるが、実用上は2
種以上の混合物(ミッシュメタル,ジジム等)を入手上
の便宜等の理由により用いることができる。
Also, one type of R is usually sufficient, but it is practically 2
Mixtures of more than one species (Misch metal, didymium, etc.) can be used for reasons of availability.

なお、このRは純希土類元素でなくてもよく、工業上入
手可能な範囲で製造上不可避な不純物を含有するもので
も差支えない。
It should be noted that this R does not have to be a pure rare earth element, and may contain an impurity that is unavoidable in manufacturing within the industrially available range.

Rは、新規な上記系永久磁石における必須元素であっ
て、10原子%未満では結晶構造がα−鉄と同一構造の立
方晶組織となるため、高磁気特性、特に高保磁力が得ら
れず、30原子%を越えると、Rリッチな非磁性相が多く
なり、残留磁束密度(Br)が低下して、すぐれた特性の
永久磁石が得られない。よって、Rは10原子%〜30原子
%の範囲とする。
R is an essential element in the novel permanent magnet, and if it is less than 10 atom%, it has a cubic crystal structure having the same crystal structure as α-iron, so that high magnetic properties, particularly high coercive force cannot be obtained. If it exceeds 30 atomic%, the amount of R-rich nonmagnetic phase increases, the residual magnetic flux density (Br) decreases, and a permanent magnet having excellent characteristics cannot be obtained. Therefore, R is in the range of 10 atom% to 30 atom%.

Bは、この発明による永久磁石における必須元素であっ
て、2原子%未満では菱面体構造が主相となり、高い保
磁力(iHc)は得られず、28原子%を越えるとBリッチ
な非磁性相が多くなり、残留磁束密度(Br)が低下する
ため、すぐれた永久磁石が得られない。よって、Bは2
原子%〜28原子%の範囲とする。
B is an essential element in the permanent magnet according to the present invention. If it is less than 2 atomic%, the rhombohedral structure becomes the main phase and a high coercive force (iHc) cannot be obtained, and if it exceeds 28 atomic%, it is a B-rich non-magnetic material. An excellent permanent magnet cannot be obtained because the number of phases increases and the residual magnetic flux density (Br) decreases. Therefore, B is 2
The range is from atomic% to 28 atomic%.

Feは、新規な上記系永久磁石において必須元素であり、
65原子%未満では残留磁束密度(Br)が低下し、80原子
%を越えると高い保磁力が得られないので、Feは65原子
%〜80原子%の含有とする。
Fe is an essential element in the novel permanent magnet,
If it is less than 65 atom%, the residual magnetic flux density (Br) is reduced, and if it exceeds 80 atom%, a high coercive force cannot be obtained, so Fe is contained in the range of 65 atom% to 80 atom%.

また、この発明による永久磁石において、Feの一部をCo
で置換することは、得られる磁石の磁気特性を損うこと
なく、温度特性を改善することができるが、Co置換量が
Feの20%を越えると、逆に磁気特性が劣化するため好ま
しくない。Coの置換量がFeとCoの合計量で5原子%〜15
原子%の場合は、(Br)は置換しない場合に比較して増
加するため、高磁束密度を得るために好ましい。
In the permanent magnet according to the present invention, a part of Fe is Co
By replacing with, the temperature characteristics can be improved without impairing the magnetic characteristics of the obtained magnet, but the Co substitution amount is
If it exceeds 20% of Fe, on the contrary, the magnetic properties deteriorate, which is not preferable. The substitution amount of Co is 5 atom% to 15 in the total amount of Fe and Co.
In the case of atomic%, (Br) increases as compared with the case of not substituting, so that it is preferable to obtain a high magnetic flux density.

また、この発明による永久磁石は、R,B,Feの他、工業的
生産上不可避的不純物の存在を許容できるが、Bの一部
を4.0原子%以下のC、3.5原子%以下のP、2.5原子%
以下のS、3.5原子%以下のCuのうち少なくとも1種、
合計量で4.0原子%以下で置換することにより、永久磁
石の製造性改善、低価格化が可能である。
Further, the permanent magnet according to the present invention can tolerate the presence of impurities unavoidable in industrial production in addition to R, B and Fe, but a part of B is 4.0 atom% or less of C, 3.5 atom% or less of P, 2.5 atom%
At least one of the following S and Cu of 3.5 atomic% or less,
By substituting the total amount by 4.0 atom% or less, it is possible to improve the manufacturability of the permanent magnet and reduce the cost.

また、下記添加元素のうち少なくとも1種は、Fe-B-R系
永久磁石に対してその保磁力、減磁曲線の角型性を改善
あるいは製造性の改善、低価格化に効果があるため添加
することができる。
At least one of the following additional elements is added to the Fe-BR permanent magnet because it is effective in improving the coercive force and squareness of the demagnetization curve, improving the manufacturability, and lowering the cost. be able to.

9.5原子%以下のAl、4.5原子%以下のTi、 9.5原子%以下のV、8.5原子%以下のCr、 8.0原子%以下のMn、5.0原子%以下のBi、 9.5原子%以下のNb、9.5原子%以下のTa、 9.5原子%以下のMo、9.5原子%以下のW、 2.5原子%以下のSb、7原子%以下のGe、 3.5原子%以下のSn、5.5原子%以下のZr、 9.0原子%以下のNi、9.0原子%以下のSi、 1.1原子%以下のZn、5.5原子%以下のHf、 のうち少なくとも1種を添加含有、但し、2種以上含有
する場合は、その最大含有量は当該添加元素のうち最大
値を有するものの原子%以下を含有させることにより、
永久磁石の高保磁力化が可能になる。
9.5 atomic% or less Al, 4.5 atomic% or less Ti, 9.5 atomic% or less V, 8.5 atomic% or less Cr, 8.0 atomic% or less Mn, 5.0 atomic% or less Bi, 9.5 atomic% or less Nb, 9.5 Ta less than atomic%, Mo less than 9.5 atomic%, W less than 9.5 atomic%, Sb less than 2.5 atomic%, Ge less than 7 atomic%, Sn less than 3.5 atomic%, Zr less than 5.5 atomic%, 9.0 atomic % Or less Ni, 9.0 atom% or less Si, 1.1 atom% or less Zn, and 5.5 atom% or less Hf, at least one kind is added, but when two or more kinds are contained, the maximum content is By containing atomic% or less of the additional element having the maximum value,
It is possible to increase the coercive force of the permanent magnet.

結晶相は主相が正方晶であることが、微細で均一な合金
粉末より、すぐれた磁気特性を有する焼結永久磁石を作
製するのに不可欠である。
The fact that the main phase of the crystal phase is a tetragonal crystal is indispensable for producing a sintered permanent magnet having excellent magnetic properties from a fine and uniform alloy powder.

また、この発明の永久磁石は、磁場中プレス成型するこ
とにより磁気的異方性磁石が得られ、また、無磁界中で
プレス成型することにより、磁気的等方性磁石を得るこ
とができる。
Further, the permanent magnet of the present invention can be magnetically anisotropic magnet obtained by press molding in a magnetic field, and can be magnetically isotropic magnet by press molding in a non-magnetic field.

さらに、この発明の永久磁石は平均結晶粒径が1〜80μ
mの範囲にある正方晶系の結晶構造を有する化合物を主
相とし、体積比で1%〜50%の非磁性相(酸化物相を除
く)を含むことを特徴とする。
Furthermore, the permanent magnet of the present invention has an average crystal grain size of 1 to 80 μm.
A compound having a tetragonal crystal structure in the range of m is used as a main phase, and a volume ratio of 1% to 50% of a nonmagnetic phase (excluding an oxide phase) is included.

この発明による永久磁石は、保磁力 iHc≧1kOe、残留磁束密度Br>4kG、を示し、最大エネル
ギー積(BH)maxは、(BH)max≧10MGOeを示し、最大値は25
MGOe以上に達する。
The permanent magnet according to the present invention exhibits a coercive force iHc ≧ 1 kOe, a residual magnetic flux density Br> 4 kG, a maximum energy product (BH) max of (BH) max ≧ 10 MGOe, and a maximum value of 25
Reach more than MGOe.

また、この発明による永久磁石のRの主成分が、その50
%以上をNb及びPrを主とする軽希土類金属が占める場合
で、R12原子%〜20原子%、B4原子%〜24原子%、Fe74
原子%〜80原子%、を主成分とするとき、(BH)max35MGO
e以上のすぐれた磁気特性を示し、特に軽希土類金属がN
dの場合には、その最大値が45MGOe以上に達する。
Further, the main component of R of the permanent magnet according to the present invention is 50
% Or more when the light rare earth metal mainly composed of Nb and Pr occupies R12 atom% to 20 atom%, B4 atom% to 24 atom%, Fe74
(BH) max35MGO when the main component is atomic% -80 atomic%
It has excellent magnetic characteristics over e, and especially light rare earth metals are N
In case of d, the maximum value reaches 45 MGOe or more.

この発明は、RとしてNdやPrを中心とする資源的に豊富
な軽希土類を用い、B,Feを主成分として25MGOe以上、最
高では45MGOe以上にも達する極めて高いエネルギー積並
びに、高残留磁束密度、高保磁力を示す、すぐれた永久
磁石であり、かつ研削加工及び酸化層による磁気特性の
劣化を防止し、かつ微細孔を消滅させて極めて高い防蝕
性を示す気相めっき薄膜及びクロム酸塩被膜を表面に安
定被着したFe-B-R系永久磁石を、安価に得ることができ
る。
This invention uses light rare earths rich in resources centered on Nd and Pr as R, has an extremely high energy product of 25 MGOe or more, and a maximum of 45 MGOe or more with B and Fe as main components, and a high residual magnetic flux density. , A high-coercive permanent magnet, a vapor-phase plated thin film and a chromate film which are excellent in permanent corrosion resistance, prevent deterioration of magnetic properties due to grinding processing and an oxide layer, and eliminate micropores to exhibit extremely high corrosion resistance. The Fe-BR permanent magnet with the surface of which is stably deposited can be obtained at low cost.

作用 この発明は、磁石体表面に薄膜形成技術により、Alある
いはZnの耐食性気相めっき薄膜層を被着したのち、クロ
ム酸塩処理を施して該薄膜層上にクロム酸塩被膜層を形
成し、さらに大気中あるいは真空中もしくは真空化後加
圧を行なって、該被着層に熱硬化性樹脂を含浸させて、
その後、熱硬化処理して、気相めっき層及びクロム酸塩
被膜の微細孔を消滅させることにより、永久磁石の耐食
性をなお一層向上させたものである。
Action The present invention is to form a chromate coating layer on the thin film layer by applying a chromate treatment after depositing a corrosion-resistant vapor phase plating thin film layer of Al or Zn on the surface of the magnet body by a thin film forming technique. Further, in the atmosphere or in a vacuum or after being evacuated, pressure is applied to impregnate the adhered layer with a thermosetting resin,
After that, a heat curing treatment is performed to eliminate the fine pores of the vapor phase plating layer and the chromate coating, thereby further improving the corrosion resistance of the permanent magnet.

実施例 出発原料として、純度99.9%の電解鉄、フェロボロン合
金、純度99.7%以上のNdを使用し、これらを配合後高周
波溶解し、その後水冷銅鋳型に鋳造し、15.0Nd-8.0B-7
7.0Feなる組成の鋳塊を得た。
Example As a starting material, electrolytic iron having a purity of 99.9%, ferroboron alloy, using Nd having a purity of 99.7% or more, high-frequency melting after mixing these, then cast in a water-cooled copper mold, 15.0Nd-8.0B-7
An ingot having a composition of 7.0 Fe was obtained.

その後このインゴットをスタンプミルにより粗粉砕し、
次にボールミルにより微粉砕し、平均粒度3μmの微粉
末を得た。
After that, this ingot was roughly crushed with a stamp mill,
Next, it was finely pulverized by a ball mill to obtain fine powder having an average particle size of 3 μm.

この微粉末を金型に挿入し、12kOeの磁界中で配向し、
磁界に垂直方向に、1.5t/cm2の圧力で成形した。
Insert this fine powder into the mold, orient in a magnetic field of 12 kOe,
It was molded in a direction perpendicular to the magnetic field at a pressure of 1.5 t / cm 2 .

得られた成形体を、1100℃、1時間、Ar雰囲気中の条件
で焼結し、長さ25mm×幅40mm×厚み30mm寸法の焼結体を
得た。
The obtained molded body was sintered under conditions of 1100 ° C. for 1 hour in an Ar atmosphere to obtain a sintered body having dimensions of length 25 mm × width 40 mm × thickness 30 mm.

さらにAr中での800℃×1時間と630℃×1.5時間の2段
時効処理を施した。
Further, two-step aging treatment was performed in Ar at 800 ° C for 1 hour and 630 ° C for 1.5 hours.

上記の永久磁石体を、大気中でダイヤモンド#200番を砥
石として、回動数2400rpm、送り速度5mm/minで、長さ5m
m×幅10mm×厚み3mm寸法に切出した。
In the atmosphere, the above permanent magnet body is diamond # 200 as a grindstone, the rotation speed is 2400 rpm, the feed speed is 5 mm / min, and the length is 5 m.
It was cut into a size of m x width 10 mm x thickness 3 mm.

さらに、この切出し試料に、平均粒径50μm、モース硬
度9の不定形Al2O3硬質粉末を用いて、圧力2.5kg/cm2、N
2ガスの加圧気体とともに、20分間噴射する条件のグリ
ットブラストを施し、上記磁石体の表面層を除去した。
Furthermore, using an amorphous Al 2 O 3 hard powder having an average particle size of 50 μm and a Mohs hardness of 9 to this cut sample, pressure 2.5 kg / cm 2 , N
Grit blasting was performed under the condition of spraying for 20 minutes together with the pressurized gas of 2 gases to remove the surface layer of the magnet body.

次に、真空度5×10-5Torrの真空容器内に、上記試料を
入れ、Arガスを送入し、1×10-2TorrのArガス中、500V
の電圧で15分間の放電を行なった後、引続き、コーティ
ング材料として、純度99.99%のAl板を用い、これを加熱
し、蒸発Alをイオン化し、これらイオン化粒子が電界に
引かれて、陰極を構成する前記試験片に付着し、Al薄膜
を形成した。試験片表面に形成した薄膜厚みは15μmで
あった。
Next, the above sample was put into a vacuum vessel having a vacuum degree of 5 × 10 −5 Torr, Ar gas was fed, and 500 V in 1 × 10 −2 Torr Ar gas was introduced.
After discharging for 15 minutes at a voltage of, the coating material was an Al plate with a purity of 99.99%, which was heated to ionize the evaporated Al, and these ionized particles were attracted to the electric field to form a cathode. It adhered to the said test piece which comprises, and formed the Al thin film. The thickness of the thin film formed on the surface of the test piece was 15 μm.

上記イオン・プレーティング条件は、電圧1.5kV、10分間
処理であった。
The ion plating conditions were a voltage of 1.5 kV and a treatment for 10 minutes.

さらに、Al薄膜層を被着した磁石体試料に、平均粒径12
0μm、モース硬度6の球状ガラスビーズ粉末を用い
て、圧力1.5kg/cm2、N2ガスの加圧気体とともに、5分間
噴射する条件のショットピーニングを施して試験片を得
た。
In addition, the average particle size of 12
Using spherical glass bead powder having a hardness of 0 μm and a Mohs hardness of 6, shot peening was performed under the conditions of a pressure of 1.5 kg / cm 2 and a pressurized gas of N 2 gas for 5 minutes to obtain a test piece.

さらに、ショットピーニング後に、磁石体試料を、30℃
に保持した2%アロジン#1200(商品名;日本ペイント社
製)溶液中に1分間浸漬し、ピーニング後のAl薄膜層表
面に、黄金色にクロム酸塩被膜を被着して試験片を得
た。
Furthermore, after shot peening, the magnet sample was
Immersed in a 2% Alodine # 1200 (trade name; manufactured by Nippon Paint Co., Ltd.) solution held for 1 minute, and apply a chromate film in golden color to the surface of the Al thin film layer after peening to obtain a test piece. It was

前記試験片を、10-2Torrの真空容器内にて、熱硬化性樹
脂(商品名;ヒタノール、日立化成社製)に浸漬し、含
浸時間3分間(本発明例1)及び5分間(本発明例2)
の条件で、樹脂浸漬を行なった後、該試験片の表面を溶
剤で洗浄し、25℃で乾燥させ、さらに、大気中、140℃
で30分の条件で熱硬化処理した。
The test piece was immersed in a thermosetting resin (trade name; Hitanol, manufactured by Hitachi Chemical Co., Ltd.) in a vacuum container of 10 -2 Torr, and impregnation time was 3 minutes (present invention example 1) and 5 minutes (present). Invention Example 2)
After the resin is immersed under the conditions of, the surface of the test piece is washed with a solvent and dried at 25 ° C, and further, in air, at 140 ° C.
Heat treatment was performed for 30 minutes.

これらの試験片に耐食性試験と耐食性試験後の薄膜の密
着強度試験を行なった。また、耐食性試験前後の磁気特
性を測定した。試験結果及び測定結果を第1表に示す。
These test pieces were subjected to a corrosion resistance test and a thin film adhesion strength test after the corrosion resistance test. In addition, the magnetic properties before and after the corrosion resistance test were measured. The test results and measurement results are shown in Table 1.

また、比較のため、熱硬化性樹脂の含浸を施さない以外
は本発明例と同一条件で製造した試験片(比較例3)、
前記の切出したままの試験片(比較例4)及び上記試験
片にトリクレンにて3分間溶剤脱脂し、5%NaOHにて60℃
で3分間のアルカリ脱脂した後、2%HClにて室温、10秒
間の酸洗しワット浴にて、電流密度4A/dm2、浴温度60℃
で20分間の条件にて、電気ニッケルめっきを行ない表面
に20μm厚みのニッケルめっき層を有する比較試験片
(比較例5)を得た。
For comparison, a test piece (Comparative Example 3) manufactured under the same conditions as those of the example of the present invention, except that the thermosetting resin was not impregnated,
The as-cut test piece (Comparative Example 4) and the test piece were subjected to solvent degreasing with trichlene for 3 minutes and then with 5% NaOH at 60 ° C.
After alkaline degreasing for 3 minutes at room temperature, pickling with 2% HCl for 10 seconds at room temperature, Watt bath, current density 4A / dm 2 , bath temperature 60 ° C
Under the conditions of 20 minutes in the above, the electroless nickel plating was performed to obtain a comparative test piece (Comparative Example 5) having a nickel plating layer with a thickness of 20 μm on the surface.

これらの比較試験片に上記の耐食性試験と耐食性試験後
の薄膜の密着強度試験及び耐食性試験前後の磁気特性の
測定を行ない、その結果を同様に第1表に示す。
These comparative test pieces were subjected to the above-mentioned corrosion resistance test, the adhesion strength test of the thin film after the corrosion resistance test, and the magnetic properties before and after the corrosion resistance test, and the results are also shown in Table 1.

耐食性試験は、上記試験片を70℃の温度90%の湿度の雰
囲気に、1000時間放置した場合の試験片外観状況及び密
着強度、耐蝕試験前後の磁気特性でもって評価した。
The corrosion resistance test was evaluated based on the appearance of the test piece, the adhesion strength, and the magnetic properties before and after the corrosion resistance test when the test piece was left in an atmosphere of 70 ° C. and a humidity of 90% for 1000 hours.

また、密着強度試験は、耐食性試験後の本発明1,2及び
比較例3,5の各試験片を、破断して破断面図を観察する
ことで評価した。
Further, the adhesion strength test was evaluated by breaking each test piece of the present inventions 1 and 2 and Comparative Examples 3 and 5 after the corrosion resistance test and observing a fracture cross-sectional view.

発明の効果 実施例の第1表より明らかなように、Fe-B-R系磁石体表
面に薄膜形成技術により、AlあるいはZnの耐食性気相め
っき薄膜層を被着したのち、クロム酸塩処理を施して該
薄膜層上にクロム酸塩被膜層を形成し、さらに大気中あ
るいは真空中もしくは真空化後加圧を行なって、該被着
層に熱硬化性樹脂を含浸させて、その後熱硬化処理し
て、気相めっき層及びクロム酸塩被膜層の微細孔を消滅
させ、永久磁石の耐食性をなお一層向上させたこの発明
により、切削加工による磁気特性の劣化が防止され、さ
らに、寸法精度にすぐれ、かつ極めてすぐれた耐食性及
び密着性を示すFe-B-R系永久磁石が得られ、その効果の
著しいことが分る。
EFFECTS OF THE INVENTION As is clear from Table 1 of the examples, a corrosion-resistant vapor phase plating thin film layer of Al or Zn is deposited on the surface of the Fe-BR magnet body by a thin film forming technique, and then chromate treatment is applied. To form a chromate film layer on the thin film layer, and further pressurize in the air or in a vacuum or after vacuuming to impregnate the adhered layer with a thermosetting resin, and then perform a thermosetting treatment. In this way, the microscopic holes in the vapor phase plating layer and the chromate coating layer are eliminated, and the corrosion resistance of the permanent magnet is further improved. In addition, Fe-BR based permanent magnets exhibiting excellent corrosion resistance and adhesion are obtained, and it is clear that the effect is remarkable.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】R(RはNd,Pr,Dy,Ho,Tbのうち少なくとも1
種あるいはさらに、La,Ce,Sm,Gd,Er,Eu,Tm,Yb,Lu,Yのう
ち少なくとも1種からなる)10%〜30原子%、 B2原子%〜28原子%、 Fe65原子%〜80原子%を主成分とし、主相が正方晶相か
らなる永久磁石体の表面に、 耐食性気相AlあるいはZnめっき層とその上のクロム酸塩
被膜層を有し、 さらに、上記気相めっき層及びクロム酸塩被膜層の微細
孔内に充填された樹脂を有することを特徴とする耐食性
のすぐれた永久磁石。
1. R (R is at least 1 of Nd, Pr, Dy, Ho, Tb
Or at least one of La, Ce, Sm, Gd, Er, Eu, Tm, Yb, Lu, Y) 10% to 30 atom%, B2 atom% to 28 atom%, Fe65 atom% to Corrosion resistant vapor phase Al or Zn plating layer and chromate coating layer on it are formed on the surface of a permanent magnet body whose main phase is tetragonal phase with 80 atomic% as the main component. A permanent magnet having excellent corrosion resistance, characterized in that it has a resin filled in the micropores of the layer and the chromate coating layer.
【請求項2】R(RはNd,Pr,Dy,Ho,Tbのうち少なくとも1
種あるいはさらに、La,Ce,Sm,Gd,Er,Eu,Tm,Yb,Lu,Yのう
ち少なくとも1種からなる)10%〜30原子%、 B2原子%〜28原子%、 Fe65原子%〜80原子%を主成分とし、主相が正方晶相か
らなる永久磁石体の表面に、 気相AlまたはZnめっき処理を施したのち、クロム酸塩処
理を施し、 さらに該磁石体表面に熱硬化性樹脂を含浸させ、その後
熱硬化処理することを特徴とする耐食性のすぐれた永久
磁石の製造方法。
2. R (R is at least one of Nd, Pr, Dy, Ho and Tb.
Or at least one of La, Ce, Sm, Gd, Er, Eu, Tm, Yb, Lu, Y) 10% to 30 atom%, B2 atom% to 28 atom%, Fe65 atom% to The surface of a permanent magnet body containing 80 atomic% as a main component and a tetragonal phase as the main phase is vapor-phase Al or Zn plated, then chromate treated, and then the surface of the magnet is thermoset. A method for producing a permanent magnet having excellent corrosion resistance, which comprises impregnating a resin with heat and then performing a heat curing treatment.
JP60260771A 1984-12-24 1985-11-20 Permanent magnet having excellent corrosion resistance and method of manufacturing the same Expired - Lifetime JPH0646603B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP60260771A JPH0646603B2 (en) 1985-11-20 1985-11-20 Permanent magnet having excellent corrosion resistance and method of manufacturing the same
CN85109695A CN1007847B (en) 1984-12-24 1985-12-24 Process for producing magnets having improved corrosion resistance
EP85116598A EP0190461B1 (en) 1984-12-24 1985-12-27 Process for producing permanent magnets and permanent magnet
DE8585116598T DE3584243D1 (en) 1984-12-24 1985-12-27 METHOD FOR PRODUCING PERMANENT MAGNETS AND PERMANENT MAGNET.
US06/818,238 US4837114A (en) 1984-12-24 1986-01-13 Process for producing magnets having improved corrosion resistance
US07/360,101 US5089066A (en) 1984-12-24 1989-06-01 Magnets having improved corrosion resistance
US07/740,442 US5316595A (en) 1984-12-24 1991-08-05 Process for producing magnets having improved corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60260771A JPH0646603B2 (en) 1985-11-20 1985-11-20 Permanent magnet having excellent corrosion resistance and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPS62120004A JPS62120004A (en) 1987-06-01
JPH0646603B2 true JPH0646603B2 (en) 1994-06-15

Family

ID=17352498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60260771A Expired - Lifetime JPH0646603B2 (en) 1984-12-24 1985-11-20 Permanent magnet having excellent corrosion resistance and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JPH0646603B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2631492B2 (en) * 1988-03-03 1997-07-16 住友特殊金属株式会社 Manufacturing method of corrosion resistant permanent magnet
JP2631493B2 (en) * 1988-03-03 1997-07-16 住友特殊金属株式会社 Manufacturing method of corrosion resistant permanent magnet
US5827381A (en) * 1990-08-10 1998-10-27 Bridgestone Corporation Pneumatic radial tires including a tire component containing groups of reinforcing elements
CN112382498B (en) * 2020-11-23 2022-06-21 中国计量大学 Preparation method of high-coercivity and high-energy-product diffusion samarium-iron-nitrogen magnet

Also Published As

Publication number Publication date
JPS62120004A (en) 1987-06-01

Similar Documents

Publication Publication Date Title
EP0190461B1 (en) Process for producing permanent magnets and permanent magnet
JP6090589B2 (en) Rare earth permanent magnet manufacturing method
WO2014034854A1 (en) Production method for rare earth permanent magnet
TWI569294B (en) Manufacture of rare earth permanent magnets
JPH0283905A (en) Corrosion-resistant permanent magnet and manufacture thereof
JP2791659B2 (en) Manufacturing method of corrosion resistant permanent magnet
EP1028438B1 (en) METHOD OF MANUFACTURING R-Fe-B BOND MAGNETS OF HIGH CORROSION RESISTANCE
JPH0646603B2 (en) Permanent magnet having excellent corrosion resistance and method of manufacturing the same
JPH0770382B2 (en) Rare earth magnet having excellent corrosion resistance and method for manufacturing the same
JPH0613211A (en) Permanent magnet having excellent corrosion resistance and manufacture thereof
JPH0569283B2 (en)
JPH0569282B2 (en)
JPH0945567A (en) Rare earth-iron-boron permanent magnet manufacturing method
JPH0545045B2 (en)
JP2553843B2 (en) Method of manufacturing permanent magnet with excellent corrosion resistance
JP2631493B2 (en) Manufacturing method of corrosion resistant permanent magnet
JP2631492B2 (en) Manufacturing method of corrosion resistant permanent magnet
JPH0666173B2 (en) Permanent magnet having excellent corrosion resistance and method of manufacturing the same
JPH0576521B2 (en)
JPH0535216B2 (en)
JP3236815B2 (en) High corrosion resistance R-Fe-B bonded magnet and method for producing the same
JPH0554683B2 (en)
JP4089948B2 (en) Method for manufacturing permanent magnet for hard disk drive
JP2720038B2 (en) Manufacturing method of permanent magnet
JPS63255376A (en) Production of corrosion resistant permanent magnet

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term