JPH0945567A - Rare earth-iron-boron permanent magnet manufacturing method - Google Patents

Rare earth-iron-boron permanent magnet manufacturing method

Info

Publication number
JPH0945567A
JPH0945567A JP7191368A JP19136895A JPH0945567A JP H0945567 A JPH0945567 A JP H0945567A JP 7191368 A JP7191368 A JP 7191368A JP 19136895 A JP19136895 A JP 19136895A JP H0945567 A JPH0945567 A JP H0945567A
Authority
JP
Japan
Prior art keywords
rare earth
permanent magnet
iron
film
boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7191368A
Other languages
Japanese (ja)
Inventor
Munehisa Hasegawa
統久 長谷川
Takashi Sasaki
崇 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP7191368A priority Critical patent/JPH0945567A/en
Priority to US08/604,927 priority patent/US5876518A/en
Publication of JPH0945567A publication Critical patent/JPH0945567A/en
Priority to US09/176,724 priority patent/US6254694B1/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/026Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the magnetic characteristics of a rare earth-Fe-B perma nent magnet deteriorated by the cutting or electroplating process by post-heat treating it after forming an anticorrosive film. SOLUTION: After forming an anticorrosive film on the surface of a sintered magnet composed of R (= one or more rare earth elements including Y) 20-45wt.%, Fe 50-80wt.%, Co 0.1-15wt.%, B 0.5-6wt.%, Cu 5wt.% or less and M (= at least one of Al, Si, Nb, Mo, V, Mn, Sn, Ni, Zn, Ti, Cr, Ta, W, Ge, Zr, Hf and Ga) 10wt.% or less, it is heat treated in an inert gas or nonoxidating atmosphere or vacuum at 400-600 deg.C to form a rare earth-iron-born permanent magnet. The anticorrosive film is a single or multilayer film composed of one or more elements selected among Zn, Cr, Ni, Cu, Sn, Pb, Cd, Ti, W, Co, Al and Ta.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、希土類−鉄−ボロン系
永久磁石に耐食性皮膜を形成した後熱処理を行うことに
より、切削加工あるいは電解めっき等による磁気特性の
劣化を改善し、皮膜と磁石体との密着性をも向上させた
希土類−鉄−ボロン系永久磁石の製造方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention improves the deterioration of magnetic properties due to cutting or electrolytic plating by forming a corrosion resistant film on a rare earth-iron-boron permanent magnet and then performing heat treatment to improve the film and the magnet. The present invention relates to a method for producing a rare earth-iron-boron-based permanent magnet having improved adhesion to the body.

【0002】[0002]

【従来の技術】近年、電子機器や精密機器の小型、軽量
化の市場傾向に伴い、永久磁石においては従来のアルニ
コやフェライト磁石に代わり希土類磁石が多くの分野で
利用されるようになってきた。希土類永久磁石の中で
も、特に、高いエネルギー積が得られる希土類−鉄−ボ
ロン系永久磁石の需要が増加しており、従来以上に高エ
ネルギー積でかつ高保磁力が要求される傾向にある。し
かしながら、この希土類−鉄−ボロン系永久磁石はキュ
リー温度が低いために残留磁束密度の温度係数が大きく
高温減磁する欠点を有している。また、酸化しやすい希
土類元素および鉄を主成分としているために錆びやすい
という欠点も有している。この低耐食性を克服するため
に、Co、Ga、Ni、Cr等の元素を添加する方法が
種々提案されている。
2. Description of the Related Art In recent years, along with the market trend toward smaller and lighter electronic equipment and precision equipment, rare earth magnets have been used in many fields in permanent magnets instead of conventional alnico and ferrite magnets. . Among rare earth permanent magnets, there is an increasing demand for rare earth-iron-boron-based permanent magnets that can obtain a high energy product, and there is a tendency for higher energy products and higher coercive force to be required than ever. However, this rare earth-iron-boron-based permanent magnet has a drawback that the temperature coefficient of residual magnetic flux density is large and demagnetization occurs at high temperature because of its low Curie temperature. In addition, it has a defect that it is easily rusted because it contains a rare earth element that is easily oxidized and iron as main components. In order to overcome this low corrosion resistance, various methods of adding elements such as Co, Ga, Ni and Cr have been proposed.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、これら
の元素を添加した希土類−鉄−ボロン系永久磁石であっ
ても、完全な耐食性を付与することはできない。従っ
て、耐食性皮膜を有しない希土類−鉄−ボロン系永久磁
石を電子機器等の磁気回路に組み込むと、酸化が磁石体
表面から発生し磁石体内部に進行する。その結果、磁気
特性が劣化し電子機器等の性能を低下させたり、磁石体
表面の酸化物の脱落により周辺機器への磁性体による汚
染が発生する。このような理由で、希土類−鉄−ボロン
系永久磁石体表面の酸化を防止するために、各種の表面
処理方法が提案されている。例えば、スプレーまたは電
着塗装による樹脂塗装、真空蒸着、イオンスパッタリン
グ、イオンプレーティングによる気相めっき法、Cr、
Ni等の金属あるいは合金をめっきをする電解めっき法
あるいは無電解めっき法がある。これらのうち、電解め
っき法あるいは無電解めっき法では、めっきの前処理と
してアルカリあるいは酸による脱脂あるいは活性化処理
等を行うために、前処理時に磁石体表面部分から保磁力
を担う粒界相が溶出し、その結果、磁石体表面部で磁気
特性の劣化した層が生成し磁石体の磁気特性が低下す
る。特に、薄型の磁石では磁気特性における劣化の割合
が大きくなるという問題点がある。
However, even a rare earth-iron-boron-based permanent magnet containing these elements cannot provide complete corrosion resistance. Therefore, when a rare earth-iron-boron-based permanent magnet having no corrosion resistant coating is incorporated into a magnetic circuit of an electronic device or the like, oxidation occurs from the surface of the magnet body and progresses inside the magnet body. As a result, the magnetic characteristics are deteriorated and the performance of electronic devices and the like is deteriorated, and oxides on the surface of the magnet body fall off, so that the peripheral devices are contaminated with the magnetic substance. For this reason, various surface treatment methods have been proposed in order to prevent oxidation of the surface of the rare earth-iron-boron-based permanent magnet body. For example, resin coating by spraying or electrodeposition coating, vacuum deposition, ion sputtering, vapor phase plating method by ion plating, Cr,
There are an electrolytic plating method and an electroless plating method for plating a metal or alloy such as Ni. Among these, in the electrolytic plating method or the electroless plating method, in order to perform degreasing or activation treatment with an alkali or an acid as a pretreatment for plating, the grain boundary phase that plays a role of coercive force from the magnet body surface portion during pretreatment is It elutes, and as a result, a layer having deteriorated magnetic characteristics is generated on the surface of the magnet body, and the magnetic characteristics of the magnet body deteriorate. In particular, a thin magnet has a problem that the rate of deterioration in magnetic characteristics is large.

【0004】また、希土類−鉄−ボロン系永久磁石体を
電子機器に組み込むためには、コーティング前に磁石体
の全面あるいは所要表面を切削加工する必要があるが、
この時にも、磁石体表面が荒らされて加工劣化層が生成
し磁気特性が低下する。そして、この加工劣化層の上に
コーティングを施すと、この加工劣化層部分でコーティ
ング剥離が発生しやすくなりコーティングの密着性も悪
くなるという問題点がある。このような切削加工等に伴
う磁気特性の劣化を改善するために、Ti、W等の金属
元素とCe、La、Nd等の希土類元素との合金薄膜層
を真空蒸着、イオンスパッタリング等の気相めっき法で
形成した後、真空あるいは不活性雰囲気中で400〜9
00℃、1分〜3時間の熱処理をすることが提案されて
いる(特開昭62−192566号)。しかしながら、
活性な希土類元素を50at.%以上含むために耐食性
が悪いと同時に、コスト的にも高くなる。また、内穴、
溝部へのコーティングができないという問題点もある。
特開昭63−211703号では、耐食性、密着力、耐
磨耗性を向上させるために、電気めっき法あるいは無電
解めっき法でNi−Pの合金層を形成した後100〜5
00℃の温度、10分〜数時間の熱処理をする方法が提
案されており、実施例でもNi−Pめっき層を形成した
後150、180℃の温度で熱処理する方法が示されて
いる。しかしながら、この実施例のようにめっき等に吸
蔵された水素を除くための方法として一般的に知られた
200℃程度の温度での熱処理では、R-rich相等の液
相が生成する温度よりも低いために切削加工等による磁
気特性の劣化を回復させたり、磁石体とめっき層との密
着性を向上させたりすることができない。また、200
℃程度の熱処理ではかえって磁気特性を低下させるとい
う問題点がある。特開平1−139705号では、耐酸
化性皮膜と磁石体との密着性向上を目的として、磁石体
表面にPd、Pt等の貴金属層と、Ni等の卑金属層と
を積層し、400〜700℃で拡散熱処理することが提
案されている。しかしながら、Pd、Pt等の貴金属を
10〜100Aの膜厚で磁石体表面に形成する気相めっ
き法あるいは貴金属コロイドを吸着させる方法では、貴
金属層は不均一になりやすく多孔性になりやすい。従っ
て、これが原因でその上に付ける卑金属層にピンホール
が発生しやすくなり耐食性が低下する。また、貴金属は
コスト的にも高くなるという問題点もある。一方、16
0℃のような高温環境下での不可逆減磁率を減少させ熱
安定性を向上させる方法として、キュリー温度を高くす
る元素であるCo元素等を添加する方法がある。また、
Co添加は耐食性を向上させることが知られている。し
かしながら、Co元素を添加すると最適な保磁力を与え
る熱処理温度範囲が狭くなり量産性が悪くなるという問
題点がある。そこで、本発明は、Co元素を添加するこ
とにより耐食性及び温度係数を改善し、Co添加により
狭くなった最適熱処理温度範囲を広げるためにCu元素
を添加し量産性を向上させるとともに、焼結磁石体表面
への耐食性皮膜形成による磁気特性の低下を防止し、耐
食性皮膜と焼結磁石体との密着性を向上させた希土類−
鉄−ボロン系永久磁石の製造方法を提供することを目的
とする。
Further, in order to incorporate a rare earth-iron-boron permanent magnet body into an electronic device, it is necessary to cut the entire surface of the magnet body or a required surface before coating.
At this time as well, the surface of the magnet body is roughened and a processing deterioration layer is generated to deteriorate the magnetic characteristics. When a coating is applied on the processing-deteriorated layer, coating peeling easily occurs at the processing-deteriorated layer portion, and the adhesion of the coating deteriorates. In order to improve the deterioration of magnetic properties due to such cutting work, an alloy thin film layer of a metal element such as Ti and W and a rare earth element such as Ce, La, and Nd is formed by vapor deposition such as vacuum deposition or ion sputtering. After forming by plating method, 400 to 9 in vacuum or inert atmosphere
It has been proposed to perform heat treatment at 00 ° C for 1 minute to 3 hours (Japanese Patent Laid-Open No. 62-192566). However,
Active rare earth element at 50 at. %, The corrosion resistance is poor and the cost is high. Also, the inner hole,
There is also a problem that the groove cannot be coated.
In Japanese Patent Laid-Open No. 63-211703, in order to improve the corrosion resistance, the adhesion, and the abrasion resistance, an Ni-P alloy layer is formed by electroplating or electroless plating, and then 100 to 5 is formed.
A method of performing heat treatment at a temperature of 00 ° C. for 10 minutes to several hours has been proposed, and the examples also show a method of performing heat treatment at a temperature of 150 ° C. or 180 ° C. after forming a Ni—P plating layer. However, the heat treatment at a temperature of about 200 ° C., which is generally known as a method for removing hydrogen occluded in plating as in this example, is higher than the temperature at which a liquid phase such as an R-rich phase is generated. Since it is low, it is not possible to recover the deterioration of the magnetic properties due to cutting work or to improve the adhesion between the magnet body and the plating layer. Also, 200
There is a problem that the magnetic properties are rather deteriorated by heat treatment at about ° C. In JP-A-1-139705, a noble metal layer such as Pd and Pt and a base metal layer such as Ni are laminated on the surface of the magnet body for the purpose of improving the adhesion between the oxidation resistant film and the magnet body, and the base metal layer is 400 to 700. It has been proposed to perform a diffusion heat treatment at ° C. However, in the vapor phase plating method in which a noble metal such as Pd or Pt is formed on the surface of the magnet with a film thickness of 10 to 100 A or the method of adsorbing the noble metal colloid, the noble metal layer is likely to be non-uniform and tends to be porous. Therefore, due to this, pinholes are easily generated in the base metal layer attached thereon, and the corrosion resistance is lowered. In addition, there is a problem in that the cost of precious metals is high. On the other hand, 16
As a method of reducing the irreversible demagnetization rate in a high temperature environment such as 0 ° C. and improving thermal stability, there is a method of adding a Co element or the like, which is an element that raises the Curie temperature. Also,
It is known that the addition of Co improves the corrosion resistance. However, when Co element is added, there is a problem that the heat treatment temperature range that gives the optimum coercive force is narrowed and the mass productivity is deteriorated. Therefore, the present invention improves the corrosion resistance and the temperature coefficient by adding the Co element, improves the mass productivity by adding the Cu element in order to widen the optimum heat treatment temperature range narrowed by the addition of Co, and at the same time the sintered magnet. A rare earth element that prevents the deterioration of magnetic properties due to the formation of a corrosion resistant film on the body surface and improves the adhesion between the corrosion resistant film and the sintered magnet body.
An object is to provide a method for manufacturing an iron-boron permanent magnet.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
の本永久磁石の製造方法は、R(RはYを含む希土類元
素のうち1種または2種以上)が20〜45wt.%、
Feが50〜80wt.%、Coが0.1〜15wt.
%、Bが0.5〜6wt.%、Cuが5wt.%以下か
らなる焼結磁石体表面に耐食性皮膜を形成した後、不活
性ガス雰囲気、非酸化性雰囲気あるいは真空中、400
〜600℃の温度で熱処理することを特徴とする希土類
−鉄−ボロン系永久磁石の製造方法、あるいはR(Rは
Yを含む希土類元素のうち1種または2種以上)が20
〜45wt.%、Feが50〜80wt.%、Coが
0.1〜15wt.%、Bが0.5〜6wt.%、Cu
が5wt.%以下およびM(MはAl、Si、Nb、M
o、V、Mn、Sn、Ni、Zn、Ti、Cr、Ta、
W、Ge、Zr、Hf、Gaのうち1種または2種以
上)が10wt.%以下からなる焼結磁石体表面に耐食
性皮膜を形成した後、不活性ガス雰囲気、非酸化性雰囲
気あるいは真空中、400〜600℃の温度で熱処理す
ることを特徴とする希土類−鉄−ボロン系永久磁石の製
造方法であり、前記耐食性皮膜がZn、Cr、Ni、C
u、Sn、Pb、Cd、Ti、W、Co、Al、Taの
うち1種または2種以上の元素からなる単層膜または多
層膜、あるいは前記耐食性皮膜がC、P、S、O、B、
Hの少なくとも1種または2種以上の元素と、Zn、C
r、Ni、Cu、Sn、Pb、Cd、Ti、W、Co、
Al、Taのうち少なくとも1種または2種以上の元素
からなる単層膜または多層膜とするのが好ましい。本発
明において、耐食性皮膜は単層膜または多層膜いづれで
もよい。単層膜とする場合、皮膜の厚さは10μm以上
とする。また、多層膜とする場合、磁石体と接する皮膜
の膜厚を0.1μm以上とし、耐食性皮膜全体の厚さを
10μm以上とするのが好ましい。また、本発明におい
ては、磁石体と耐食性皮膜との密着性を向上させるため
に耐食性皮膜形成前に磁石体表面の脱脂、活性化処理等
の前処理を行うことが好ましい。
In order to solve the above-mentioned problems, a method for manufacturing a permanent magnet according to the present invention is designed such that R (R is one or more kinds of rare earth elements including Y) is 20 to 45 wt. %,
Fe is 50 to 80 wt. %, Co 0.1 to 15 wt.
%, B is 0.5 to 6 wt. %, Cu 5 wt. % Or less on the surface of the sintered magnet body, and then 400% in an inert gas atmosphere, a non-oxidizing atmosphere or a vacuum.
The method for producing a rare earth-iron-boron-based permanent magnet characterized by heat treatment at a temperature of up to 600 ° C., or R (R is one or more of rare earth elements including Y) is 20
~ 45 wt. %, Fe 50 to 80 wt. %, Co 0.1 to 15 wt. %, B is 0.5 to 6 wt. %, Cu
Is 5 wt. % Or less and M (M is Al, Si, Nb, M
o, V, Mn, Sn, Ni, Zn, Ti, Cr, Ta,
W, Ge, Zr, Hf, and Ga) of 10 wt. % Or less, a corrosion resistant film is formed on the surface of the sintered magnet body, and then heat treatment is performed at a temperature of 400 to 600 ° C. in an inert gas atmosphere, a non-oxidizing atmosphere or a vacuum, a rare earth-iron-boron system. A method of manufacturing a permanent magnet, wherein the corrosion-resistant coating is Zn, Cr, Ni, C.
u, Sn, Pb, Cd, Ti, W, Co, Al, Ta, a single-layer film or a multi-layer film made of one or more elements, or the corrosion-resistant film is C, P, S, O, B. ,
At least one or more elements of H and Zn, C
r, Ni, Cu, Sn, Pb, Cd, Ti, W, Co,
It is preferable to use a single-layer film or a multi-layer film made of at least one or two or more elements of Al and Ta. In the present invention, the corrosion resistant film may be either a single layer film or a multilayer film. In the case of a single layer film, the thickness of the film is 10 μm or more. In the case of a multilayer film, it is preferable that the thickness of the coating in contact with the magnet body is 0.1 μm or more, and the thickness of the entire corrosion resistant coating is 10 μm or more. Further, in the present invention, in order to improve the adhesion between the magnet body and the corrosion resistant coating, it is preferable to perform pretreatment such as degreasing and activation treatment on the surface of the magnet body before forming the corrosion resistant coating.

【0006】[0006]

【作用】本発明は、残留磁束密度の温度係数および耐食
性の改善を行った希土類−鉄−ボロン系永久磁石に耐食
性皮膜を形成した後熱処理を行うことにより、切削加工
あるいは電解めっき等による磁気特性の劣化を改善し、
コーティング膜と磁石体との密着性をも向上させた希土
類−鉄−ボロン系永久磁石の製造方法に関するものであ
る。すなわち、希土類−鉄−ボロン系永久磁石の保磁力
機構はニュークリエーションタイプに属しているため
に、保磁力の大きさは逆磁区の芽となる主相R2F14
B内にある格子欠陥や転位の数あるいは逆磁区の芽をピ
ン止めしていると考えられる主相R2F14Bを囲む粒界
相の結晶組織や量等により決定される。それゆえ、切削
加工により主相内にクラックや歪みが生成したり、粒界
相を持たない主相が露出すると、逆磁区の芽が発生しや
すくなったり、磁壁が動きやすくなり保磁力が低下す
る。また、耐食性皮膜コーティング時に行う酸あるいは
アルカリを用いた前処理では、磁石体表面部分の粒界相
が溶出するために、磁石体表面部分の保磁力は低下し、
その結果、磁石体全体での磁気特性も低下する。特に、
薄物の磁石体ではこれら切削加工あるいはめっきの前処
理による磁気特性の劣化は大きくなる。
The present invention provides a magnetic property by cutting or electrolytic plating by forming a corrosion resistant film on a rare earth-iron-boron permanent magnet with improved temperature coefficient of residual magnetic flux density and corrosion resistance, and then performing heat treatment. Improve the deterioration of
The present invention relates to a method for producing a rare earth-iron-boron-based permanent magnet having improved adhesion between a coating film and a magnet body. That is, since the coercive force mechanism of the rare earth-iron-boron-based permanent magnet belongs to the nucleation type, the magnitude of the coercive force is the main phase R2F14 which is a bud of the reverse magnetic domain.
It is determined by the number of lattice defects and dislocations in B, or the crystal structure and amount of the grain boundary phase surrounding the main phase R2F14B which is considered to pin the buds of the reverse magnetic domain. Therefore, if cracks or strains are generated in the main phase due to cutting, or if the main phase that does not have a grain boundary phase is exposed, buds in the reverse magnetic domain are likely to occur and the domain wall becomes easy to move and the coercive force is reduced. To do. In addition, in the pretreatment with an acid or alkali which is performed at the time of coating the corrosion resistant film, the coercive force of the magnet body surface portion is lowered because the grain boundary phase of the magnet body surface portion is eluted,
As a result, the magnetic characteristics of the entire magnet body also deteriorate. Especially,
In the case of a thin magnet body, the deterioration of the magnetic characteristics due to the pretreatment of cutting or plating becomes large.

【0007】そこで、本発明は、粒界相に余剰に存在す
る希土類リッチ相、Bリッチ相等を活用したもので、耐
食性皮膜を形成した後不活性雰囲気、非酸化性雰囲気あ
るいは真空中、400〜600℃で熱処理する希土類−
鉄−ボロン系永久磁石の製造方法に関するものである。
熱処理温度が400℃未満であると、希土類リッチ相等
の液相が生成せず、本発明の効果は得られない。熱処理
温度は450℃以上とするのが、より好ましくい。本発
明は、Coを含有させることにより焼結磁石体の温度特
性および耐食性を向上させるとともに、耐食性皮膜を形
成した後液相が出現ししかも保磁力が向上する温度で熱
処理することにより、粒界に存在する希土類リッチ相を
磁石体表面部分と耐食性皮膜との界面に一部吐き出さ
せ、切削加工により生成した加工劣化層部分あるいは
酸、アルカリの前処理で溶出した粒界相部分を修復し磁
気特性を回復させる永久磁石の製造方法である。本発明
において、耐食性皮膜の厚さを10μm以上としたの
は、耐食性皮膜の厚さが10μm未満であるとピンホー
ルが形成しやすく、熱処理によりピンホールから希土類
リッチ相がしみ出し、充分な耐食性が得られないからで
ある。また、厚さが50μmを越えると耐食性皮膜の平
滑性が低下するので、耐食性皮膜の厚さは50μm以下
とするのが好ましい。耐食性皮膜は単層膜でもよいが、
多層膜とし、磁石体と接する皮膜の厚さを0.1μm以
上とするのが好ましい。多層膜とすることにより、耐食
性皮膜表面から磁石体表面に貫通するピンホールが減少
し、ピンホールからの腐食を防止することができる。ま
た、磁石体と接する皮膜の厚さが0.1μm未満である
と皮膜が薄く多孔性となりやすく、それが原因でその上
に付ける皮膜にピンホールが生成しやすくなるので、磁
石体に接する皮膜の厚さは0.1μm以上とするのが好
ましい。耐食性皮膜がZn、Cr、Ni、Cu、Sn、
Pb、Cd、Ti、W、Co、Al、Taのうち1種ま
たは2種以上の元素からなる単層膜または多層膜、ある
いは前記耐食性皮膜がC、P、S、O、B、Hの少なく
とも1種または2種以上の元素と、Zn、Cr、Ni、
Cu、Sn、Pb、Cd、Ti、W、Co、Al、Ta
のうち少なくとも1種または2種以上の元素からなる単
層膜または多層膜とするのが好ましい。C、P、S、
O、B、Hは、耐食性皮膜を微結晶化、非晶質化する効
果があり耐食性向上に寄与するが、Pのめっき浴は磁石
体を傷めやすいのでC、S、O、B、Hを用いること
が、より好ましい。電解めっきにより耐食性皮膜を形成
する場合、Niめっき、Ni−Sめっき、Cuめっきが
磁石体を傷めにくく好ましい。
Therefore, the present invention utilizes the rare-earth-rich phase, the B-rich phase, and the like, which are excessively present in the grain boundary phase, and after the corrosion-resistant film is formed, it can be used in an inert atmosphere, a non-oxidizing atmosphere, or a vacuum of 400- Rare earths heat-treated at 600 ℃
The present invention relates to a method for manufacturing an iron-boron permanent magnet.
When the heat treatment temperature is lower than 400 ° C., a liquid phase such as a rare earth rich phase is not generated, and the effect of the present invention cannot be obtained. It is more preferable that the heat treatment temperature is 450 ° C. or higher. The present invention improves the temperature characteristics and corrosion resistance of the sintered magnet body by containing Co, and heat treatment at a temperature at which a liquid phase appears after forming a corrosion resistant film and the coercive force is improved, whereby the grain boundary is improved. Part of the rare earth-rich phase existing in the magnet is discharged to the interface between the surface of the magnet and the corrosion-resistant film, and the part of the process-deteriorated layer formed by cutting or the part of the grain boundary phase eluted by pretreatment with acid or alkali is repaired and the magnetic It is a method of manufacturing a permanent magnet that restores the characteristics. In the present invention, the thickness of the corrosion-resistant coating is set to 10 μm or more because when the thickness of the corrosion-resistant coating is less than 10 μm, pinholes are easily formed, and the rare earth-rich phase is exuded from the pinholes by heat treatment to provide sufficient corrosion resistance. Because I can't get it. Further, if the thickness exceeds 50 μm, the smoothness of the corrosion-resistant coating deteriorates, so the thickness of the corrosion-resistant coating is preferably 50 μm or less. The corrosion resistant film may be a single layer film,
It is preferable that the film is a multilayer film and the thickness of the film in contact with the magnet body is 0.1 μm or more. By forming the multilayer film, the number of pinholes penetrating from the surface of the corrosion resistant film to the surface of the magnet body is reduced, and the corrosion from the pinholes can be prevented. If the thickness of the coating in contact with the magnet body is less than 0.1 μm, the coating tends to be thin and porous, which easily causes pinholes in the coating to be applied on top of it, so that the coating in contact with the magnet body The thickness is preferably 0.1 μm or more. Corrosion resistant film is Zn, Cr, Ni, Cu, Sn,
A single-layer film or a multi-layer film made of one or more elements selected from Pb, Cd, Ti, W, Co, Al, and Ta, or the corrosion-resistant coating is at least C, P, S, O, B, and H. Zn, Cr, Ni, one or more elements,
Cu, Sn, Pb, Cd, Ti, W, Co, Al, Ta
Of these, a single-layer film or a multi-layer film composed of at least one or two or more elements is preferable. C, P, S,
O, B, and H have the effect of microcrystallizing and amorphizing the corrosion-resistant film and contribute to the improvement of corrosion resistance. However, since the plating bath of P easily damages the magnet body, C, S, O, B, and H are added. It is more preferable to use. When forming a corrosion resistant film by electrolytic plating, Ni plating, Ni-S plating, and Cu plating are preferable because they do not damage the magnet body.

【0008】以下、本発明の限定理由について示す。本
発明の永久磁石に用いる希土類元素Rは、20〜45w
t.%を占めるが、Yを含む希土類元素の1種または2
種以上の組合せであって、20wt.%未満ではα−F
eが生成し高保磁力が得られず、45wt.%を超える
と非磁性相である希土類リッチ相が多くなり、残留磁束
密度が低下して優れた特性の永久磁石が得られない。よ
って、Rは20〜45wt.%の範囲が好ましい。B
は、上記永久磁石における必須元素であって、0.5w
t.%未満では菱面体構造が主相となり高保磁力が得ら
れず、6wt.%を超えるとBリッチな非磁性相が多く
なり、残留磁束密度が低下するため、優れた永久磁石が
得られない。よって、Bは0.5〜6wt.%の範囲が
好ましい。Feも、上記永久磁石において必須元素であ
り、50wt.%未満では残留磁束密度が低下し、80
wt.%を超えると高保磁力が得られないので、Feは
50〜80wt.%の範囲が好ましい。Coは温度特性
および耐食性を向上させるために必要であり、Coの添
加量が0.1wt.%以下では十分な効果が得られず、
15wt.%を超えると保磁力が低下する。よって、C
oの添加量は0.1〜15wt.%の範囲が好ましい。
Cuは、最適な保磁力が得られる最適熱処理温度を広げ
量産性を向上させるために必要な元素であり、5wt.
%以上では残留磁束密度が低下するのでCuは5wt.
%以下が好ましい。また、Cuを添加することにより、
最適熱処理温度を低くすることができるので、耐食性皮
膜を施した後に熱処理する場合には耐食性皮膜の結晶化
が多少抑制することができ好ましい。また、永久磁石体
の磁気特性あるいは物理特性等を向上させるために、N
i、Nb、Ta、W、Al、Ti、Zr、Si、Ga、
Mo、V、Sn、Cr、Mn、Zn、Ge、Hfの1種
または2種以上の元素を10wt.%以下の範囲で添加
しても良く、本発明の永久磁石は、結晶質の合金粉末を
磁場中成形で異方性化した後焼結して得られる焼結異方
性永久磁石で、平均結晶粒径が1〜50μmの範囲にあ
る正方晶系の結晶構造を有する化合物を主相とし、最大
エネルギー積が20MGOe以上に達する。かくして得
られた希土類−鉄−ボロン系永久磁石体をリン酸、水酸
化ナトリウム等の酸あるいはアルカリ溶液で前処理を行
った後、耐食性皮膜を電解めっき、無電解めっき、気相
めっき法などの一般的に知られている方法で作製する。
その後、不活性雰囲気、非酸化性雰囲気あるいは真空
中、400〜600℃で熱処理をする。耐食性皮膜の形
成方法としては、コスト面および皮膜厚さの均一性から
電解めっき、無電解めっきが望ましい。また、耐食性皮
膜を形成後熱処理し、さらに耐食性皮膜を形成すること
ができる。耐食性皮膜は熱処理により結晶化し脆くなる
ので、熱処理後さらに耐食性皮膜を形成することにより
強度を補うこともできる。熱処理後に耐食性皮膜を形成
する場合、リン酸、水酸化ナトリウム等の酸あるいはア
ルカリ溶液で前処理を行った後、耐食性皮膜を電解めっ
き、無電解めっき、気相めっき法などの一般的に知られ
ている方法で作製することができる。また、樹脂コート
等の皮膜を形成しても良い。
The reasons for limitation of the present invention will be described below. The rare earth element R used in the permanent magnet of the present invention is 20 to 45w.
t. %, But one or two rare earth elements including Y
20 wt. If less than%, α-F
e was generated and a high coercive force could not be obtained. %, The amount of the rare earth-rich phase that is a non-magnetic phase increases, the residual magnetic flux density decreases, and a permanent magnet having excellent characteristics cannot be obtained. Therefore, R is 20 to 45 wt. % Range is preferred. B
Is an essential element in the above permanent magnet, and is 0.5 w
t. %, The rhombohedral structure becomes the main phase and a high coercive force cannot be obtained. %, The B-rich nonmagnetic phase increases and the residual magnetic flux density decreases, so that an excellent permanent magnet cannot be obtained. Therefore, B is 0.5 to 6 wt. % Range is preferred. Fe is also an essential element in the permanent magnet, and is 50 wt. If it is less than 80%, the residual magnetic flux density decreases,
wt. %, A high coercive force cannot be obtained, so that Fe is 50 to 80 wt. % Range is preferred. Co is necessary to improve temperature characteristics and corrosion resistance, and the amount of Co added is 0.1 wt. % Or less, a sufficient effect cannot be obtained,
15 wt. If it exceeds%, the coercive force will decrease. Therefore, C
The addition amount of o is 0.1 to 15 wt. % Range is preferred.
Cu is an element necessary for expanding the optimum heat treatment temperature for obtaining the optimum coercive force and improving the mass productivity, and is 5 wt.
% Or more, the residual magnetic flux density decreases, so Cu is 5 wt.
% Or less is preferable. Also, by adding Cu,
Since the optimum heat treatment temperature can be lowered, crystallization of the corrosion resistant film can be suppressed to some extent when the heat treatment is performed after the corrosion resistant film is applied, which is preferable. In order to improve the magnetic characteristics or physical characteristics of the permanent magnet body, N
i, Nb, Ta, W, Al, Ti, Zr, Si, Ga,
One or more elements of Mo, V, Sn, Cr, Mn, Zn, Ge, and Hf are added in an amount of 10 wt. %, The permanent magnet of the present invention is a sintered anisotropic permanent magnet obtained by sintering crystalline alloy powder after anisotropy by magnetic field molding, A compound having a tetragonal crystal structure having a crystal grain size in the range of 1 to 50 μm is used as a main phase, and the maximum energy product reaches 20 MGOe or more. The rare earth-iron-boron-based permanent magnet body thus obtained is subjected to pretreatment with an acid or alkaline solution such as phosphoric acid or sodium hydroxide, and then a corrosion resistant coating is subjected to electrolytic plating, electroless plating, vapor phase plating, etc. It is produced by a generally known method.
After that, heat treatment is performed at 400 to 600 ° C. in an inert atmosphere, a non-oxidizing atmosphere, or a vacuum. As a method for forming the corrosion resistant coating, electrolytic plating and electroless plating are desirable from the viewpoint of cost and uniformity of coating thickness. Further, after forming the corrosion resistant film, heat treatment can be performed to further form the corrosion resistant film. Since the corrosion resistant film is crystallized and becomes brittle by the heat treatment, the strength can be supplemented by further forming the corrosion resistant film after the heat treatment. When forming a corrosion resistant film after heat treatment, after performing pretreatment with an acid or alkaline solution such as phosphoric acid, sodium hydroxide, etc., the corrosion resistant film is generally known for electrolytic plating, electroless plating, vapor phase plating, etc. Can be manufactured by the method described above. Further, a film such as a resin coat may be formed.

【0009】[0009]

【実施例】以下、本発明を実施例によって具体的に説明
するが、本発明はこれらの実施例によって限定されるも
のではない。
EXAMPLES Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited to these Examples.

【0010】(実施例1)Nd23.5wt.%、Pr
7.0wt.%、Dy1.5wt.%、Al0.2w
t.%、Nb0.6wt.%、B1.05wt.%、C
o2.3wt.%、Ga0.1wt.%、Cu0.08
wt.%、残部Feよりなる磁石合金を不活性雰囲気中
で高周波溶解し鋳造インゴットを得た。このインゴット
を50mm角以下に破断した後、破断塊を密閉容器内に
挿入しArガスを20分間流入させて空気と置換し、1
kgf/cm2の水素ガスで2時間処理後機械的に粉砕
し平均粒子径が500μmの粉末にした。この粗粉をジ
ェットミルを用いて平均粒子径が5.0μmの粉末に微
粉砕した。この微粉をダイス、下パンチで形成される成
形空間に充填し、約10kOeの磁場中で配向させなが
ら、2ton/cm2にて加圧成形し成形体を得た。こ
の成形体を1080℃、2時間の条件で焼結し、900
℃、1時間の熱処理を施し永久磁石を作製した。この磁
石体から10x11x8mm(磁化方向:8mm)の試
料を切り出し表面研磨後、リン酸により前処理を行いワ
ット浴を用いて、平均厚み20μmの電解Niめっきを
行った。このNiめっき膜を形成した試料をArガス雰
囲気中で、460〜520℃、1時間の熱処理を行った
後、磁気特性および加熱温度に対する不可逆減磁率の変
化を測定した。図1に熱処理温度に対する保磁力の変
化、図2に加熱温度に対する不可逆減磁率の変化を示
す。表1に480℃で熱処理した試料の QUAD SEVASTIA
NV によるNiめっき膜の密着強度を示す。図1より、
本発明例である実施例1は、熱処理温度が460〜50
0℃の範囲で高い保磁力が安定して得られることがわか
る。また、図2より、実施例1は、比較例2、3に比
し、高温での不可逆減磁率の低下が少ないことがわか
る。
(Example 1) Nd23.5 wt. %, Pr
7.0 wt. %, Dy 1.5 wt. %, Al 0.2w
t. %, Nb 0.6 wt. %, B1.05 wt. %, C
o 2.3 wt. %, Ga 0.1 wt. %, Cu 0.08
wt. %, And the balance Fe was used to produce a cast ingot by high-frequency melting in an inert atmosphere. After breaking this ingot to 50 mm square or less, the broken mass was inserted into a closed container and Ar gas was allowed to flow in for 20 minutes to replace with air.
After being treated with kgf / cm @ 2 of hydrogen gas for 2 hours, it was mechanically pulverized into powder having an average particle diameter of 500 .mu.m. This coarse powder was finely pulverized into a powder having an average particle diameter of 5.0 μm using a jet mill. This fine powder was filled in a molding space formed by a die and a lower punch, and pressure-molded at 2 ton / cm 2 while orienting in a magnetic field of about 10 kOe to obtain a molded body. This molded body was sintered at 1080 ° C. for 2 hours to obtain 900
Heat treatment was performed at 1 ° C. for 1 hour to produce a permanent magnet. A sample of 10 × 11 × 8 mm (magnetization direction: 8 mm) was cut out from this magnet body, and after surface polishing, pretreatment with phosphoric acid was performed and electrolytic Ni plating with an average thickness of 20 μm was performed using a Watts bath. The sample on which the Ni plating film was formed was heat-treated in an Ar gas atmosphere at 460 to 520 ° C. for 1 hour, and then the change in the irreversible demagnetization factor with respect to the magnetic characteristics and the heating temperature was measured. FIG. 1 shows changes in coercive force with respect to heat treatment temperature, and FIG. 2 shows changes in irreversible demagnetization rate with respect to heating temperature. QUAD SEVASTIA of the sample heat-treated at 480 ℃ in Table 1
The adhesion strength of the Ni plating film by NV is shown. From FIG.
In Example 1, which is an example of the present invention, the heat treatment temperature was 460 to 50.
It can be seen that a high coercive force can be stably obtained in the range of 0 ° C. Further, from FIG. 2, it can be seen that in Example 1, the reduction of the irreversible demagnetization rate at high temperature is less than that in Comparative Examples 2 and 3.

【0011】(比較例1)Nd23.5wt.%、Pr
7.0wt.%、Dy1.5wt.%、Al0.2w
t.%、Nb0.6wt.%、B1.05wt.%、C
o2.3wt.%、Ga0.1wt.%、残部Feより
なる磁石合金を不活性雰囲気中で高周波溶解し鋳造イン
ゴットを得た。このインゴットを50mm角以下に破断
した後、破断塊を密閉容器内に挿入しArガスを20分
間流入させて空気と置換し、1kgf/cm2の水素ガ
スで2時間処理後機械的に粉砕し平均粒子径が500μ
mの粉末にした。この粗粉をジェットミルを用いて平均
粒子径が5.0μmの粉末に微粉砕した。この微粉をダ
イス、下パンチで形成される成形空間に充填し、約10
kOeの磁場中で配向させながら、2ton/cm2に
て加圧成形し成形体を得た。この成形体を1080℃、
2時間の条件で焼結し、900℃、1時間の熱処理を施
し永久磁石を作製した。この磁石体から10x11x8
mm(磁化方向:8mm)の試料を切り出し表面研磨
後、リン酸により前処理を行いワット浴を用いて、平均
厚み20μmの電解Niめっきを行った。このNiめっ
き膜を形成した試料をArガス雰囲気中で、500〜5
50℃、1時間の熱処理を行った後、磁気特性および加
熱温度に対する不可逆減磁率の変化を測定した。図1に
熱処理温度に対する保磁力の変化を示す。表1に520
℃で熱処理した試料の QUAD SEVASTIAN V によるNiめ
っき膜の密着強度を示す。図1より、比較例1は、熱処
理温度に対する保磁力の変化が大きいことがわかる。
(Comparative Example 1) Nd 23.5 wt. %, Pr
7.0 wt. %, Dy 1.5 wt. %, Al 0.2w
t. %, Nb 0.6 wt. %, B1.05 wt. %, C
o 2.3 wt. %, Ga 0.1 wt. %, And the balance Fe was used to produce a cast ingot by high-frequency melting in an inert atmosphere. After breaking this ingot to less than 50 mm square, the broken mass was inserted into a closed container, Ar gas was allowed to flow in for 20 minutes to replace air, treated with 1 kgf / cm 2 hydrogen gas for 2 hours, and then mechanically crushed and averaged. Particle size is 500μ
m powder. This coarse powder was finely pulverized into a powder having an average particle diameter of 5.0 μm using a jet mill. This fine powder is filled in a molding space formed by a die and a lower punch,
While oriented in a magnetic field of kOe, pressure molding was performed at 2 ton / cm 2 to obtain a molded body. This molded body is heated to 1080 ° C,
Sintering was performed for 2 hours, and heat treatment was performed at 900 ° C. for 1 hour to produce a permanent magnet. 10x11x8 from this magnet
mm (magnetization direction: 8 mm) was cut out, and after surface polishing, pretreatment with phosphoric acid was performed and electrolytic Ni plating with an average thickness of 20 μm was performed using a Watts bath. The sample on which the Ni plating film was formed was subjected to 500 to 5 in an Ar gas atmosphere.
After heat treatment at 50 ° C. for 1 hour, changes in magnetic property and irreversible demagnetization rate with respect to heating temperature were measured. FIG. 1 shows the change in coercive force with respect to the heat treatment temperature. 520 in Table 1
The adhesion strength of the Ni plating film by QUAD SEVASTIAN V of the sample heat-treated at ℃ is shown. It can be seen from FIG. 1 that Comparative Example 1 has a large change in coercive force with respect to the heat treatment temperature.

【0012】(比較例2)Nd23.5wt.%、Pr
7.0wt.%、Dy1.5wt.%、Al0.2w
t.%、Nb0.6wt.%、B1.05wt.%、C
o2.3wt.%、Ga0.1wt.%、Cu0.08
wt.%、残部Feよりなる磁石合金を不活性雰囲気中
で高周波溶解し鋳造インゴットを得た。このインゴット
を50mm角以下に破断した後、破断塊を密閉容器内に
挿入しArガスを20分間流入させて空気と置換し、1
kgf/cm2の水素ガスで2時間処理後機械的に粉砕
し平均粒子径が500μmの粉末にした。この粗粉をジ
ェットミルを用いて平均粒子径が5.0μmの粉末に微
粉砕した。この微粉をダイス、下パンチで形成される成
形空間に充填し、約10kOeの磁場中で配向させなが
ら、2ton/cm2にて加圧成形し成形体を得た。こ
の成形体を1080℃、2時間の条件で焼結し、900
℃と480℃、1時間の熱処理を施し永久磁石を作製し
た。この磁石体から10x11x8mm(磁化方向:8
mm)の試料を切り出し表面研磨後、リン酸により前処
理を行いワット浴を用いて、平均厚み20μmの電解N
iめっきを行った。図2に加熱温度に対する不可逆減磁
率の変化を示す。表1に QUAD SEVASTIAN V によるNi
めっき膜の密着強度を示す。図2より、本発明例である
実施例1は、比較例2に比し、高温での不可逆減磁率が
良好であることがわかる。
(Comparative Example 2) Nd23.5 wt. %, Pr
7.0 wt. %, Dy 1.5 wt. %, Al 0.2w
t. %, Nb 0.6 wt. %, B1.05 wt. %, C
o 2.3 wt. %, Ga 0.1 wt. %, Cu 0.08
wt. %, And the balance Fe was used to produce a cast ingot by high-frequency melting in an inert atmosphere. After breaking this ingot to 50 mm square or less, the broken mass was inserted into a closed container and Ar gas was allowed to flow in for 20 minutes to replace with air.
After being treated with kgf / cm @ 2 of hydrogen gas for 2 hours, it was mechanically pulverized into powder having an average particle diameter of 500 .mu.m. This coarse powder was finely pulverized into a powder having an average particle diameter of 5.0 μm using a jet mill. This fine powder was filled in a molding space formed by a die and a lower punch, and pressure-molded at 2 ton / cm 2 while orienting in a magnetic field of about 10 kOe to obtain a molded body. This molded body was sintered at 1080 ° C. for 2 hours to obtain 900
C. and 480.degree. C. were heat-treated for 1 hour to produce a permanent magnet. 10x11x8mm from this magnet (magnetization direction: 8
(mm) sample was cut out and surface-polished, and then pretreated with phosphoric acid and a Watts bath was used to produce electrolytic N having an average thickness of 20 μm.
i plating was performed. FIG. 2 shows changes in the irreversible demagnetization rate with respect to the heating temperature. Table 1 shows Ni by QUAD SEVASTIAN V
The adhesion strength of the plating film is shown. It can be seen from FIG. 2 that Example 1, which is an example of the present invention, has a better irreversible demagnetization rate at high temperatures than Comparative Example 2.

【0013】[0013]

【表1】 [Table 1]

【0014】(比較例3)Nd23.5wt.%、Pr
7.0wt.%、Dy1.5wt.%、Al0.2w
t.%、Nb0.6wt.%、B1.05wt.%、C
o2.3wt.%、Ga0.1wt.%、Cu0.08
wt.%、残部Feよりなる磁石合金を不活性雰囲気中
で高周波溶解し鋳造インゴットを得た。このインゴット
を50mm角以下に破断した後、破断塊を密閉容器内に
挿入しArガスを20分間流入させて空気と置換し、1
kgf/cm2の水素ガスで2時間処理後機械的に粉砕
し平均粒子径が500μmの粉末にした。この粗粉をジ
ェットミルを用いて平均粒子径が5.0μmの粉末に微
粉砕した。この微粉をダイス、下パンチで形成される成
形空間に充填し、約10kOeの磁場中で配向させなが
ら、2ton/cm2にて加圧成形し成形体を得た。こ
の成形体を1080℃、2時間の条件で焼結し、900
℃と480℃、1時間の熱処理を施し永久磁石を作製し
た。この磁石体から10x11x8mm(磁化方向:8
mm)の試料を切り出し表面研磨後、リン酸により前処
理を行いワット浴を用いて、平均厚み20μmの電解N
iめっきを行った。このNiめっき膜を形成した試料を
Arガス雰囲気中で、200℃、1時間の熱処理を行っ
た後、加熱温度に対する不可逆減磁率の変化を測定し
た。図2に加熱温度に対する不可逆減磁率の変化を示
す。図2より、めっき膜形成後に200℃で熱処理を行
った比較例3は、めっき膜形成後に熱処理を行わない比
較例2と不可逆減磁率が同等であり、200℃程度の熱
処理では不可逆減磁率向上の効果が得られないことがわ
かる。
(Comparative Example 3) Nd 23.5 wt. %, Pr
7.0 wt. %, Dy 1.5 wt. %, Al 0.2w
t. %, Nb 0.6 wt. %, B1.05 wt. %, C
o 2.3 wt. %, Ga 0.1 wt. %, Cu 0.08
wt. %, And the balance Fe was used to produce a cast ingot by high-frequency melting in an inert atmosphere. After breaking this ingot to 50 mm square or less, the broken mass was inserted into a closed container and Ar gas was allowed to flow in for 20 minutes to replace with air.
After being treated with kgf / cm @ 2 of hydrogen gas for 2 hours, it was mechanically pulverized into powder having an average particle diameter of 500 .mu.m. This coarse powder was finely pulverized into a powder having an average particle diameter of 5.0 μm using a jet mill. This fine powder was filled in a molding space formed by a die and a lower punch, and pressure-molded at 2 ton / cm 2 while orienting in a magnetic field of about 10 kOe to obtain a molded body. This molded body was sintered at 1080 ° C. for 2 hours to obtain 900
C. and 480.degree. C. were heat-treated for 1 hour to produce a permanent magnet. 10x11x8mm from this magnet (magnetization direction: 8
(mm) sample was cut out and surface-polished, and then pretreated with phosphoric acid and a Watts bath was used to produce electrolytic N
i plating was performed. The sample on which the Ni plating film was formed was heat-treated at 200 ° C. for 1 hour in an Ar gas atmosphere, and then the change in the irreversible demagnetization rate with respect to the heating temperature was measured. FIG. 2 shows changes in the irreversible demagnetization rate with respect to the heating temperature. As shown in FIG. 2, Comparative Example 3 in which the heat treatment was performed at 200 ° C. after forming the plated film had the same irreversible demagnetization rate as Comparative Example 2 in which the heat treatment was not performed after forming the plated film. It turns out that the effect of is not obtained.

【発明の効果】本発明によれば、温度特性および耐食性
を向上させたR−Fe−B系永久磁石に耐食性皮膜を形
成し、不活性雰囲気、非酸化性雰囲気あるいは真空中、
400〜600℃で熱処理することにより、切削加工あ
るいは電解めっき等で劣化した結晶組織部を修復させ、
磁気特性の劣化および磁気特性の経年変化を改善すると
共に、コーティング膜と磁石体との密着性をも向上させ
ることができ、工業上その利用価値は極めて高いもので
ある。
According to the present invention, a corrosion resistant film is formed on an R-Fe-B system permanent magnet having improved temperature characteristics and corrosion resistance, and the R-Fe-B system permanent magnet is subjected to an inert atmosphere, a non-oxidizing atmosphere or a vacuum,
By heat treatment at 400 to 600 ° C., the crystal structure portion deteriorated by cutting or electrolytic plating is repaired,
It is possible to improve the deterioration of the magnetic properties and the secular change of the magnetic properties, and also to improve the adhesion between the coating film and the magnet body, and its industrial utility value is extremely high.

【図面の簡単な説明】[Brief description of drawings]

【図1】めっき膜形成後の熱処理温度に対する保磁力の
変化を示す図である。
FIG. 1 is a diagram showing a change in coercive force with respect to a heat treatment temperature after forming a plated film.

【図2】加熱温度に対する不可逆減磁率の変化を示す図
である。
FIG. 2 is a diagram showing changes in irreversible demagnetization rate with respect to heating temperature.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 R(RはYを含む希土類元素のうち1種
または2種以上)が20〜45wt.%、Feが50〜
80wt.%、Coが0.1〜15wt.%、Bが0.
5〜6wt.%、Cuが5wt.%以下からなる焼結磁
石体表面に耐食性皮膜を形成した後、不活性ガス雰囲
気、非酸化性雰囲気あるいは真空中、400〜600℃
の温度で熱処理することを特徴とする希土類−鉄−ボロ
ン系永久磁石の製造方法。
1. R (wherein R is one or more of rare earth elements including Y) is 20 to 45 wt. %, Fe 50 to
80 wt. %, Co 0.1 to 15 wt. %, B is 0.
5-6 wt. %, Cu 5 wt. % Or less, after forming a corrosion resistant film on the surface of the sintered magnet body, 400 to 600 ° C. in an inert gas atmosphere, non-oxidizing atmosphere or vacuum
A method of manufacturing a rare earth-iron-boron-based permanent magnet, characterized in that the heat treatment is performed at the temperature of.
【請求項2】 R(RはYを含む希土類元素のうち1種
または2種以上)が20〜45wt.%、Feが50〜
80wt.%、Coが0.1〜15wt.%、Bが0.
5〜6wt.%、Cuが5wt.%以下およびM(Mは
Al、Si、Nb、Mo、V、Mn、Sn、Ni、Z
n、Ti、Cr、Ta、W、Ge、Zr、Hf、Gaの
うち1種または2種以上)が10wt.%以下からなる
焼結磁石体表面に耐食性皮膜を形成した後、不活性ガス
雰囲気、非酸化性雰囲気あるいは真空中、400〜60
0℃の温度で熱処理することを特徴とする希土類−鉄−
ボロン系永久磁石の製造方法。
2. R (wherein R is one or more of rare earth elements including Y) is 20 to 45 wt. %, Fe 50 to
80 wt. %, Co 0.1 to 15 wt. %, B is 0.
5-6 wt. %, Cu 5 wt. % Or less and M (M is Al, Si, Nb, Mo, V, Mn, Sn, Ni, Z
n, Ti, Cr, Ta, W, Ge, Zr, Hf, and Ga) of 10 wt. % Or less, after forming a corrosion resistant film on the surface of the sintered magnet body, 400 to 60 in an inert gas atmosphere, a non-oxidizing atmosphere or a vacuum.
Rare earth-iron-characterized by heat treatment at a temperature of 0 ° C
Method for manufacturing boron permanent magnet.
【請求項3】 耐食性皮膜がZn、Cr、Ni、Cu、
Sn、Pb、Cd、Ti、W、Co、Al、Taのうち
1種または2種以上の元素からなる請求項1または2に
記載の希土類−鉄−ボロン系永久磁石の製造方法。
3. The corrosion resistant coating is Zn, Cr, Ni, Cu,
The method for producing a rare earth-iron-boron-based permanent magnet according to claim 1 or 2, comprising one or more elements selected from Sn, Pb, Cd, Ti, W, Co, Al, and Ta.
【請求項4】 耐食性皮膜がC、P、S、O、B、Hの
少なくとも1種または2種以上の元素と、Zn、Cr、
Ni、Cu、Sn、Pb、Cd、Ti、W、Co、A
l、Taのうち少なくとも1種または2種以上の元素か
らなる請求項1または2に記載の希土類−鉄−ボロン系
永久磁石の製造方法。
4. The corrosion-resistant coating comprises at least one element selected from C, P, S, O, B and H, or two or more elements, and Zn, Cr,
Ni, Cu, Sn, Pb, Cd, Ti, W, Co, A
The method for producing a rare earth-iron-boron-based permanent magnet according to claim 1 or 2, comprising at least one element or two or more elements of 1 and Ta.
【請求項5】 耐食性皮膜が厚さ10μm以上の単層膜
である請求項1ないし4のいづれかに記載の希土類−鉄
−ボロン系永久磁石の製造方法。
5. The method for producing a rare earth-iron-boron-based permanent magnet according to claim 1, wherein the corrosion-resistant coating is a single-layer coating having a thickness of 10 μm or more.
【請求項6】 耐食性皮膜が多層膜であって、磁石体と
接する皮膜の膜厚が0.1μm以上であり、多層膜の膜
厚が10μm以上であることを特徴とする請求項1ない
し4に記載の希土類−鉄−ボロン系永久磁石の製造方
法。
6. The corrosion-resistant coating is a multi-layered film, the thickness of the coating in contact with the magnet body is 0.1 μm or more, and the thickness of the multi-layered film is 10 μm or more. The method for producing a rare earth-iron-boron-based permanent magnet according to 1.
【請求項7】 熱処理後、さらに耐食性皮膜を形成する
請求項1または2に記載の希土類−鉄−ボロン系永久磁
石の製造方法。
7. The method for producing a rare earth-iron-boron-based permanent magnet according to claim 1, further comprising forming a corrosion resistant film after the heat treatment.
JP7191368A 1995-02-23 1995-07-27 Rare earth-iron-boron permanent magnet manufacturing method Pending JPH0945567A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP7191368A JPH0945567A (en) 1995-07-27 1995-07-27 Rare earth-iron-boron permanent magnet manufacturing method
US08/604,927 US5876518A (en) 1995-02-23 1996-02-22 R-T-B-based, permanent magnet, method for producing same, and permanent magnet-type motor and actuator comprising same
US09/176,724 US6254694B1 (en) 1995-02-23 1998-10-21 R-T-B-based, permanent magnet, method for producing same, and permanent magnet-type motor and actuator comprising same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7191368A JPH0945567A (en) 1995-07-27 1995-07-27 Rare earth-iron-boron permanent magnet manufacturing method

Publications (1)

Publication Number Publication Date
JPH0945567A true JPH0945567A (en) 1997-02-14

Family

ID=16273429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7191368A Pending JPH0945567A (en) 1995-02-23 1995-07-27 Rare earth-iron-boron permanent magnet manufacturing method

Country Status (1)

Country Link
JP (1) JPH0945567A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005091315A1 (en) * 2004-03-23 2005-09-29 Japan Science And Technology Agency R-Fe-B BASED THIN FILM MAGNET AND METHOD FOR PREPARATION THEREOF
WO2005096326A1 (en) * 2004-03-31 2005-10-13 Tdk Corporation Rare earth magnet and method for manufacturing same
JP2005294558A (en) * 2004-03-31 2005-10-20 Tdk Corp Rare earth magnet and manufacturing method thereof
JP2012094767A (en) * 2010-10-28 2012-05-17 Tdk Corp Rare earth magnet, method of producing rare earth magnet and rotary machine
JP2012094766A (en) * 2010-10-28 2012-05-17 Tdk Corp Rare earth magnet, method of producing rare earth magnet and rotary machine
KR20160095527A (en) * 2015-02-03 2016-08-11 엘지이노텍 주식회사 Rare earth magnet and motor including the same
CN109585109A (en) * 2018-10-23 2019-04-05 宁波同创强磁材料有限公司 A kind of mischmetal permanent magnet and preparation method thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005091315A1 (en) * 2004-03-23 2005-09-29 Japan Science And Technology Agency R-Fe-B BASED THIN FILM MAGNET AND METHOD FOR PREPARATION THEREOF
JPWO2005091315A1 (en) * 2004-03-23 2008-05-22 独立行政法人科学技術振興機構 R-Fe-B system thin film magnet and method for manufacturing the same
US7790300B2 (en) 2004-03-23 2010-09-07 Japan Science And Technology Agency R-Fe-B based thin film magnet and method for preparation thereof
JP4698581B2 (en) * 2004-03-23 2011-06-08 独立行政法人科学技術振興機構 R-Fe-B thin film magnet and method for producing the same
WO2005096326A1 (en) * 2004-03-31 2005-10-13 Tdk Corporation Rare earth magnet and method for manufacturing same
JP2005294558A (en) * 2004-03-31 2005-10-20 Tdk Corp Rare earth magnet and manufacturing method thereof
US9903009B2 (en) 2004-03-31 2018-02-27 Tdk Corporation Rare earth magnet and method for manufacturing same
JP2012094767A (en) * 2010-10-28 2012-05-17 Tdk Corp Rare earth magnet, method of producing rare earth magnet and rotary machine
JP2012094766A (en) * 2010-10-28 2012-05-17 Tdk Corp Rare earth magnet, method of producing rare earth magnet and rotary machine
KR20160095527A (en) * 2015-02-03 2016-08-11 엘지이노텍 주식회사 Rare earth magnet and motor including the same
CN109585109A (en) * 2018-10-23 2019-04-05 宁波同创强磁材料有限公司 A kind of mischmetal permanent magnet and preparation method thereof

Similar Documents

Publication Publication Date Title
US6275130B1 (en) Corrosion-resisting permanent magnet and method for producing the same
WO2007077809A1 (en) Rare earth magnet and method for producing same
JPH0945567A (en) Rare earth-iron-boron permanent magnet manufacturing method
JPH0616445B2 (en) Permanent magnet material and manufacturing method thereof
JPS63217601A (en) Corrosion-resistant permanent magnet and manufacture thereof
JPH0569282B2 (en)
EP0923087B1 (en) Corrosion-resistant permanent magnet and method for manufacturing the same
JPH08264310A (en) Manufacture of rare earth-iron-boron permanent magnet
JPH0529119A (en) High corrosion-resistant rare earth magnet
JPH09289108A (en) R-fe-b permanent magnet having electric insulating film excellent in adhesion and its manufacture
JPH07283017A (en) Corrosion resistant permanent magnet and production thereof
JPH07249509A (en) Corrosion-resistant permanent magnet and its manufacture
JPS61281850A (en) Permanent magnet material
JP3652816B2 (en) Corrosion-resistant permanent magnet and method for manufacturing the same
JP3676513B2 (en) Corrosion-resistant permanent magnet and method for manufacturing the same
JPH0613211A (en) Permanent magnet having excellent corrosion resistance and manufacture thereof
JP4600627B2 (en) Rare earth permanent magnet manufacturing method
JPH05226125A (en) Manufacture of highly corrosion-resistant rare-earth magnet
KR950003859B1 (en) Nd-fe-b magnet making method
JP3652818B2 (en) Corrosion-resistant permanent magnet and method for manufacturing the same
JPH0646603B2 (en) Permanent magnet having excellent corrosion resistance and method of manufacturing the same
JPH1074607A (en) Corrosion-resisting permanent magnet and its manufacture
JPH0545045B2 (en)
JPH0569283B2 (en)
JP3595082B2 (en) Ultra-high vacuum permanent magnet and method of manufacturing the same