JP3652818B2 - Corrosion-resistant permanent magnet and method for manufacturing the same - Google Patents

Corrosion-resistant permanent magnet and method for manufacturing the same Download PDF

Info

Publication number
JP3652818B2
JP3652818B2 JP27720096A JP27720096A JP3652818B2 JP 3652818 B2 JP3652818 B2 JP 3652818B2 JP 27720096 A JP27720096 A JP 27720096A JP 27720096 A JP27720096 A JP 27720096A JP 3652818 B2 JP3652818 B2 JP 3652818B2
Authority
JP
Japan
Prior art keywords
film
permanent magnet
magnet
coating
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27720096A
Other languages
Japanese (ja)
Other versions
JPH10106816A (en
Inventor
文秋 菊井
雅子 鈴木
吉村  公志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Neomax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP27720096A priority Critical patent/JP3652818B2/en
Application filed by Neomax Co Ltd filed Critical Neomax Co Ltd
Priority to US09/242,825 priority patent/US6211762B1/en
Priority to EP97933019A priority patent/EP0923087B1/en
Priority to DE69728547T priority patent/DE69728547T2/en
Priority to CNB971981345A priority patent/CN1138285C/en
Priority to PCT/JP1997/002579 priority patent/WO1998009300A1/en
Priority to KR1019997001596A priority patent/KR20000035885A/en
Publication of JPH10106816A publication Critical patent/JPH10106816A/en
Application granted granted Critical
Publication of JP3652818B2 publication Critical patent/JP3652818B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/026Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment

Description

【0001】
【発明の属する技術分野】
この発明は、高磁気特性を有し、かつ密着性がすぐれ、耐食性、耐酸、耐アルカリ性、耐摩耗性にすぐれた耐食性被膜を設けたR−Fe−B系永久磁石に係り、耐食性、特に塩水噴霧試験において発錆が少なく、初期磁石特性からの劣化が少なく極めて安定した磁石特性を有する耐食性永久磁石及びその製造方法に関する。
【0002】
【従来の技術】
先に、NdやPrを中心とする資源的に豊富な軽希土類を用いてB,Feを主成分とし、高価なSmやCoを含有せず、従来の希土類コバルト磁石の最高特性を大幅に超える新しい高性能永久磁石として、R−Fe−B系永久磁石が提案されている(特開昭59−46008号公報、特開昭59−89401号公報)。
【0003】
前記磁石合金のキュリー点は、一般に300℃〜370℃であるが、Feの一部をCoにて置換することにより、より高いキュリー点を有するR−Fe−B系永久磁石(特開昭59−64733号、特開昭59−132104号)を得ており、さらに、前記Co含有のR−Fe−B系希土類永久磁石と同等以上のキュリー点並びにより高い(BH)maxを有し、その温度特性、特にiHcを向上させるため、希土類元素(R)としてNdやPr等の軽希土類を中心としたCo含有のR−Fe−B系希土類永久磁石のRの一部にDy、Tb等の重希土類のうち少なくとも1種を含有することにより、25MGOe以上の極めて高い(BH)maxを保有したままで、iHcをさらに向上させたCo含有のR−Fe−B系希土類永久磁石が提案(特開昭60−34005号公報)されている。
【0004】
しかしながら、上記のすぐれた磁気特性を有するR−Fe−B系磁気異方性焼結体からなる永久磁石は主成分として、希土類元素及び鉄を含有する活性な化合物組織を有するため、磁気回路に組込んだ場合に、磁石表面に生成する酸化物により、磁気回路の出力低下及び磁気回路間のばらつきを惹起し、また、表面酸化物の脱落による周辺機器への汚染の問題があった。
【0005】
【発明が解決しようとする課題】
そこで、上記のR−Fe−B系永久磁石の耐食性の改善のため、磁石体表面に無電解めっき法あるいは電解めっき法により耐食性金属めっき層を被覆した永久磁石(特公平3−74012号)が提案されている。
【0006】
上記めっき法では永久磁石体が焼結体で有孔性のため、この孔内にめっき前処理での酸性溶液またはアルカリ溶液が残留し、経年変化とともに腐食する恐れがあり、また磁石体の耐薬品性が劣るため、めっき時に磁石表面が腐食されて密着性、防蝕性が劣る問題があった。また、耐食性めっきを設けても、温度60℃、相対湿度90%の条件下の耐食性試験で100時間放置にて、磁石特性は初期磁石特性が10%以上劣化し、非常に不安定であった。
【0007】
そのため、R−Fe−B系永久磁石の耐食性の改善向上のため、前記磁石表面にイオンプレーティング法、イオンスパッタリング法等により、TiN、Al、Ti被膜を被着して耐食性の改善向上することが提案(特公平5−15043号)されている。
【0008】
上記のTiN被膜はR−Fe−B系磁石体と結晶構造の他、熱膨張係数、延性等が相違するため密着性が悪く、またTiあるいはAl被膜は密着性、耐食性は良好であるが、耐摩耗性が低い等の欠点があり、これを解決するためR−Fe−B系永久磁石体表面にTiとTiNの積層被膜を被着することが提案(特開昭63−9919号公報)されている。ところが、Ti被膜とTiN被膜は結晶構造、熱膨張係数及び延性等が異なるため、その密着性が悪く剥離等を生じて、耐食性の低下を招来する問題があった。
【0009】
この発明は、R−Fe−B系永久磁石下地との密着性にすぐれ、耐摩耗性、耐食性の改善向上を目的に、特に温度34℃〜36℃、5%中性NaCl溶液による塩水噴霧試験において、長時間の試験でも初期磁石特性からの劣化が極力少なく、安定した高磁石特性、耐磨耗性、耐食性を有するR−Fe−B系永久磁石並びにその製造方法を提供することを目的にする。
【0010】
【課題を解決するための手段】
発明者らは、すぐれた耐食性、特に温度34℃〜36℃、5%中性NaCl溶液の塩水噴霧により発錆するまでの時間を長時間に延長でき、下地との密着性がすぐれ、被着した耐食性被膜の耐食性、耐磨耗性により、その磁石特性が安定したR−Fe−B系永久磁石を目的に、永久磁石体表面へのTi1-xAlxN被膜形成法について種々検討した結果、下地被膜が前記の提案されたTi被膜、あるいはAl被膜のみの場合はR−Fe−B系磁石全体としての電位はTiあるいはAlよりも「貴」であるが、磁石内のNd部分など局部的に非常に「卑」な部分が存在するため、苛酷な耐食性試験の塩水噴霧試験ではTiN被膜のわずかなピンホールを通して発錆が起こり易いことを知見した。
【0011】
そこで、発明者らは、Ti1-xAlxN被膜形成法についてさらに検討した結果、Ti1-xAlxN被膜の下地として、まず永久磁石体表面にTi被膜層を、次いでAl被膜層を設けることによって、Tiに比べてAlの方が電気化学的に若干「卑」であるため、Al被膜層がTi被膜層に対して犠牲被膜として作用し、表面層のTi1-xAlxN被膜の僅かなピンホールから腐食が発生しても、素地の磁石体まで下地膜を一気に貫通することなく、下地層のTi被膜と表面層のTi1-xAlxN被膜の間の中間層としてAl被膜が存在する限り、下地層のTi被膜に被覆されたR−Fe−B系永久磁石は保護され、さらにAl被膜上にTi1-xAlxN被膜を形成することにより、界面には
Ti1- AlなるTi,Al,Nの複合被膜が生成し、このTi1- Alの組成、膜厚は、基板温度、バイアス電圧、成膜スピード、Ti1-xAlxN組成等によって変化し、Ti1-xAlxN界面に向かってTi,Nが連続的に増加する組成となっており、これにより、Al被膜とTi1-xAlxN被膜との密着性は著しく改善できることを知見し、この発明を完成した。
【0012】
すなわち、この発明は、
主相が正方晶相からなるR−Fe−B系永久磁石体表面に形成された膜厚0.1μm〜3.0μmのTi被膜上に、膜厚0.1μm〜5μmのAl被膜を介して膜厚0.5μm〜10μmのTi1-xAlxN(但し、0.03<x<0.70)被膜層を有する耐食性永久磁石である。
【0013】
【発明の実施の形態】
この発明は、主相が正方晶相からなるR−Fe−B系永久磁石体の清浄化された表面に、薄膜形成法により、膜厚0.1μm〜3.0μmのTi被膜を形成後、前記Ti被膜上に膜厚0.1μm〜5μmのAl被膜を形成し、前記Al被膜上に膜厚0.5μm〜10μmの
Ti1-xAlxN(但し、0.03<x<0.70)被膜層を形成したことを特徴とする。耐食性永久磁石の製造方法の一例を以下に詳述する。
【0014】
1)例えば、アークイオンプレーティング装置を用いて、真空容器を到達真空度1×10-3pa以下まで真空排気した後、Arガス圧10pa、−500VでArイオンによる表面スパッターにてR−Fe−B系磁石体表面を清浄化する。
次に、Arガス圧0.1pa、バイアス電圧−80Vにより、ターゲットのTiを蒸発させて、アークイオンプレーティング法にて、磁石体表面に0.1μm〜3.0μm膜厚のTi被膜層を形成する。
【0015】
2)次に、Arガス圧0.1pa、バイアス電圧−50Vにより、ターゲットのAlを蒸発させて、アークイオンプレーティング法にて、Ti被膜層上に0.1μm〜5μm膜厚のAl被膜層を形成する。
【0016】
3)続いて、ターゲットとして合金Ti1-yAly(但し、0.03<y<0.80)を用い、基板の磁石温度を250℃に保持し、N2ガス圧3pa、バイアス電圧−120Vの条件にて、Al被膜層上に特定厚のTi1-xAlxN(但し、0.03<x<0.70)被膜層を形成する。
【0017】
この発明において、R−Fe−B系永久磁石体表面に被着のTi被膜層、Al被膜層、Ti1-xAlxN被膜層の形成方法としては、イオンプレーティング法や蒸着法などの公知の薄膜形成法を適宜選定できるが、被膜の緻密性、均一性、被膜形成速度等の理由から、イオンプレーティング法、イオン反応プレーティング法が好ましい。
【0018】
被膜生成時の基板磁石の温度は200℃〜500℃に設定するのが好ましく、200℃未満では基板磁石との反応密着が十分でなく、また500℃を超えると常温(−25℃)との温度差が大きくなり、処理後の冷却過程で被膜に亀裂が入り、一部基板より剥離を発生するため、基板磁石の温度を200℃〜500℃に設定する。
【0019】
この発明において、磁石体表面のTi被膜厚を0.1μm〜3.0μmに限定した理由は、0.1μm未満では磁石表面との密着性が十分でなく、3.0μmを越えると効果的には問題ないが、下地膜としてはコスト上昇を招来して、実用的でなく好ましくないので、Ti被膜厚は0.1μm〜3.0μmとする。
【0020】
また、この発明において、Ti被膜上に形成されるAl被膜厚を0.1μm〜5μmに限定した理由は、0.1μm未満ではTi被膜表面にAlが均一に付着しにくく、中間層膜としての効果が十分でなく、また5μmを越えると効果的には問題ないが、中間層膜としてコスト上昇を招来して好ましくないので、Al被膜厚は0.1μm〜5μmとする。
【0021】
また、Ti1-xAlxN(但し、0.03<x<0.70)被膜厚を0.5μm〜10μmに限定した理由は、0.5μm未満ではTi1-xAlxN被膜としての耐食性、耐摩耗性が十分でなく、10μmを超えると効果的には問題ないが、製造コスト上昇を招来するので好ましくない。また、Ti1-xAlxN被膜において、xの値を限定した理由は、0.03未満ではTi1-xAlxN被膜としての性能(耐食性、耐摩耗性)が得られず、また0.70を超えても性能の向上が得られないためである。
【0022】
この発明の永久磁石に用いる希土類元素Rは、組成の10原子%〜30原子%を占めるが、Nd、Pr、Dy、Ho、Tbのうち少なくとも1種、あるいはさらに、La、Ce、Sm、Gd、Er、Eu、Tm、Yb、Lu、Yのうち少なくとも1種を含むものが好ましい。また、通常Rのうち1種をもって足りるが、実用上は2種以上の混合物(ミッシュメタル、ジジム等)を入手上の便宜等の理由により用いることができる。なお、このRは純希土類元素でなくてもよく、工業上入手可能な範囲で製造上不可避な不純物を含有するものでも差支えない。
【0023】
Rは、上記系永久磁石における必須元素であって、10原子%未満では結晶構造がα−鉄と同一構造の立方晶組織となるため、高磁気特性、特に高保磁力が得られず、30原子%を超えるとRリッチな非磁性相が多くなり、残留磁束密度(Br)が低下してすぐれた特性の永久磁石が得られない。よって、R10原子%〜30原子%の範囲が望ましい。
【0024】
Bは、上記系永久磁石における必須元素であって、2原子%未満では菱面体構造が主相となり、高い保磁力(iHc)は得られず、28原子%を超えるとBリッチな非磁性相が多くなり、残留磁束密度(Br)が低下するため、すぐれた永久磁石が得られない。よって、Bは2原子%〜28原子%の範囲が望ましい。
【0025】
Feは、上記系永久磁石において必須元素であり、65原子%未満では残留磁束密度(Br)が低下し、80原子%を超えると高い保磁力が得られないので、Feは65原子%〜80原子%の含有が望ましい。また、Feの一部をCoで置換することは、得られる磁石の磁気特性を損うことなく、温度特性を改善することができるが、Co置換量がFeの20%を超えると、逆に磁気特性が劣化するため、好ましくない。Coの置換量がFeとCoの合計量で5原子%〜15原子%の場合は、(Br)は置換しない場合に比較して増加するため、高磁束密度を得るために好ましい。
【0026】
また、R、B、Feの他、工業的生産上不可避的不純物の存在を許容でき、例えば、Bの一部を4.0wt%以下のC、2.0wt%以下のP、2.0wt%以下のS、2.0wt%以下のCuのうち少なくとも1種、合計量で2.0wt%以下で置換することにより、永久磁石の製造性改善、低価格化が可能である。
【0027】
さらに、Al、Ti、V、Cr、Mn、Bi、Nb、Ta、Mo、W、Sb、Ge、Sn、Zr、Ni、Si、Zn、Hf、のうち少なくとも1種は、R−Fe−B系永久磁石材料に対してその保磁力、減磁曲線の角型性を改善あるいは製造性の改善、低価格化に効果があるため添加することができる。なお、添加量の上限は、磁石材料の(BH)maxを20MGOe以上とするには、Brが少なくとも9kG以上必要となるため、該条件を満す範囲が望ましい。
【0028】
また、この発明の永久磁石は平均結晶粒径が1〜80μmの範囲にある正方晶系の結晶構造を有する化合物を主相とし、体積比で1%〜50%の非磁性相(酸化物相を除く)を含むことを特徴とする。
この発明による永久磁石は、保磁力iHc≧1kOe、残留磁束密度Br>4kGを示し、最大エネルギー積(BH)maxは、(BH)max≧10MGOeを示し、最大値は25MGOe以上に達する。
【0029】
【実施例】
実施例1
公知の鋳造インゴットを粉砕し、微粉砕後に成形、焼結、熱処理後に、15Nd−1Dy76Fe−8B組成の径12mm×厚み2mm寸法の磁石体試験片を得た。その磁石特性を表1に示す。
【0030】
真空容器内を1×10-3pa以下に真空排気し、Arガス圧10pa、−500Vで20分間、表面スパッターを行って、磁石体表面を清浄化した後、Arガス圧0.1pa、バイアス電圧−80V、基板磁石温度を280℃にて、ターゲットとして金属Tiをアークイオンプレーティング法にて、磁石体表面に1μm厚のTi被膜層を形成する。
【0031】
その後、Arガス圧0.1pa、バイアス電圧−50V、基板磁石温度を250℃にして、ターゲットとして金属Alを用いて、アークイオンプレーティング法にて、Ti被膜表面に2μm厚のAl被膜層を形成した。次に、基板磁石温度320℃、バイアス電圧−100Vで、N2ガス1paにて、ターゲットとして合金Ti0.45Al0.55をアークイオンプレーティング法にてAl被膜表面に膜厚2μmのTi1-xAlxN被膜層を形成した。なお、生成被膜の組成はTi0.5Al0.5Nであった。
【0032】
その後、放冷後、得られたTiN被膜を表面に有する永久磁石を温度35℃、5%中性NaCl溶液の条件による塩水噴霧試験(JIS Z2371)を行い、発錆時間を測定して、その結果を磁石特性と共に表2に表す。
【0033】
比較例1
実施例1と同一組成の磁石体試験片を用いて、実施例1と同一条件にて磁石体試験片にTi被膜層を3μm形成後、実施例1と同一条件にて同一膜厚(2μm)のTi0.5Al0.5N被膜層を形成後、実施例1と同一条件の塩水噴霧試験を行い、発錆時間を測定して、その結果を磁石特性と共に表2に表す。
【0034】
比較例2
実施例1と同一組成の磁石体試験片を用いて、前記磁石体表面に実施例1と同一条件にてAl被膜層を3μm形成後、実施例1と同一条件にて、同一膜厚のTi0.5Al0.5N被膜層を形成後、実施例1と同一条件の塩水噴霧試験を行い、発錆時間を測定して、その結果を磁石特性と共に表2に表す。
【0035】
【表1】

Figure 0003652818
【0036】
【表2】
Figure 0003652818
【0037】
【発明の効果】
この発明は、R−Fe−B系永久磁石体表面をイオンスパッター法等により清浄化した後、前記磁石体表面にイオンプレーティング法等の薄膜形成法によりTi被膜を形成後、更にAl被膜を中間層として形成後、N2ガス中にてイオン反応プレーティング等の薄膜形成法により、Ti1-xAlxN被膜を形成したことを特徴とし、中間層としてAl被膜層を存在させることにより、永久磁石体と下地層のTi被膜に対して犠牲被膜として作用し、Ti被膜間の密着性が著しく改善されると共に、苛酷な耐食性試験の塩水噴霧試験においても発錆時間を延長して、すぐれた耐食性、耐磨耗性により、その磁石特性の安定したR−Fe−B系永久磁石が得られる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an R-Fe-B permanent magnet provided with a corrosion-resistant coating film having high magnetic properties, excellent adhesion, and excellent corrosion resistance, acid resistance, alkali resistance, and wear resistance. The present invention relates to a corrosion-resistant permanent magnet having little rusting in a spray test and having extremely stable magnet characteristics with little deterioration from initial magnet characteristics, and a method for producing the same.
[0002]
[Prior art]
First, B and Fe are used as the main components using lightly abundant rare earths centering on Nd and Pr, they do not contain expensive Sm and Co, and greatly exceed the highest characteristics of conventional rare earth cobalt magnets. R-Fe-B permanent magnets have been proposed as new high performance permanent magnets (Japanese Patent Laid-Open Nos. 59-46008 and 59-89401).
[0003]
The Curie point of the magnet alloy is generally 300 ° C. to 370 ° C., but an R—Fe—B permanent magnet having a higher Curie point can be obtained by substituting part of Fe with Co (Japanese Patent Laid-Open No. Sho 59). -64733, JP-A-59-132104), and has a Curie point equal to or higher than that of the Co-containing R-Fe-B rare earth permanent magnet and a higher (BH) max. In order to improve temperature characteristics, particularly iHc, a part of R of a Co-containing R—Fe—B rare earth permanent magnet mainly including a light rare earth such as Nd or Pr is used as a rare earth element (R) such as Dy and Tb. Proposed Co-containing R-Fe-B rare earth permanent magnet with further improved iHc while retaining extremely high (BH) max of 25 MGOe or more by containing at least one of heavy rare earths JP 60-34005 JP) are.
[0004]
However, a permanent magnet made of an R-Fe-B magnetic anisotropic sintered body having excellent magnetic properties has an active compound structure containing a rare earth element and iron as a main component. When incorporated, the oxide generated on the surface of the magnet causes a decrease in the output of the magnetic circuit and a variation between the magnetic circuits, and there is a problem of contamination of peripheral devices due to the drop of the surface oxide.
[0005]
[Problems to be solved by the invention]
Therefore, in order to improve the corrosion resistance of the R-Fe-B permanent magnet, a permanent magnet (Japanese Patent Publication No. 3-74012) in which a magnet body surface is coated with a corrosion-resistant metal plating layer by an electroless plating method or an electrolytic plating method. Proposed.
[0006]
In the above plating method, since the permanent magnet body is a sintered body and porous, the acidic solution or alkali solution in the plating pretreatment remains in the hole, and there is a risk of corrosion with aging. Due to inferior chemical properties, the magnet surface was corroded during plating, resulting in inferior adhesion and corrosion resistance. Even when corrosion-resistant plating was provided, the magnetic properties of the magnets deteriorated by more than 10% in the corrosion resistance test under the conditions of a temperature of 60 ° C. and a relative humidity of 90%, and the initial magnet properties deteriorated by 10% or more. .
[0007]
Therefore, in order to improve the corrosion resistance of the R—Fe—B permanent magnet, the TiN, Al and Ti coatings are deposited on the magnet surface by ion plating, ion sputtering, etc. to improve the corrosion resistance. Has been proposed (Japanese Patent Publication No. 5-15043).
[0008]
The above TiN coating has a poor adhesion due to differences in thermal expansion coefficient, ductility, etc. in addition to the R-Fe-B magnet body and crystal structure, and the Ti or Al coating has good adhesion and corrosion resistance, There are drawbacks such as low wear resistance, and in order to solve this, it is proposed to apply a laminated film of Ti and TiN on the surface of the R-Fe-B permanent magnet body (Japanese Patent Laid-Open No. 63-9919). Has been. However, since the Ti coating and the TiN coating differ in crystal structure, thermal expansion coefficient, ductility, etc., there is a problem in that the adhesion is poor and peeling occurs, leading to a decrease in corrosion resistance.
[0009]
The present invention is excellent in adhesion to an R—Fe—B permanent magnet base, and is improved in improvement in wear resistance and corrosion resistance, in particular, a salt spray test using a 5% neutral NaCl solution at a temperature of 34 ° C. to 36 ° C. The purpose of the present invention is to provide an R—Fe—B permanent magnet having stable high magnet characteristics, wear resistance, and corrosion resistance, and a method for producing the same, with minimal deterioration from initial magnet characteristics even in a long-term test. To do.
[0010]
[Means for Solving the Problems]
The inventors have excellent corrosion resistance, in particular, a temperature of 34 ° C. to 36 ° C., can extend the time until rusting by spraying with a salt solution of a 5% neutral NaCl solution for a long time, has excellent adhesion to the substrate, and is attached. Various methods for forming Ti 1-x Al x N coatings on the surface of permanent magnet bodies were investigated for the purpose of R-Fe-B permanent magnets with stable magnet properties due to the corrosion resistance and wear resistance of the corrosion resistant coatings. As a result, when the underlying coating is only the proposed Ti coating or Al coating, the potential of the R-Fe-B magnet as a whole is "noble" rather than Ti or Al, but the Nd portion in the magnet, etc. Since there is a very “base” part locally, it was found that rusting is likely to occur through a slight pinhole in the TiN coating in the salt spray test of the severe corrosion resistance test.
[0011]
Therefore, the inventors have further studied the Ti 1-x Al x N film forming method, and as a result, first, as a base of the Ti 1-x Al x N film, a Ti film layer is formed on the surface of the permanent magnet body, and then the Al film layer. Since Al is slightly more “base” electrochemically than Ti, the Al coating layer acts as a sacrificial coating on the Ti coating layer, and the surface layer Ti 1-x Al x Even if corrosion occurs from a slight pinhole in the N coating, the intermediate layer between the Ti coating on the base layer and the Ti 1-x Al x N coating on the surface layer does not penetrate the base film all the way to the base magnet body. As long as the Al film exists as a layer, the R—Fe—B permanent magnet coated on the Ti film of the underlayer is protected, and further, a Ti 1-x Al x N film is formed on the Al film, thereby forming an interface. comprising Ti 1- Al N in Ti, Al, a composite target of N There was generated, this Ti 1- Al N composition, film thickness, substrate temperature, bias voltage, and varies depending on the film forming speed, Ti 1-x Al x N composition, etc., Ti 1-x Al x N It has a composition in which Ti and N continuously increase toward the interface, and it has been found that the adhesion between the Al coating and the Ti 1-x Al x N coating can be remarkably improved, thereby completing the present invention. .
[0012]
That is, this invention
A Ti film with a film thickness of 0.1 μm to 3.0 μm formed on the surface of an R—Fe—B permanent magnet body whose main phase is composed of a tetragonal phase via an Al film with a film thickness of 0.1 μm to 5 μm. This is a corrosion-resistant permanent magnet having a coating layer of Ti 1-x Al x N (where 0.03 <x <0.70) having a film thickness of 0.5 μm to 10 μm.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, after a Ti film having a film thickness of 0.1 μm to 3.0 μm is formed on a cleaned surface of an R—Fe—B permanent magnet body having a main phase of a tetragonal phase by a thin film forming method, An Al film having a film thickness of 0.1 μm to 5 μm is formed on the Ti film, and Ti 1-x Al x N having a film thickness of 0.5 μm to 10 μm (where 0.03 <x <0. 70) A coating layer is formed. An example of a method for producing a corrosion-resistant permanent magnet will be described in detail below.
[0014]
1) For example, using an arc ion plating apparatus, the vacuum vessel is evacuated to an ultimate vacuum of 1 × 10 −3 pa or less, and then R-Fe is formed by surface sputtering with Ar ions at an Ar gas pressure of 10 pa and −500 V. -Clean the surface of the B-based magnet body.
Next, Ti of the target is evaporated with an Ar gas pressure of 0.1 pa and a bias voltage of −80 V, and a Ti coating layer having a thickness of 0.1 μm to 3.0 μm is formed on the surface of the magnet body by an arc ion plating method. Form.
[0015]
2) Next, the target Al is evaporated at an Ar gas pressure of 0.1 pa and a bias voltage of −50 V, and an Al coating layer having a thickness of 0.1 μm to 5 μm is formed on the Ti coating layer by an arc ion plating method. Form.
[0016]
3) Subsequently, the alloy Ti 1-y Al y (where as a target, 0.03 with <y <0.80), and holds the magnet temperature of the substrate 250 ° C., N 2 gas pressure 3pa, bias voltage - Under a condition of 120 V, a Ti 1-x Al x N (where 0.03 <x <0.70) film layer having a specific thickness is formed on the Al film layer.
[0017]
In the present invention, the Ti coating layer, the Al coating layer, and the Ti 1-x Al x N coating layer deposited on the surface of the R—Fe—B permanent magnet body may be formed by ion plating or vapor deposition. A well-known thin film forming method can be selected as appropriate, but the ion plating method and the ion reaction plating method are preferable because of the denseness, uniformity, and film formation speed of the film.
[0018]
The temperature of the substrate magnet during film formation is preferably set to 200 ° C. to 500 ° C. If the temperature is less than 200 ° C., the reaction adhesion with the substrate magnet is not sufficient, and if it exceeds 500 ° C., it is normal temperature (−25 ° C.). Since the temperature difference becomes large and cracks occur in the coating during the cooling process after the treatment and peeling occurs from a part of the substrate, the temperature of the substrate magnet is set to 200 ° C to 500 ° C.
[0019]
In the present invention, the reason why the Ti film thickness on the surface of the magnet body is limited to 0.1 μm to 3.0 μm is that if it is less than 0.1 μm, the adhesion to the magnet surface is not sufficient, and if it exceeds 3.0 μm, it is effective. Although there is no problem, the cost of the underlying film is increased, which is not practical and not preferable. Therefore, the Ti film thickness is set to 0.1 μm to 3.0 μm.
[0020]
In the present invention, the reason why the Al film thickness formed on the Ti film is limited to 0.1 μm to 5 μm is that if it is less than 0.1 μm, it is difficult for Al to adhere uniformly to the surface of the Ti film, The effect is not sufficient, and if it exceeds 5 μm, there is no problem in effect, but the intermediate layer film is not preferable because it causes an increase in cost, so the Al film thickness is set to 0.1 μm to 5 μm.
[0021]
Further, the reason why the Ti 1-x Al x N (where 0.03 <x <0.70) film thickness is limited to 0.5 μm to 10 μm is that the Ti 1-x Al x N coating is less than 0.5 μm. The corrosion resistance and wear resistance of the film are not sufficient, and if it exceeds 10 μm, there is no problem effectively, but it is not preferable because it causes an increase in manufacturing cost. In addition, the reason for limiting the value of x in the Ti 1-x Al x N coating is that if it is less than 0.03, performance (corrosion resistance, wear resistance) as a Ti 1-x Al x N coating cannot be obtained. This is because even if it exceeds 0.70, performance cannot be improved.
[0022]
The rare earth element R used in the permanent magnet of the present invention occupies 10 atomic% to 30 atomic% of the composition, but at least one of Nd, Pr, Dy, Ho, and Tb, or further La, Ce, Sm, Gd. , Er, Eu, Tm, Yb, Lu, and Y are preferable. In addition, one type of R is usually sufficient, but in practice, a mixture of two or more types (Misch metal, didymium, etc.) can be used for reasons of convenience in obtaining. The R may not be a pure rare earth element, and may contain impurities that are inevitable in production within a commercially available range.
[0023]
R is an essential element in the above system permanent magnet, and if it is less than 10 atomic%, the crystal structure has the same cubic structure as that of α-iron, so that high magnetic properties, particularly high coercive force cannot be obtained, and 30 atoms. If it exceeds 50%, the R-rich non-magnetic phase increases, the residual magnetic flux density (Br) decreases, and a permanent magnet with excellent characteristics cannot be obtained. Therefore, the range of R10 atomic% to 30 atomic% is desirable.
[0024]
B is an essential element in the above system permanent magnet, and if it is less than 2 atomic%, the rhombohedral structure becomes the main phase, and a high coercive force (iHc) cannot be obtained. If it exceeds 28 atomic%, B-rich nonmagnetic phase And the residual magnetic flux density (Br) decreases, so that an excellent permanent magnet cannot be obtained. Therefore, B is preferably in the range of 2 atomic% to 28 atomic%.
[0025]
Fe is an essential element in the above-described permanent magnets, and if it is less than 65 atomic%, the residual magnetic flux density (Br) decreases, and if it exceeds 80 atomic%, a high coercive force cannot be obtained. The content of atomic% is desirable. Substituting a part of Fe with Co can improve the temperature characteristics without deteriorating the magnetic characteristics of the obtained magnet, but conversely, when the amount of Co substitution exceeds 20% of Fe, Since magnetic characteristics deteriorate, it is not preferable. When the substitution amount of Co is 5 atom% to 15 atom% in terms of the total amount of Fe and Co, (Br) is increased as compared with the case where no substitution is performed, and thus it is preferable for obtaining a high magnetic flux density.
[0026]
In addition to R, B, and Fe, the presence of impurities unavoidable for industrial production can be allowed. For example, a part of B is 4.0 wt% or less C, 2.0 wt% or less P, 2.0 wt%. By replacing at least one of the following S and 2.0 wt% or less of Cu with a total amount of 2.0 wt% or less, it is possible to improve the manufacturability of the permanent magnet and reduce the price.
[0027]
Furthermore, at least one of Al, Ti, V, Cr, Mn, Bi, Nb, Ta, Mo, W, Sb, Ge, Sn, Zr, Ni, Si, Zn, and Hf is R-Fe-B. It can be added to the permanent magnet material because it has the effect of improving the coercive force and the squareness of the demagnetization curve, improving the manufacturability, and reducing the price. It should be noted that the upper limit of the addition amount is desirably a range that satisfies the above condition because Br is required to be at least 9 kG or more in order that the (BH) max of the magnet material is 20 MGOe or more.
[0028]
In addition, the permanent magnet of the present invention is mainly composed of a compound having a tetragonal crystal structure with an average crystal grain size in the range of 1 to 80 μm, and a nonmagnetic phase (oxide phase) having a volume ratio of 1% to 50%. Is included).
The permanent magnet according to the present invention exhibits a coercive force iHc ≧ 1 kOe, a residual magnetic flux density Br> 4 kG, a maximum energy product (BH) max indicates (BH) max ≧ 10 MGOe, and the maximum value reaches 25 MGOe or more.
[0029]
【Example】
Example 1
A known cast ingot was pulverized, and after fine pulverization, molding, sintering, and heat treatment, a magnet body test piece having a 15Nd-1Dy76Fe-8B composition with a diameter of 12 mm and a thickness of 2 mm was obtained. The magnet characteristics are shown in Table 1.
[0030]
The inside of the vacuum chamber is evacuated to 1 × 10 −3 pa or less, surface sputtering is performed at an Ar gas pressure of 10 pa and −500 V for 20 minutes to clean the surface of the magnet body, and then an Ar gas pressure of 0.1 pa and a bias are applied. A Ti film layer having a thickness of 1 μm is formed on the surface of the magnet body by arc ion plating with a voltage of −80 V, a substrate magnet temperature of 280 ° C., and metal Ti as a target.
[0031]
Thereafter, an Ar gas pressure of 0.1 pa, a bias voltage of −50 V, a substrate magnet temperature of 250 ° C., and using a metal Al as a target, an Al coating layer having a thickness of 2 μm is formed on the Ti coating surface by arc ion plating. Formed. Next, the substrate magnet temperature 320 ° C., with a bias voltage -100 V, in N 2 gas 1 Pa, a thickness of 2μm alloy Ti 0.45 Al 0.55 As target Al film surface by an arc ion plating Ti 1-x Al An xN coating layer was formed. The composition of the produced coating was Ti 0.5 Al 0.5 N.
[0032]
Then, after standing to cool, the permanent magnet having the obtained TiN coating on the surface was subjected to a salt spray test (JIS Z2371) under conditions of a temperature of 35 ° C. and a 5% neutral NaCl solution, and the rusting time was measured. The results are shown in Table 2 together with the magnet characteristics.
[0033]
Comparative Example 1
Using a magnet test piece having the same composition as in Example 1 and forming a 3 μm Ti coating layer on the magnet test piece under the same conditions as in Example 1, the same film thickness (2 μm) under the same conditions as in Example 1 After forming the Ti 0.5 Al 0.5 N coating layer, a salt spray test under the same conditions as in Example 1 was performed, the rusting time was measured, and the results are shown in Table 2 together with the magnet characteristics.
[0034]
Comparative Example 2
Using a magnet test piece having the same composition as in Example 1, an Al coating layer was formed on the surface of the magnet body at 3 μm under the same conditions as in Example 1, and then Ti with the same thickness under the same conditions as in Example 1. After the 0.5 Al 0.5 N coating layer was formed, a salt spray test under the same conditions as in Example 1 was performed, the rusting time was measured, and the results are shown in Table 2 together with the magnet characteristics.
[0035]
[Table 1]
Figure 0003652818
[0036]
[Table 2]
Figure 0003652818
[0037]
【The invention's effect】
In the present invention, after the surface of the R-Fe-B permanent magnet body is cleaned by an ion sputtering method or the like, a Ti film is formed on the surface of the magnet body by a thin film forming method such as an ion plating method, and then an Al film is further formed. After forming as an intermediate layer, a Ti 1-x Al x N film is formed by a thin film formation method such as ion reaction plating in N 2 gas, and by making an Al film layer exist as an intermediate layer , Acting as a sacrificial coating for the Ti film of the permanent magnet body and the underlayer, the adhesion between the Ti coating is remarkably improved, and the rusting time is extended in the salt spray test of severe corrosion resistance test, R-Fe-B permanent magnets having stable magnetic properties can be obtained due to excellent corrosion resistance and wear resistance.

Claims (2)

主相が正方晶相からなるR−Fe−B系永久磁石体表面に形成された膜厚0.1μm〜3.0μmのTi被膜上に、膜厚0.1μm〜5μmのAl被膜を介して膜厚0.5μm〜10μmのTi1-xAlxN(但し、0.03<x<0.70)被膜層を有する耐食性永久磁石。A Ti film with a film thickness of 0.1 μm to 3.0 μm formed on the surface of an R—Fe—B permanent magnet body whose main phase is composed of a tetragonal phase via an Al film with a film thickness of 0.1 μm to 5 μm. A corrosion-resistant permanent magnet having a coating layer of Ti 1-x Al x N (where 0.03 <x <0.70) having a thickness of 0.5 μm to 10 μm. 主相が正方晶相からなるR−Fe−B系永久磁石体の清浄化された表面に、薄膜形成法により、膜厚0.1μm〜3.0μmのTi被膜を形成後、前記Ti被膜上に膜厚0.1μm〜5μmのAl被膜を形成し、前記Al被膜上に膜厚0.5μm〜10μmのTi1-xAlxN(但し、0.03<x<0.70)被膜層を形成する耐食性永久磁石の製造方法。A Ti film having a film thickness of 0.1 μm to 3.0 μm is formed on the cleaned surface of the R—Fe—B permanent magnet body having a main phase of a tetragonal phase by a thin film forming method, and then the Ti film is formed on the Ti film. An Al film having a thickness of 0.1 μm to 5 μm is formed on the film, and a Ti 1-x Al x N film (0.53 <x <0.70) having a film thickness of 0.5 μm to 10 μm is formed on the Al film. The manufacturing method of the corrosion-resistant permanent magnet which forms.
JP27720096A 1996-08-30 1996-09-26 Corrosion-resistant permanent magnet and method for manufacturing the same Expired - Lifetime JP3652818B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP27720096A JP3652818B2 (en) 1996-09-26 1996-09-26 Corrosion-resistant permanent magnet and method for manufacturing the same
EP97933019A EP0923087B1 (en) 1996-08-30 1997-07-25 Corrosion-resistant permanent magnet and method for manufacturing the same
DE69728547T DE69728547T2 (en) 1996-08-30 1997-07-25 CORROSION-RESISTANT PERMANENT MAGNET AND MANUFACTURING METHOD
CNB971981345A CN1138285C (en) 1996-08-30 1997-07-25 Corrosion-resistant permanent magnet and method for manufacturing the same
US09/242,825 US6211762B1 (en) 1996-08-30 1997-07-25 Corrosion-resistant permanent magnet and method for manufacturing the same
PCT/JP1997/002579 WO1998009300A1 (en) 1996-08-30 1997-07-25 Corrosion-resistant permanent magnet and method for manufacturing the same
KR1019997001596A KR20000035885A (en) 1996-08-30 1997-07-25 Corrosion-resistant permanent magnet and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27720096A JP3652818B2 (en) 1996-09-26 1996-09-26 Corrosion-resistant permanent magnet and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JPH10106816A JPH10106816A (en) 1998-04-24
JP3652818B2 true JP3652818B2 (en) 2005-05-25

Family

ID=17580210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27720096A Expired - Lifetime JP3652818B2 (en) 1996-08-30 1996-09-26 Corrosion-resistant permanent magnet and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP3652818B2 (en)

Also Published As

Publication number Publication date
JPH10106816A (en) 1998-04-24

Similar Documents

Publication Publication Date Title
EP0991085B1 (en) Corrosion-resisting permanent magnet and method for producing the same
EP0811994B1 (en) Permanent magnet for ultrahigh vacuum application and method for manufacturing the same
JPH0432523B2 (en)
EP0923087B1 (en) Corrosion-resistant permanent magnet and method for manufacturing the same
JP3737830B2 (en) Corrosion-resistant permanent magnet and method for manufacturing the same
JP3652816B2 (en) Corrosion-resistant permanent magnet and method for manufacturing the same
JP3652818B2 (en) Corrosion-resistant permanent magnet and method for manufacturing the same
JP3676513B2 (en) Corrosion-resistant permanent magnet and method for manufacturing the same
JPH0569282B2 (en)
JPH07283017A (en) Corrosion resistant permanent magnet and production thereof
JPH0945567A (en) Rare earth-iron-boron permanent magnet manufacturing method
JPH07249509A (en) Corrosion-resistant permanent magnet and its manufacture
JPH1074607A (en) Corrosion-resisting permanent magnet and its manufacture
JPH08279407A (en) R-fe-b permanent magnet being excellent in electrical insulating properties, heat resistance and corrosion resistance and manufacture thereof
JPH0535216B2 (en)
JPH10340823A (en) Manufacture of r-iron-boron permanent magnet having excellent salt water resistance
JP3595082B2 (en) Ultra-high vacuum permanent magnet and method of manufacturing the same
JPH1083905A (en) Corrosion-resistant permanent magnet and its manufacture
JP3595078B2 (en) Ultra-high vacuum permanent magnet and method of manufacturing the same
JPS63254702A (en) Manufacture of corrosion resisting permanent magnet
JPH08264310A (en) Manufacture of rare earth-iron-boron permanent magnet
JPH09180921A (en) Permanent magnet for ultra high vacuum and manufacture thereof
JPH06140226A (en) Corrosion-resistant permanent magnet
JPH09246027A (en) R-fe-b based permanent magnet excellent in resistance to salt water
JPH10106818A (en) Permanent magnet for ultra high vacuum and method for manufacturing the same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050224

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080304

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080304

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090304

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100304

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100304

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120304

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130304

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 9

EXPY Cancellation because of completion of term