JPH10106816A - Anticorrosive permanent magnet and manufacturing method thereof - Google Patents

Anticorrosive permanent magnet and manufacturing method thereof

Info

Publication number
JPH10106816A
JPH10106816A JP8277200A JP27720096A JPH10106816A JP H10106816 A JPH10106816 A JP H10106816A JP 8277200 A JP8277200 A JP 8277200A JP 27720096 A JP27720096 A JP 27720096A JP H10106816 A JPH10106816 A JP H10106816A
Authority
JP
Japan
Prior art keywords
film
permanent magnet
thickness
magnet
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8277200A
Other languages
Japanese (ja)
Other versions
JP3652818B2 (en
Inventor
Fumiaki Kikui
文秋 菊井
Masako Suzuki
雅子 鈴木
Masayuki Yoshimura
吉村  公志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP27720096A priority Critical patent/JP3652818B2/en
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to US09/242,825 priority patent/US6211762B1/en
Priority to DE69728547T priority patent/DE69728547T2/en
Priority to CNB971981345A priority patent/CN1138285C/en
Priority to EP97933019A priority patent/EP0923087B1/en
Priority to PCT/JP1997/002579 priority patent/WO1998009300A1/en
Priority to KR1019997001596A priority patent/KR20000035885A/en
Publication of JPH10106816A publication Critical patent/JPH10106816A/en
Application granted granted Critical
Publication of JP3652818B2 publication Critical patent/JP3652818B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/026Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase anticorrosive property and adhesiveness with an underlying layer, by forming a Ti1-x Alx N film layer having a specified thickness via an Al film having a specified thickness on a Ti film having a specified thickness and being formed on a surface of a R-Fe-B permanent magnet body in which a main phase is made of a tetragonal phase. SOLUTION: On a cleaned surface of a R-Fe-B permanent magnet body in which a main phase is made of a tetragonal phase, a Ti film having a thickness of approximately 0.1 to 3.0μm is formed by a thin film deposition method. Then, an Al film having a thickness of approximately 0.1 to 5μm is formed on the Ti film. In addition, a Ti1-x Alx N film layer (where 0.03<x<0.70) having a thickness of approximately 0.5 to 10μm is formed on the Al film. By thus causing the Al film layer to exist as an intermediate layer, the Al film layer functions as a sacrifice layer with respect to a permanent magnet and the Ti film of the underlying layer. Thus, adhesiveness with the Ti film is significantly improved, and excellent anticorrosive property and wear resistance are realized.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、高磁気特性を有
し、かつ密着性がすぐれ、耐食性、耐酸、耐アルカリ
性、耐摩耗性にすぐれた耐食性被膜を設けたR−Fe−
B系永久磁石に係り、耐食性、特に塩水噴霧試験におい
て発錆が少なく、初期磁石特性からの劣化が少なく極め
て安定した磁石特性を有する耐食性永久磁石及びその製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an R-Fe-based alloy having a high magnetic property, excellent adhesion, and a corrosion-resistant coating having excellent corrosion resistance, acid resistance, alkali resistance and abrasion resistance.
The present invention relates to a B-based permanent magnet, and more particularly to a corrosion-resistant permanent magnet having extremely stable magnet properties with little rust in a salt spray test and little deterioration from initial magnet properties, and a method for producing the same.

【0002】[0002]

【従来の技術】先に、NdやPrを中心とする資源的に
豊富な軽希土類を用いてB,Feを主成分とし、高価な
SmやCoを含有せず、従来の希土類コバルト磁石の最
高特性を大幅に超える新しい高性能永久磁石として、R
−Fe−B系永久磁石が提案されている(特開昭59−
46008号公報、特開昭59−89401号公報)。
2. Description of the Related Art First, using rare earths, which are abundant in resources, mainly Nd and Pr, B and Fe as main components, do not contain expensive Sm and Co, and are the highest among conventional rare earth cobalt magnets. As a new high-performance permanent magnet that greatly exceeds the characteristics,
-Fe-B permanent magnets have been proposed (Japanese Patent Laid-Open No. 59-5978).
46008, JP-A-59-89401).

【0003】前記磁石合金のキュリー点は、一般に30
0℃〜370℃であるが、Feの一部をCoにて置換す
ることにより、より高いキュリー点を有するR−Fe−
B系永久磁石(特開昭59−64733号、特開昭59
−132104号)を得ており、さらに、前記Co含有
のR−Fe−B系希土類永久磁石と同等以上のキュリー
点並びにより高い(BH)maxを有し、その温度特
性、特にiHcを向上させるため、希土類元素(R)と
してNdやPr等の軽希土類を中心としたCo含有のR
−Fe−B系希土類永久磁石のRの一部にDy、Tb等
の重希土類のうち少なくとも1種を含有することによ
り、25MGOe以上の極めて高い(BH)maxを保
有したままで、iHcをさらに向上させたCo含有のR
−Fe−B系希土類永久磁石が提案(特開昭60−34
005号公報)されている。
The Curie point of the above magnet alloy is generally 30
0 ° C. to 370 ° C., but having a higher Curie point by substituting part of Fe with Co.
B-based permanent magnets (JP-A-59-64733, JP-A-59-64733)
-132104), and has a Curie point equal to or higher than that of the R-Fe-B-based rare earth permanent magnet containing Co and a higher (BH) max, and improves its temperature characteristics, particularly iHc. Therefore, as a rare earth element (R), a Co-containing R centered on a light rare earth such as Nd or Pr.
By including at least one of heavy rare earths such as Dy and Tb in a part of R of the Fe-B based rare earth permanent magnet, iHc can be further increased while retaining a very high (BH) max of 25 MGOe or more. Improved Co-containing R
-Fe-B rare earth permanent magnet proposed (Japanese Patent Laid-Open No. 60-34)
005).

【0004】しかしながら、上記のすぐれた磁気特性を
有するR−Fe−B系磁気異方性焼結体からなる永久磁
石は主成分として、希土類元素及び鉄を含有する活性な
化合物組織を有するため、磁気回路に組込んだ場合に、
磁石表面に生成する酸化物により、磁気回路の出力低下
及び磁気回路間のばらつきを惹起し、また、表面酸化物
の脱落による周辺機器への汚染の問題があった。
However, the permanent magnet made of the R-Fe-B-based magnetic anisotropic sintered body having excellent magnetic properties has an active compound structure containing a rare earth element and iron as its main components. When incorporated in a magnetic circuit,
Oxide generated on the surface of the magnet causes a reduction in output of the magnetic circuit and variations between the magnetic circuits, and there is a problem of contamination of peripheral devices due to dropout of the surface oxide.

【0005】[0005]

【発明が解決しようとする課題】そこで、上記のR−F
e−B系永久磁石の耐食性の改善のため、磁石体表面に
無電解めっき法あるいは電解めっき法により耐食性金属
めっき層を被覆した永久磁石(特公平3−74012
号)が提案されている。
Therefore, the above R-F
In order to improve the corrosion resistance of e-B permanent magnets, a permanent magnet having a corrosion-resistant metal plating layer coated on the surface of the magnet body by electroless plating or electrolytic plating (Japanese Patent Publication No. 3-74012)
No.) has been proposed.

【0006】上記めっき法では永久磁石体が焼結体で有
孔性のため、この孔内にめっき前処理での酸性溶液また
はアルカリ溶液が残留し、経年変化とともに腐食する恐
れがあり、また磁石体の耐薬品性が劣るため、めっき時
に磁石表面が腐食されて密着性、防蝕性が劣る問題があ
った。また、耐食性めっきを設けても、温度60℃、相
対湿度90%の条件下の耐食性試験で100時間放置に
て、磁石特性は初期磁石特性が10%以上劣化し、非常
に不安定であった。
In the above-mentioned plating method, since the permanent magnet body is a sintered body and porous, an acidic solution or an alkaline solution in the pre-plating treatment remains in the pores, and may corrode with aging. Due to the poor chemical resistance of the body, there has been a problem that the magnet surface is corroded during plating, resulting in poor adhesion and corrosion resistance. In addition, even when the corrosion-resistant plating was provided, the initial magnet characteristics were degraded by 10% or more in the corrosion resistance test at a temperature of 60 ° C. and a relative humidity of 90% for 100 hours, and the magnet characteristics were very unstable. .

【0007】そのため、R−Fe−B系永久磁石の耐食
性の改善向上のため、前記磁石表面にイオンプレーティ
ング法、イオンスパッタリング法等により、TiN、A
l、Ti被膜を被着して耐食性の改善向上することが提
案(特公平5−15043号)されている。
Therefore, in order to improve and improve the corrosion resistance of the R—Fe—B permanent magnet, TiN, AN is applied to the magnet surface by ion plating, ion sputtering or the like.
(1) It has been proposed that a Ti coating be applied to improve and improve corrosion resistance (Japanese Patent Publication No. 5-15043).

【0008】上記のTiN被膜はR−Fe−B系磁石体
と結晶構造の他、熱膨張係数、延性等が相違するため密
着性が悪く、またTiあるいはAl被膜は密着性、耐食
性は良好であるが、耐摩耗性が低い等の欠点があり、こ
れを解決するためR−Fe−B系永久磁石体表面にTi
とTiNの積層被膜を被着することが提案(特開昭63
−9919号公報)されている。ところが、Ti被膜と
TiN被膜は結晶構造、熱膨張係数及び延性等が異なる
ため、その密着性が悪く剥離等を生じて、耐食性の低下
を招来する問題があった。
[0008] The TiN film has poor adhesion due to differences in the thermal expansion coefficient, ductility, etc., besides the crystal structure of the R-Fe-B magnet, and the Ti or Al film has good adhesion and corrosion resistance. However, there are drawbacks such as low wear resistance, and to solve this, Ti-Fe-B based permanent magnet
It is proposed to apply a laminated film of TiN and
No. 9919). However, since the Ti film and the TiN film have different crystal structures, thermal expansion coefficients, ductility, and the like, there is a problem that the adhesion is poor and peeling or the like occurs, leading to a reduction in corrosion resistance.

【0009】この発明は、R−Fe−B系永久磁石下地
との密着性にすぐれ、耐摩耗性、耐食性の改善向上を目
的に、特に温度34℃〜36℃、5%中性NaCl溶液
による塩水噴霧試験において、長時間の試験でも初期磁
石特性からの劣化が極力少なく、安定した高磁石特性、
耐磨耗性、耐食性を有するR−Fe−B系永久磁石並び
にその製造方法を提供することを目的にする。
The present invention has an object to improve the abrasion resistance and corrosion resistance with excellent adhesion to an R-Fe-B-based permanent magnet base, and particularly to a temperature of 34 ° C. to 36 ° C. using a 5% neutral NaCl solution. In the salt spray test, deterioration from the initial magnet characteristics is minimized even in a long-time test, and stable high magnet characteristics,
An object of the present invention is to provide an R-Fe-B-based permanent magnet having abrasion resistance and corrosion resistance, and a method for producing the same.

【0010】[0010]

【課題を解決するための手段】発明者らは、すぐれた耐
食性、特に温度34℃〜36℃、5%中性NaCl溶液
の塩水噴霧により発錆するまでの時間を長時間に延長で
き、下地との密着性がすぐれ、被着した耐食性被膜の耐
食性、耐磨耗性により、その磁石特性が安定したR−F
e−B系永久磁石を目的に、永久磁石体表面へのTi
1-xAlxN被膜形成法について種々検討した結果、下地
被膜が前記の提案されたTi被膜、あるいはAl被膜の
みの場合はR−Fe−B系磁石全体としての電位はTi
あるいはAlよりも「貴」であるが、磁石内のNd部分
など局部的に非常に「卑」な部分が存在するため、苛酷
な耐食性試験の塩水噴霧試験ではTiN被膜のわずかな
ピンホールを通して発錆が起こり易いことを知見した。
Means for Solving the Problems The present inventors can improve the corrosion resistance, especially the time until rusting by spraying salt water with a temperature of 34 ° C. to 36 ° C. and 5% neutral NaCl solution for a long time. R-F with excellent magnet adhesion and stable magnet properties due to the corrosion resistance and abrasion resistance of the applied corrosion resistant coating
For the purpose of e-B permanent magnet, Ti
As a result of various studies on the 1-x Al x N film forming method, the potential of the R-Fe-B based magnet as a whole when the underlying film is the Ti film proposed above or only the Al film is Ti
Alternatively, since there is a locally very “base” part such as the Nd part in the magnet, which is more noble than Al, the salt spray test of the severe corrosion resistance test starts through a slight pinhole of the TiN film. It was found that rust easily occurred.

【0011】そこで、発明者らは、Ti1-xAlxN被膜
形成法についてさらに検討した結果、Ti1-xAlxN被
膜の下地として、まず永久磁石体表面にTi被膜層を、
次いでAl被膜層を設けることによって、Tiに比べて
Alの方が電気化学的に若干「卑」であるため、Al被
膜層がTi被膜層に対して犠牲被膜として作用し、表面
層のTi1-xAlxN被膜の僅かなピンホールから腐食が
発生しても、素地の磁石体まで下地膜を一気に貫通する
ことなく、下地層のTi被膜と表面層のTi1-xAlx
被膜の間の中間層としてAl被膜が存在する限り、下地
層のTi被膜に被覆されたR−Fe−B系永久磁石は保
護され、さらにAl被膜上にTi1-xAlxN被膜を形成
することにより、界面にはTi1-■AlなるT
i,Al,Nの複合被膜が生成し、このTi1-■Al
の組成、膜厚は、基板温度、バイアス電圧、成膜ス
ピード、Ti1-xAlxN組成等によって変化し、Ti
1-xAlxN界面に向かってTi,Nが連続的に増加する
組成となっており、これにより、Al被膜とTi1-x
xN被膜との密着性は著しく改善できることを知見
し、この発明を完成した。
The inventors have further studied the method of forming a Ti 1-x Al x N film. As a result, a Ti film layer was first formed on the surface of the permanent magnet body as a base of the Ti 1-x Al x N film.
Then, by providing an Al coating layer, Al is electrochemically slightly "base" compared to Ti, so that the Al coating layer acts as a sacrificial coating on the Ti coating layer, and Ti 1 Even if corrosion occurs from a slight pinhole in the -x Al x N film, the underlying Ti film and the surface layer Ti 1-x Al x N do not penetrate through the under film at a stretch to the base magnet body.
As long as an Al film is present as an intermediate layer between the films, the R-Fe-B permanent magnet coated on the Ti film of the underlayer is protected, and a Ti 1-x Al x N film is formed on the Al film. By doing so, the interface becomes Ti 1- ■ Al N
A composite film of i, Al, and N is formed, and the Ti 1- ■ Al 2
N composition, thickness, substrate temperature, varies with the bias voltage, film formation speed, Ti 1-x Al x N composition, etc., Ti
The composition is such that Ti and N continuously increase toward the 1-x Al x N interface, whereby the Al film and the Ti 1-x A
The inventors have found that the adhesion to the l x N coating can be remarkably improved, and have completed the present invention.

【0012】すなわち、この発明は、主相が正方晶相か
らなるR−Fe−B系永久磁石体表面に形成された膜厚
0.1μm〜3.0μmのTi被膜上に、膜厚0.1μ
m〜5μmのAl被膜を介して膜厚0.5μm〜10μ
mのTi1-xAlxN(但し、0.03<x<0.70)
被膜層を有する耐食性永久磁石である。
That is, according to the present invention, a Ti coating having a thickness of 0.1 μm to 3.0 μm formed on the surface of an R—Fe—B-based permanent magnet having a tetragonal phase as a main phase is formed on a Ti coating having a thickness of 0.1 μm to 3.0 μm. 1μ
0.5 μm to 10 μm in thickness through an Al coating of m to 5 μm
m Ti 1-x Al x N (where 0.03 <x <0.70)
It is a corrosion-resistant permanent magnet having a coating layer.

【0013】[0013]

【発明の実施の形態】この発明は、主相が正方晶相から
なるR−Fe−B系永久磁石体の清浄化された表面に、
薄膜形成法により、膜厚0.1μm〜3.0μmのTi
被膜を形成後、前記Ti被膜上に膜厚0.1μm〜5μ
mのAl被膜を形成し、前記Al被膜上に膜厚0.5μ
m〜10μmのTi1-xAlxN(但し、0.03<x<
0.70)被膜層を形成したことを特徴とする。耐食性
永久磁石の製造方法の一例を以下に詳述する。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention provides an R-Fe-B-based permanent magnet having a tetragonal phase as a main phase, having a cleaned surface.
By a thin film forming method, Ti having a thickness of 0.1 μm to 3.0 μm is used.
After forming the film, a film thickness of 0.1 μm to 5 μm is formed on the Ti film.
m Al film is formed, and a film thickness of 0.5 μm is formed on the Al film.
m to 10 μm of Ti 1-x Al x N (0.03 <x <
0.70) A coating layer is formed. An example of a method for manufacturing a corrosion-resistant permanent magnet will be described in detail below.

【0014】1)例えば、アークイオンプレーティング
装置を用いて、真空容器を到達真空度1×10-3pa以
下まで真空排気した後、Arガス圧10pa、−500
VでArイオンによる表面スパッターにてR−Fe−B
系磁石体表面を清浄化する。次に、Arガス圧0.1p
a、バイアス電圧−80Vにより、ターゲットのTiを
蒸発させて、アークイオンプレーティング法にて、磁石
体表面に0.1μm〜3.0μm膜厚のTi被膜層を形
成する。
1) For example, after evacuating the vacuum vessel to an ultimate vacuum of 1 × 10 −3 pa or less using an arc ion plating apparatus, an Ar gas pressure of 10 pa and −500 is used.
R-Fe-B by surface sputtering with Ar ions at V
Clean the surface of the system magnet body. Next, Ar gas pressure 0.1p
a, Ti of a target is evaporated by a bias voltage of -80 V, and a Ti coating layer having a thickness of 0.1 μm to 3.0 μm is formed on the surface of the magnet body by an arc ion plating method.

【0015】2)次に、Arガス圧0.1pa、バイア
ス電圧−50Vにより、ターゲットのAlを蒸発させ
て、アークイオンプレーティング法にて、Ti被膜層上
に0.1μm〜5μm膜厚のAl被膜層を形成する。
2) Next, the target Al is evaporated by an Ar gas pressure of 0.1 pa and a bias voltage of -50 V, and a thickness of 0.1 μm to 5 μm is formed on the Ti coating layer by an arc ion plating method. An Al coating layer is formed.

【0016】3)続いて、ターゲットとして合金Ti
1-yAly(但し、0.03<y<0.80)を用い、基
板の磁石温度を250℃に保持し、N2ガス圧3pa、
バイアス電圧−120Vの条件にて、Al被膜層上に特
定厚のTi1-xAlxN(但し、0.03<x<0.7
0)被膜層を形成する。
3) Subsequently, as a target, alloy Ti
Using 1-y Al y (however, 0.03 <y <0.80), the magnet temperature of the substrate was kept at 250 ° C., the N 2 gas pressure was 3 pa,
Under the condition of a bias voltage of -120 V, a specific thickness of Ti 1-x Al x N (0.03 <x <0.7
0) Form a coating layer.

【0017】この発明において、R−Fe−B系永久磁
石体表面に被着のTi被膜層、Al被膜層、Ti1-x
xN被膜層の形成方法としては、イオンプレーティン
グ法や蒸着法などの公知の薄膜形成法を適宜選定できる
が、被膜の緻密性、均一性、被膜形成速度等の理由か
ら、イオンプレーティング法、イオン反応プレーティン
グ法が好ましい。
In the present invention, a Ti film layer, an Al film layer, and a Ti 1-x A film adhered to the surface of an R—Fe—B-based permanent magnet body.
As a method for forming the l x N coating layer, a known thin film forming method such as an ion plating method or a vapor deposition method can be appropriately selected. However, for reasons such as the denseness, uniformity, and film forming speed of the film, the ion plating method is used. Method and an ion reaction plating method are preferred.

【0018】被膜生成時の基板磁石の温度は200℃〜
500℃に設定するのが好ましく、200℃未満では基
板磁石との反応密着が十分でなく、また500℃を超え
ると常温(−25℃)との温度差が大きくなり、処理後
の冷却過程で被膜に亀裂が入り、一部基板より剥離を発
生するため、基板磁石の温度を200℃〜500℃に設
定する。
The temperature of the substrate magnet at the time of film formation is 200 ° C.
Preferably, the temperature is set at 500 ° C. If the temperature is lower than 200 ° C, the reaction adhesion with the substrate magnet is not sufficient, and if the temperature exceeds 500 ° C, the temperature difference from the normal temperature (-25 ° C) becomes large, and the cooling process after the treatment causes The temperature of the substrate magnet is set to 200 ° C. to 500 ° C., since the coating is cracked and partially peels off from the substrate.

【0019】この発明において、磁石体表面のTi被膜
厚を0.1μm〜3.0μmに限定した理由は、0.1
μm未満では磁石表面との密着性が十分でなく、3.0
μmを越えると効果的には問題ないが、下地膜としては
コスト上昇を招来して、実用的でなく好ましくないの
で、Ti被膜厚は0.1μm〜3.0μmとする。
In the present invention, the reason why the Ti coating thickness on the surface of the magnet body is limited to 0.1 μm to 3.0 μm is as follows.
If it is less than μm, the adhesion to the magnet surface is not sufficient, and
When the thickness exceeds μm, there is no problem effectively, but the cost of the underlayer is increased, which is not practical and not preferable. Therefore, the thickness of the Ti coating is set to 0.1 μm to 3.0 μm.

【0020】また、この発明において、Ti被膜上に形
成されるAl被膜厚を0.1μm〜5μmに限定した理
由は、0.1μm未満ではTi被膜表面にAlが均一に
付着しにくく、中間層膜としての効果が十分でなく、ま
た5μmを越えると効果的には問題ないが、中間層膜と
してコスト上昇を招来して好ましくないので、Al被膜
厚は0.1μm〜5μmとする。
In the present invention, the reason why the thickness of the Al coating formed on the Ti coating is limited to 0.1 μm to 5 μm is that if it is less than 0.1 μm, it is difficult for Al to uniformly adhere to the surface of the Ti coating, and The effect as a film is not sufficient, and if it exceeds 5 μm, there is no problem. However, it is not preferable because the cost of the intermediate layer is increased, so that the thickness of the Al coating is set to 0.1 μm to 5 μm.

【0021】また、Ti1-xAlxN(但し、0.03<
x<0.70)被膜厚を0.5μm〜10μmに限定し
た理由は、0.5μm未満ではTi1-xAlxN被膜とし
ての耐食性、耐摩耗性が十分でなく、10μmを超える
と効果的には問題ないが、製造コスト上昇を招来するの
で好ましくない。また、Ti1-xAlxN被膜において、
xの値を限定した理由は、0.03未満ではTi1-x
xN被膜としての性能(耐食性、耐摩耗性)が得られ
ず、また0.70を超えても性能の向上が得られないた
めである。
In addition, Ti 1-x Al x N (however, 0.03 <
x <0.70) The reason for limiting the coating thickness to 0.5 μm to 10 μm is that if the coating thickness is less than 0.5 μm, the corrosion resistance and abrasion resistance of the Ti 1-x Al x N coating are not sufficient, and if it exceeds 10 μm, the effect is increased. Although there is no problem in terms of production, it is not preferable because it causes an increase in manufacturing cost. In the Ti 1-x Al x N coating,
The reason for limiting the value of x is that if it is less than 0.03, Ti 1-x A
l x N film as the performance of the (corrosion, wear resistance) is not obtained, also because is not obtained improvement in performance beyond 0.70.

【0022】この発明の永久磁石に用いる希土類元素R
は、組成の10原子%〜30原子%を占めるが、Nd、
Pr、Dy、Ho、Tbのうち少なくとも1種、あるい
はさらに、La、Ce、Sm、Gd、Er、Eu、T
m、Yb、Lu、Yのうち少なくとも1種を含むものが
好ましい。また、通常Rのうち1種をもって足りるが、
実用上は2種以上の混合物(ミッシュメタル、ジジム
等)を入手上の便宜等の理由により用いることができ
る。なお、このRは純希土類元素でなくてもよく、工業
上入手可能な範囲で製造上不可避な不純物を含有するも
のでも差支えない。
The rare earth element R used in the permanent magnet of the present invention
Accounts for 10 to 30 atomic% of the composition, but Nd,
At least one of Pr, Dy, Ho, and Tb; or La, Ce, Sm, Gd, Er, Eu, T
Those containing at least one of m, Yb, Lu, and Y are preferable. Also, usually one of R is sufficient,
In practice, a mixture of two or more kinds (mish metal, dymium, etc.) can be used for reasons such as convenience in obtaining. Note that R may not be a pure rare earth element, and may contain impurities which are unavoidable in production within the industrially available range.

【0023】Rは、上記系永久磁石における必須元素で
あって、10原子%未満では結晶構造がα−鉄と同一構
造の立方晶組織となるため、高磁気特性、特に高保磁力
が得られず、30原子%を超えるとRリッチな非磁性相
が多くなり、残留磁束密度(Br)が低下してすぐれた
特性の永久磁石が得られない。よって、R10原子%〜
30原子%の範囲が望ましい。
R is an essential element in the above-mentioned permanent magnets. If it is less than 10 atomic%, the crystal structure becomes a cubic structure having the same structure as that of α-iron, so that high magnetic properties, especially high coercive force cannot be obtained. , More than 30 atomic%, the R-rich nonmagnetic phase increases, the residual magnetic flux density (Br) decreases, and a permanent magnet having excellent characteristics cannot be obtained. Therefore, R10 atomic% or more
A range of 30 atomic% is desirable.

【0024】Bは、上記系永久磁石における必須元素で
あって、2原子%未満では菱面体構造が主相となり、高
い保磁力(iHc)は得られず、28原子%を超えると
Bリッチな非磁性相が多くなり、残留磁束密度(Br)
が低下するため、すぐれた永久磁石が得られない。よっ
て、Bは2原子%〜28原子%の範囲が望ましい。
B is an essential element in the above-mentioned permanent magnets. If it is less than 2 atomic%, the rhombohedral structure becomes the main phase, a high coercive force (iHc) cannot be obtained, and if it exceeds 28 atomic%, B becomes rich. Increase in non-magnetic phase, residual magnetic flux density (Br)
, The excellent permanent magnet cannot be obtained. Therefore, B is desirably in the range of 2 to 28 atomic%.

【0025】Feは、上記系永久磁石において必須元素
であり、65原子%未満では残留磁束密度(Br)が低
下し、80原子%を超えると高い保磁力が得られないの
で、Feは65原子%〜80原子%の含有が望ましい。
また、Feの一部をCoで置換することは、得られる磁
石の磁気特性を損うことなく、温度特性を改善すること
ができるが、Co置換量がFeの20%を超えると、逆
に磁気特性が劣化するため、好ましくない。Coの置換
量がFeとCoの合計量で5原子%〜15原子%の場合
は、(Br)は置換しない場合に比較して増加するた
め、高磁束密度を得るために好ましい。
Fe is an essential element in the above permanent magnets. When the content is less than 65 at%, the residual magnetic flux density (Br) decreases, and when it exceeds 80 at%, a high coercive force cannot be obtained. % To 80 atomic%.
Further, substituting a part of Fe with Co can improve the temperature characteristics without impairing the magnetic characteristics of the obtained magnet. However, when the Co substitution amount exceeds 20% of Fe, conversely, It is not preferable because the magnetic properties deteriorate. When the substitution amount of Co is 5 atomic% to 15 atomic% in the total amount of Fe and Co, (Br) increases as compared with the case where the substitution is not performed, so that it is preferable to obtain a high magnetic flux density.

【0026】また、R、B、Feの他、工業的生産上不
可避的不純物の存在を許容でき、例えば、Bの一部を
4.0wt%以下のC、2.0wt%以下のP、2.0
wt%以下のS、2.0wt%以下のCuのうち少なく
とも1種、合計量で2.0wt%以下で置換することに
より、永久磁石の製造性改善、低価格化が可能である。
In addition to R, B, and Fe, the presence of unavoidable impurities in industrial production can be tolerated. For example, a part of B may be 4.0 wt% or less of C, 2.0 wt% or less of P, .0
By replacing at least one of S by wt% or less and Cu by 2.0 wt% or less with a total amount of 2.0 wt% or less, it is possible to improve the productivity and reduce the cost of the permanent magnet.

【0027】さらに、Al、Ti、V、Cr、Mn、B
i、Nb、Ta、Mo、W、Sb、Ge、Sn、Zr、
Ni、Si、Zn、Hf、のうち少なくとも1種は、R
−Fe−B系永久磁石材料に対してその保磁力、減磁曲
線の角型性を改善あるいは製造性の改善、低価格化に効
果があるため添加することができる。なお、添加量の上
限は、磁石材料の(BH)maxを20MGOe以上と
するには、Brが少なくとも9kG以上必要となるた
め、該条件を満す範囲が望ましい。
Further, Al, Ti, V, Cr, Mn, B
i, Nb, Ta, Mo, W, Sb, Ge, Sn, Zr,
At least one of Ni, Si, Zn, and Hf is R
-It can be added to the Fe-B-based permanent magnet material because it is effective for improving the coercive force and the squareness of the demagnetization curve, improving the productivity, and reducing the price. The upper limit of the addition amount is preferably in a range that satisfies the above condition, since Br needs to be at least 9 kG or more in order to make (BH) max of the magnet material 20 MGOe or more.

【0028】また、この発明の永久磁石は平均結晶粒径
が1〜80μmの範囲にある正方晶系の結晶構造を有す
る化合物を主相とし、体積比で1%〜50%の非磁性相
(酸化物相を除く)を含むことを特徴とする。この発明
による永久磁石は、保磁力iHc≧1kOe、残留磁束
密度Br>4kGを示し、最大エネルギー積(BH)m
axは、(BH)max≧10MGOeを示し、最大値
は25MGOe以上に達する。
The permanent magnet of the present invention comprises a compound having a tetragonal crystal structure having an average crystal grain size in the range of 1 to 80 μm as a main phase, and a nonmagnetic phase (1% to 50% by volume). (Excluding the oxide phase). The permanent magnet according to the present invention exhibits a coercive force iHc ≧ 1 kOe, a residual magnetic flux density Br> 4 kG, and a maximum energy product (BH) m
ax indicates (BH) max ≧ 10 MGOe, and the maximum value reaches 25 MGOe or more.

【0029】[0029]

【実施例】【Example】

実施例1 公知の鋳造インゴットを粉砕し、微粉砕後に成形、焼
結、熱処理後に、15Nd−1Dy76Fe−8B組成
の径12mm×厚み2mm寸法の磁石体試験片を得た。
その磁石特性を表1に示す。
Example 1 A known casting ingot was pulverized, finely pulverized, molded, sintered and heat-treated to obtain a magnet test piece having a composition of 15Nd-1Dy76Fe-8B and having a diameter of 12 mm and a thickness of 2 mm.
Table 1 shows the magnet characteristics.

【0030】真空容器内を1×10-3pa以下に真空排
気し、Arガス圧10pa、−500Vで20分間、表
面スパッターを行って、磁石体表面を清浄化した後、A
rガス圧0.1pa、バイアス電圧−80V、基板磁石
温度を280℃にて、ターゲットとして金属Tiをアー
クイオンプレーティング法にて、磁石体表面に1μm厚
のTi被膜層を形成する。
The inside of the vacuum vessel is evacuated to 1 × 10 −3 pa or less, and surface sputtering is performed for 20 minutes at an Ar gas pressure of 10 pa and −500 V to clean the surface of the magnet body.
An r gas pressure of 0.1 pa, a bias voltage of −80 V, a substrate magnet temperature of 280 ° C., a metal Ti as a target is formed by an arc ion plating method to form a 1 μm thick Ti coating layer on the surface of the magnet body.

【0031】その後、Arガス圧0.1pa、バイアス
電圧−50V、基板磁石温度を250℃にして、ターゲ
ットとして金属Alを用いて、アークイオンプレーティ
ング法にて、Ti被膜表面に2μm厚のAl被膜層を形
成した。次に、基板磁石温度320℃、バイアス電圧−
100Vで、N2ガス1paにて、ターゲットとして合
金Ti0.45Al0.55をアークイオンプレーティング法に
てAl被膜表面に膜厚2μmのTi1-xAlxN被膜層を
形成した。なお、生成被膜の組成はTi0.5Al0.5Nで
あった。
After that, an Ar gas pressure of 0.1 pa, a bias voltage of -50 V, a substrate magnet temperature of 250 ° C., a metal Al as a target, and a 2 μm thick Al film were formed on the surface of the Ti film by arc ion plating. A coating layer was formed. Next, a substrate magnet temperature of 320 ° C. and a bias voltage −
A Ti 1-x Al x N coating layer having a thickness of 2 μm was formed on the Al coating surface by arc ion plating at 100 V and 1 pa of N 2 gas using an alloy Ti 0.45 Al 0.55 as a target. The composition of the resulting film was Ti 0.5 Al 0.5 N.

【0032】その後、放冷後、得られたTiN被膜を表
面に有する永久磁石を温度35℃、5%中性NaCl溶
液の条件による塩水噴霧試験(JIS Z2371)を
行い、発錆時間を測定して、その結果を磁石特性と共に
表2に表す。
Then, after standing to cool, the obtained permanent magnet having a TiN coating on the surface was subjected to a salt spray test (JIS Z2371) under the conditions of a temperature of 35 ° C. and a 5% neutral NaCl solution, and the rusting time was measured. The results are shown in Table 2 together with the magnet characteristics.

【0033】比較例1 実施例1と同一組成の磁石体試験片を用いて、実施例1
と同一条件にて磁石体試験片にTi被膜層を3μm形成
後、実施例1と同一条件にて同一膜厚(2μm)のTi
0.5Al0.5N被膜層を形成後、実施例1と同一条件の塩
水噴霧試験を行い、発錆時間を測定して、その結果を磁
石特性と共に表2に表す。
Comparative Example 1 Using a magnet test piece having the same composition as in Example 1,
After forming a 3 μm-thick Ti coating layer on the magnet test piece under the same conditions as in Example 1, a Ti film having the same thickness (2 μm) was used under the same conditions as in Example 1.
After forming the 0.5 Al 0.5 N coating layer, a salt spray test was performed under the same conditions as in Example 1 and the rusting time was measured. The results are shown in Table 2 together with the magnet properties.

【0034】比較例2 実施例1と同一組成の磁石体試験片を用いて、前記磁石
体表面に実施例1と同一条件にてAl被膜層を3μm形
成後、実施例1と同一条件にて、同一膜厚のTi0.5
0.5N被膜層を形成後、実施例1と同一条件の塩水噴
霧試験を行い、発錆時間を測定して、その結果を磁石特
性と共に表2に表す。
Comparative Example 2 An Al coating layer was formed to a thickness of 3 μm on the magnet body surface under the same conditions as in Example 1 using a magnet body test piece having the same composition as in Example 1, and then under the same conditions as in Example 1. , Ti 0.5 A of the same thickness
After forming the l 0.5 N coating layer, a salt spray test was conducted under the same conditions as in Example 1 to measure the rusting time. The results are shown in Table 2 together with the magnet properties.

【0035】[0035]

【表1】 [Table 1]

【0036】[0036]

【表2】 [Table 2]

【0037】[0037]

【発明の効果】この発明は、R−Fe−B系永久磁石体
表面をイオンスパッター法等により清浄化した後、前記
磁石体表面にイオンプレーティング法等の薄膜形成法に
よりTi被膜を形成後、更にAl被膜を中間層として形
成後、N2ガス中にてイオン反応プレーティング等の薄
膜形成法により、Ti1-xAlxN被膜を形成したことを
特徴とし、中間層としてAl被膜層を存在させることに
より、永久磁石体と下地層のTi被膜に対して犠牲被膜
として作用し、Ti被膜間の密着性が著しく改善される
と共に、苛酷な耐食性試験の塩水噴霧試験においても発
錆時間を延長して、すぐれた耐食性、耐磨耗性により、
その磁石特性の安定したR−Fe−B系永久磁石が得ら
れる。
According to the present invention, after the surface of an R-Fe-B permanent magnet body is cleaned by an ion sputtering method or the like, a Ti film is formed on the surface of the magnet body by a thin film forming method such as an ion plating method. Further, after forming an Al film as an intermediate layer, a Ti 1-x Al x N film is formed by a thin film forming method such as ion reaction plating in N 2 gas, and the Al film layer is formed as the intermediate layer. In the presence of, it acts as a sacrificial coating on the permanent magnet body and the Ti coating of the underlying layer, significantly improving the adhesion between the Ti coatings, and the rusting time in the salt spray test of the severe corrosion resistance test. To extend corrosion resistance and wear resistance,
An R-Fe-B permanent magnet having stable magnet properties can be obtained.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 主相が正方晶相からなるR−Fe−B系
永久磁石体表面に形成された膜厚0.1μm〜3.0μ
mのTi被膜上に、膜厚0.1μm〜5μmのAl被膜
を介して膜厚0.5μm〜10μmのTi1-xAlx
(但し、0.03<x<0.70)被膜層を有する耐食
性永久磁石。
1. A film thickness of 0.1 μm to 3.0 μm formed on the surface of an R—Fe—B permanent magnet body whose main phase is a tetragonal phase.
A Ti 1-x Al x N film having a thickness of 0.5 μm to 10 μm on a Ti film having a thickness of 0.1 μm to 5 μm through an Al film
(However, 0.03 <x <0.70) Corrosion-resistant permanent magnet having a coating layer.
【請求項2】 主相が正方晶相からなるR−Fe−B系
永久磁石体の清浄化された表面に、薄膜形成法により、
膜厚0.1μm〜3.0μmのTi被膜を形成後、前記
Ti被膜上に膜厚0.1μm〜5μmのAl被膜を形成
し、前記Al被膜上に膜厚0.5μm〜10μmのTi
1-xAlxN(但し、0.03<x<0.70)被膜層を
形成する耐食性永久磁石の製造方法。
2. A method for forming a thin film on a cleaned surface of an R—Fe—B permanent magnet body having a tetragonal phase as a main phase.
After forming a Ti film having a thickness of 0.1 μm to 3.0 μm, an Al film having a thickness of 0.1 μm to 5 μm is formed on the Ti film, and a Ti film having a thickness of 0.5 μm to 10 μm is formed on the Al film.
A method for producing a corrosion-resistant permanent magnet which forms a 1-x Al x N (0.03 <x <0.70) coating layer.
JP27720096A 1996-08-30 1996-09-26 Corrosion-resistant permanent magnet and method for manufacturing the same Expired - Lifetime JP3652818B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP27720096A JP3652818B2 (en) 1996-09-26 1996-09-26 Corrosion-resistant permanent magnet and method for manufacturing the same
DE69728547T DE69728547T2 (en) 1996-08-30 1997-07-25 CORROSION-RESISTANT PERMANENT MAGNET AND MANUFACTURING METHOD
CNB971981345A CN1138285C (en) 1996-08-30 1997-07-25 Corrosion-resistant permanent magnet and method for manufacturing the same
EP97933019A EP0923087B1 (en) 1996-08-30 1997-07-25 Corrosion-resistant permanent magnet and method for manufacturing the same
US09/242,825 US6211762B1 (en) 1996-08-30 1997-07-25 Corrosion-resistant permanent magnet and method for manufacturing the same
PCT/JP1997/002579 WO1998009300A1 (en) 1996-08-30 1997-07-25 Corrosion-resistant permanent magnet and method for manufacturing the same
KR1019997001596A KR20000035885A (en) 1996-08-30 1997-07-25 Corrosion-resistant permanent magnet and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27720096A JP3652818B2 (en) 1996-09-26 1996-09-26 Corrosion-resistant permanent magnet and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JPH10106816A true JPH10106816A (en) 1998-04-24
JP3652818B2 JP3652818B2 (en) 2005-05-25

Family

ID=17580210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27720096A Expired - Lifetime JP3652818B2 (en) 1996-08-30 1996-09-26 Corrosion-resistant permanent magnet and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP3652818B2 (en)

Also Published As

Publication number Publication date
JP3652818B2 (en) 2005-05-25

Similar Documents

Publication Publication Date Title
EP0991085B1 (en) Corrosion-resisting permanent magnet and method for producing the same
EP0923087B1 (en) Corrosion-resistant permanent magnet and method for manufacturing the same
JPH07283017A (en) Corrosion resistant permanent magnet and production thereof
JP3737830B2 (en) Corrosion-resistant permanent magnet and method for manufacturing the same
JP3652816B2 (en) Corrosion-resistant permanent magnet and method for manufacturing the same
JPH07249509A (en) Corrosion-resistant permanent magnet and its manufacture
JPH0529119A (en) High corrosion-resistant rare earth magnet
JPH1074607A (en) Corrosion-resisting permanent magnet and its manufacture
JP3676513B2 (en) Corrosion-resistant permanent magnet and method for manufacturing the same
JPH0569282B2 (en)
JP3652818B2 (en) Corrosion-resistant permanent magnet and method for manufacturing the same
JPH0945567A (en) Rare earth-iron-boron permanent magnet manufacturing method
JP4600332B2 (en) Magnet member and manufacturing method thereof
JPH08279407A (en) R-fe-b permanent magnet being excellent in electrical insulating properties, heat resistance and corrosion resistance and manufacture thereof
JPH0535216B2 (en)
JPH10340823A (en) Manufacture of r-iron-boron permanent magnet having excellent salt water resistance
JPH09289108A (en) R-fe-b permanent magnet having electric insulating film excellent in adhesion and its manufacture
JPH1083905A (en) Corrosion-resistant permanent magnet and its manufacture
JP3595082B2 (en) Ultra-high vacuum permanent magnet and method of manufacturing the same
JP5036207B2 (en) Magnet member
JP3595078B2 (en) Ultra-high vacuum permanent magnet and method of manufacturing the same
JPH06140226A (en) Corrosion-resistant permanent magnet
JPS63254702A (en) Manufacture of corrosion resisting permanent magnet
JPH09246027A (en) R-fe-b based permanent magnet excellent in resistance to salt water
JPH0644525B2 (en) Method of manufacturing permanent magnet with excellent corrosion resistance

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050224

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080304

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080304

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090304

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100304

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100304

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120304

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130304

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 9

EXPY Cancellation because of completion of term