JPH07249509A - Corrosion-resistant permanent magnet and its manufacture - Google Patents

Corrosion-resistant permanent magnet and its manufacture

Info

Publication number
JPH07249509A
JPH07249509A JP6065542A JP6554294A JPH07249509A JP H07249509 A JPH07249509 A JP H07249509A JP 6065542 A JP6065542 A JP 6065542A JP 6554294 A JP6554294 A JP 6554294A JP H07249509 A JPH07249509 A JP H07249509A
Authority
JP
Japan
Prior art keywords
magnet
permanent magnet
film
corrosion
tin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6065542A
Other languages
Japanese (ja)
Inventor
Masako Suzuki
雅子 鈴木
Fumiaki Kikui
文秋 菊井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP6065542A priority Critical patent/JPH07249509A/en
Publication of JPH07249509A publication Critical patent/JPH07249509A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/026Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment

Abstract

PURPOSE:To improve corrosion resistance of an Fe-B-R permanent magnet by providing a TiN film on the surface of the magnet with an Al film in between. CONSTITUTION:A corrosion-resistant permanent magnet is composed of an Fe-B-R permanent magnet body having a main phase constituted of a tetragonal phase, Al film formed on the surface of the magnet body 0.06-5.0mum thick, and TiN film formed on the Al film 0.5-10mum thick and, in the manufacturing method of the permanent magnet, the Al film is formed by a vapor phase film forming method after cleaning the surface of the magnet body and the TiN film is formed by a vapor-phase film forming method in an N2 gas atmosphere. Therefore, an Fe-B-R permanent magnet having stable high magnetic characteristics, a wear resistance, and a corrosion resistance can be obtained at low cost, because the permanent magnet is coated with an Al and TiN films having excellent adhesibility to the substrate of the magnet with the object of improving the wear resistance and corrosion resistance of the magnet, especially, reducing the initial magnetic characteristics of the magnet when the magnet is left under an atmospheric condition of 80 deg.C in temperature and 90% in relative humidity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、高磁気特性を有しか
つ密着性がすぐれ、耐食性、耐酸、耐アルカリ性、耐摩
耗性にすぐれた耐食性被膜を設けたFe−B−R系永久
磁石に係り、Al被膜を介してTiN被膜層を特定膜厚
みで設けた耐食性、特に80℃、相対湿度90%の雰囲
気に長時間放置した場合の初期磁石特性からの劣化が少
なく、きわめて安定した磁石特性を有する耐食性永久磁
石およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Fe-B-R permanent magnet provided with a corrosion resistant coating having high magnetic properties, excellent adhesion, and excellent corrosion resistance, acid resistance, alkali resistance and wear resistance. In this regard, the corrosion resistance of the TiN coating layer having a specific thickness provided through the Al coating, especially the stable magnet characteristics with little deterioration from the initial magnet characteristics when left in an atmosphere of 80 ° C. and 90% relative humidity for a long time. And a method of manufacturing the same.

【0002】[0002]

【従来の技術】先に、NdやPrを中心とする資源的に
豊富な軽希土類を用いてB,Feを主成分とし、高価な
SmやCoを含有せず、従来の希土類コバルト磁石の最
高特性を大幅に超える新しい高性能永久磁石として、F
e−B−R系永久磁石が提案されている(特開昭59−
46008号公報、特開昭59−89401号公報)。
2. Description of the Related Art First, a light rare earth which is rich in resources centering on Nd and Pr is used as a main component of B and Fe, and does not contain expensive Sm or Co. As a new high-performance permanent magnet that greatly exceeds the characteristics, F
An e-B-R permanent magnet has been proposed (JP-A-59-59).
46008, JP-A-59-89401).

【0003】前記磁石合金のキュリー点は、一般に30
0℃〜370℃であるが、Feの一部をCoにて置換す
ることにより、より高いキュリー点を有するFe−B−
R系永久磁石(特開昭59−64733号、特開昭59
−132104号)を得ており、さらに、前記Co含有
のFe−B−R系希土類永久磁石と同等以上のキュリー
点並びにより高い(BH)maxを有し、その温度特
性、特にiHcを向上させるため、希土類元素(R)と
してNdやPr等の軽希土類を中心としたCo含有のF
e−B−R系希土類永久磁石のRの一部にDy、Tb等
の重希土類のうち少なくとも1種を含有することによ
り、25MGOe以上の極めて高い(BH)maxを保
有したままで、iHcをさらに向上させたCo含有のF
e−B−R系希土類永久磁石が提案(特開昭60−34
005号公報)されている。
The Curie point of the magnet alloy is generally 30.
It is 0 ° C to 370 ° C, but Fe-B- having a higher Curie point by substituting a part of Fe with Co.
R-based permanent magnet (JP-A-59-64733, JP-A-59)
-132104), and further has a Curie point equal to or higher than that of the Fe-BR rare earth permanent magnet containing Co and a higher (BH) max, and improves its temperature characteristics, particularly iHc. Therefore, Co-containing F mainly composed of light rare earth elements such as Nd and Pr as rare earth elements (R)
By containing at least one kind of heavy rare earths such as Dy and Tb in a part of R of the e-B-R rare earth permanent magnet, iHc can be maintained while maintaining extremely high (BH) max of 25 MGOe or more. Further improved Co-containing F
Proposed e-BR rare earth permanent magnet (Japanese Patent Laid-Open No. 60-34)
No. 005).

【0004】しかしながら、上記のすぐれた磁気特性を
有するFe−B−R系磁気異方性焼結体からなる永久磁
石は主成分として、空気中で酸化し易い希土類元素及び
鉄を含有するため、磁気回路に組込んだ場合に、磁石表
面に生成する酸化物により、磁気回路の出力低下及び磁
気回路間のばらつきを惹起し、また、表面酸化物の脱落
による周辺機器への汚染の問題があった。
However, since the permanent magnet made of the Fe-BR type magnetic anisotropic sintered body having the above-mentioned excellent magnetic characteristics contains iron as a main component, a rare earth element and iron which are easily oxidized in air, When incorporated into a magnetic circuit, the oxide generated on the surface of the magnet causes a decrease in the output of the magnetic circuit and variations among the magnetic circuits, and there is a problem of contamination of peripheral equipment due to the loss of the surface oxide. It was

【0005】[0005]

【発明が解決しようとする課題】そこで、上記のFe−
B−R系永久磁石の耐食性の改善のため、磁石体表面に
無電解めっき法あるいは電解めっき法により耐食性金属
めっき層を被覆した永久磁石(特公平3−74012号
公報)が提案されているが、このめっき法では永久磁石
体が焼結体で有孔性のため、この孔内にめっき前処理で
の酸性溶液またはアルカリ溶液が残留し、経年変化とと
もに腐食する恐れがあり、また磁石体の耐薬品性が劣る
ため、めっき時に磁石表面が腐食されて密着性、防蝕性
が劣る問題があった。また、耐食性めっきを設けても、
温度60℃、相対湿度90%の条件下の耐食性試験で1
00時間放置にて、磁石特性は初期磁石特性の10%以
上劣化し、非常に不安定であった。
Therefore, the above Fe-
In order to improve the corrosion resistance of the B-R permanent magnet, there has been proposed a permanent magnet (Japanese Patent Publication No. 3-74012) in which the surface of the magnet is coated with a corrosion-resistant metal plating layer by electroless plating or electrolytic plating. In this plating method, since the permanent magnet body is a sintered body and has porosity, the acidic solution or alkaline solution in the pretreatment of plating may remain in this hole, and there is a risk of corrosion over time. Since the chemical resistance is poor, the surface of the magnet is corroded during plating, resulting in poor adhesion and corrosion resistance. Moreover, even if corrosion resistant plating is provided,
1 in the corrosion resistance test under the conditions of temperature 60 ℃ and relative humidity 90%
When left standing for 00 hours, the magnet characteristics deteriorated by 10% or more of the initial magnet characteristics and were very unstable.

【0006】そのため、Fe−B−R系永久磁石の耐食
性の改善向上のため、前記磁石表面にイオンプレーティ
ング法、イオンスパッタリング法等により、TiN、T
i被膜を被着して耐食性の改善向上することが提案(特
公平5−15043号公報)されている。しかし、Ti
N被膜はFe−B−R系磁石体と結晶構造の他熱膨張係
数、延性等が相違するため密着性が悪く、またTi被膜
は密着性、耐食性は良好であるが、耐摩耗性が低い等の
欠点があり、そのためFe−B−R系永久磁石体表面に
TiとTiNの積層被膜を被着することが提案(特開昭
63−9919号公報)されている。ところが、Ti被
膜とTiN被膜は結晶構造、熱膨張係数及び延性等が異
なるため、その密着性が悪く、剥離等を生じて、耐食性
の低下を招来する問題があった。
Therefore, in order to improve the corrosion resistance of the Fe-BR type permanent magnet, TiN and T are formed on the surface of the magnet by an ion plating method, an ion sputtering method or the like.
It has been proposed (Japanese Patent Publication No. 5-15043) to apply an i-coat to improve the corrosion resistance. However, Ti
The N-coating has poor adhesion because it has a different thermal expansion coefficient, ductility, etc. from the Fe-BR magnet, and the Ti coating has good adhesion and corrosion resistance, but low wear resistance. Therefore, it has been proposed (Japanese Patent Laid-Open No. 63-9919) to apply a laminated coating film of Ti and TiN on the surface of the Fe-BR type permanent magnet body. However, since the Ti coating and the TiN coating have different crystal structures, coefficients of thermal expansion, ductility, and the like, there is a problem in that the adhesion is poor, peeling occurs, and the corrosion resistance decreases.

【0007】この発明は、Fe−B−R系永久磁石下地
との密着性にすぐれ、耐摩耗性、耐食性の改善向上を目
的に、特に温度80℃、相対湿度90%の雰囲気条件下
で長時間放置した場合の初期磁石特性からの劣化を極力
少なくし、安定した高磁石特性、耐摩耗性、耐食性を有
するFe−B−R系永久磁石を安価に提供することを目
的とする。
The present invention has excellent adhesion to a Fe-BR system permanent magnet substrate, and has the purpose of improving abrasion resistance and corrosion resistance, and especially for a long time under an atmospheric condition of a temperature of 80 ° C. and a relative humidity of 90%. It is an object of the present invention to provide a Fe-BR permanent magnet having stable high magnet characteristics, abrasion resistance, and corrosion resistance at a low cost by minimizing deterioration from the initial magnet characteristics when left standing for a long time.

【0008】[0008]

【課題を解決するための手段】発明者らは、すぐれた耐
食性、特に温度80℃、相対湿度90%の雰囲気条件下
で長時間放置した場合においても、下地との密着性がす
ぐれ、被着した耐食性金属被膜の耐食性、耐摩耗性によ
り、その磁石特性の安定したFe−B−R系永久磁石を
目的に永久磁石体表面へのTiN被膜形成法について種
々検討した結果、磁石体表面をイオンスパッター法等に
より清浄化した後、前記磁石体表面にイオンプレーティ
ング法、イオンスパッタリング法等の気相成膜法により
特定膜厚のAl被膜を形成後、特定条件のN2ガスを導
入しながら、イオンプレーティング、イオンスパッタリ
ング法等の気相成膜法により、特定層厚のTiN被膜を
形成することにより、磁石表面に付着の酸化物はAl被
膜にて脱酸作用により、磁石表面の酸化物は一部もしく
は大部分が還元され、磁石とAl被膜の密着性は著しく
改善され、また機構などは不明であるが、Al被膜とT
iN被膜との密着性も著くし改善できることを知見し、
この発明を完成した。
Means for Solving the Problems The inventors of the present invention have excellent corrosion resistance, and in particular, even when left for a long time under an atmospheric condition of a temperature of 80 ° C. and a relative humidity of 90%, the adhesiveness to a substrate is excellent and the adhesion is excellent. Due to the corrosion resistance and wear resistance of the corrosion-resistant metal coating, various examinations were conducted on the method of forming a TiN coating on the surface of the permanent magnet body for the purpose of producing a Fe-BR permanent magnet having stable magnet characteristics. After cleaning by a sputter method or the like, an Al coating film having a specific film thickness is formed on the surface of the magnet body by a vapor phase film forming method such as an ion plating method or an ion sputtering method, and then N 2 gas under a specific condition is introduced. By forming a TiN film with a specific layer thickness by a vapor phase film forming method such as ion plating, ion sputtering, etc., the oxide adhered to the magnet surface is deoxidized by the Al film. Ri, oxides of the magnet surface part or majority is reduced, adhesion between the magnet and the Al coating is significantly improved, Although mechanisms, or the like is unknown, Al coating and T
It was found that the adhesion with the iN coating can be significantly improved and
Completed this invention.

【0009】すなわち、この発明は主相が正方晶相から
なるFe−B−R系永久磁石体表面に、膜厚0.06μ
m〜5.0μmのAl被膜を介して膜厚0.5μm〜1
0μmのTiN被膜層を有することを特徴とする耐食性
永久磁石である。
That is, according to the present invention, a film thickness of 0.06 μm is formed on the surface of the Fe-BR permanent magnet body whose main phase is a tetragonal phase.
with a thickness of 0.5 μm to 1 through an Al coating of m to 5.0 μm
A corrosion resistant permanent magnet having a TiN coating layer of 0 μm.

【0010】また、この発明は主相が正方晶相からなる
Fe−B−R系永久磁石体表面を清浄化した後、前記磁
石体面に膜厚0.06μm〜5.0μmのAl被膜を気
相成膜法により形成後、N2ガス雰囲気中で気相成膜法
により膜厚0.5μm〜10μmのTiN被膜層を形成
することを特徴とする耐食性永久磁石の製造方法であ
る。
Further, according to the present invention, after cleaning the surface of the Fe-BR type permanent magnet body whose main phase is a tetragonal phase, an Al coating having a film thickness of 0.06 μm to 5.0 μm is formed on the surface of the magnet body. A method for producing a corrosion-resistant permanent magnet, characterized in that a TiN coating layer having a film thickness of 0.5 μm to 10 μm is formed by a vapor phase film forming method in an N 2 gas atmosphere after forming by a phase film forming method.

【0011】この発明において、Fe−B−R系永久磁
石体表面に被着するAl被膜、TiN被膜の形成方法と
してはイオンプレーティング法、イオンスパッタリング
法、蒸着等のいわゆる気相成膜法が適宜利用できるの
が、被膜緻密性、均一性、被膜形成速度などの理由から
イオンプレーテング、反応イオンプレーテングが好まし
い。また、反応被膜生成時の基板となる永久磁石の温度
は200℃〜500℃に設定するのが好ましく、200
℃未満では基板磁石との反応密着が十分でなく、また5
00℃を超えると常温(25℃)との温度差が大きくな
り、処理後の冷却過程で被膜に亀裂が入り、一部基板よ
り剥離を発生するため、基板磁石の温度を200℃〜5
00℃に設定するとよい。
In the present invention, as a method for forming the Al coating film and the TiN coating film to be deposited on the surface of the Fe-BR type permanent magnet body, there are so-called vapor phase film forming methods such as ion plating method, ion sputtering method and vapor deposition method. Ion plating and reactive ion plating are preferably used because of their compactness, uniformity, and film formation rate. In addition, the temperature of the permanent magnet serving as the substrate when the reaction film is formed is preferably set to 200 ° C to 500 ° C.
If the temperature is less than ℃, the reaction adhesion with the substrate magnet is insufficient, and
If the temperature exceeds 00 ° C, the temperature difference from room temperature (25 ° C) becomes large, cracks occur in the coating film during the cooling process after the treatment, and peeling occurs partly from the substrate. Therefore, the temperature of the substrate magnet is 200 ° C to 5 ° C.
It is recommended to set it to 00 ° C.

【0012】Fe−B−R系永久磁石体表面にAl被膜
層を介してTiN被膜層を設けたことを特徴とするこの
発明の耐食性永久磁石の製造方法の一例を以下に詳述す
る。 1)アークイオンプレーティング装置を用いて、真空容
器を到達真空度が1×10-3pa以下まで真空排気した
後、Arガス圧10pa、−500VでArイオンによ
る表面スパッターにてFe−B−R系磁石体表面を清浄
化する。 2)次に、Arガス圧0.1pa、バイアス電圧−50
Vにより、ターゲットのAlを蒸発させて、アークイオ
ンプレーティング法にて、磁石体表面に0.06μm〜
5.0μm膜厚のAl被膜層を形成する。 3)続いて、ターゲットとしてTiを用い、基板の磁石
温度を250℃に保持し、N2ガス圧1pa、バイアス
電圧−100V、アーク電流100Aの条件にて、Al
被膜層上に特定厚のTiN被膜層を形成する。
An example of the method for producing the corrosion-resistant permanent magnet of the present invention, which is characterized in that the TiN coating layer is provided on the surface of the Fe-BR permanent magnet body via the Al coating layer, will be described in detail below. 1) Using an arc ion plating device, the vacuum container was evacuated to a vacuum degree of 1 × 10 −3 pa or less, and then Fe—B— by surface sputtering with Ar ions at an Ar gas pressure of 10 pa and −500 V. Clean the surface of the R-type magnet body. 2) Next, Ar gas pressure 0.1 pa, bias voltage -50
V is used to evaporate the Al of the target, and 0.06 μm to the surface of the magnet body by the arc ion plating method.
An Al coating layer having a thickness of 5.0 μm is formed. 3) Subsequently, Ti was used as a target, the magnet temperature of the substrate was kept at 250 ° C., and under conditions of N 2 gas pressure of 1 pa, bias voltage of −100 V, and arc current of 100 A, Al was used.
A TiN coating layer having a specific thickness is formed on the coating layer.

【0013】この発明において、Fe−B−R系永久磁
石体表面のAl被膜厚を0.06μm〜5.0μmに限
定した理由は、0.06μm未満では磁石体表面にAl
が均一に被着し難く、下地膜としての効果が十分でな
く、5.0μmを超えると効果的には問題ないが、下地
膜としてはコスト上昇を招来して、実用的でなく好まし
くないので、Al被膜厚は0.06μm〜5.0μmと
する。特に、Al被膜厚は磁石体の表面粗度によって選
定され、表面粗度が0.1μm以下の場合、Al被膜厚
は0.06μm〜5.0μmが好ましく、また表面粗度
が0.1μm〜1.2μmの場合、望ましい膜厚は0.
1μm〜5.0μmである。
In the present invention, the reason why the Al film thickness on the surface of the Fe-BR permanent magnet body is limited to 0.06 μm to 5.0 μm is that the Al film thickness on the surface of the magnet body is less than 0.06 μm.
Is difficult to be deposited uniformly, the effect as a base film is not sufficient, and if it exceeds 5.0 μm, there is no problem effectively, but as a base film, it causes a cost increase and is not preferable because it is not practical. , Al film thickness is 0.06 μm to 5.0 μm. In particular, the Al film thickness is selected according to the surface roughness of the magnet body. When the surface roughness is 0.1 μm or less, the Al film thickness is preferably 0.06 μm to 5.0 μm, and the surface roughness is 0.1 μm to In the case of 1.2 μm, the desired film thickness is 0.1
It is 1 μm to 5.0 μm.

【0014】また、TiN被膜厚を0.5μm〜10μ
mに限定した理由は、0.5μm未満ではTiNとして
の耐食性、耐摩耗性が十分でなく、10μmを超えると
効果的には問題ないが、製造コスト上昇を招来するので
好ましくない。
The TiN film thickness is 0.5 μm to 10 μm.
The reason for limiting to m is less than 0.5 μm, the corrosion resistance and wear resistance as TiN are not sufficient, and if it exceeds 10 μm, there is no problem effectively, but it is not preferable because it causes an increase in manufacturing cost.

【0015】この発明において、永久磁石に用いる希土
類元素Rは、組成の10原子%〜30原子%を占める
が、Nd、Pr、Dy、Ho、Tbのうち少なくとも1
種、あるいはさらに、La、Ce、Sm、Gd、Er、
Eu、Tm、Yb、Lu、Yのうち少なくとも1種を含
むものが好ましい。また、通常Rのうち1種をもって足
りるが、実用上は2種以上の混合物(ミッシュメタル、
ジジム等)を入手上の便宜等の理由により用いることが
できる。なお、このRは純希土類元素でなくてもよく、
工業上入手可能な範囲で製造上不可避な不純物を含有す
るものでも差支えない。Rは、上記系永久磁石における
必須元素であって、10原子%未満では結晶構造がα−
鉄と同一構造の立方晶組織となるため、高磁気特性、特
に高保磁力が得られず、30原子%を超えるとRリッチ
な非磁性相が多くなり、残留磁束密度(Br)が低下し
てすぐれた特性の永久磁石が得られない。よって、R1
0原子%〜30原子%の範囲が望ましい。
In the present invention, the rare earth element R used in the permanent magnet occupies 10 atom% to 30 atom% of the composition, and at least one of Nd, Pr, Dy, Ho and Tb is used.
Seed, or even La, Ce, Sm, Gd, Er,
Those containing at least one of Eu, Tm, Yb, Lu and Y are preferable. Usually, one kind of R is sufficient, but in practice, a mixture of two or more kinds (Misch metal,
Zijim, etc.) can be used for reasons of availability. Incidentally, this R does not have to be a pure rare earth element,
It does not matter even if it contains impurities that are unavoidable in manufacturing within the industrially available range. R is an essential element in the above-mentioned permanent magnet, and if less than 10 atomic%, the crystal structure is α-.
Since it has a cubic structure with the same structure as iron, high magnetic properties, especially high coercive force, cannot be obtained. If it exceeds 30 atomic%, the R-rich nonmagnetic phase increases and the residual magnetic flux density (Br) decreases. A permanent magnet with excellent characteristics cannot be obtained. Therefore, R1
The range of 0 atom% to 30 atom% is desirable.

【0016】Bは、上記系永久磁石における必須元素で
あって、2原子%未満では菱面体構造が主相となり、高
い保磁力(iHc)は得られず、28原子%を超えると
Bリッチな非磁性相が多くなり、残留磁束密度(Br)
が低下するため、すぐれた永久磁石が得られない。よっ
て、Bは2原子%〜28原子%の範囲が望ましい。
B is an essential element in the above-mentioned permanent magnet. When it is less than 2 atomic%, the rhombohedral structure becomes the main phase and a high coercive force (iHc) cannot be obtained. When it exceeds 28 atomic%, B is rich. Non-magnetic phase increases and residual magnetic flux density (Br)
, The excellent permanent magnet cannot be obtained. Therefore, B is preferably in the range of 2 atom% to 28 atom%.

【0017】Feは、上記系永久磁石において必須元素
であり、65原子%未満では残留磁束密度(Br)が低
下し、80原子%を超えると高い保磁力が得られないの
で、Feは65原子%〜80原子%の含有が望ましい。
また、Feの一部をCoで置換することは、得られる磁
石の磁気特性を損うことなく、温度特性を改善すること
ができるが、Co置換量がFeの20%を超えると、逆
に磁気特性が劣化するため、好ましくない。Coの置換
量がFeとCoの合計量で5原子%〜15原子%の場合
は、Brは置換しない場合に比較して増加するため、高
磁束密度を得るために好ましい。
Fe is an essential element in the above-mentioned permanent magnets. If it is less than 65 atom%, the residual magnetic flux density (Br) is lowered, and if it exceeds 80 atom%, a high coercive force cannot be obtained. % To 80 atomic% is desirable.
Further, substituting a part of Fe with Co can improve the temperature characteristics without deteriorating the magnetic characteristics of the obtained magnet. However, when the Co substitution amount exceeds 20% of Fe, it is contrary. It is not preferable because the magnetic properties deteriorate. When the substitution amount of Co is 5 at% to 15 at% in terms of the total amount of Fe and Co, Br is increased as compared with the case where no substitution is made, which is preferable for obtaining a high magnetic flux density.

【0018】また、R、B、Feの他、工業的生産上不
可避的不純物の存在を許容でき、例えば、Bの一部を
4.0wt%以下のC、2.0wt%以下のP、2.0
wt%以下のS、2.0wt%以下のCuのうち少なく
とも1種、合計量で2.0wt%以下で置換することに
より、永久磁石の製造性改善、低価格化が可能である。
さらに、Al、Ti、V、Cr、Mn、Bi、Nb、T
a、Mo、W、Sb、Ge、Sn、Zr、Ni、Si、
Zn、Hf、のうち少なくとも1種は、Fe−B−R系
永久磁石材料に対してその保磁力、減磁曲線の角型性を
改善あるいは製造性の改善、低価格化に効果があるため
添加することができる。なお、添加量の上限は、磁石材
料の(BH)maxを20MGOe以上とするには、B
rが少なくとも9kG以上必要となるため、該条件を満
す範囲が望ましい。
In addition to R, B and Fe, the presence of impurities inevitable in industrial production can be tolerated. For example, a part of B is 4.0 wt% or less of C, 2.0 wt% or less of P, 2 .0
By substituting at least one of S of 2.0 wt% or less and Cu of 2.0 wt% or less with a total amount of 2.0 wt% or less, it is possible to improve the manufacturability of the permanent magnet and reduce the cost.
Furthermore, Al, Ti, V, Cr, Mn, Bi, Nb, T
a, Mo, W, Sb, Ge, Sn, Zr, Ni, Si,
At least one of Zn and Hf is effective for improving the coercive force and squareness of the demagnetization curve, improving the manufacturability, and lowering the price of the Fe—BR permanent magnet material. It can be added. Note that the upper limit of the addition amount is B in order to make the (BH) max of the magnet material 20 MGOe or more.
Since r is required to be at least 9 kG or more, a range satisfying the condition is desirable.

【0019】また、Fe−B−R系永久磁石は平均結晶
粒径が1〜80μmの範囲にある正方晶系の結晶構造を
有する化合物を主相とし、体積比で1%〜50%の非磁
性相(酸化物相を除く)を含むことを特徴とする。Fe
−B−R系永久磁石は、保磁力iHc≧1kOe、残留
磁束密度Br>4kG、を示し、最大エネルギー積(B
H)maxは、(BH)max≧10MGOeを示し、
最大値は25MGOe以上に達する。
Further, the Fe-BR type permanent magnet has a compound having a tetragonal crystal structure having an average crystal grain size in the range of 1 to 80 μm as a main phase and a volume ratio of 1% to 50% of a non-crystal. It is characterized by containing a magnetic phase (excluding an oxide phase). Fe
The −BR permanent magnet exhibits a coercive force iHc ≧ 1 kOe, a residual magnetic flux density Br> 4 kG, and a maximum energy product (B
H) max indicates (BH) max ≧ 10 MGOe,
The maximum value reaches 25 MGOe or more.

【0020】[0020]

【作用】この発明は、Fe−B−R系永久磁石体表面を
イオンスパッター法等により清浄化した後、前記磁石体
表面にイオンプレーティング法等の気相成膜法によりA
l被膜を形成後、特定条件のN2ガスを導入しながらイ
オンプレーティング等の気相成膜法により、TiN被膜
を形成したことを特徴とし、磁石体表面にAl被膜を形
成することにより磁石体表面の酸化物は一部もしくは大
部分が還元され、磁石体表面とAl被膜との密着性は改
善され、さらにAl被膜上にTiN被膜を積層すること
により、同被膜の密着性が著しく改善され、すぐれた耐
食性、特に温度80℃、相対湿度90%の雰囲気条件下
で長時間放置した場合においても、下地との密着性がす
ぐれ、被着した耐食性金属被膜の耐食性、耐摩耗性によ
り、その磁石特性の安定したFe−B−R系永久磁石が
得られる。
According to the present invention, after the surface of the Fe-BR type permanent magnet body is cleaned by the ion sputtering method or the like, the surface of the magnet body is formed by the vapor deposition method such as the ion plating method.
After forming the l coating, the TiN coating is formed by a vapor phase film forming method such as ion plating while introducing N 2 gas under a specific condition. The magnet is formed by forming the Al coating on the surface of the magnet body. Part or most of the oxide on the body surface is reduced, the adhesion between the magnet body surface and the Al coating is improved, and the adhesion of the TiN coating is further improved by laminating a TiN coating on the Al coating. Excellent corrosion resistance, especially when left for a long time under an atmospheric condition of a temperature of 80 ° C. and a relative humidity of 90%, the adhesiveness with the base is excellent, and the corrosion resistance and abrasion resistance of the adhered corrosion resistant metal coating An Fe-BR type permanent magnet having stable magnet characteristics can be obtained.

【0021】[0021]

【実施例】【Example】

実施例1 公知の鋳造インゴットを粉砕し、微粉砕後に成形、焼
結、熱処理、表面加工後に、16Nd−77Fe−7B
組成の径12mm×厚み2mm寸法の磁石体試験片を得
た。得られた試験片の表面粗度を表2に、磁石特性を表
1に示す。真空容器内を1×10-3pa以下に真空排気
し、Arガス圧10pa、−500Vで20分間、表面
スパッターを行って、磁石体表面を清浄化した後、表2
に示すイオンプレーティング条件にて基板磁石温度を2
50℃にして、ターゲットとして金属Alを用いてアー
クイオンプレーティング法にて、磁石体表面に0.1μ
m厚および1.8μm厚のAl被膜層を形成した。次に
基板磁石温度350℃、バイアス電圧−100V、アー
ク電流100Aで、N2ガス1paにて、ターゲットと
して金属Tiをアークイオンプレーティング法にて3時
間でAl被膜表面に膜厚3μmのTiN被膜層を形成し
た。その後、放冷後、得られたTiN被膜を表面に有す
る永久磁石を温度80℃、相対湿度90%の条件下で1
000時間放置した後の磁石特性及びその劣化状況を測
定し、その結果を第3表に示す。
Example 1 A known casting ingot was crushed, finely crushed, and then molded, sintered, heat-treated, and surface-treated, and then 16Nd-77Fe-7B.
A magnet test piece having a composition of a diameter of 12 mm and a thickness of 2 mm was obtained. Table 2 shows the surface roughness of the obtained test piece, and Table 1 shows the magnet characteristics. The inside of the vacuum vessel was evacuated to 1 × 10 −3 pa or less, and surface sputtering was performed at Ar gas pressure of 10 pa and −500 V for 20 minutes to clean the surface of the magnet body, and then Table 2
Set the substrate magnet temperature to 2 under the ion plating conditions shown in
The temperature is set to 50 ° C. and 0.1 μ is applied to the surface of the magnet body by arc ion plating method using metallic Al as a target.
An Al coating layer having a thickness of m and a thickness of 1.8 μm was formed. Next, a substrate magnet temperature of 350 ° C., a bias voltage of −100 V, an arc current of 100 A, N 2 gas of 1 pa, and metal Ti as a target by an arc ion plating method for 3 hours on the Al film surface in a thickness of 3 μm TiN film. Layers were formed. Then, after allowing to cool, the permanent magnet having the obtained TiN coating on the surface was placed under the conditions of a temperature of 80 ° C. and a relative humidity of 90%.
The magnet characteristics and its deterioration state after standing for 000 hours were measured, and the results are shown in Table 3.

【0022】比較例1 実施例1と同一組成の磁石体試験片を実施例1と同一条
件にて表面清浄化した後、磁石体上に実施例1と同一条
件にてTiN被膜を3μm厚に形成した。その後、実施
例1と同一の温度80℃、相対湿度90%の条件下で1
000時間放置後の磁石特性及びその劣化状況を測定
し、その結果を第3表に示す。
Comparative Example 1 A magnet body test piece having the same composition as in Example 1 was surface-cleaned under the same conditions as in Example 1, and then a TiN film was formed on the magnet body to a thickness of 3 μm under the same conditions as in Example 1. Formed. Then, under the same temperature of 80 ° C. and relative humidity of 90% as in Example 1, 1
The magnet characteristics and its deterioration state after standing for 000 hours were measured, and the results are shown in Table 3.

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【表2】 [Table 2]

【0025】[0025]

【表3】 [Table 3]

【0026】表3に示すように、同一磁石特性を有する
Fe−B−R系永久磁石体表面にTiN被膜層を設けた
比較例磁石は、温度80℃、相対湿度90%の条件下で
1000時間放置した耐食試験前後の磁石特性の劣化が
大きくかつ発錆しているのに対し、Al被膜層を介して
TiN被膜層を設けたこの発明のFe−B−R系永久磁
石は、錆は発生せず、磁石特性もほとんど変わらないこ
とが明らかである。
As shown in Table 3, the comparative magnet having the TiN coating layer on the surface of the Fe-BR permanent magnet having the same magnet characteristics was 1000 at a temperature of 80 ° C and a relative humidity of 90%. While the deterioration of the magnet characteristics before and after the corrosion resistance test after being left for a long time is large and rusting occurs, the Fe-BR type permanent magnet of the present invention in which the TiN coating layer is provided through the Al coating layer does not rust. It is clear that the magnet characteristics do not occur and the magnet characteristics hardly change.

【0027】[0027]

【発明の効果】この発明による磁石表面にAl被膜を介
してTiN被膜層を設けたFe−B−R系永久磁石体
は、実施例の如く、苛酷な耐食試験条件、特に、温度8
0℃、相対湿度90%の条件下で、1000時間放置し
た後、その磁石特性の劣化はほとんどなく、現在、最も
要求されている高性能かつ安価な永久磁石として極めて
適している。
The Fe-BR type permanent magnet body according to the present invention, in which the TiN coating layer is formed on the surface of the magnet through the Al coating, is subjected to severe corrosion resistance test conditions, especially at a temperature of 8
After being left for 1000 hours under conditions of 0 ° C. and 90% relative humidity, there is almost no deterioration in the magnet characteristics, and it is extremely suitable as a high-performance and inexpensive permanent magnet most demanded at present.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 主相が正方晶相からなるFe−B−R系
永久磁石体表面に、膜厚0.06μm〜5.0μmのA
l被膜を介して膜厚0.5μm〜10μmのTiN被膜
層を有することを特徴とする耐食性永久磁石。
1. A film having a thickness of 0.06 .mu.m to 5.0 .mu.m is formed on the surface of a Fe-BR permanent magnet whose main phase is a tetragonal phase.
A corrosion-resistant permanent magnet having a TiN coating layer having a film thickness of 0.5 μm to 10 μm through a coating film.
【請求項2】 主相が正方晶相からなるFe−B−R系
永久磁石体表面を清浄化した後、前記磁石体面に膜厚
0.06μm〜5.0μmのAl被膜を気相成膜法によ
り形成後、N2ガス雰囲気中で気相成膜法により膜厚
0.5μm〜10μmのTiN被膜層を形成することを
特徴とする耐食性永久磁石の製造方法。
2. After cleaning the surface of the Fe—B—R permanent magnet body whose main phase is a tetragonal phase, an Al film having a film thickness of 0.06 μm to 5.0 μm is formed on the surface of the magnet body in a vapor phase. A method for producing a corrosion-resistant permanent magnet, comprising forming a TiN coating layer having a film thickness of 0.5 μm to 10 μm by a vapor deposition method in an N 2 gas atmosphere after the formation by the method.
JP6065542A 1994-03-08 1994-03-08 Corrosion-resistant permanent magnet and its manufacture Pending JPH07249509A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6065542A JPH07249509A (en) 1994-03-08 1994-03-08 Corrosion-resistant permanent magnet and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6065542A JPH07249509A (en) 1994-03-08 1994-03-08 Corrosion-resistant permanent magnet and its manufacture

Publications (1)

Publication Number Publication Date
JPH07249509A true JPH07249509A (en) 1995-09-26

Family

ID=13290015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6065542A Pending JPH07249509A (en) 1994-03-08 1994-03-08 Corrosion-resistant permanent magnet and its manufacture

Country Status (1)

Country Link
JP (1) JPH07249509A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0811994A1 (en) * 1995-12-25 1997-12-10 Sumitomo Special Metals Company Limited Permanent magnet for ultrahigh vacuum application and method for manufacturing the same
WO1998009300A1 (en) * 1996-08-30 1998-03-05 Sumitomo Special Metals Co., Ltd. Corrosion-resistant permanent magnet and method for manufacturing the same
WO2000016347A1 (en) * 1998-09-10 2000-03-23 Sumitomo Special Metals Co., Ltd. Corrosion-resistant permanent magnet and method for producing the same
US6281774B1 (en) * 1999-09-10 2001-08-28 Sumitomo Special Metals Co., Ltd. Corrosion-resistant permanent magnet and method for producing the same
WO2011125900A1 (en) * 2010-03-31 2011-10-13 Tdk株式会社 Sintered magnet and method for manufacturing sintered magnet

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0811994A1 (en) * 1995-12-25 1997-12-10 Sumitomo Special Metals Company Limited Permanent magnet for ultrahigh vacuum application and method for manufacturing the same
EP0811994A4 (en) * 1995-12-25 1999-03-31 Sumitomo Spec Metals Permanent magnet for ultrahigh vacuum application and method for manufacturing the same
US6080498A (en) * 1995-12-25 2000-06-27 Sumitomo Special Metals Co., Ltd. Permanent magnet for ultra-high vacuum and production process thereof
WO1998009300A1 (en) * 1996-08-30 1998-03-05 Sumitomo Special Metals Co., Ltd. Corrosion-resistant permanent magnet and method for manufacturing the same
WO2000016347A1 (en) * 1998-09-10 2000-03-23 Sumitomo Special Metals Co., Ltd. Corrosion-resistant permanent magnet and method for producing the same
EP1032000A1 (en) * 1998-09-10 2000-08-30 Sumitomo Special Metals Company Limited Corrosion-resistant permanent magnet and method for producing the same
EP1032000A4 (en) * 1998-09-10 2003-05-02 Sumitomo Spec Metals Corrosion-resistant permanent magnet and method for producing the same
US6281774B1 (en) * 1999-09-10 2001-08-28 Sumitomo Special Metals Co., Ltd. Corrosion-resistant permanent magnet and method for producing the same
WO2011125900A1 (en) * 2010-03-31 2011-10-13 Tdk株式会社 Sintered magnet and method for manufacturing sintered magnet
JP5382206B2 (en) * 2010-03-31 2014-01-08 Tdk株式会社 Sintered magnet and method for producing sintered magnet

Similar Documents

Publication Publication Date Title
US6275130B1 (en) Corrosion-resisting permanent magnet and method for producing the same
JPH0742553B2 (en) Permanent magnet material and manufacturing method thereof
US6080498A (en) Permanent magnet for ultra-high vacuum and production process thereof
JPH0616445B2 (en) Permanent magnet material and manufacturing method thereof
JPH07249509A (en) Corrosion-resistant permanent magnet and its manufacture
EP0923087B1 (en) Corrosion-resistant permanent magnet and method for manufacturing the same
JPH07283017A (en) Corrosion resistant permanent magnet and production thereof
JP3737830B2 (en) Corrosion-resistant permanent magnet and method for manufacturing the same
JPH1074607A (en) Corrosion-resisting permanent magnet and its manufacture
JPH0945567A (en) Rare earth-iron-boron permanent magnet manufacturing method
JPH0569282B2 (en)
JPH09289108A (en) R-fe-b permanent magnet having electric insulating film excellent in adhesion and its manufacture
JPH08279407A (en) R-fe-b permanent magnet being excellent in electrical insulating properties, heat resistance and corrosion resistance and manufacture thereof
JP3652816B2 (en) Corrosion-resistant permanent magnet and method for manufacturing the same
JPH10340823A (en) Manufacture of r-iron-boron permanent magnet having excellent salt water resistance
JPS61281850A (en) Permanent magnet material
JP3676513B2 (en) Corrosion-resistant permanent magnet and method for manufacturing the same
JP3652818B2 (en) Corrosion-resistant permanent magnet and method for manufacturing the same
JPH1083905A (en) Corrosion-resistant permanent magnet and its manufacture
JP3595082B2 (en) Ultra-high vacuum permanent magnet and method of manufacturing the same
JP3234306B2 (en) Corrosion resistant permanent magnet
JPH06140226A (en) Corrosion-resistant permanent magnet
JPH08264310A (en) Manufacture of rare earth-iron-boron permanent magnet
JP3595078B2 (en) Ultra-high vacuum permanent magnet and method of manufacturing the same
JPH09180921A (en) Permanent magnet for ultra high vacuum and manufacture thereof