JPH08279407A - R-fe-b permanent magnet being excellent in electrical insulating properties, heat resistance and corrosion resistance and manufacture thereof - Google Patents

R-fe-b permanent magnet being excellent in electrical insulating properties, heat resistance and corrosion resistance and manufacture thereof

Info

Publication number
JPH08279407A
JPH08279407A JP7354673A JP35467395A JPH08279407A JP H08279407 A JPH08279407 A JP H08279407A JP 7354673 A JP7354673 A JP 7354673A JP 35467395 A JP35467395 A JP 35467395A JP H08279407 A JPH08279407 A JP H08279407A
Authority
JP
Japan
Prior art keywords
permanent magnet
film
thickness
corrosion resistance
heat resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7354673A
Other languages
Japanese (ja)
Inventor
Masako Suzuki
雅子 鈴木
Fumiaki Kikui
文秋 菊井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP7354673A priority Critical patent/JPH08279407A/en
Publication of JPH08279407A publication Critical patent/JPH08279407A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/026Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Powder Metallurgy (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE: To obtain a permanent magnet for an automobile being excellent in electrical insulating properties, heat resistance and corrosion resistance by providing a polyimide film of a specified film thickness on the surface of an R-Fe-B permanent magnet body of which the main phase is constituted of tetragonal crystals, with a ground metal film of a specified film thickness interlaid. CONSTITUTION: A polyimide film of a film thickness 2.0-10μm is provided on the surface of an R-Fe-B permanent magnet body of which the main phase is constituted of tetragonal crystals, with a ground metal film of a film thickness 1.0-3.0μm interlaid. The reason why the thickness of a ground metal provided on the cleaned surface of a magnet is limited to 1.0-3.0μm is that the thickness less than 1.0μm and that exceeding 3.0μm are both undesirable since the former is insufficient for the adhesion to the surface of the magnet and the latter causes a rise in the cost as the ground film. The reason why the thickness of polyimide resin is limited to 2.0-10μm is that the thickness less than 2.0μm and that exceeding 10μm are both undesirable since the former makes it impossible to obtain a film being excellent in electrical insulating properties, heat resistance and corrosion resistance and the latters causes a rise in the cost of manufacture.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、R−Fe−B系
永久磁石の改良とその製造方法に係り、R−Fe−B系
永久磁石表面に所定膜厚みの下地金属層を介して、蒸着
重合法によりポリイミド樹脂にて被履し、自動車モータ
ー用永久磁石等に求められる電気絶縁性、耐熱性並びに
耐食性を達成した電気絶縁性・耐熱性・耐食性にすぐれ
たR−Fe−B系永久磁石とその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of an R-Fe-B system permanent magnet and a method for manufacturing the same, and it is vapor-deposited on the surface of an R-Fe-B system permanent magnet through an underlying metal layer having a predetermined film thickness. R-Fe-B permanent magnet with excellent electrical insulation, heat resistance, and corrosion resistance that has been achieved by using a polyimide resin by the polymerization method and has achieved the electrical insulation, heat resistance, and corrosion resistance required for permanent magnets for automobile motors. And its manufacturing method.

【0002】[0002]

【従来の技術】R−Fe−B系永久磁石は、実用化され
ている磁石の中で最もすぐれた磁気特性を有するが、こ
れを多磁極型の自動車用モーターの永久磁石に用いるた
めには、まず、前記永久磁石に発生に渦電流発生を防止
するために、電気絶縁性のすぐれた被膜で被履する必要
があり、また、自動車は走行中にかかるモーターを配置
するエンジンルーム温度が200℃になることより、使
用する磁石には耐熱性とともに耐食性を兼備した被履が
要求される。
2. Description of the Related Art R-Fe-B permanent magnets have the best magnetic properties among the practically used magnets, but in order to use them as permanent magnets for multi-pole type motors for automobiles. First, in order to prevent the generation of eddy currents in the permanent magnets, it is necessary to wear a coating having excellent electrical insulation properties. Also, in an automobile, the temperature of the engine room in which the motor is placed during traveling is 200 As the temperature rises to ℃, it is required for the magnet to be used that has both heat resistance and corrosion resistance.

【0003】R−Fe−B系永久磁石は、耐食性及び磁
気特性の温度特性が悪いという欠点があり、そのため耐
食性改善のため磁石表面に樹脂を被履することが提案
(特開昭60−63902号)されているが、前記方法
では耐食性は改善されても、耐熱性が十分でなく、かつ
電気絶縁性が悪いという問題があり、磁気特性のすぐれ
たR−Fe−B系永久磁石が自動車モーター用に使用で
きない原因となっている。
R-Fe-B system permanent magnets have the drawback of poor corrosion resistance and temperature characteristics of magnetic properties. Therefore, it is proposed to coat the magnet surface with a resin in order to improve the corrosion resistance (Japanese Patent Laid-Open No. 60-63902). However, even if the corrosion resistance is improved by the above method, there is a problem that the heat resistance is not sufficient and the electric insulation is poor, and an R-Fe-B permanent magnet having excellent magnetic characteristics is used in automobiles. It is the cause that cannot be used for the motor.

【0004】[0004]

【発明が解決しようとする課題】最近、鉄心の磁極面と
アクチュエータの磁極面にそれぞれNiめっき層上に高
耐摩耗性被膜としてポリイミド樹脂を蒸着重合法にて被
履することが提案(特開平3−276532号)されて
いるが、前記方法はリレーの対向磁極面の耐摩耗性の改
善向上を主目的とするものである。
Recently, it has been proposed to use a vapor deposition polymerization method to coat a polyimide resin as a highly wear-resistant coating on a Ni plating layer on the magnetic pole surface of an iron core and the magnetic pole surface of an actuator, respectively. No. 3-276532), the main purpose of the method is to improve the wear resistance of the opposing magnetic pole surfaces of the relay.

【0005】この発明は、特に、多磁極型の自動車用モ
ーターの永久磁石に求められる電気絶縁性、耐熱性を満
足し、かつ耐食性にすぐれたR−Fe−B系永久磁石と
その製造方法の提供を目的としている。
In particular, the present invention provides an R-Fe-B system permanent magnet excellent in electrical insulation and heat resistance required for a permanent magnet of a multi-pole type motor for an automobile and excellent in corrosion resistance, and a method for producing the same. It is intended to be provided.

【0006】[0006]

【課題を解決するための手段】発明者らは、磁気特性の
すぐれたR−Fe−B系永久磁石を自動車用モーターに
使用するため、耐食性のほか、電気絶縁性および耐熱性
を改善向上するため、種々検討した結果、磁石表面をポ
リイミド樹脂により被履することにより、すぐれた磁気
特性を具備するとともに、耐食性はもちろん、電気絶縁
性および耐熱性を大きく改善向上することを知見した。
The inventors of the present invention use R-Fe-B based permanent magnets having excellent magnetic properties in motors for automobiles, and therefore improve and improve not only corrosion resistance but also electric insulation and heat resistance. Therefore, as a result of various studies, it was found that by covering the surface of the magnet with a polyimide resin, excellent magnetic properties are provided, and in addition to corrosion resistance, electric insulation and heat resistance are greatly improved.

【0007】しかしながら、磁石表面にポリイミド樹脂
を直接蒸着重合法にて被履する場合、重合反応時及びイ
ミド化処理時に磁石表面に水分を生成して、前記水分と
磁石表面が反応して磁石表面へのポリイミド樹脂の密着
性を阻害する問題があることを知見し、さらに検討を加
えた結果、磁石表面をイオンスパッター法等により清浄
化した後、前記磁石体表面にめっき法あるいはイオンプ
レーティング法、イオンスパッタリング法、蒸着等の気
相薄膜形成法により、R−Fe−B系永久磁石との密着
性及びポリイミド樹脂との密着性の良好な特定膜厚のA
l、Ti、Ni、Zn、Sn、Fe等の金属または合金
被膜による下地金属膜を形成後、その上にポリイミド樹
脂を蒸着重合により形成することにより、目的とする電
気絶縁性・耐熱性・耐食性にすぐれたR−Fe−B系永
久磁石が得られることを知見し、この発明を完成した。
However, when a polyimide resin is directly deposited on the surface of the magnet by vapor deposition polymerization, water is generated on the surface of the magnet during the polymerization reaction and the imidization treatment, and the water reacts with the surface of the magnet to cause the surface of the magnet to react. It was found that there is a problem that the adhesion of the polyimide resin to the above is impaired, and as a result of further study, the magnet surface was cleaned by an ion sputtering method or the like, and then the magnet surface was plated or ion plated. By a vapor phase thin film forming method such as ion-sputtering method, vapor deposition, or the like, having a specific film thickness A with good adhesion to an R-Fe-B system permanent magnet and adhesion to a polyimide resin.
l, Ti, Ni, Zn, Sn, Fe and other metal or alloy coatings are used to form a base metal film, and then polyimide resin is formed on the base metal film by vapor deposition polymerization to achieve the desired electrical insulation, heat resistance and corrosion resistance. It was found that an excellent R-Fe-B based permanent magnet can be obtained, and the present invention was completed.

【0008】すなわち、この発明は、主相が正方晶から
なるR−Fe−B系永久磁石体表面に、膜厚1.0μm
〜3.0μmの下地金属膜を介して膜厚2.0μm〜1
0μmのポリイミド膜を有することを特徴とする電気絶
縁性・耐熱性・耐食性にすぐれたR−Fe−B系永久磁
石である。また、この発明は、上記の構成において、下
地金属層は、Al、Ti、Ni、Zn、Sn、Feおよ
びその合金である電気絶縁性・耐熱性・耐食性にすぐれ
たR−Fe−B系永久磁石を併せて提案する。
That is, according to the present invention, a film thickness of 1.0 μm is formed on the surface of the R—Fe—B system permanent magnet body having a tetragonal main phase.
~ 3.0 μm underlying metal film with a film thickness of 2.0 μm ~ 1
It is an R-Fe-B based permanent magnet excellent in electrical insulation, heat resistance and corrosion resistance, which is characterized by having a polyimide film of 0 μm. Further, according to the present invention, in the above-mentioned structure, the underlying metal layer is made of Al, Ti, Ni, Zn, Sn, Fe and alloys thereof, and is an R-Fe-B based permanent material excellent in electrical insulation, heat resistance and corrosion resistance. We also propose a magnet.

【0009】また、この発明は、上記のR−Fe−B系
永久磁石の製造方法として、主相が正方晶からなるR−
Fe−B系永久磁石体表面を清浄化した後、めっき法あ
るいは気相成膜法により前記磁石体面に膜厚1.0μm
〜3.0μmの下地金属膜を形成後、前記磁石体を真空
容器内に収容して蒸着重合法により膜厚2.0μm〜1
0μmのポリイミド膜層を形成することを特徴とする電
気絶縁性・耐熱性・耐食性にすぐれたR−Fe−B系永
久磁石の製造方法を提案する。
Further, according to the present invention, as a method of manufacturing the above-mentioned R-Fe-B system permanent magnet, R- whose main phase is a tetragonal crystal is used.
After cleaning the surface of the Fe-B based permanent magnet body, a film thickness of 1.0 μm is formed on the surface of the magnet body by a plating method or a vapor deposition method.
After forming a base metal film of ˜3.0 μm, the magnet body is housed in a vacuum container and a film thickness of 2.0 μm to 1 by a vapor deposition polymerization method.
We propose a method for producing an R-Fe-B based permanent magnet excellent in electrical insulation, heat resistance, and corrosion resistance, which is characterized by forming a polyimide film layer of 0 μm.

【0010】さらに、この発明は、上記の製造方法にお
いて、蒸着重合法は、真空度1Pa〜10-3Paの真空
容器でポリイミド膜の原料となる2種類のモノマーを2
00℃〜250℃で加熱蒸着してポリアミック酸膜を形
成後、常圧下、280℃〜380℃でイミド化処理を行
ってポリイミド膜を生成する電気絶縁性・耐熱性・耐食
性にすぐれたR−Fe−B系永久磁石の製造方法、蒸着
重合法に用いる2種類の原料モノマーは、芳香族カルボ
ン酸二無水物と芳香族ジアミンである電気絶縁性・耐熱
性・耐食性にすぐれたR−Fe−B系永久磁石の製造方
法、を併せて提案する。
Further, in the invention, in the above-mentioned manufacturing method, the vapor deposition polymerization method comprises using a vacuum container having a degree of vacuum of 1 Pa to 10 -3 Pa to prepare two kinds of monomers which are raw materials for a polyimide film.
After forming a polyamic acid film by heat vapor deposition at 00 ° C to 250 ° C, it is subjected to imidization at 280 ° C to 380 ° C under normal pressure to form a polyimide film. R- which has excellent electrical insulation, heat resistance and corrosion resistance. The two kinds of raw material monomers used in the production method of the Fe-B permanent magnet and the vapor deposition polymerization method are aromatic carboxylic acid dianhydride and aromatic diamine. R-Fe- which has excellent electric insulation, heat resistance and corrosion resistance. A method for manufacturing a B-based permanent magnet is also proposed.

【0011】[0011]

【発明の実施の形態】この発明において、清浄化した磁
石表面に設ける下地金属膜の厚みを1.0μm〜3.0
μmに限定した理由は、1.0μm未満では磁石表面と
の密着性が十分でなく、3.0μmを越えると効果的に
は問題ないが、下地膜としてコスト上昇を招来して、実
用的でなく好ましくないので、下地金属膜厚は1.0μ
m〜3.0μmとする。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, the thickness of the underlying metal film provided on the cleaned magnet surface is 1.0 μm to 3.0 μm.
The reason for limiting the thickness to 1.0 μm is that if the thickness is less than 1.0 μm, the adhesion to the magnet surface is insufficient, and if it exceeds 3.0 μm, there is no problem in terms of effectiveness. Since it is not desirable, the underlying metal film thickness is 1.0 μ
m to 3.0 μm.

【0012】また、下地金属膜の成膜方法は、電解めっ
き法や無電解めっき法などのめっき法あるいはイオンプ
レーティング法、イオンスパッタリング法、蒸着等の気
相薄膜形成法でよい。この発明において、下地金属膜に
は、R−Fe−B系永久磁石との密着性及びポリイミド
樹脂との密着性の良好なAl、Ti、Ni、Zn、S
n、Feおよびその合金が好ましい。
The underlying metal film may be formed by a plating method such as an electrolytic plating method or an electroless plating method, or a vapor phase thin film forming method such as an ion plating method, an ion sputtering method, or a vapor deposition method. In the present invention, the underlying metal film is formed of Al, Ti, Ni, Zn, S which has good adhesion to the R-Fe-B system permanent magnet and good adhesion to the polyimide resin.
N, Fe and their alloys are preferred.

【0013】この発明においてポリイミド樹脂の厚みを
2.0μm〜10μmに限定した理由は、2.0μm未
満では被覆が十分でなく、電気絶縁性、耐熱性、耐食性
にすぐれた被膜が得られず、10μmを越えると効果上
は問題ないが、製造コスト上昇を招来するので実用的で
なく、好ましくない。
The reason why the thickness of the polyimide resin is limited to 2.0 μm to 10 μm in the present invention is that if the thickness is less than 2.0 μm, the coating is not sufficient and a coating excellent in electrical insulation, heat resistance and corrosion resistance cannot be obtained. If it exceeds 10 μm, there is no problem in terms of effect, but it is not preferable because it causes an increase in manufacturing cost and is not practical.

【0014】この発明において、蒸着重合する真空容器
の真空度を1Pa〜10-3Paに限定した理由は、1P
aを越えると重合反応が不均一となり膜質が劣化し、ま
た、10-3Pa未満ではモノマーの蒸発がきわめて少な
く、安定した重合反応が生じないので好ましくないこと
による。
In the present invention, the reason why the vacuum degree of the vacuum vessel for vapor deposition polymerization is limited to 1 Pa to 10 -3 Pa is 1 P.
If it exceeds a, the polymerization reaction becomes non-uniform and the film quality deteriorates. If it is less than 10 -3 Pa, the evaporation of the monomer is extremely small and a stable polymerization reaction does not occur, which is not preferable.

【0015】また、蒸着重合時の基板磁石の温度は、1
50℃〜200℃に設定するのが好ましく、150℃未
満では磁石基板との密着が十分でなく、200℃を越え
ると磁石基板上での蒸着重合反応がすみやかに進行しな
いため、基板磁石の温度は150℃〜200℃に設定す
るとよい。
The temperature of the substrate magnet during vapor deposition polymerization is 1
It is preferable to set the temperature to 50 ° C to 200 ° C. If the temperature is lower than 150 ° C, the adhesion to the magnet substrate is not sufficient, and if the temperature exceeds 200 ° C, the vapor deposition polymerization reaction on the magnet substrate does not proceed promptly. Is preferably set to 150 to 200 ° C.

【0016】この発明において、蒸着重合に用いる2種
類の原料モノマーは、芳香族カルボン酸二無水物、芳香
族ジアミンであり、芳香族カルボン酸二無水物としては
ピロメリット酸二無水物等があり、芳香族ジアミンとし
てはジアミノジフェニルエーテル、p−フェニルジアミ
ン等が用いられる。
In the present invention, the two kinds of raw material monomers used for vapor deposition polymerization are aromatic carboxylic acid dianhydrides and aromatic diamines, and aromatic carboxylic acid dianhydrides include pyromellitic dianhydride. As the aromatic diamine, diaminodiphenyl ether, p-phenyldiamine and the like are used.

【0017】また、真空容器内で2種類の原料モノマー
を200℃〜250℃で加速蒸着する理由は、200℃
未満では蒸発量が十分でなく、250℃を越えると蒸発
速度が大きすぎて膜厚制御が難しく、好ましくないこと
による。
The reason for accelerating vapor deposition of two kinds of raw material monomers at 200 ° C. to 250 ° C. in a vacuum container is 200 ° C.
If it is less than 250 ° C., the amount of evaporation is not sufficient, and if it exceeds 250 ° C., the evaporation rate is too large to control the film thickness, which is not preferable.

【0018】また、この発明において、ポリイミド樹脂
を生成するイミド化温度は、280℃未満ではイミド化
反応が十分に進行せず、下地金属との密着性が十分でな
く、380℃を越えるとポリイミド樹脂が劣化して脆く
なり亀裂等が生じて剥離を発生するため280℃〜38
0℃とする。
Further, in the present invention, if the imidization temperature for forming the polyimide resin is less than 280 ° C., the imidization reaction does not proceed sufficiently, the adhesion to the underlying metal is not sufficient, and if it exceeds 380 ° C. 280 ° C. to 38 because resin deteriorates and becomes brittle, cracks and the like occur and peeling occurs
Set to 0 ° C.

【0019】この発明の永久磁石に用いる希土類元素R
は、組成の10原子%〜30原子%を占めるが、Nd、
Pr、Dy、Ho、Tbのうち少なくとも1種、あるい
はさらに、La、Ce、Sm、Gd、Er、Eu、T
m、Yb、Lu、Yのうち少なくとも1種を含むものが
好ましい。
Rare earth element R used in the permanent magnet of the present invention
Occupies 10 atomic% to 30 atomic% of the composition, but Nd,
At least one of Pr, Dy, Ho, Tb, or further La, Ce, Sm, Gd, Er, Eu, T
Those containing at least one of m, Yb, Lu and Y are preferable.

【0020】また、通常Rのうち1種をもって足りる
が、実用上は2種以上の混合物(ミッシュメタル、ジジ
ム等)を入手上の便宜等の理由により用いることができ
る。なお、このRは純希土類元素でなくてもよく、工業
上入手可能な範囲で製造上不可避な不純物を含有するも
のでも差支えない。
Although one of R is usually sufficient, a mixture of two or more kinds (Misch metal, didymium, etc.) can be practically used for reasons of availability. It should be noted that this R does not have to be a pure rare earth element, and may contain an impurity that is unavoidable in manufacturing within the industrially available range.

【0021】Rは、R−Fe−B系永久磁石における必
須元素であって、10原子%未満では結晶構造がα−鉄
を同一構造の立方晶組織となるため、高磁気特性、特に
高保磁力が得られず、30原子%を越えるとRリッチな
非磁性相が多くなり、残留磁束密度(Br)が低下して
すぐれた特性の永久磁石が得られない。よって、Rはl
0原子%〜30原子%の範囲が望ましい。
[0021] R is an essential element in the R-Fe-B system permanent magnet, and if it is less than 10 atom%, the crystal structure becomes a cubic crystal structure of α-iron having the same structure, so that high magnetic properties, especially high coercive force are obtained. If it exceeds 30 atomic%, the R-rich non-magnetic phase increases, the residual magnetic flux density (Br) decreases, and a permanent magnet having excellent characteristics cannot be obtained. Therefore, R is l
The range of 0 atom% to 30 atom% is desirable.

【0022】Bは、上記系永久磁石における必須元素で
あって、2原子%未満では菱面体構造が主相となり高い
保磁力(iHc)は得られず、28原子%を越えるとB
リッチな非磁性相が多くなり、残留磁束密度(Br)が
低下するため、すぐれた永久磁石が得られない。よっ
て、Bは2原子%〜28原子%の範囲が望ましい。
B is an essential element in the above-mentioned permanent magnet, and if it is less than 2 atomic%, a rhombohedral structure is the main phase and a high coercive force (iHc) cannot be obtained.
Since the rich non-magnetic phase increases and the residual magnetic flux density (Br) decreases, an excellent permanent magnet cannot be obtained. Therefore, B is preferably in the range of 2 atom% to 28 atom%.

【0023】Feは、上記系永久磁石において必須元素
であり、65原子%未満では残留磁束密度(Br)が低
下し、80原子%を越えると高い保磁力が得られないの
で、Feは65原子%〜80原子%の含有が望ましい。
Fe is an essential element in the above-mentioned permanent magnet, and the residual magnetic flux density (Br) decreases if it is less than 65 atom%, and a high coercive force cannot be obtained if it exceeds 80 atom%. % To 80 atomic% is desirable.

【0024】また、Feの一部をCoで置換すること
は、得られる磁石の磁気特性を損うことなく、温度特性
を改善することができるが、Co置換量がFeの20%
を越えると、逆に磁気特性が劣化するため好ましくな
い。Coの置換量がFeとCoの合計量で5原子%〜1
5原子%の場合は、(Br)は置換しない場合に比較し
て増加するため、高磁束密度を得るために好ましい。
Further, substituting a part of Fe with Co can improve the temperature characteristics without deteriorating the magnetic characteristics of the obtained magnet, but the Co substitution amount is 20% of that of Fe.
On the other hand, if it exceeds, the magnetic characteristics are deteriorated, which is not preferable. The substitution amount of Co is 5 atomic% to 1 in the total amount of Fe and Co.
In the case of 5 atom%, (Br) is increased as compared with the case of not substituting, which is preferable for obtaining a high magnetic flux density.

【0025】また、R、B、Feの他、工業的生産上不
可避的不純物の存在を許容でき、例えば、Bの一部を
4.0wt%以下のC、2.0wt%以下のP、2.0
wt%以下のS、2.0wt%以下のCuのうち少なく
とも1種、合計量で2.0wt%以下で置換することに
より、永久磁石の製造性改善、低価格化が可能である。
In addition to R, B and Fe, the presence of impurities that are unavoidable in industrial production can be tolerated. For example, part of B is 4.0 wt% or less of C, 2.0 wt% or less of P, 2 .0
By substituting at least one of S of 2.0 wt% or less and Cu of 2.0 wt% or less with a total amount of 2.0 wt% or less, it is possible to improve the manufacturability of the permanent magnet and reduce the cost.

【0026】さらに、Al、Ti、V、Cr、Mn、B
i、Nb、Ta、Mo、W、Sb、Ge、Sn、Zr、
Ni、Si、Zn、Hf、のうち少なくとも1種は、R
−Fe−B系永久磁石に対してその保磁力、減磁曲線の
角型性を改善あるいは製造性の改善、低価格化に効果が
あるため添加することができる。なお、添加量の上限
は、磁石材料の(BH)maxを20MGOe以上とす
るには、(Br)が少なくとも9kG以上必要となるた
め、該条件を満す範囲が望ましい。
Further, Al, Ti, V, Cr, Mn, B
i, Nb, Ta, Mo, W, Sb, Ge, Sn, Zr,
At least one of Ni, Si, Zn, and Hf is R
It can be added to the -Fe-B based permanent magnet because it is effective in improving the coercive force, squareness of demagnetization curve, improving manufacturability, and lowering the cost. The upper limit of the addition amount is such that (Br) needs to be at least 9 kG or more in order to set the (BH) max of the magnet material to 20 MGOe or more.

【0027】また、この発明の永久磁石は平均結晶粒径
が1〜80μmの範囲にある正方晶系の結晶構造を有す
る化合物を主相とし、体積比で1%〜50%の非磁性相
(酸化物相を除く)を含むことを特徴とする。この発明
による永久磁石は、保磁力iHc≧1kOe、残留磁束
密度Br>4kG、を示し、最大エネルギー積(BH)
maxは、(BH)max≧10MGOeを示し、最大
値は25MGOe以上に達する。
Further, the permanent magnet of the present invention comprises a compound having a tetragonal crystal structure having an average crystal grain size in the range of 1 to 80 μm as a main phase and a nonmagnetic phase of 1% to 50% by volume ( (Excluding an oxide phase). The permanent magnet according to the present invention exhibits a coercive force iHc ≧ 1 kOe, a residual magnetic flux density Br> 4 kG, and a maximum energy product (BH).
max indicates (BH) max ≧ 10 MGOe, and the maximum value reaches 25 MGOe or more.

【0028】この発明は、磁石表面をイオンスパッター
法等により清浄化した後、前記磁石体表面にめっき法あ
るいはイオンプレーティング法等の気相薄膜形成法によ
り、R−Fe−B系永久磁石との密着性及びポリイミド
樹脂との密着性の良好な特定膜厚のAl、Ti、Ni、
Zn、Sn、Fe等の金属または合金被膜による下地金
属膜を形成後、その上にポリイミド樹脂を蒸着重合によ
り形成することにより、目的とする電気絶縁性、耐熱
性、耐食性にすぐれ、特に自動車用モーターに使用可能
な高性能R−Fe−B系永久磁石が得られることを特徴
とする。
According to the present invention, after the magnet surface is cleaned by an ion sputtering method or the like, an R-Fe-B permanent magnet is formed on the magnet surface by a vapor phase thin film forming method such as a plating method or an ion plating method. Al, Ti, Ni of a specific film thickness with good adhesion to
By forming a base metal film of a metal such as Zn, Sn, Fe, or an alloy film, and then forming a polyimide resin by vapor deposition polymerization on it, the desired electrical insulation, heat resistance, and corrosion resistance are excellent, especially for automobiles. A feature is that a high-performance R-Fe-B based permanent magnet that can be used in a motor is obtained.

【0029】[0029]

【実施例】16Nd−77Fe−7B組成の鋳造インゴ
ットを粉砕し、微粉砕後に形成、焼結、熱処理後に径1
2mm×2mm寸法の磁石体試験片を得た。その磁石特
性を表1に示す。真空容器内を1×10-3Pa以下に真
空排気し、Arガス圧10Pa、−500Vで15分間
表面スパッターを行って、磁石体表面を清浄化した後、
表2に示すイオンプレーティング条件にて、磁石体表面
に表2に示すTi、Al、Zn、Sn、Feの下地金属
被膜層を形成した。なお、Ni下地被膜層は電気めっき
法にて形成した。
EXAMPLE A cast ingot of 16Nd-77Fe-7B composition was crushed, finely crushed, formed, sintered, and heat-treated to obtain a diameter of 1
A magnet body test piece having a size of 2 mm × 2 mm was obtained. The magnet characteristics are shown in Table 1. The inside of the vacuum vessel was evacuated to 1 × 10 −3 Pa or less, and surface sputtering was performed at Ar gas pressure of 10 Pa and −500 V for 15 minutes to clean the surface of the magnet body.
Under the ion plating conditions shown in Table 2, the base metal coating layer of Ti, Al, Zn, Sn, and Fe shown in Table 2 was formed on the surface of the magnet body. The Ni undercoat layer was formed by electroplating.

【0030】真空容器内を1×10-2Paの真空度に設
定し、1つの蒸発源としてピロメリット酸二無水物を2
20℃で加熱するとともに、もう1つの蒸発源としてジ
アミノジフエニルエーテルを210℃で加熱して、さら
に磁石基板を170℃に加熱して、1時間処理を行い、
原料モノマーを磁石表面に蒸着重合させてポリアミック
酸被膜を生成させる。
The inside of the vacuum vessel was set to a vacuum degree of 1 × 10 -2 Pa, and two pyromellitic dianhydrides were used as one evaporation source.
While heating at 20 ° C., diaminodiphenyl ether as another evaporation source is heated at 210 ° C., the magnet substrate is further heated to 170 ° C., and treatment is performed for 1 hour.
A raw material monomer is vapor-deposited and polymerized on the surface of the magnet to form a polyamic acid film.

【0031】次に常圧下、窒素雰囲気で300℃で1時
間加熱してイミド化処理を行い、ポリイミド樹脂膜を生
成させることにより、ポリイミド樹脂膜を5μm厚に形
成した。
Next, under normal pressure, it was heated in a nitrogen atmosphere at 300 ° C. for 1 hour for imidization to form a polyimide resin film, thereby forming a polyimide resin film with a thickness of 5 μm.

【0032】その後、得られたポリイミド樹脂膜を表面
に有する永久磁石試験片を、温度80℃、相対湿度90
%の条件下で500時間放置後に、その磁気特性および
体積抵抗率、熱変形温度を測定した。その測定結果を表
3に示す。
Thereafter, the permanent magnet test piece having the obtained polyimide resin film on the surface was placed at a temperature of 80 ° C. and a relative humidity of 90.
%, The magnetic properties, volume resistivity and heat distortion temperature were measured. The measurement results are shown in Table 3.

【0033】なお、体積抵抗率は電気絶縁性を評価する
ものであり、電極付けを行い、被膜表面と磁石間の抵抗
を測定し、下記(1)式から求める。 ρ=R・S/l (1)式 ただし、ρ:体積抵抗率Ω・cm、R:抵抗Ω、S:電
極面積cm2、l:ポリイミド膜厚さcm また、熱変形温度は耐熱性を評価するものであり、大気
中20時間その温度に放置して被膜の変色、亀裂等が生
じる温度とした。
The volume resistivity is used to evaluate the electrical insulation property, and the electrode resistance is measured, and the resistance between the surface of the coating and the magnet is measured and calculated from the following equation (1). ρ = R · S / l (1) where ρ: volume resistivity Ω · cm, R: resistance Ω, S: electrode area cm 2 , l: polyimide film thickness cm. It was evaluated and was set to a temperature at which discoloration, cracks and the like of the coating film were left in the atmosphere at that temperature for 20 hours.

【0034】比較例1 実施例1と同一組成の磁石体試験片を実施例1と同一条
件にて表面清浄化した後、実施例1と同一条件にて磁石
表面に直接ポリイミド樹脂膜を5μm厚形成した。その
後、実施例1と同一の温度80℃、相対湿度90%の条
件下で500時間放置後の磁気特性および体積抵抗率、
熱変形温度を測定し、その結果を表3に示す。
Comparative Example 1 A magnet body test piece having the same composition as in Example 1 was surface-cleaned under the same conditions as in Example 1, and then a polyimide resin film having a thickness of 5 μm was directly formed on the magnet surface under the same conditions as in Example 1. Formed. After that, the magnetic properties and the volume resistivity after standing for 500 hours under the same temperature of 80 ° C. and relative humidity of 90% as in Example 1,
The heat distortion temperature was measured, and the results are shown in Table 3.

【0035】比較例2 実施例1と同一組成の磁石体試験片を大気中で、スプレ
ー法でエポキシ樹脂を10μm厚みに被膜した。その
後、実施例1と同一の温度80℃、相対湿度90%の条
件下で500時間放置後の磁気特性および体積抵抗率、
熱変形温度を測定し、その結果を表3に示す。
Comparative Example 2 A magnet test piece having the same composition as in Example 1 was coated with an epoxy resin to a thickness of 10 μm by a spray method in the atmosphere. After that, the magnetic properties and the volume resistivity after standing for 500 hours under the same temperature of 80 ° C. and relative humidity of 90% as in Example 1,
The heat distortion temperature was measured, and the results are shown in Table 3.

【0036】[0036]

【表1】 [Table 1]

【0037】[0037]

【表2】 [Table 2]

【0038】[0038]

【表3】 [Table 3]

【0039】[0039]

【発明の効果】この発明によるR−Fe−B系永久磁石
は、本系永久磁石表面に特定の所定膜厚みの下地金属層
を介して、蒸着重合法によりポリイミド樹脂にて被履し
たことにより、実施例に示すごとく、すぐれた電気絶縁
性、耐熱性並びに十分な耐食性を達成しており、R−F
e−B系永久磁石が本来有するすぐれた磁石特性を、多
磁極型自動車モーター用永久磁石等の苛酷な用途に提供
でき、モーターの小型軽量化に寄与することが可能であ
る。
The R-Fe-B system permanent magnet according to the present invention is formed by depositing a polyimide resin on the surface of the system permanent magnet through a vapor deposition polymerization method through an underlying metal layer having a specific film thickness. As shown in the examples, excellent electrical insulation, heat resistance, and sufficient corrosion resistance are achieved.
The excellent magnetic properties originally possessed by the e-B system permanent magnet can be provided to severe applications such as permanent magnets for multi-pole type automobile motors, and it is possible to contribute to reduction in size and weight of the motor.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 主相が正方晶からなるR−Fe−B系永
久磁石体表面に、膜厚1.0μm〜3.0μmの下地金
属膜を介して膜厚2.0μm〜10μmのポリイミド膜
を有することを特徴とする電気絶縁性・耐熱性・耐食性
にすぐれたR−Fe−B系永久磁石。
1. A polyimide film having a thickness of 2.0 μm to 10 μm on the surface of an R—Fe—B system permanent magnet body whose main phase is tetragonal with a base metal film having a thickness of 1.0 μm to 3.0 μm interposed. An R-Fe-B based permanent magnet excellent in electrical insulation, heat resistance and corrosion resistance, which is characterized by having
【請求項2】 下地金属層は、Al、Ti、Ni、Z
n、Sn、Feおよびその合金であることを特徴とする
請求項1に記載の電気絶縁性・耐熱性・耐食性にすぐれ
たR−Fe−B系永久磁石。
2. The base metal layer is made of Al, Ti, Ni, Z.
The R-Fe-B based permanent magnet excellent in electrical insulation, heat resistance, and corrosion resistance according to claim 1, which is n, Sn, Fe, or an alloy thereof.
【請求項3】 主相が正方晶からなるR−Fe−B系永
久磁石体表面を清浄化した後、めっき法あるいは気相成
膜法により前記磁石体面に膜厚1.0μm〜3.0μm
の下地金属膜を形成後、前記磁石体を真空容器内に収容
して蒸着重合法により膜厚2.0μm〜10μmのポリ
イミド膜層を形成することを特徴とする請求項1又は請
求項2に記載の電気絶縁性・耐熱性・耐食性にすぐれた
R−Fe−B系永久磁石の製造方法。
3. A film having a thickness of 1.0 .mu.m to 3.0 .mu.m formed on the surface of the magnet body by a plating method or a vapor deposition method after cleaning the surface of the R--Fe--B system permanent magnet body having a tetragonal main phase.
3. After forming the base metal film of 1., the magnet body is housed in a vacuum container to form a polyimide film layer having a thickness of 2.0 μm to 10 μm by a vapor deposition polymerization method. A method for producing an R-Fe-B based permanent magnet having excellent electric insulation, heat resistance, and corrosion resistance as described.
【請求項4】 蒸着重合法は、真空度1Pa〜10-3
aの真空容器でポリイミド膜の原料となる2種類のモノ
マーを200℃〜250℃で加熱蒸着してポリアミック
酸膜を形成後、常圧下、280℃〜380℃でイミド化
処理を行ってポリイミド膜を生成することを特徴とする
請求項3に記載の電気絶縁性・耐熱性・耐食性にすぐれ
たR−Fe−B系永久磁石の製造方法。
4. A vacuum degree of 1 Pa to 10 −3 P is used in the vapor deposition polymerization method.
In the vacuum container of a, two kinds of monomers that are raw materials of the polyimide film are heated and vapor-deposited at 200 ° C. to 250 ° C. to form a polyamic acid film, and then an imidization treatment is performed at 280 ° C. to 380 ° C. under normal pressure to perform the polyimide film. The method for producing an R-Fe-B based permanent magnet excellent in electrical insulation, heat resistance, and corrosion resistance according to claim 3, wherein
【請求項5】 蒸着重合法に用いる2種類の原料モノマ
ーは、芳香族カルボン酸二無水物と芳香族ジアミンであ
ることを特徴とする請求項4に記載の電気絶縁性・耐熱
性・耐食性にすぐれたR−Fe−B系永久磁石の製造方
法。
5. The electrical insulation, heat resistance and corrosion resistance according to claim 4, wherein the two kinds of raw material monomers used in the vapor deposition polymerization method are an aromatic carboxylic acid dianhydride and an aromatic diamine. An excellent method for producing an R-Fe-B based permanent magnet.
JP7354673A 1995-02-07 1995-12-25 R-fe-b permanent magnet being excellent in electrical insulating properties, heat resistance and corrosion resistance and manufacture thereof Pending JPH08279407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7354673A JPH08279407A (en) 1995-02-07 1995-12-25 R-fe-b permanent magnet being excellent in electrical insulating properties, heat resistance and corrosion resistance and manufacture thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4348295 1995-02-07
JP7-43482 1995-02-07
JP7354673A JPH08279407A (en) 1995-02-07 1995-12-25 R-fe-b permanent magnet being excellent in electrical insulating properties, heat resistance and corrosion resistance and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH08279407A true JPH08279407A (en) 1996-10-22

Family

ID=26383254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7354673A Pending JPH08279407A (en) 1995-02-07 1995-12-25 R-fe-b permanent magnet being excellent in electrical insulating properties, heat resistance and corrosion resistance and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH08279407A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1048350C (en) * 1997-12-19 2000-01-12 冶金工业部钢铁研究总院 Rare-earth permanet magnet material with insulation performance
JP2001167917A (en) * 1999-09-27 2001-06-22 Sumitomo Special Metals Co Ltd R-Fe-B PERMANENT MAGNET AND MANUFACTURING METHOD OF THE SAME
EP1695737A1 (en) * 2005-02-25 2006-08-30 Quintsysteme für holopathische Medizin Ges.m.b.H. Apparatus for transmission of energetic vibration information
JP2007158030A (en) * 2005-12-05 2007-06-21 Neomax Co Ltd Rare-earth permanent magnet and its manufacturing method
JP4495287B2 (en) * 1999-12-27 2010-06-30 日立金属株式会社 Method for producing rare earth-based permanent magnet having polyimide resin coating
JP2019015287A (en) * 2017-07-04 2019-01-31 レヴィトロニクス ゲーエムベーハー Rotor capable of magnetic levitation and rotary machine with such rotor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1048350C (en) * 1997-12-19 2000-01-12 冶金工业部钢铁研究总院 Rare-earth permanet magnet material with insulation performance
JP2001167917A (en) * 1999-09-27 2001-06-22 Sumitomo Special Metals Co Ltd R-Fe-B PERMANENT MAGNET AND MANUFACTURING METHOD OF THE SAME
JP4529260B2 (en) * 1999-09-27 2010-08-25 日立金属株式会社 R-Fe-B permanent magnet and method for producing the same
JP4495287B2 (en) * 1999-12-27 2010-06-30 日立金属株式会社 Method for producing rare earth-based permanent magnet having polyimide resin coating
EP1695737A1 (en) * 2005-02-25 2006-08-30 Quintsysteme für holopathische Medizin Ges.m.b.H. Apparatus for transmission of energetic vibration information
JP2007158030A (en) * 2005-12-05 2007-06-21 Neomax Co Ltd Rare-earth permanent magnet and its manufacturing method
JP2019015287A (en) * 2017-07-04 2019-01-31 レヴィトロニクス ゲーエムベーハー Rotor capable of magnetic levitation and rotary machine with such rotor

Similar Documents

Publication Publication Date Title
US6275130B1 (en) Corrosion-resisting permanent magnet and method for producing the same
JPH0432523B2 (en)
WO1997023884A1 (en) Permanent magnet for ultrahigh vacuum application and method for manufacturing the same
JPH08279407A (en) R-fe-b permanent magnet being excellent in electrical insulating properties, heat resistance and corrosion resistance and manufacture thereof
JPH09289108A (en) R-fe-b permanent magnet having electric insulating film excellent in adhesion and its manufacture
JPH09326308A (en) Manufacture of r-fe-b permanent magnet having electric insulation coating with excellent adhesion
US6211762B1 (en) Corrosion-resistant permanent magnet and method for manufacturing the same
JPH10340823A (en) Manufacture of r-iron-boron permanent magnet having excellent salt water resistance
JPH0569282B2 (en)
JP3234448B2 (en) Manufacturing method of high corrosion resistant permanent magnet
JP3576672B2 (en) R-Fe-B permanent magnet with excellent electrical insulation, heat resistance and corrosion resistance, and method for producing the same
JPH07249509A (en) Corrosion-resistant permanent magnet and its manufacture
JP3383338B2 (en) Corrosion-resistant permanent magnet and its manufacturing method
JPH09260120A (en) R-fe-b type permanent magnet superior in electric insulation, heat resistance and corrosion resistance and manufacturing method thereof
JP3737830B2 (en) Corrosion-resistant permanent magnet and method for manufacturing the same
JPH09246027A (en) R-fe-b based permanent magnet excellent in resistance to salt water
JP3652816B2 (en) Corrosion-resistant permanent magnet and method for manufacturing the same
JPH0535216B2 (en)
JPH09180922A (en) R-fe-b based permanent magnet having excellent electrical insulation, heat resistance and anti-corrosion properties, and manufacture thereof
JP3676513B2 (en) Corrosion-resistant permanent magnet and method for manufacturing the same
JP3652818B2 (en) Corrosion-resistant permanent magnet and method for manufacturing the same
JPH1074607A (en) Corrosion-resisting permanent magnet and its manufacture
JPH04206805A (en) Manufacture of rare earth element-fe-b based magnet excellent in magnetic characteristics and corrosion resistance
JPS63254702A (en) Manufacture of corrosion resisting permanent magnet
JPH06140226A (en) Corrosion-resistant permanent magnet

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040811

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050331