JPH04206805A - Manufacture of rare earth element-fe-b based magnet excellent in magnetic characteristics and corrosion resistance - Google Patents

Manufacture of rare earth element-fe-b based magnet excellent in magnetic characteristics and corrosion resistance

Info

Publication number
JPH04206805A
JPH04206805A JP2337766A JP33776690A JPH04206805A JP H04206805 A JPH04206805 A JP H04206805A JP 2337766 A JP2337766 A JP 2337766A JP 33776690 A JP33776690 A JP 33776690A JP H04206805 A JPH04206805 A JP H04206805A
Authority
JP
Japan
Prior art keywords
rare earth
earth element
phase
magnet
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2337766A
Other languages
Japanese (ja)
Inventor
Masanori Azuma
東 正則
Takeshi Hasegawa
猛 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2337766A priority Critical patent/JPH04206805A/en
Publication of JPH04206805A publication Critical patent/JPH04206805A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain a manufacturing method of a rare earth element-Fe-B based magnet satisfying magnetic characteristics and corrosion resistance, by a method wherein, after alloy powder composed of specified component composition is molded with pressure in a static magnetic field and turned into a magnetically anisotropic state, hot static water pressure treatment is performed in a vacuum or an inert gas atmosphere in a specified temperature range. CONSTITUTION:When the title rare earth element-Fe-B based magnet is manufactured, alloy powder composed of the following is molded with pressure; one or more kinds of rare earth elements selected out of Pr and Nd whose total amount is 29-34wt.%, B of 0.8-1.0wt.%, one or more kinds of elements selected out of a group composed of Ga, In and Sn whose total mount is 0.2-0.8wt.%, and Fe and inevitable impurities as the residual part. After the above molded body is turned into a magnetically anisotropic state, hot static water pressure treatment is performed in a vacuum or an inert gas atmosphere in the temperature range of 850-1100 deg.C. As the result, a high density rare earth element-Fe-B base magnet having composition composed of a first phase of rare earth element-Fe-B system and a low melting point phase of rare earth element-(one or more kinds selected out of Ga, In, and Sn) system wrapping the first phase is obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は磁気特性およひ耐食性の優れた希土類元素−F
e−B系磁石の製造方法に関し、詳細には希土類元素と
してPrおJ;ひ/またはNdを含み、更にGa.In
,Snから選ばれる1種以上の元素を含有し、磁気特性
および耐食性の優れた希土類永久磁石を製造する方法に
関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention uses rare earth element -F which has excellent magnetic properties and corrosion resistance.
Regarding the method for producing an e-B magnet, in detail, it contains Pr and/or Nd as a rare earth element, and further contains Ga. In
, Sn, and has excellent magnetic properties and corrosion resistance.

[従来の技術] フェライト磁石およびアルニコ磁石に次ぐ第3の永久磁
石として、希土類磁石が注目を集めている。この希土類
磁石は電気製品や精密機器類の小型化や高精度化に寄与
し得る優れた磁気的性能を発揮するものと期待され、物
性研究面およひ生産面共に活発な進展を見せている。
[Prior Art] Rare earth magnets are attracting attention as the third type of permanent magnet after ferrite magnets and alnico magnets. This rare earth magnet is expected to exhibit excellent magnetic performance that can contribute to the miniaturization and higher precision of electrical products and precision equipment, and is making active progress in both physical property research and production. .

中でも近年特に期待されているのは希土類元素−遷穆元
素−B系例えばNd−Fe−BやPr−Fe−B等の永
久磁石であり、最近に至ってCuやAgを第4番目の構
成元素として加えることや、それ以外に更に他のija
量添加元素を加えることも検討されている。本発明の対
象とする永久磁石組成は(Pr、Nd) −Fe−Bを
基本成分とする他、Ga、In、Snから選択される1
種以上を必須成分として含みその詳細については後述す
るが、以下の説明においては(Pr、Nd)−Fe−B
系(以下R−Fe−B系磁石と略称する)の3元系61
1石を便宜上代表的に取上げて述へることとする。
Among them, the ones that have been particularly promising in recent years are permanent magnets made of rare earth elements - transmuted elements - B systems such as Nd-Fe-B and Pr-Fe-B, and recently Cu and Ag have been used as the fourth constituent element. You can also add it as a
Adding additive elements is also being considered. The permanent magnet composition targeted by the present invention has (Pr, Nd) -Fe-B as a basic component, and 1 selected from Ga, In, and Sn.
(Pr, Nd)-Fe-B
ternary system 61 of the system (hereinafter abbreviated as R-Fe-B system magnet)
For convenience, I will discuss one stone as a representative example.

R−Fe−B系磁石の製造方法としては、0合金粉末を
焼結する方法や、■急冷薄片を作った後熱可塑性樹脂等
を用いてポンド磁石とする方法、等か知られているが、
いずれの方法によってもR−Fe−B系1i11石に期
待されている特性が十分に発揮されるに至っていない。
Known methods for manufacturing R-Fe-B magnets include sintering 0 alloy powder, and making quenched flakes into pound magnets using thermoplastic resin, etc. ,
No matter which method is used, the properties expected of the R-Fe-B 1i11 stone have not been fully exhibited.

ところでR−Fe−B系磁石は、耐食性が悪いことも知
られており、特にNdを添加した磁石ではこの傾向が著
しく、この耐食性の改善も重要な課題となっている。
By the way, R-Fe-B magnets are also known to have poor corrosion resistance, and this tendency is particularly noticeable in magnets to which Nd is added, and improving this corrosion resistance is also an important issue.

R−Fe−B系磁石の耐食性を改善するという観点から
、例えば特開昭61−270308号に示されている様
な技術も提案されている。この技術は、磁石表面にショ
ツトブラスト処理を施して表面層を除去し、この表面に
イオンブレーティング法によってAI薄膜を被着するも
のである。また例えば特開昭62−120002号には
、磁石材表面に気相めっき層を形成すると共に該め−)
き層と磁石材表面間に拡散層を形成することにより、耐
食性を向上させる方法が開示されている。
From the viewpoint of improving the corrosion resistance of R-Fe-B magnets, a technique such as that disclosed in JP-A No. 61-270308 has also been proposed. This technique performs shot blasting on the magnet surface to remove the surface layer, and then deposits an AI thin film on this surface by ion blasting. For example, Japanese Patent Application Laid-Open No. 120002/1983 discloses that a vapor phase plating layer is formed on the surface of the magnet material and
A method of improving corrosion resistance by forming a diffusion layer between a hard layer and the surface of a magnet material is disclosed.

上記の他、耐食性改善の為の様々な表面処理技術か提案
されている。下記第1表は、各種表面処理技術の特徴を
概要的にまとめたものである。
In addition to the above, various surface treatment techniques have been proposed to improve corrosion resistance. Table 1 below summarizes the characteristics of various surface treatment techniques.

R−Fe−B系磁石の表面に形成される表面被覆層のピ
ンホールや密着性は、下記に示す様々な要因によって影
響を受けることか知られている(例えば電波新聞197
9.10.5発行)。
It is known that the pinholes and adhesion of the surface coating layer formed on the surface of R-Fe-B magnets are affected by various factors listed below (for example, Dempa Shimbun 197
Published on 9.10.5).

(1)Bリッヂ相の含有量 (2)酸化物(例えば酸化ネオジウムや酸化プラセオジ
ム)の含有量 (3)磁石材中に存在する空隙 (4)原料や工程によって混入する異物これまでの技術
では、上記各要因(1)〜(4)の多少に応して、めっ
き前処理、めっき処理、めっき条件等を選択しており、
一応の耐食効果が得られているが、いずれも上記要因を
直接的に改善するものではなく、めっき層の化学的性状
に依存するところが大きい。
(1) Content of B ridge phase (2) Content of oxides (e.g. neodymium oxide and praseodymium oxide) (3) Voids present in the magnet material (4) Foreign matter mixed in by raw materials and processes , plating pretreatment, plating treatment, plating conditions, etc. are selected depending on the degree of each of the above factors (1) to (4).
Although some corrosion resistance effects have been obtained, none of these methods directly improves the above factors, and it largely depends on the chemical properties of the plating layer.

[発明か解決しようとする課題] 本発明の目的は、磁気特性および耐食性を向上させる為
の要件を探索し、これらの特性をいずれも満足するR−
Fe−B系磁石を製造する為の方法を提供することにあ
る。
[Problems to be Solved by the Invention] The purpose of the present invention is to explore the requirements for improving magnetic properties and corrosion resistance, and to develop an R-
An object of the present invention is to provide a method for manufacturing Fe-B magnets.

[課題を解決する為の手段] 上記目的を達成し得た本発明とは、希土類元素−Fe−
B系磁石を製造するに当たり、PrおよびNdから選ば
れる1種以上の希土類元素:総量で29〜34重量% B:0.8〜1.0@il二% Ga、InおよびSnよりなる群から選択される1 f
ffi以上の元素:総量で0,2〜O,a重量%残部+
Feおよび不可避不純物 からなる合金粉末を静磁場中にて加圧成形しその成形体
を磁気異方性化した後、真空または不活性ガス雰囲気中
、850〜1100℃の温度範囲で熱間静水圧処理する
ことによって、希土類元素−Fe−B系の第1相と該第
1相を包む希土類元素−(Ga、In、Snから選択さ
れる1 fffi以上)系の低融点相とからなる組織を
有する高密度の希土類元素−Fe−B系磁石を得る点に
要旨を有する磁気特性および耐食性に優れたR−Fe−
B系6茸石の製造方法である。
[Means for Solving the Problem] The present invention that achieves the above object is based on rare earth element -Fe-
In manufacturing the B-based magnet, one or more rare earth elements selected from Pr and Nd: 29 to 34% by weight in total B: 0.8 to 1.0% by weight From the group consisting of Ga, In, and Sn 1 f selected
Elements higher than ffi: total amount 0,2~O,a weight% balance +
An alloy powder consisting of Fe and unavoidable impurities is press-molded in a static magnetic field to make the compact magnetically anisotropic, and then subjected to hot isostatic pressure in a temperature range of 850 to 1100°C in a vacuum or inert gas atmosphere. By processing, a structure consisting of a rare earth element-Fe-B system first phase and a rare earth element-(1 fffi or more selected from Ga, In, Sn) system low melting phase phase surrounding the first phase is formed. The purpose is to obtain a high-density rare earth element -Fe-B magnet with R-Fe-B, which has excellent magnetic properties and corrosion resistance.
This is a method for producing B-series 6 mushroom stones.

[作用] 本発明は上述の如く構成されるが、要するに、所定の成
分組成からなる合金粉末を静磁場中にて加圧成形しその
成形体を磁気異方性化た後、真空または不活性ガスτ囲
気中、850〜1100”Cの温度範囲で熱間静水圧処
理(以下HIP処理と呼ぶ)すれは、前述した様な空隙
を消失または減少した磁石材か得られ、磁石材の磁気特
性および耐久性の向上が図れたのである。
[Function] The present invention is configured as described above, but in short, an alloy powder having a predetermined composition is pressure-molded in a static magnetic field, the compact is made magnetically anisotropic, and then Hot isostatic pressure treatment (hereinafter referred to as HIP treatment) in a temperature range of 850 to 1100"C in a gas τ atmosphere produces a magnet material in which the above-mentioned voids are eliminated or reduced, and the magnetic properties of the magnet material are improved. and improved durability.

本発明で対象とする磁石は、Ga、InおよびSnより
なる群から選択される1種以上を必須成分として含むも
のであり、これらは磁気特性の向上に極めて有効である
。即ちGa、Sn、In等の添加は、HIP処理時にR
2Fez+  B(原子比、例えばPr2Fe+aB>
からなる第1相(以下、単に第1相と呼ぶことかある)
の周囲にRリッヂの薄膜相乃至粒界相を形成し、それに
よる効果として加圧成形時、静磁場中で第1相の結晶方
位か極めて良く揃い、磁束密度(Br)や保磁力(IH
c)の向上に寄与するばかりか、空孔の減少によって耐
食性向」二に寄与する。
The magnet targeted by the present invention contains as an essential component one or more selected from the group consisting of Ga, In, and Sn, and these are extremely effective in improving magnetic properties. In other words, the addition of Ga, Sn, In, etc.
2Fez+B (atomic ratio, e.g. Pr2Fe+aB>
The first phase (hereinafter sometimes simply referred to as the first phase)
The R-ridge thin film phase or grain boundary phase is formed around the R-ridge, and as a result, during pressure molding, the crystal orientation of the first phase is very well aligned in the static magnetic field, and the magnetic flux density (Br) and coercive force (IH
It not only contributes to the improvement of c), but also contributes to corrosion resistance by reducing the number of pores.

本発明のR−Fe−B系磁石を構成する合金組成につい
て説明する。
The alloy composition constituting the R-Fe-B magnet of the present invention will be explained.

まず希土類元素としては、これまでランタノイド系希土
類元素が汎用されてきたが、本発明ではこれらのうち特
に有効なものとしてPrおよび/またはNdを使用する
こととした。
First, as rare earth elements, lanthanoid rare earth elements have been widely used so far, but in the present invention, Pr and/or Nd are used as particularly effective among these elements.

希土類元素としては上述の如く、Prおよび/またはN
dが使用されるが、その組成範囲は単独または合計で2
9〜34重量%とする必要があり、29重量%未満ては
α鉄と同一構造の立方晶組織となってiHcの低下等を
招き、良好な磁気特性は得られない。一方上限について
は34重量%を超えると、Rリッチ相の過剰や第1相体
積率の不足等を招き、これが磁束密度の低下等となって
現われ、良好な磁気特性を発揮することができなくなる
As mentioned above, rare earth elements include Pr and/or N.
d is used, but the composition range is 2, singly or in total.
It is necessary to set the content to 9 to 34% by weight, and if it is less than 29% by weight, a cubic crystal structure having the same structure as α iron results, resulting in a decrease in iHc, etc., and good magnetic properties cannot be obtained. On the other hand, if the upper limit exceeds 34% by weight, it will lead to excessive R-rich phase and insufficient volume fraction of the first phase, which will manifest as a decrease in magnetic flux density, making it impossible to exhibit good magnetic properties. .

Bは0.8〜1.0型組%とする必要があり、08重量
%未満では第1相体積率の不足が生し、磁束密度の低下
を招く。他方上限については、磁気特性を有しないR,
−Fe4−84相の出現によるiH(の低下を防止する
という観点から1.0重量%とじた。
B needs to be 0.8 to 1.0% by weight; if it is less than 0.8% by weight, the volume fraction of the first phase will be insufficient, leading to a decrease in magnetic flux density. On the other hand, regarding the upper limit, R, which does not have magnetic properties,
The content was limited to 1.0% by weight from the viewpoint of preventing a decrease in iH due to the appearance of the -Fe4-84 phase.

Ga、Tn、Sn等の元素は総和で0.2〜0.8重景
%8する必要かあり、0.2重量%未満では(Ga、S
n、In)含有Rリッチ相が少なくなり、第1相の結晶
方位配向の不足が発生ずる。−方0.8重量%を超える
と、(Ga、Sn、In)含有Rリッチ相の過剰や前記
第1相の体積率の不足を生じ、磁束密度の低下を招く。
Elements such as Ga, Tn, and Sn need to be added to a total weight of 0.2 to 0.8%8, and less than 0.2% by weight (Ga, S
The R-rich phase containing n, In) decreases, and the crystal orientation of the first phase becomes insufficient. If it exceeds 0.8% by weight, the R-rich phase containing (Ga, Sn, In) will be excessive and the volume fraction of the first phase will be insufficient, leading to a decrease in magnetic flux density.

尚従来の粉末焼結磁石てGaを添加した例は報告されて
いるか、2重量%程度にも及ぶ大量を添加しないとiH
(≧15KOeか得られていなかった。またSn添加の
粉末焼結磁石も報告されているか、この場合には焼結温
度を下げる為に添加されており、iHcを−Fげる為に
Dyが複合添加されており、更に粒界の磁気特性を高め
るAIも添加されている。即ち、本願発明におけるGa
Incidentally, there have been reports of cases in which Ga was added to conventional powder sintered magnets.
(≧15 KOe was not obtained.Also, powder sintered magnets with Sn addition have been reported, or in this case, the addition was made to lower the sintering temperature, and Dy was added to reduce iHc to -F. Ga is added in a composite manner, and AI is also added to enhance the magnetic properties of the grain boundaries.
.

In、Sn等の適正な総添加量である0、2〜0.8重
量%程度ては、これまての粉末焼結材では充分な効果か
得られていなかったのである。
With the appropriate total addition amount of In, Sn, etc. of about 0.2 to 0.8% by weight, sufficient effects have not been obtained with conventional powder sintered materials.

これに対し、本発明磁石材では、前述し、また後に詳述
する製造工程を加えることによって、上記程度の添加量
であってもその効果を最大限に発揮することかできるの
である。この様に、Ga。
On the other hand, in the magnet material of the present invention, by adding the manufacturing process described above and detailed later, it is possible to maximize the effect even with the above-mentioned amount of addition. In this way, Ga.

In、Sn等による添加効果を最大限に発揮させたのが
、本発明の特徴の1っである。
One of the features of the present invention is that the effects of addition of In, Sn, etc. are maximized.

本発明の磁石は、上記必須成分の他、残部は基本的には
Feおよび不可避不純物からなる。Feは磁性相形成に
とっての必須元素であるが、その一部(例えは20重量
%程度)をCoやMn等の遷移元素で置換してもよい。
In addition to the above-mentioned essential components, the magnet of the present invention basically consists of Fe and unavoidable impurities. Although Fe is an essential element for forming a magnetic phase, a portion (for example, about 20% by weight) of Fe may be replaced with a transition element such as Co or Mn.

また」二重以外に更に2重量%程度のA1やSi等を含
むこともてき、残留磁束密度を低下させない程度の少量
の添加によってiH(の向上に努めるのも良い。
Furthermore, in addition to the "double", about 2% by weight of A1, Si, etc. may be included, and it is good to try to improve the iH (iH) by adding a small amount that does not reduce the residual magnetic flux density.

本発明を実施する際のHIP処理温度は850〜110
0℃とする必要がある。HIP処理温度が850℃未満
であると、焼結が十分に達成されず、1100℃を超え
ると結晶粒の粗大化や熔解が生し良好な磁気特性が得ら
れない。またI(IP処理雰囲気は、処理時の粉末の酸
化を防止するという観点から、真空または不溶性ガス雰
囲気とする必要かある。
The HIP treatment temperature when carrying out the present invention is 850 to 110
It is necessary to set the temperature to 0°C. If the HIP treatment temperature is less than 850°C, sufficient sintering will not be achieved, and if it exceeds 1100°C, coarsening and melting of crystal grains will occur, making it impossible to obtain good magnetic properties. In addition, the atmosphere for I(IP treatment) needs to be a vacuum or an insoluble gas atmosphere from the viewpoint of preventing oxidation of the powder during treatment.

尚HIP処理処理圧力は400 kgf−cm−2以上
とするのが好ましい。即ち、第1図はHIPIA埋条件
(温度、圧力)と見かり密度の関係を示したグラフであ
るか、前述した温度範囲において磁石材の高密度化を達
成するには40 Q kgf−cm−2以上とするのが
良いのかよくわかる。
The HIP treatment pressure is preferably 400 kgf-cm-2 or more. That is, Figure 1 is a graph showing the relationship between HIPIA burial conditions (temperature, pressure) and apparent density. I understand whether it is better to set it to 2 or more.

本発明ではHIPfi埋した後に、400〜600℃で
熱処理することも有効である。即ち、この熱処理によっ
て組織の微細化が達成され、磁石の特性をより一層向上
させることかてきる。またHIP処理の温度条件との関
係ては、この熱処理の採用により、HIP処理温度か低
くなって磁気特性か若干劣った場合でも、その回復か可
能である。
In the present invention, it is also effective to perform heat treatment at 400 to 600°C after HIPfi filling. That is, by this heat treatment, the structure is made finer, and the characteristics of the magnet can be further improved. Furthermore, in relation to the temperature conditions of the HIP treatment, by employing this heat treatment, even if the HIP treatment temperature is lowered and the magnetic properties are slightly inferior, it is possible to recover them.

[実施例] 実施例】 第2表に示す組成の合金鋳塊をアーク溶解によって製造
し、これをスタンプミルにて粗粉砕し1ま た後、ジェットミルにて3〜4μmに微粉砕した。
[Example] Example: An alloy ingot having the composition shown in Table 2 was produced by arc melting, coarsely pulverized in a stamp mill, and then finely pulverized to 3 to 4 μm in a jet mill.

第2表 得られた微粉末を金属カプセルに充填した後、磁場中に
て異方性化しつつ5トン/am’で加圧成形し、300
℃で脱気した後密封した。次いでArガス雰囲気中で8
00℃まで温度を上げた後圧力を徐々に上げつつ30分
間保持し、更に圧力を11000atまで」二昇すると
共に温度を1050℃まで上昇し、その条件で1時間の
HIP処理を施した。そして室温まで冷却してから、4
80℃×2時間の熱処理を施し、本発明の磁石材の製造
した。
Table 2 After filling the obtained fine powder into a metal capsule, it was pressure-molded at 5 tons/am' while anisotropic in a magnetic field.
After degassing at °C, the container was sealed. Then, in an Ar gas atmosphere,
After raising the temperature to 00°C, the pressure was gradually increased and held for 30 minutes, and the pressure was further increased to 11,000 at and the temperature was raised to 1,050°C, and HIP treatment was performed for 1 hour under these conditions. After cooling to room temperature,
A heat treatment was performed at 80° C. for 2 hours to produce a magnet material of the present invention.

得られた磁石材の磁気特性を調査したところ、下記第3
表に示す結果か得られた。
When we investigated the magnetic properties of the obtained magnet material, we found that the following
The results shown in the table were obtained.

第3表 この結果から明らかな様に、本発明によって得られる磁
石材は優れた磁気特性を発揮しているのがわかる。これ
はHIP処理によって、磁石材の高密度化が達成された
ためと考えられる。ちなみに得られた磁石材の密度を測
定したところ、7.68g/ccであり、これは見かけ
密度がほぼ100%に相当する値であった。尚10μの
AI膜をイオンブレーティングした後、磁石材の耐食性
を塩水噴n試験によって調査したところ、優れた耐食性
を有していることか確認でかだ。
Table 3 As is clear from the results, it can be seen that the magnet material obtained by the present invention exhibits excellent magnetic properties. This is thought to be due to the HIP treatment achieving higher density of the magnetic material. Incidentally, when the density of the obtained magnetic material was measured, it was 7.68 g/cc, which was a value corresponding to approximately 100% of the apparent density. After ion blating the 10 μm AI film, the corrosion resistance of the magnet material was investigated by a salt water spray test, and it was confirmed that it had excellent corrosion resistance.

比較例1 第4表に示す組成の合金鋳塊をアーク溶解によって製造
し、これを実施例1と同様にして3〜4μmの微粉末を
得た。
Comparative Example 1 An alloy ingot having the composition shown in Table 4 was produced by arc melting and treated in the same manner as in Example 1 to obtain a fine powder of 3 to 4 μm.

第   4   表 得られた微粉末を磁場中にて異方性化しつつ5トン/c
m2加圧成形した後、1080℃×6時間の条件で焼結
し、室温に冷却してから更に480″CX2時間の熱処
理を施して6!1石材を製造した。
Table 4 The obtained fine powder was made anisotropic in a magnetic field and was heated to 5 tons/c.
After being press-formed by m2, it was sintered at 1080° C. for 6 hours, cooled to room temperature, and then heat-treated at 480″C for 2 hours to produce 6!1 stone.

得られた磁石材の磁気特性を調査したところ、下記第5
表に示す結果が得られた。
When we investigated the magnetic properties of the obtained magnet material, we found that the following
The results shown in the table were obtained.

第   5   表 第5表と前記第3表を比較しても明らかであるが、粉末
焼結法によって得られた磁石材は、本発明法によって得
られる磁石材よりも磁気特性が劣っているのがよくわか
る。これは粉末焼結法では磁石材の高密度化を達成する
のが困難であり、それが1i11気特性の低下として現
われるものと考えられる。ちなみに得られた磁石材の密
度を測定したところ、7.34z/ccであり、これは
見かけ密度がほぼ96%に相当する値であった。尚実施
例1と同様にして耐食性を調査したところ、実施例1で
得られたものほど優れた耐食性が発揮されていなかった
Table 5 It is clear from a comparison of Table 5 and Table 3 above that the magnetic properties of the magnet materials obtained by the powder sintering method are inferior to those obtained by the method of the present invention. I understand very well. This is thought to be because it is difficult to achieve high density of the magnet material using the powder sintering method, and this appears as a decrease in the 1i11 characteristics. Incidentally, when the density of the obtained magnetic material was measured, it was 7.34z/cc, which was a value corresponding to approximately 96% of the apparent density. When the corrosion resistance was investigated in the same manner as in Example 1, it was found that the corrosion resistance was not as excellent as that obtained in Example 1.

実施例2 下記第6表に示す各組成の合金鋳塊をアーク溶解によっ
て製造し、これから実施例1と同様にして微粉末を得、
この微粉末を用いて実施例1に準して磁石材を製造し、
得られた磁石材の磁気特性を調査した。その結果を第6
表に併記するか、Ga、In、Sn等を添加した磁石材
(実施例)では、Cuを含む磁石材よりも磁気特性か向
上しているのかわかる。これは上述の如<Ga。
Example 2 An alloy ingot having each composition shown in Table 6 below was produced by arc melting, and a fine powder was obtained from it in the same manner as in Example 1.
Using this fine powder, a magnet material was manufactured according to Example 1,
The magnetic properties of the obtained magnet material were investigated. The result is the 6th
It can be seen from the table that the magnetic properties of magnet materials (examples) to which Ga, In, Sn, etc. are added are better than those of magnet materials containing Cu. This is as described above.

In、Sn等の添加によって磁石材組成の第2相の融点
が大幅に低下し、これが第1相のまわりを薄く均一に取
り巻くためであると思われる。
This is believed to be because the addition of In, Sn, etc. significantly lowers the melting point of the second phase of the magnet material composition, and this is because it surrounds the first phase thinly and uniformly.

[発明の効果] 本発明は以上の様に構成されており、Ga。[Effect of the invention] The present invention is configured as described above, and includes Ga.

Tn、Sn等を必須成分として含む希土類−Fe−B系
合金粉末を用いてHIP処理することによって、高密度
化が達成され、磁気特性および耐食性の優れた希土類元
素−Fe−B系磁石が得られた。
By performing HIP treatment using rare earth-Fe-B alloy powder containing Tn, Sn, etc. as essential components, high density can be achieved and rare earth-Fe-B magnets with excellent magnetic properties and corrosion resistance can be obtained. It was done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はHIP処理条件(温度、圧力)と見かけ密度の
関係を示すグラフである。
FIG. 1 is a graph showing the relationship between HIP processing conditions (temperature, pressure) and apparent density.

Claims (1)

【特許請求の範囲】  希土類元素−Fe−B系磁石を製造するに当たり、 PrおよびNdから選ばれる1種以上の希土類元素:総
量で29〜34重量% B:0.8〜1.0重量% Ga,InおよびSnよりなる群から選択される1種以
上の元素:総量で0.2〜0.8重量%残部:Feおよ
び不可避不純物 からなる合金粉末を静磁場中にて加圧成形しその成形体
を磁気異方性化した後、真空または不活性ガス雰囲気中
、850〜1100℃の温度範囲で熱間静水圧処理する
ことによって、希土類元素−Fe−B系の第1相と該第
1相を包む希土類元素−(Ga,In,Snよりなる群
から選択される1種以上)系の低融点相とからなる組織
を有する高密度の希土類元素−Fe−B系磁石を得るこ
とを特徴とする磁気特性および耐食性の優れた希土類元
素−Fe−B系磁石の製造方法。
[Claims] In producing a rare earth element-Fe-B magnet, one or more rare earth elements selected from Pr and Nd: 29 to 34% by weight in total B: 0.8 to 1.0% by weight One or more elements selected from the group consisting of Ga, In, and Sn: 0.2 to 0.8% by weight in total The balance: An alloy powder consisting of Fe and unavoidable impurities is press-molded in a static magnetic field. After making the molded body magnetically anisotropic, it is subjected to hot isostatic pressure treatment in a temperature range of 850 to 1100°C in vacuum or an inert gas atmosphere, thereby forming the first phase of the rare earth element-Fe-B system and the first phase of the rare earth element-Fe-B system. To obtain a high-density rare earth element-Fe-B magnet having a structure consisting of a low melting point phase of a rare earth element (one or more selected from the group consisting of Ga, In, and Sn) surrounding one phase. A method for producing a rare earth element-Fe-B magnet characterized by excellent magnetic properties and corrosion resistance.
JP2337766A 1990-11-30 1990-11-30 Manufacture of rare earth element-fe-b based magnet excellent in magnetic characteristics and corrosion resistance Pending JPH04206805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2337766A JPH04206805A (en) 1990-11-30 1990-11-30 Manufacture of rare earth element-fe-b based magnet excellent in magnetic characteristics and corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2337766A JPH04206805A (en) 1990-11-30 1990-11-30 Manufacture of rare earth element-fe-b based magnet excellent in magnetic characteristics and corrosion resistance

Publications (1)

Publication Number Publication Date
JPH04206805A true JPH04206805A (en) 1992-07-28

Family

ID=18311764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2337766A Pending JPH04206805A (en) 1990-11-30 1990-11-30 Manufacture of rare earth element-fe-b based magnet excellent in magnetic characteristics and corrosion resistance

Country Status (1)

Country Link
JP (1) JPH04206805A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013008756A1 (en) * 2011-07-08 2013-01-17 昭和電工株式会社 Alloy for r-t-b-based rare earth sintered magnet, process for producing alloy for r-t-b-based rare earth sintered magnet, alloy material for r-t-b-based rare earth sintered magnet, r-t-b-based rare earth sintered magnet, process for producing r-t-b-based rare earth sintered magnet, and motor
JP2014132628A (en) * 2012-12-06 2014-07-17 Showa Denko Kk Rare earth-transition metal-boron-based rare earth sintered magnet, and manufacturing method thereof
JP2014169505A (en) * 2011-07-08 2014-09-18 Showa Denko Kk Alloy for r-t-b-based rare earth sintered magnet and method for manufacturing the same
JP2022542188A (en) * 2019-11-21 2022-09-29 フージャン チャンティン ゴールデン ドラゴン レア-アース カンパニー リミテッド Neodymium-iron-boron magnet material, raw material composition, manufacturing method, and application

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013008756A1 (en) * 2011-07-08 2013-01-17 昭和電工株式会社 Alloy for r-t-b-based rare earth sintered magnet, process for producing alloy for r-t-b-based rare earth sintered magnet, alloy material for r-t-b-based rare earth sintered magnet, r-t-b-based rare earth sintered magnet, process for producing r-t-b-based rare earth sintered magnet, and motor
JP2013216965A (en) * 2011-07-08 2013-10-24 Showa Denko Kk Alloy for r-t-b-based rare earth sintered magnet, method for manufacturing the same, alloy material for the same, r-t-b-based rare earth sintered magnet, method for manufacturing the same, and motor
CN103582715A (en) * 2011-07-08 2014-02-12 昭和电工株式会社 Alloy for R-T-B-based rare earth sintered magnet, process for producing alloy for R-T-B-based rare earth sintered magnet, alloy material for R-T-B-based rare earth sintered magnet, R-T-B-based rare earth sintered magnet, process for producing R-T-B, and motor
JP2014169505A (en) * 2011-07-08 2014-09-18 Showa Denko Kk Alloy for r-t-b-based rare earth sintered magnet and method for manufacturing the same
JP2014205918A (en) * 2011-07-08 2014-10-30 昭和電工株式会社 Alloy for r-t-b-based rare earth sintered magnet, method of producing alloy for r-t-b-based rare earth sintered magnet, alloy material for r-t-b-based rare earth sintered magnet, r-t-b-based rare earth sintered magnet, method of producing r-t-b-based rare earth sintered magnet and motor
CN104894470A (en) * 2011-07-08 2015-09-09 昭和电工株式会社 Alloy for R-T-B-based rare earth sintered magnet, method of producing alloy for R-T-B-based rare earth sintered magnet, alloy material for R-T-B-based rare earth sintered magnet, R-T-B-based rare earth sintered magnet, method of producing R-T-B-based rare earth sintered magnet and motor
CN103582715B (en) * 2011-07-08 2016-01-20 昭和电工株式会社 The manufacture method of the manufacture method of R-T-B system rare earths sintered magnet alloy, R-T-B system rare earths sintered magnet alloy, R-T-B system rare earths sintered magnet alloy material, R-T-B system rare earths sintered magnet, R-T-B system rare earths sintered magnet and electric motor
CN104894470B (en) * 2011-07-08 2017-05-31 昭和电工株式会社 R T B systems rare earths sintered magnets alloy, alloy material, the magnet and their manufacture method and motor
US11024448B2 (en) 2011-07-08 2021-06-01 Tdk Corporation Alloy for R-T-B-based rare earth sintered magnet, process of producing alloy for R-T-B-based rare earth sintered magnet, alloy material for R-T-B-based rare earth sintered magnet, R-T-B-based rare earth sintered magnet, process of producing R-T-B-based rare earth sintered magnet, and motor
JP2014132628A (en) * 2012-12-06 2014-07-17 Showa Denko Kk Rare earth-transition metal-boron-based rare earth sintered magnet, and manufacturing method thereof
JP2022542188A (en) * 2019-11-21 2022-09-29 フージャン チャンティン ゴールデン ドラゴン レア-アース カンパニー リミテッド Neodymium-iron-boron magnet material, raw material composition, manufacturing method, and application

Similar Documents

Publication Publication Date Title
KR101084340B1 (en) Functionally graded rare earth permanent magnet
TWI476791B (en) RTB rare earth publication magnet
EP0197712B1 (en) Rare earth-iron-boron-based permanent magnet
JPH0510806B2 (en)
KR20080084717A (en) Rare earth permanent magnet and its preparation
JPH0374012B2 (en)
KR100204256B1 (en) Rare-earth-element-fe-b permanent magnet powder excellent in magnetic anisotropy and corrosion resistivity and bonded magnet therefrom
JP4003067B2 (en) Rare earth sintered magnet
JP5024531B2 (en) How to use rare earth sintered magnets
JPS6217149A (en) Manufacture of sintered permanent magnet material
JPH0616445B2 (en) Permanent magnet material and manufacturing method thereof
JP2005015886A (en) Rare earth permanent magnet
JPH04206805A (en) Manufacture of rare earth element-fe-b based magnet excellent in magnetic characteristics and corrosion resistance
JP3028337B2 (en) Rare earth magnet alloy powder, method for producing the same, and polymer composite rare earth magnet using the same
JPS62284002A (en) Magnetic alloy powder consisting of rare earth element
JP3234448B2 (en) Manufacturing method of high corrosion resistant permanent magnet
JPH0422008B2 (en)
JPH0945567A (en) Rare earth-iron-boron permanent magnet manufacturing method
JPH0445573B2 (en)
JPH08279407A (en) R-fe-b permanent magnet being excellent in electrical insulating properties, heat resistance and corrosion resistance and manufacture thereof
KR100204344B1 (en) Rare-earth-element-fe-co-b permanent magnet powder excellent in magnetic anisotropy and corrosion resistivity and bonded magnet therefrom
JPH0644526B2 (en) Rare earth magnet manufacturing method
JPS6386502A (en) Rare earth magnet and manufacture thereof
JP2720039B2 (en) Rare earth magnet material with excellent corrosion resistance
JPH01155603A (en) Manufacture of oxidation-resistant rare-earth permanent magnet