JP3028337B2 - Rare earth magnet alloy powder, method for producing the same, and polymer composite rare earth magnet using the same - Google Patents

Rare earth magnet alloy powder, method for producing the same, and polymer composite rare earth magnet using the same

Info

Publication number
JP3028337B2
JP3028337B2 JP63180385A JP18038588A JP3028337B2 JP 3028337 B2 JP3028337 B2 JP 3028337B2 JP 63180385 A JP63180385 A JP 63180385A JP 18038588 A JP18038588 A JP 18038588A JP 3028337 B2 JP3028337 B2 JP 3028337B2
Authority
JP
Japan
Prior art keywords
alloy
rare earth
earth magnet
powder
alloy powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63180385A
Other languages
Japanese (ja)
Other versions
JPH0231401A (en
Inventor
努 大塚
浩 百谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP63180385A priority Critical patent/JP3028337B2/en
Publication of JPH0231401A publication Critical patent/JPH0231401A/en
Application granted granted Critical
Publication of JP3028337B2 publication Critical patent/JP3028337B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0572Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes with a protective layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は、Nd2Fe14Bで代表されるR2T14B金属間化合物
を主相とするR・T・B系永久磁石合金粉末に係わるも
のであり、特に粉末とその製造方法とそれを用いた高分
子複合型希土類磁石に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an RTB-based permanent magnet alloy powder containing an R 2 T 14 B intermetallic compound represented by Nd 2 Fe 14 B as a main phase. More particularly, the present invention relates to a powder, a method for producing the same, and a polymer composite type rare earth magnet using the same.

<従来の技術> 近年、従来より高性能磁石としてSm・Co系磁石よりも
高い磁石特性を有するNd・Fe・B磁石が開発され、その
用途も拡大しつつある。このNd・Fe・B系永久磁石は大
別すると、焼結体磁石と、プラスチック磁石(プラマグ
とも呼ばれる)の2種類がある。
<Prior Art> In recent years, Nd / Fe / B magnets having higher magnetic properties than Sm / Co magnets have been developed as high performance magnets, and their applications are expanding. The Nd / Fe / B permanent magnets are roughly classified into two types: sintered magnets and plastic magnets (also called pramags).

この中で焼結磁石は、その製法、組成等もほぼ確立さ
れ、高い磁石特性を有する製品が工業ラインで製造さ
れ、ユーザーに提供されている。
Among them, the manufacturing method and composition of sintered magnets are almost established, and products having high magnet properties are manufactured on industrial lines and provided to users.

しかしながら、プラマグの分野においては、現在のと
ころ磁石特性も低く、またその製造工程についても確立
されていないのが現状である。それ故ユーザーが満足い
くような高い磁石特性を有するプラマグの製品は、提供
されていない。
However, in the field of plastic mags, at present, the magnet properties are low, and the manufacturing process thereof has not been established at present. Therefore, Pramag products having high magnetic properties satisfying users are not provided.

現在、Nd・Fe・B系プラマグ用合金粉末としては、合
金溶湯急冷による液体急冷合金粉末(第1の合金粉末と
呼ぶ)、この液体急冷合金粉末を熱間加工した粉末(第
2の合金粉末と呼ぶ)、焼結体又はインゴットを粉砕し
た粉末(第3の合金粉末と呼ぶ)の3種類が提案されて
いる。
At present, as alloy powders for Nd / Fe / B-based plastic mags, liquid quenched alloy powder obtained by quenching alloy melt (referred to as first alloy powder), powder obtained by hot working this liquid quenched alloy powder (second alloy powder) ) And powder obtained by pulverizing a sintered body or an ingot (referred to as a third alloy powder).

しかしながら、第1の合金粉末は高いHcは有するもの
の粉末が等方的であるため、磁場配向ができず、Sm-Co
系よりも高い(BH)maxを有するプラマグを製造するこ
とができない。またさらにこの欠点を改良し、粉末に異
方性をもたせるために開発されたのが第2の液体急冷合
金粉末を熱間加工させた第2の合金粉末である。この方
法は、等方的である液体急冷合金粉末を熱間加工するこ
とにより、ある一種の集合組織をもたせ、形状異方性化
をねらったものである。この方法によりある程度の磁場
配向の効果が生じBrも向上するもののその効果は小さ
く、さらにHcの低下を生ずる。しかも、工程が複雑で多
大のコストアップとなるため工業上好ましくない。第3
の方法である焼結体、インゴットの粉砕粉末を使用する
方法は、従来のSm・Co系プラマグの製法をNd・Fe・Bに
そのまま応用したものである。しかしながらこの方法で
は磁場配向によるBrの向上は可能であるが、Nd・Fe・B
粉末は粉砕により著しいHcの劣化を生ずるため、プラマ
グ用の粉末としては、適用できない。この原因は、粉砕
時に生ずる粉末表面の加工変質層に起因するHcの低下や
また最大の原因である粉砕された粉末がHd・Fe・Bの保
磁力の発生に不可欠なネオジウム富裕(Ndrich)相でか
ならずしもくるまれているとは限らないためである。
However, although the first alloy powder has a high Hc, the powder is isotropic, so the magnetic field orientation cannot be performed, and the Sm-Co
Plamag with higher (BH) max than the system cannot be produced. Further, a second alloy powder obtained by hot working a second liquid quenched alloy powder has been developed to further improve this drawback and give the powder anisotropy. In this method, an isotropic liquid quenched alloy powder is hot-worked so as to have a certain type of texture and to achieve shape anisotropy. According to this method, a certain degree of magnetic field orientation effect is produced and Br is also improved, but the effect is small and Hc is further reduced. Moreover, the process is complicated and the cost is greatly increased, which is not industrially preferable. Third
The method of using a pulverized powder of a sintered body or an ingot, which is the method of (1), is a method in which a conventional method of producing a Sm / Co-based pramag is directly applied to Nd / Fe / B. However, in this method, Br can be improved by magnetic field orientation, but Nd.Fe.B
The powder cannot be used as a powder for plastic mag because it causes a significant deterioration of Hc due to pulverization. This is due to the decrease in Hc caused by the deteriorated layer on the surface of the powder generated during the pulverization, and the largest cause is that the pulverized powder is a neodymium-rich (Ndrich) phase that is indispensable for generating the coercive force of Hd, Fe and B This is because it is not always wrapped.

即ち、本系磁石は、磁性相であるNd2Fe14B相がNdrich
相にくるまれている時、このNdrich相に磁壁の移動がト
ラップされているため高保磁力を発生すると考られる。
従って、磁性相が粉末表面に露出した場合、この場所よ
り磁壁が自由に反転するため、保磁力は著しく劣化す
る。ましてや、このNd2Fe14B相のみでは磁石とはなり得
ないのである。
That is, in the present magnet, the Nd 2 Fe 14 B phase
When wrapped in a phase, the Ndrich phase is considered to generate a high coercive force because the movement of the domain wall is trapped.
Therefore, when the magnetic phase is exposed on the powder surface, the domain wall is freely inverted from this position, and the coercive force is significantly deteriorated. Furthermore, this Nd2Fe14B phase alone cannot be a magnet.

また、本系磁石粉末は、大気中で極めて活性である希
土類元素や、Feを主成分としているため、酸化しやす
い。
Further, since the present magnet powder contains a rare earth element or Fe as a main component which is extremely active in the atmosphere, it is easily oxidized.

また、特に射出成形時には、高分子の粘性を下げ成形
性を良好にするため、200℃前後に昇温するが、この時
にも高温酸化の影響を受け磁石特性が劣化するという欠
点も有していた。
In addition, especially during injection molding, the temperature is raised to around 200 ° C in order to lower the viscosity of the polymer and improve the moldability, but this also has the disadvantage that the magnet characteristics are degraded due to high temperature oxidation. Was.

更に、成形した後においても、プラマグ表面に粉末表
面が露出している部分がある為に、使用中においても、
この部分より酸化が進行するため、予め粉末表面に各種
化学処理を施すことにより、耐酸化性をもたせようとし
ているが、まだ充分とは言い難く、成形したプラマグの
表面にさらに耐酸化性を目的とした樹脂コーティングを
施しているのが実状であり、コストアップとなってい
た。
Furthermore, even after molding, since there is a part where the powder surface is exposed on the surface of the plastic mag, even during use,
Since oxidation progresses from this part, the surface of the powder is subjected to various chemical treatments in advance to give it oxidation resistance, but it is still not enough, and the surface of the molded pramag is intended to have more oxidation resistance. The actual condition is that the resin coating is applied, which increases the cost.

[発明が解決しようとする課題] 即ち、以上述べたような点より、いずれもNd・Fe・B
系のプラマグ用粉末として適していなかった。
[Problems to be Solved by the Invention] That is, from the points described above, all of Nd, Fe, B
It was not suitable as a powder for plastics.

又本系合金は、その組成としてNd,Feといった大気中
で酸化し易い元素を含有しているためその合金、合金粉
末、焼結体は大気中の湿気等により酸化し錆を発生す
る。
Further, since the present alloy contains an element which is easily oxidized in the atmosphere, such as Nd and Fe, its alloy, alloy powder, and sintered body are oxidized by the humidity in the atmosphere and generate rust.

それ故、これら合金粉末の取り扱いは困難であり、ボ
ンド磁石作製時の加熱硬化等の工程において、磁石粉末
の酸化による特性劣化を生ずる。またさらにボンド磁石
化した後においても、表面に粉末が露出しているため、
ここより酸化が進行し、磁石特性を劣化させるばかりで
なく、さらにこの酸化物による周辺部品への汚染や、極
度の酸化進行によるボンド磁石の破壊すら生ずることも
あった。
Therefore, it is difficult to handle these alloy powders, and the properties of the magnet powder are degraded due to oxidation of the magnet powder in a process such as heat curing during the production of the bonded magnet. In addition, even after making the bond magnet, because the powder is exposed on the surface,
Oxidation proceeds from here, not only deteriorating the magnet properties, but also contaminating peripheral parts with this oxide and even breaking down the bonded magnet due to extreme oxidation.

この対策として、粉末をTiカップリングやシランカッ
プリング剤といった処理を施しているものの全くといっ
ていいほどその効果がないのが実状である。さらにボン
ド磁石を作成した後、その表面に耐酸化性の樹脂コート
をする方法もとられているが、射出成形等で成形される
複雑な形状や細長い円筒状のものでは、完全にはコーテ
ィングできない場合もあり、その対策としては適してい
ない。
As a countermeasure for this, the powder is treated with a Ti coupling or a silane coupling agent, but in reality it is almost ineffective. Furthermore, a method has been proposed in which a bonded magnet is formed and then its surface is coated with an oxidation-resistant resin, but it cannot be completely coated with a complicated shape or an elongated cylindrical shape formed by injection molding or the like. In some cases, it is not suitable as a countermeasure.

本発明の技術課題は、 (1)Nd2Fe14B相がNdrich層により包まれた粉末を作製
することにより、磁場配向の効果を大きくし高Br及び高
IHCの粉末を作製する。
The technical problems of the present invention are as follows: (1) By producing a powder in which an Nd 2 Fe 14 B phase is wrapped by an Ndrich layer, the effect of magnetic field orientation can be increased to increase the Br and
Preparing a powder of I H C.

(2)さらにこの粉末の表面に、Ni,Cu等の有機電解め
っき層を形成させることにより耐酸化性を持たせる。
(2) Further, an oxidation resistance is provided by forming an organic electrolytic plating layer of Ni, Cu or the like on the surface of the powder.

以上2点を有機電解めっき法で達成させることによ
り、高い磁場配向性を有し、しかも高保磁力を有しさら
に耐酸化性に優れた希土類プラマグ用粉末及びその製造
方法を低コストにて提供することにある。
By achieving the above two points by an organic electrolytic plating method, a powder for a rare earth pramag having high magnetic field orientation, high coercive force, and excellent oxidation resistance and a method for producing the same are provided at low cost. It is in.

また、本発明のもう1つの技術課題は、これらボンド
磁石用粉末に耐食性に優れた金属又は合金を有機電解め
っきによるめっきコーティングを施すことにより、耐食
性に優れたボンド磁石用R・T・B系合金粉末及びその
製造方法を提供することにある。
Another technical problem of the present invention is to provide a bond magnet R / T / B system having excellent corrosion resistance by applying a plating coating of a metal or alloy having excellent corrosion resistance to the bonded magnet powder by organic electrolytic plating. An object of the present invention is to provide an alloy powder and a method for producing the same.

更に本発明のさらにもう1つの技術課題は、これらの
R・T・B系合金粉末を用いた高分子複合希土類磁石と
その製造方法とを提供することにある。
Still another object of the present invention is to provide a polymer composite rare earth magnet using these RTB-based alloy powders and a method for producing the same.

[課題を解決するための手段] 本発明によれば、R2T14B(但し、RはYを含む希土類
元素、Tは遷移金属を表わす。)金属間化合物を主相と
するR・T・B系合金粉末表面に、第1のめっき層を有
し、上記第1のめっき層は、R,R−T合金,及びR−T
−B合金の少くとも1種を含み、前記R−T合金及びR
−T−B合金は、Rリッチ相を主相とするものであるこ
とを特徴とする希土類磁石合金粉末が得られる。
[Means for Solving the Problems] According to the present invention, R 2 T 14 B (where R represents a rare earth element containing Y and T represents a transition metal) has an intermetallic compound of R · T as a main phase. -A first plating layer is provided on the surface of the B-based alloy powder, and the first plating layer is formed of an R, RT alloy, and an RT alloy.
-B alloy and at least one of the foregoing RT alloy and R
A rare earth magnet alloy powder characterized in that the -TB alloy has an R-rich phase as a main phase.

また、本発明によれば、前記希土類磁石合金粉末にお
いて、上記第1のめっき層上に、更に、Ni,Cu,Co,Fe,M
o,及びTiのうち少くとも1種からなるか、又はZn及びAl
の内の少なくとも一種とNi,Cu,Co,Fe,Mo,及びTiの内の
少なくとも1種からなる金属層(合金層も含む)からな
る第2のめっき層を含むことを特徴とする希土類磁石合
金粉末が得られる。
Further, according to the present invention, in the rare-earth magnet alloy powder, Ni, Cu, Co, Fe, M
o, and at least one of Ti, or Zn and Al
And a second plating layer comprising a metal layer (including an alloy layer) made of at least one of Ni, Cu, Co, Fe, Mo, and Ti. An alloy powder is obtained.

また、本発明によれば、前記いずれかの希土類磁石合
金粉末を高分子樹脂を用いて成形してなることを特徴と
する高分子複合型希土類磁石が得られる。
Further, according to the present invention, there is provided a polymer composite type rare earth magnet obtained by molding any one of the rare earth magnet alloy powders using a polymer resin.

また、本発明によれば、R2T14B(但し、RはYを含む
希土類元素、Tは遷移金属を表わす。)金属間化合物を
主相とするR・T・B系合金粉末表面に、R,R−T合金,
R−T−B合金の少くとも1種よりなり、前記R−T合
金及びR−T−B合金は、Rリッチ相を主相とするもの
である第1の有機電解めっき層を電着する第1のめっき
工程を含むことを特徴とする希土類磁石合金粉末の製造
方法が得られる。
Further, according to the present invention, R 2 T 14 B (where R represents a rare earth element containing Y and T represents a transition metal) The surface of an R · T · B-based alloy powder having an intermetallic compound as a main phase. , R, RT alloy,
It is composed of at least one kind of R-T-B alloy, and the R-T alloy and the R-T-B alloy electrodeposit a first organic electrolytic plating layer having an R-rich phase as a main phase. A method for producing a rare earth magnet alloy powder characterized by including a first plating step is obtained.

本発明によれば、上記希土類磁石合金粉末の製造方法
において、上記第1の有機電解めっき層表面に、Ni,Cu,
Co,Fe,Mo,及びTiのうちの1種からなるか、又はZn及びT
iの内び少くとも1種とNi,Cu,Co,Fe,Mo,及びTiの内の少
なくとも1種とからなる金属層(合金層を含む)の第2
の有機電解めっき層を電着する第2のめっき工程を含む
ことを特徴とする希土類磁石合金粉末の製造方法が得ら
れる。
According to the present invention, in the method for producing a rare-earth magnet alloy powder, Ni, Cu,
One of Co, Fe, Mo, and Ti, or Zn and T
a second metal layer (including an alloy layer) composed of at least one of i and at least one of Ni, Cu, Co, Fe, Mo, and Ti
And a second plating step of electrodepositing the organic electrolytic plating layer of (1).

ここで、本発明の希土類磁石合金粉末の製造方法にお
いて、第1又は第2の有機電解めっき工程の後工程とし
て、400〜1000℃で熱処理する熱処理工程を含むことが
望ましい。
Here, the method for producing a rare earth magnet alloy powder of the present invention preferably includes a heat treatment step of performing a heat treatment at 400 to 1000 ° C. as a step after the first or second organic electrolytic plating step.

本発明によれば、前記いずれかの希土類磁石合金粉末
の製造方法によって得られる希土類磁石合金粉末を更
に、高分子樹脂を混合し、成形することを特徴とする高
分子複合型希土類磁石の製造方法が得られる。
According to the present invention, there is provided a method for producing a polymer composite type rare earth magnet, wherein the rare earth magnet alloy powder obtained by any one of the methods for producing a rare earth magnet alloy powder is further mixed with a polymer resin and molded. Is obtained.

ここで本発明において高分子樹脂を用いて成形すると
は、原料粉末に高分子を混合して、圧縮成形、押出成形
又は射出成形して成形体を得ること、又は、原料粉末か
ら圧縮成形した成形体に、高分子樹脂を塗布又は含浸す
ることを含む。
Here, molding using a polymer resin in the present invention means that a polymer is mixed with a raw material powder and compression molded, extruded or injection molded to obtain a molded body, or molded by compression molding from the raw material powder. Coating or impregnating the body with a polymeric resin.

Nd・Fe・B系プラマグ用粉末としては前述した如く、
液体急冷合金粉末の高保磁力の特性を利用したものと、
Nd・Fe・B焼結体又はインゴットの粉砕粉末の高い磁場
配向を利用したものが、提案されていたが、いずれも、
その磁場配向性による高Brと高い保磁力の焼結体Nd・Fe
・B磁石の有する特性の両者を生かすことは、できな
い。
As mentioned above, powder for Nd / Fe / B plastic
One utilizing the property of high coercive force of liquid quenched alloy powder,
Nd-Fe-B sintered compacts or ingots utilizing high magnetic field orientation of the pulverized powder have been proposed.
High Br and high coercivity sintered compact Nd ・ Fe due to its magnetic field orientation
-It is not possible to make use of both the characteristics of the B magnet.

またそれとは別にその耐酸化性という、実装上極めて
大きな問題点をも解決されていなかった。本発明者らは
種々の検討を加えた結果、有機電解めっき法を用いるこ
とによりNd2 T14B相上にNdをめっきすることができるこ
とを見い出し本発明に至ったものである。
Apart from that, the extremely large problem of its oxidation resistance, which is a serious problem in mounting, has not been solved. As a result of various studies, the present inventors have found that Nd can be plated on a Nd2T14B phase by using an organic electrolytic plating method, and have reached the present invention.

更に有機溶媒を用いた有機電解めっきを用いることに
よりR・T・B系合金粉末に種々の金属又は合金がめっ
きできることを発見し本発明に至ったものである。
Further, the present inventors have found that various metals or alloys can be plated on the RTB-based alloy powder by using organic electrolytic plating using an organic solvent, and have reached the present invention.

すなわち、R−T−B系磁石合金は極めて酸化し易い
合金であるため通常の水溶液を用いたメッキでは、メッ
キ工程中に合金粉末が酸化してしまうためめっきするこ
とが不可能であった。さらに有機溶媒中では、Ndメタル
が酸化しないことに着目し有機電解めっきによりNdメタ
ル表面上へ耐酸化性めっき(Ni,Cu等)を施すことによ
り本発明の耐酸化性に優れた磁石粉末を発明することが
できたものである。
That is, since the RTB-based magnet alloy is an alloy that is very easily oxidized, it is impossible to perform plating using a normal aqueous solution because the alloy powder is oxidized during the plating process. Furthermore, focusing on the fact that Nd metal does not oxidize in an organic solvent, the oxidation-resistant plating (Ni, Cu, etc.) is applied to the surface of the Nd metal by organic electrolytic plating to obtain the magnet powder excellent in oxidation resistance of the present invention. It was possible to invent.

すなわち、本発明によれば、Nd2Fe14B相を主相とする
R・T・B合金粉末にNdメタル又は主にNdrich相を主相
とするR−T,R−T−B合金を有機電解めっき法により
めっきすることによりNd2Fe14B相の有する高い一軸磁気
異方性による高Br、及びNd2Fe14B相をRrichな相により
くるむことにより得られる高保磁力の両特性を生かした
粉末を得ることができるものである。
That is, according to the present invention, R-T of a main phase of Nd metal or predominantly Ndrich phase Nd 2 Fe 14 B phase to R · T · B alloy powder as a main phase, the R-T-B alloy high Br by high uniaxial magnetic anisotropy having the Nd 2 Fe 14 B phase by plating by an organic electrolytic plating method, and both characteristics of a high coercive force obtained by wrapping the Nd 2 Fe 14 B phase by Rrich phase It is possible to obtain a powder that has been utilized.

またさらに、この粉末の状態では粉末表面がRrichな
相となっているため耐酸化性が悪いものの、さらに有機
電解めっき法によりNi,Cu等のめっきを施すことにより
耐酸化性をもこの粉末に付与することができるものであ
る。またさらにこれら粉末を400〜1000℃の温度にて熱
処理することにより、さらに保磁力の向上が図れたり、
まためっき層間及びR・T・B粉末とめっき層のなじみ
の向上による耐食性の向上をも図ることができる。
Furthermore, in the state of this powder, the oxidation resistance is poor because the powder surface is in an R-rich phase, but the oxidation resistance is further improved by applying a plating of Ni, Cu, etc. by an organic electrolytic plating method. It can be given. Moreover, by further heat treating these powders at a temperature of 400 to 1000 ° C., the coercive force can be further improved,
Corrosion resistance can also be improved by improving the compatibility between the plating layer and the R, T, B powder and the plating layer.

またさらに、これらめっき層を積層させることにより
耐食性を一段と向上することも可能となる。
Further, by laminating these plating layers, the corrosion resistance can be further improved.

ここで本発明において有機電解めっき法を用いたのは
通常の水溶液によるめっきでは水によりNd・Fe・Bが酸
化してしまうためである。また、熱処理温度を400〜100
0℃としたのは、400℃より低い温度ではその効果がほと
んどなく、また1000℃以上では粉末間での焼結が生じ、
凝集状態となり、さらに粉末の磁石特性も劣化するため
である。
Here, the reason why the organic electrolytic plating method is used in the present invention is that Nd, Fe, and B are oxidized by water in plating with a normal aqueous solution. Also, heat treatment temperature is 400 ~ 100
The reason why the temperature is set to 0 ° C is that there is almost no effect at temperatures lower than 400 ° C, and sintering between powders occurs at 1000 ° C or higher,
This is because the particles are in an agglomerated state, and the magnetic properties of the powder are also deteriorated.

本発明では、このめっき液に有機溶媒を用いた有機電
解めっきを行った結果R・T・Bの粉末が酸化すること
なくめっきができ、さらにこの粉末を用いたボンド磁石
は耐食性に優れ、従来まで必要としていたボンド磁石へ
の耐酸化性樹脂等のコーティングが不用となりコストダ
ウンも図ることができるものである。
In the present invention, as a result of performing organic electrolytic plating using an organic solvent for the plating solution, the R, T, and B powders can be plated without being oxidized, and the bonded magnet using the powders has excellent corrosion resistance. This eliminates the need for a coating of an oxidation-resistant resin or the like on the bonded magnet, which has been required until now, so that the cost can be reduced.

さらに粉末の酸化等による磁石特性の劣化も防ぐこと
ができ、工業上極めて有益である。
Further, deterioration of magnet properties due to oxidation of the powder and the like can be prevented, which is extremely useful industrially.

以上述べた如くNd2Fe14B相を主相とするR・T・B系
粉末に、Rメタル又はRrichな相を主相とするR−T,R−
T−B合金を有機電解めっき法によりめっきした後、さ
らに有機電解法によるNi,Cu,Al等の耐酸化性を有する金
属又は合金をめっきすることにより、磁石特性、耐食性
に優れたプラマグ用粉末が製造でき工業上極めて有益で
ある。
As described above, the R-T, R- phase having the R metal or the Rrich phase as the main phase is added to the RTB-based powder having the Nd 2 Fe 14 B phase as the main phase.
Plamag powder with excellent magnet properties and corrosion resistance by plating a TB alloy with an organic electrolytic plating method and then plating an oxidation-resistant metal or alloy such as Ni, Cu, or Al by the organic electrolytic method. Can be produced, which is extremely useful industrially.

また、この方法では、通常の有機電解めっきを用いる
ことによりその目的が達成されるものであるため、コス
トの低減も図れ、しかも量産性の極めて高い方策であ
る。
In addition, in this method, the purpose is achieved by using ordinary organic electrolytic plating, so that the cost can be reduced and mass production is extremely high.

<実施例> 本発明の実施例について説明する。<Example> An example of the present invention will be described.

実施例−1 純度95%以上のNd,Fe,Bを用い26.8Nd-1.0B-Febal(wt
%)の組成を有するインゴットをAr中高周波溶解により
得た。
Example 1 26.8Nd-1.0B-Febal (wt.) Using Nd, Fe, B having a purity of 95% or more.
%) Was obtained by high frequency melting in Ar.

このインゴットをディスクミルで粗粉砕した後ジェッ
トミルにて平均粒径20〜30μmに微粉砕した。
This ingot was coarsely pulverized by a disk mill and then finely pulverized by a jet mill to an average particle diameter of 20 to 30 μm.

この粉末をメタノール−塩化ネオジウム−ホウ酸の有
機溶解めっき浴中でNdメタル、90Nd-10Fe、90Nd-9.5Fe-
0.5B(wt%)の3種類をアノードとしためっきを施し
た。(3種類のめっき)この時の膜厚は1μm程度であ
った。さらに続いて、それぞれの粉末をメタノール−酢
酸Ni−ホウ酸の浴にてNiめっきを施した。この膜厚は5
〜7μmであった。
Nd metal, 90Nd-10Fe, 90Nd-9.5Fe- in a methanol-neodymium chloride-boric acid organic solution plating bath.
Plating was performed using three types of 0.5B (wt%) as anodes. (Three types of plating) At this time, the film thickness was about 1 μm. Subsequently, each powder was subjected to Ni plating in a bath of methanol-Ni-acetate-boric acid. This film thickness is 5
77 μm.

これら粉末にエポキシ樹脂を25vol%混合した後、25k
Oeの磁界中5ton/cm2の圧力で成形した。さらに100〜120
℃で1時間保持した。また比較例として、市販されるGM
社製のMQ-1タイプの粉末を20〜30μmに粉砕した後、上
記と同様の方法にてエポキシ樹脂を25vol%混合して、
ボンド磁石を作製した。
After mixing 25vol% of epoxy resin with these powders, 25k
It was molded at a pressure of 5 ton / cm2 in a magnetic field of Oe. Further 100-120
C. for 1 hour. As a comparative example, a commercially available GM
After pulverizing the MQ-1 type powder made by the company to 20-30 μm, 25% by volume of epoxy resin is mixed by the same method as above,
A bonded magnet was produced.

これら試料の磁石特性及び塩水噴霧試験(JIS-2371)
を72hr施した結果を第1表に示す。
Magnet properties and salt spray test of these samples (JIS-2371)
Is shown in Table 1 for 72 hours.

第1表より本発明による粉末を用いたボンド磁石は、
従来のものに比べ磁石特性が著しく向上ししかも耐食性
に優れていることがわかる。
From Table 1, the bonded magnet using the powder according to the present invention is:
It can be seen that the magnet properties are remarkably improved as compared with the conventional one and the corrosion resistance is excellent.

実施例−2 実施例−1で得られたNdメタル、Nd・Fe、Nd・Fe・B
のめっきとNiのめっきを施した粉末を真空中にて、300
〜1100℃の温度で熱処理を施した。さらにこの粉末を実
施例と同様エポキシ樹脂を25vol%混合して25kOeの磁界
中5ton/cm2の圧力で成形した。さらにエポキシ樹脂を硬
化させるため、100〜120℃の温度で保持した。
Example 2 Nd metal, Nd.Fe, Nd.Fe.B obtained in Example 1
Powder and Ni-plated powder in vacuum
The heat treatment was performed at a temperature of 11100 ° C. Further, this powder was mixed with 25 vol% of an epoxy resin in the same manner as in the example, and was molded at a pressure of 5 ton / cm 2 in a magnetic field of 25 kOe. In order to further cure the epoxy resin, it was kept at a temperature of 100 to 120 ° C.

第1図に熱処理温度、めっきしたNd・Fe・B合金の組
成を変化させた時の磁石特性を示す。
FIG. 1 shows the magnet properties when the heat treatment temperature and the composition of the plated Nd.Fe.B alloy were changed.

第1図よりわかるように、熱処理温度が400〜1000℃
の間で、磁石特性が向上していることがわかる。また、
1100℃では粉末同志が結着しており、粉末ではなくなっ
ていたため、試料とすることができなかった。
As can be seen from FIG. 1, the heat treatment temperature is 400-1000 ° C.
It can be seen that the magnetic properties are improved between the two. Also,
At 1100 ° C, the powder was bound together and was no longer a powder, so it could not be used as a sample.

実施例−3 実施例−1で準備した26.8Nd-1.0B-Febal(wt%)の
組成を有する粉末に対し、実施例−1と同様に第一層と
して、Ndメタルをめっきした。さらにこの粉末に対し、
有機電解法によりNi,Cu,AL,Zn,Co,Mo,Tiの金属及びNi-Z
n,Fe-Co,Al-Cu,Mo-Fe,Ti-Alの合金めっきを施した。こ
の時その膜厚は5〜10μmとなるようにした。
Example-3 Nd metal was plated as a first layer on the powder having the composition of 26.8Nd-1.0B-Febal (wt%) prepared in Example-1 as in Example-1. Furthermore, for this powder,
Ni, Cu, AL, Zn, Co, Mo, Ti metals and Ni-Z by organic electrolysis
Alloy plating of n, Fe-Co, Al-Cu, Mo-Fe, Ti-Al was applied. At this time, the film thickness was set to 5 to 10 μm.

これら粉末に実施例−2と同様、エポキシ樹脂混合、
磁場中成形加熱硬化を施し、ボンド磁石を作製した。
Epoxy resin mixed with these powders as in Example-2,
The molded magnet was heated and cured in a magnetic field to produce a bonded magnet.

これらボンド磁石の磁石特性を測定したところ、Br1
2.0〜12.4kG、(BH)max27〜30MGOe、IHCは8.0〜10.2kO
eであった。
When the magnet properties of these bonded magnets were measured, Br1
2.0~12.4kG, (BH) max27~30MGOe, I H C is 8.0~10.2kO
e.

またこれらボンド磁石と実施例−1で用いた比較例の
GM社製のMQ-1のパウダーを用いて作製したボンド磁石を
JIS-2371に基づき塩水噴霧試験を72hr施した。その結果
を第2表に示す。
In addition, these bonded magnets and the comparative example used in Example-1
Bond magnets made using GM's MQ-1 powder
A salt spray test was conducted for 72 hours based on JIS-2371. Table 2 shows the results.

第2表より本発明によるボンド磁石はいずれも耐食性
に優れていることがわかる。
Table 2 shows that all of the bonded magnets according to the present invention have excellent corrosion resistance.

以上Nd・Fe・Bについてのみ述べたがYを含めた希土
類元素Rと遷移金属Tを用いたR・T・B系でも同様の
ことが期待できることは容易に推察できるものである。
Although only Nd.Fe.B has been described above, it can be easily inferred that the same can be expected in an R.T.B system using a rare earth element R including Y and a transition metal T.

さらにめっきする金属においても有機溶媒中で、めっ
きが可能であり耐食性を有する金属、合金であれば何で
もよいことも容易に推察できるものである。尚、本実施
例においては、Ndメタルをめっき後、この表面にNi,Cu,
A・,Zn,Co,Mo,Tiの少くとも1種よりなる金属又は合金
のめっきを施したが、本発明においてはこの金属又は合
金よりなるめっき膜は多層構造を有するものも含まれる
ことは、当業者では容易に理解できるものである。
Further, it can be easily inferred that any metal or alloy that can be plated in an organic solvent and has corrosion resistance may be used for the metal to be plated. In this example, after plating Nd metal, Ni, Cu,
Although plating of a metal or an alloy of at least one of A, Zn, Co, Mo, and Ti has been performed, in the present invention, a plating film of the metal or the alloy may include a film having a multilayer structure. It is easily understood by those skilled in the art.

<発明の効果> 以上述べたように本発明によれば、R2T14B相を主相と
するR・T・B合金粉末に有機電解めっき法により、N
i,Al,Ti,Fe,Co,Zn,Mo,Cuの一種以上又は合金のめっき層
を形成させることによりその粉末の耐食性が著しく向上
するため、その粉末を用いたボンド磁石も著しく耐食性
の優れたものを製造することができ、又、製造工程中の
酸化等による磁石特性の劣化を防ぐこともでき工業上極
めて有益である。
<Effects of the Invention> As described above, according to the present invention, an R • T • B alloy powder having an R 2 T 14 B phase as a main phase is treated with N by an organic electrolytic plating method.
By forming a plating layer of at least one of i, Al, Ti, Fe, Co, Zn, Mo, and Cu or an alloy, the corrosion resistance of the powder is remarkably improved, and the bonded magnet using the powder is also remarkably excellent in corrosion resistance. Can be manufactured, and deterioration of magnet properties due to oxidation or the like during the manufacturing process can be prevented, which is extremely useful industrially.

また本発明では、通常のめっき工程とほぼ同様の有機
電解めっきを用いているため低コストでしかも大量生産
が可能であり有益である。
Further, in the present invention, since the same organic electrolytic plating as that in the ordinary plating step is used, low cost and mass production are possible, which is advantageous.

本発明によれば、R2T14B相を主相とするR・T・B合
金粉末に、Rメタル又はRrich相を主相とするR−T,R−
T−B合金と有機電解めっき法によりめっきすることに
より従来の高分子複合型磁石用希土類磁石合金粉末に比
べ著しく磁石特性の優れた高分子複合型磁石用希土類磁
石合金粉末及び高分子複合型希土類磁石が得られるもの
である。
According to the present invention, an R-T-R-B alloy powder having an R2T14B phase as a main phase is provided with an R-T, R-
Rare earth magnet alloy powder for polymer composite magnets and polymer composite rare earths, which have remarkably excellent magnet properties compared to conventional rare earth magnet alloy powders for polymer composite magnets by plating with a TB alloy by an organic electrolytic plating method A magnet is obtained.

これは従来までの粉末では、高い保磁力を得るために
は等方性の粉末を使用せねばならずさらに高い磁気異方
性による高Brを得るためには、保磁力の極めて低い粉末
を使用さぜるをえない、といった矛盾の狭間にあった
が、本発明により高い磁気異方性を有するR2T14B相粉末
に高保磁力を発生させるために不可欠なRrich相をめっ
きすることによりこの問題を解決でき、高特性を享受し
うるに至った。
This is because conventional powders must use isotropic powder to obtain high coercive force, and use powder with extremely low coercive force to obtain high Br due to higher magnetic anisotropy. Although it was unavoidable, by plating the Rrich phase essential for generating high coercive force on R 2 T 14 B phase powder having high magnetic anisotropy according to the present invention, This problem can be solved and high characteristics can be enjoyed.

さらに従来R−T−B系磁石合金粉末は、酸化し易い
ため扱いづらくさらにボンド磁石化した後に耐酸化性の
コーティングをせねばならなかったが、本発明では上記
粉末にさらに有機電解めっきを行うことによりNi,Al等
の耐食性に優れた合金層を形成させることが可能となっ
たため、極めて耐食性に優れ、しかも磁石特性の高い粉
末及びそれを用いた高分子複合型希土類磁石を得ること
ができるものである。
Further, conventional RTB-based magnetic alloy powders are liable to be oxidized, so that they are difficult to handle, and must be coated with an oxidation-resistant coating after being made into a bonded magnet. This makes it possible to form an alloy layer having excellent corrosion resistance, such as Ni and Al, so that it is possible to obtain a powder having excellent corrosion resistance and high magnet properties and a polymer composite rare earth magnet using the same. Things.

また、本発明の希土類磁石合金粉末は通常の有機電解
めっき工程を用いればよいため低コストで製造できしか
も量産性が高いので工業上極めて有効である。
Further, the rare earth magnet alloy powder of the present invention can be produced at low cost by using a normal organic electrolytic plating process, and is highly effective in industry because of high mass productivity.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の実施例に係る希土類磁石の熱処理温度
と各磁石特性を示す図である。
FIG. 1 is a diagram showing the heat treatment temperature of a rare earth magnet according to an embodiment of the present invention and the properties of each magnet.

フロントページの続き (56)参考文献 特開 昭62−284002(JP,A) 特開 平1−225102(JP,A) 特開 昭62−213208(JP,A)Continuation of the front page (56) References JP-A-62-284002 (JP, A) JP-A-1-225102 (JP, A) JP-A-62-213208 (JP, A)

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】R2T14B(但し、RはYを含む希土類元素、
Tは遷移金属を表わす。)金属間化合物を主相とするR
・T・B系合金粉末表面に、第1のめっき層を有し、上
記第1のめっき層は、R,R−T合金,及びR−T−B合
金の少くとも1種を含み、前記R−T合金及びR−T−
B合金は、Rリッチ相を主相とするものであることを特
徴とする希土類磁石合金粉末。
(1) R 2 T 14 B (where R is a rare earth element containing Y,
T represents a transition metal. ) R having an intermetallic compound as a main phase
A first plating layer on the surface of the TB alloy powder, wherein the first plating layer contains at least one of R, RT alloy, and RTB alloy; RT alloy and RT-
The rare earth magnet alloy powder, wherein the B alloy has an R-rich phase as a main phase.
【請求項2】請求項1記載の希土類磁石合金粉末におい
て、上記第1のめっき層上に、更に、Ni,Cu,Co,Fe,Mo,
及びTiのうち少くとも1種からなるか、又はZn及びAlの
内の少なくとも一種とNi,Cu,Co,Fe,Mo,及びTiの内の少
なくとも1種からなる金属層(合金層も含む)からなる
第2のめっき層を含むことを特徴とする希土類磁石合金
粉末。
2. The rare-earth magnet alloy powder according to claim 1, further comprising Ni, Cu, Co, Fe, Mo,
And a metal layer (including an alloy layer) of at least one of Zn and Al, or at least one of Ni, Cu, Co, Fe, Mo, and Ti A rare earth magnet alloy powder comprising a second plating layer made of:
【請求項3】請求項1又は2記載の希土類磁石合金粉末
を高分子樹脂を用いて成形してなることを特徴とする高
分子複合型希土類磁石。
3. A polymer composite rare earth magnet obtained by molding the rare earth magnet alloy powder according to claim 1 using a polymer resin.
【請求項4】R2T14B(但し、RはYを含む希土類元素、
Tは遷移金属を表わす。)金属間化合物を主相とするR
・T・B系合金粉末表面に、R,R−T合金,R−T−B合
金の少くとも1種よりなり、前記R−T合金及びR−T
−B合金は、Rリッチ相を主相とするものである第1の
有機電解めっき層を電着する第1のめっき工程を含むこ
とを特徴とする希土類磁石合金粉末の製造方法。
4. R 2 T 14 B (where R is a rare earth element containing Y,
T represents a transition metal. ) R having an intermetallic compound as a main phase
-The at least one of R, R-T alloy and R-T-B alloy is formed on the surface of the TB alloy powder, and the R-T alloy and the R-T alloy
A method for producing a rare earth magnet alloy powder, comprising a first plating step of electrodepositing a first organic electrolytic plating layer in which the -B alloy has an R-rich phase as a main phase.
【請求項5】請求項4記載の希土類磁石合金粉末の製造
方法において、上記第1の有機電解めっき層の表面にN
i,Cu,Co,Fe,Mo,及びTiのうちの1種からなるか、又はZn
及びAlの内の少くとも1種とNi,Cu,Co,Fe,Mo,及びTiの
うち少なくとも1種とよりなる金属層(合金層を含む)
の第2の有機電解めっき層を電着する第2のめっき工程
を含むことを特徴とする希土類磁石合金粉末の製造方
法。
5. The method for producing a rare earth magnet alloy powder according to claim 4, wherein the surface of the first organic electrolytic plating layer is N
consisting of one of i, Cu, Co, Fe, Mo, and Ti, or Zn
Metal layer (including alloy layer) consisting of at least one of Al and Al and at least one of Ni, Cu, Co, Fe, Mo, and Ti
A second plating step of electrodepositing the second organic electrolytic plating layer described above.
【請求項6】請求項4又は5記載の希土類磁石合金粉末
の製造方法において、前記第1又は第2のめっき工程の
後、400〜1000℃で熱処理を施す工程を有することを特
徴とする希土類磁石合金粉末の製造方法。
6. The method for producing a rare earth magnet alloy powder according to claim 4, further comprising a step of performing a heat treatment at 400 to 1000 ° C. after the first or second plating step. Manufacturing method of magnet alloy powder.
【請求項7】請求項4乃至6の内のいずれかに記載の希
土類磁石合金粉末の製造方法によって得られた希土類磁
石合金粉末を更に、高分子樹脂を混合し、成形すること
を特徴とする高分子複合型希土類磁石の製造方法。
7. A rare earth magnet alloy powder obtained by the method for producing a rare earth magnet alloy powder according to claim 4 is further mixed with a polymer resin and molded. A method for producing a polymer composite type rare earth magnet.
JP63180385A 1988-07-21 1988-07-21 Rare earth magnet alloy powder, method for producing the same, and polymer composite rare earth magnet using the same Expired - Fee Related JP3028337B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63180385A JP3028337B2 (en) 1988-07-21 1988-07-21 Rare earth magnet alloy powder, method for producing the same, and polymer composite rare earth magnet using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63180385A JP3028337B2 (en) 1988-07-21 1988-07-21 Rare earth magnet alloy powder, method for producing the same, and polymer composite rare earth magnet using the same

Publications (2)

Publication Number Publication Date
JPH0231401A JPH0231401A (en) 1990-02-01
JP3028337B2 true JP3028337B2 (en) 2000-04-04

Family

ID=16082307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63180385A Expired - Fee Related JP3028337B2 (en) 1988-07-21 1988-07-21 Rare earth magnet alloy powder, method for producing the same, and polymer composite rare earth magnet using the same

Country Status (1)

Country Link
JP (1) JP3028337B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2521142A1 (en) * 2010-05-14 2012-11-07 Nitto Denko Corporation Permanent magnet, and method for producing permanent magnet
US20220044854A1 (en) * 2020-08-08 2022-02-10 Yantai Shougang Magnetic Materials Inc NdFeB alloy powder for forming high-coercivity sintered NdFeB magnets and use thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04505778A (en) * 1990-06-04 1992-10-08 ザ ダウ ケミカル カンパニー Method of manufacturing metal bonded magnets
DE69220519T2 (en) * 1991-03-04 1998-02-19 Toda Kogyo Corp Process for plating a bonded magnet and bonded magnet with a metal coating
CN100414003C (en) * 2004-04-21 2008-08-27 浙江工业大学 Method for preparing neodymium-iron-boron magnetic powder coated with metal layer by electrochemical deposition
JP4623308B2 (en) * 2006-03-31 2011-02-02 戸田工業株式会社 Sm-Fe-N-based magnetic particle powder for bonded magnet and method for producing the same, resin composition for bonded magnet, and bonded magnet
CN103537877A (en) * 2013-10-31 2014-01-29 江苏三科安全科技有限公司 Metal electro-deposition process of barrier anti-explosion aluminum alloy

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62213208A (en) * 1986-03-14 1987-09-19 Seiko Epson Corp Manufacture of rare earth magnet
JPH01225102A (en) * 1988-03-04 1989-09-08 Nippon Steel Corp High corrosion-resistant rare earth permanent magnet, raw material powder therefor and manufacture thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2521142A1 (en) * 2010-05-14 2012-11-07 Nitto Denko Corporation Permanent magnet, and method for producing permanent magnet
EP2521142A4 (en) * 2010-05-14 2012-12-05 Nitto Denko Corp Permanent magnet, and method for producing permanent magnet
US20220044854A1 (en) * 2020-08-08 2022-02-10 Yantai Shougang Magnetic Materials Inc NdFeB alloy powder for forming high-coercivity sintered NdFeB magnets and use thereof
US11923114B2 (en) * 2020-08-08 2024-03-05 Yantai Shougang Magnetic Materials Inc NdFeB alloy powder for forming high-coercivity sintered NdFeB magnets and use thereof

Also Published As

Publication number Publication date
JPH0231401A (en) 1990-02-01

Similar Documents

Publication Publication Date Title
EP0898778B1 (en) Bonded magnet with low losses and easy saturation
US20150187494A1 (en) Process for preparing rare earth magnets
JP3028337B2 (en) Rare earth magnet alloy powder, method for producing the same, and polymer composite rare earth magnet using the same
EP1220241B1 (en) POWDER FOR FORMING A R-Fe-B BONDED MAGNET, CORROSION-RESISTANT R-Fe-B BONDED MAGNET AND METHODS FOR PREPARATION THEREOF
JPH11288807A (en) Flat leaf-like rare earth-iron-boron magnet alloy particle powder for bonded magnet, manufacture thereof and the bonded magnet
JP2546989B2 (en) Permanent magnet with excellent oxidation resistance
JPS6338216A (en) Manufacture of corrosion-resistant rare-earth magnetic powder and magnetic unit made of the powder
EP4006931B1 (en) Manufacturing method of sintered magnet
JP2546988B2 (en) Permanent magnet with excellent oxidation resistance
JP3877552B2 (en) Method for manufacturing metal member
JPS62284002A (en) Magnetic alloy powder consisting of rare earth element
JPH06112026A (en) Permanent magnet with excellent thermal stability and corrosion-resisting property and manufacture thereof
JPH0644526B2 (en) Rare earth magnet manufacturing method
JPS6386502A (en) Rare earth magnet and manufacture thereof
JPH04206805A (en) Manufacture of rare earth element-fe-b based magnet excellent in magnetic characteristics and corrosion resistance
JP3164811B2 (en) Manufacturing method of isotropic permanent magnet
JP2546990B2 (en) Permanent magnet with excellent oxidation resistance
JPH05175024A (en) Rare earth bonded magnet materilal, rare earth bonded magnet and manufacture of the magnet
JPH0752685B2 (en) Corrosion resistant permanent magnet
JP2993255B2 (en) Manufacturing method of resin magnet
JP2922601B2 (en) Resin molded magnet
JP2903403B2 (en) Permanent magnet with excellent corrosion resistance
JPH1041114A (en) Manufacture of powder for high molecular composite type rare earth magnet
JPH03217003A (en) Manufacture of bond-type permanent magnet
JP2000223305A (en) Rare-earth r-fe-co-b magnetic powder, its manufacturing method, and bonded magnet made of the powder

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees