JPS6338216A - Manufacture of corrosion-resistant rare-earth magnetic powder and magnetic unit made of the powder - Google Patents

Manufacture of corrosion-resistant rare-earth magnetic powder and magnetic unit made of the powder

Info

Publication number
JPS6338216A
JPS6338216A JP62186775A JP18677587A JPS6338216A JP S6338216 A JPS6338216 A JP S6338216A JP 62186775 A JP62186775 A JP 62186775A JP 18677587 A JP18677587 A JP 18677587A JP S6338216 A JPS6338216 A JP S6338216A
Authority
JP
Japan
Prior art keywords
corrosion
rare earth
alloy
producing
resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62186775A
Other languages
Japanese (ja)
Inventor
ヘルビツヒ・ビンクラー
アレキサンダー・ボウフイア
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Treibacher Chemische Werke AG
Original Assignee
Treibacher Chemische Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Treibacher Chemische Werke AG filed Critical Treibacher Chemische Werke AG
Publication of JPS6338216A publication Critical patent/JPS6338216A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0578Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0572Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes with a protective layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 「産業上の利用分野] 本発明は、希土類−鉄一ボロンを含む磁石合金の耐蝕性
のある強磁性粉の製造方法及びこれを圧縮成型して作ら
れる磁性体に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for producing a corrosion-resistant ferromagnetic powder of a magnet alloy containing rare earth-iron-boron, and a magnetic body produced by compression molding the same. .

[従来の技術及びその問題点コ 永久磁気特性を有する材料は、モーター、マイクロホン
、ラウドスピーカ−1測定器等、又は日用品例えば磁石
等、電気及び電子分野で広く使用されている。現在では
、これらは元来のフェライト、Al−Ni−Coの磁石
合金又は希土類−ボロンを含有する磁石合金を含んでい
る。最初に掲げた2種類の型の磁石は比較的保磁性が弱
く、一方、最後の型の磁石合金の欠点は希土類のサマリ
ウムが入手困難なことと、この合金が非常に高価なこと
である。従って、高い保磁力及び高い残留磁気を示す良
い磁気特性を持った磁石合金を、余り高価でなく又商業
的に充分な量が入手可能な原料を用いて作る努力が色々
と成されて来た。そして希土類−鉄一ボロン型の合金が
発見され、ここて主に使用される希土類は比較的安価な
ネオジウムである。この合金では、ネオジウムを例えば
ジスプロシウムに代えることが出来、又残余成分の鉄の
代わりにコバルトを用い、保磁力の如き磁気特性を相当
高めたり、温度抵抗を高め(キューリ一点の増加)たり
することが出来る。
[Prior art and its problems] Materials with permanent magnetic properties are widely used in electrical and electronic fields, such as motors, microphones, loudspeakers, measuring instruments, etc., or everyday items such as magnets. Currently, these include original ferrites, Al-Ni-Co magnet alloys or rare earth-boron containing magnet alloys. The first two types of magnets have relatively weak coercivity, while the disadvantages of the last type of magnetic alloy are that the rare earth samarium is difficult to obtain and the alloy is very expensive. Therefore, various efforts have been made to produce magnetic alloys with good magnetic properties, exhibiting high coercivity and high remanence, using raw materials that are not very expensive and are commercially available in sufficient quantities. . Then rare earth-iron-boron type alloys were discovered, where the rare earth mainly used is neodymium, which is relatively inexpensive. In this alloy, neodymium can be replaced with dysprosium, for example, and cobalt can be used in place of the residual iron, significantly increasing magnetic properties such as coercive force and increasing temperature resistance (one Curie point increase). I can do it.

酸化しやすい希土類金属の酸化を防く為に、真空又は不
活性ガス雰囲気の中で、冶金的溶解法により希]−類−
鉄−ボロン合金を作ることが知られている。このように
して得られた合金を凝固して、合金ピース又はインボッ
!・にする。その磁気特性を高める為には、これを粉砕
しなければならない。
In order to prevent the oxidation of rare earth metals that are easily oxidized, metallurgical melting is performed in vacuum or in an inert gas atmosphere.
It is known to make iron-boron alloys. The alloy thus obtained is solidified into alloy pieces or ingots!・Make it. In order to enhance its magnetic properties, it must be crushed.

この粉砕は、この合金ピース又はインゴットを圧力ロー
ルに掛け、粉砕又はミリングしたり、粉状粒子を得る為
に合金ピース又はインゴットをスプレーしたり(米国特
許第4,585,473号)、又はアモルファスな組織
を得る為に溶体スピニング法(melt spanni
ng process )  (米国特許第4,490
゜395号)によったりして行われる。この合金粒子は
粉砕されて、粒子サイズが1から10μmになると、非
常に細かい為、酸化性が極度に高くなる。
This grinding can be done by placing the alloy pieces or ingots on pressure rolls and grinding or milling them, by spraying the alloy pieces or ingots to obtain powder particles (U.S. Pat. No. 4,585,473), or by grinding the alloy pieces or ingots into powdered particles (U.S. Pat. In order to obtain a unique structure, the solution spinning method (melt spanni
ng process ) (U.S. Pat. No. 4,490
゜No. 395). When the alloy particles are crushed to a particle size of 1 to 10 μm, they are extremely fine and therefore have extremely high oxidizing properties.

酸素を吸収すると、希土類金属成分、例えばネオジウム
、がその酸化物に変わり、その結果、この合金の強磁気
特性を作る為に必要とするNd−Fe−B相を作ること
が最早出来なくなる。ある酸素濃度で、磁石としての性
質が実質的に低下し始め、この酸素濃度がある臨界点に
達するとこの合金は磁気特性を全く失ってしまう。従っ
て、この合金粉は、保護雰囲気又は有機溶剤の中で操作
して、雰囲気酸素から守られねばならない。異方性又は
等方性の磁石を得る為に、この粉を磁性体に圧縮成型す
る作業は磁界の中でおこなわはれる。
Upon absorption of oxygen, the rare earth metal component, such as neodymium, converts to its oxide, so that it is no longer able to form the Nd-Fe-B phase required to create the ferromagnetic properties of the alloy. At a certain oxygen concentration, the magnetic properties begin to deteriorate substantially, and when this oxygen concentration reaches a certain critical point, the alloy loses its magnetic properties altogether. Therefore, the alloy powder must be protected from atmospheric oxygen by operating in a protective atmosphere or organic solvent. To obtain an anisotropic or isotropic magnet, the powder is compressed into a magnetic material in a magnetic field.

この圧縮成型品は次に、耐酸化性を得る為に、真空又は
不活性雰囲気の中で、1000℃以」二の温度で焼結さ
れ、この焼結体を高品質の製品にする為に、その磁気特
性を十分に高める為の熱的後処理を受けねばならない。
This compression molded product is then sintered at temperatures above 1000°C in a vacuum or in an inert atmosphere to achieve oxidation resistance, and to make this sintered body into a high quality product. , must undergo a thermal post-treatment to sufficiently enhance its magnetic properties.

たとえこのようにして製品に高い費用を掛けたとしても
、酸化に対する残留感受性が残り易いので、この焼結製
品の安定性は必ずしも十分ではない。米国特許第4,4
9B、395号による溶体スピニング法及び粉砕で作ら
れた粉は一般的に合成樹脂の7トリツクスに嵌め込まれ
るか、その結果低エネルギーの等方性磁石になってしま
う。
Even if this results in a high product cost, the stability of this sintered product is not always sufficient, since residual susceptibility to oxidation tends to remain. U.S. Patent No. 4,4
Powders produced by solution spinning and milling according to No. 9B, No. 395 are generally embedded in a synthetic resin 7 trix or result in a low energy isotropic magnet.

欧州特許出願第0125752号の開示内容によれば、
等方性の磁石を得るために磁石合金の溶体スピニング法
に次いで残余成分のアモルファスな組織を粉砕し、又そ
の粉を圧縮成型し、次いでこの圧縮成型体を被覆し、そ
の粉状粒子の表面気孔か合成樹脂により充填されるよう
にしている。しかし、たとえ極く小さくともこの被覆に
傷があると、この圧縮成型体の内部の合金粒子は被覆さ
れていないので、雰囲気の酸素にさらされ、その結果安
定性のない磁性体となってしまう。
According to the disclosure of European Patent Application No. 0125752:
In order to obtain an isotropic magnet, the amorphous structure of the remaining component is crushed after the solution spinning method of the magnet alloy, and the powder is compression molded, and then this compression molded body is coated, and the surface of the powder particles is The pores are filled with synthetic resin. However, if there is a scratch on this coating, even if it is extremely small, the alloy particles inside the compression molded body are not coated and are exposed to the oxygen in the atmosphere, resulting in an unstable magnetic material. .

本発明の第1の目的は、希土類−鉄−ボロンを自存する
磁石合金の耐蝕性のある強磁性粉で、その優れた耐酸化
性を特徴とし、又これから高い保磁性、等方性又は異方
性の最大エネルギーを有する磁石を作ることの出来るも
のの製造方法を提供することである。
The first object of the present invention is to provide a corrosion-resistant ferromagnetic powder of a magnet alloy containing rare earth elements, iron, and boron, which is characterized by its excellent oxidation resistance, and which also has high coercivity, isotropy, or anisotropy. It is an object of the present invention to provide a manufacturing method capable of producing a magnet having a directional maximum energy.

 9一 本発明の次の目的は、好ましくは磁界の中で、」−2粉
を圧縮成型することにより、優れた永久磁気特性を示す
磁性体を製造することである。
91 The next object of the present invention is to produce a magnetic material exhibiting excellent permanent magnetic properties by compression molding the "-2 powder, preferably in a magnetic field."

[問題を解決するための手段及びその作用]上述の2つ
の目的は本発明により次の如くにして達成される。即ち
、合金粒子を作る為に上記合金の1ピース又はインゴッ
トを粉砕し、その磁気特性を高める為に上記合金粒子を
熱処理し、次に、上記の熱処理された合金粒子の表面を
防蝕材料の保護層で被覆する、のである。上記合金1.
7子は好ましくは300℃から1000℃の範囲の温度
で熱処理される。上記防蝕材料は1種類のセラミック材
料又は1種類の金属材料例えば銅で、好ましくは水溶液
となっており、又電解により−に配粒子の表面にこれが
沈積される。
[Means for Solving the Problems and Their Effects] The above two objects are achieved by the present invention as follows. That is, one piece or ingot of the alloy is crushed to produce alloy particles, the alloy particles are heat treated to enhance their magnetic properties, and the surface of the heat treated alloy particles is then protected with a corrosion-resistant material. It is covered with layers. The above alloy 1.
The heptads are preferably heat treated at a temperature in the range of 300°C to 1000°C. The anti-corrosion material is one type of ceramic material or one type of metal material, such as copper, preferably in the form of an aqueous solution, and is deposited on the surface of the -distributed particles by electrolysis.

本発明の磁性体は、希土類−鉄一ボロンを含む磁石合金
の粒子を圧縮成型したものから成る磁性体で、上記磁石
合金か、重塁で、25−45%の少なくとも1種類の希
土類と、0.5−3%のボロンを含んでおり、上記磁石
合金の残余の成分が鉄、又は、コバルト、アルミニウム
及びニオビウムから成る1群の中から選択された少なく
とも1種類の他の金属の添加物を含む鉄であり、1部記
合金粒子が防蝕材料の保護層で被覆されている、磁性体
である。
The magnetic material of the present invention is a magnetic material formed by compression molding particles of a magnetic alloy containing rare earth element-iron-boron, and is composed of the above-mentioned magnetic alloy or a heavy base containing 25-45% of at least one type of rare earth element, 0.5-3% boron, the remainder of the magnetic alloy being iron or an additive of at least one other metal selected from the group consisting of cobalt, aluminum and niobium. It is a magnetic material in which the alloy particles are coated with a protective layer of corrosion-resistant material.

出発時の合金材料は、−膜内に、少なくとも1種類の希
土類、例えばネオジウム、又は1.2種類の希土類金属
、例えばネオジウムとジスプロシウム、を重量で、25
−45%なんた合金である。
The starting alloy material contains - in the membrane at least one rare earth metal, e.g. neodymium, or 1.2 rare earth metals, e.g. neodymium and dysprosium, by weight;
-45% NATA alloy.

その他特定の希土類金属を加え、合成製品のある特性、
例えば保磁性、を高めることが出来る。出発時の合金材
料に電量で0.5−3%のボロンを加え、合金に希望す
る強磁性相を作ることが出来る。出発時の合金材料の残
余成分は鉄、又は鉄とその他の成分、例えばコバルト、
アルミニウム、ニオビウム及びその他の金属、との複合
体である。
Adding certain other rare earth metals, certain properties of synthetic products,
For example, coercivity can be improved. 0.5-3% coulometric boron can be added to the starting alloy material to create the desired ferromagnetic phase in the alloy. The remaining component of the starting alloy material is iron, or iron and other components, such as cobalt,
It is a complex with aluminum, niobium and other metals.

鉄とこの様な元素との複合により、この合成製品の磁気
特性は勿論、温度に対する安定性を向−1−させること
が出来る。
By combining iron with such elements, it is possible to improve the temperature stability as well as the magnetic properties of the composite product.

出発時の合金材料は冶金的溶解方法によって作られるか
、この場合、酸素の含有量を最低に保ち、確実に酸素含
有量の少ない合金粉を作ることが重要である。
The starting alloy material is made by metallurgical melting methods, in which case it is important to keep the oxygen content to a minimum to ensure an alloy powder with low oxygen content.

良好な磁気特性は、出発時の合金材料を粉砕して十分に
清浄で酸素含有量の少ない粉が出来たときにのみ得られ
る。本発明に於いてはこれか、粉砕をスプレー及び又は
ミリングにより行なうことで達成される。2つのパラメ
ーター即ち、粒度及び酸素含有量は製品の磁気特性に決
定的に影響する。
Good magnetic properties are only obtained when the starting alloy material is ground to a powder that is sufficiently clean and has a low oxygen content. In the present invention, this is accomplished by performing pulverization by spraying and/or milling. Two parameters decisively influence the magnetic properties of the product: particle size and oxygen content.

不活性雰囲気の中でスプレーを行なうことにより、径1
龍以下の球状粒子が得られる。このスプレー合金の酸素
含有量は1%以下である。このスプレーされた合金を6
3p以下の篩目で篩い分ければ、30から40IIIR
のF S S S (f’1shersubsieve
 5izer )値の破片が得られる。本発明の方法に
より、このような合金粉が熱処理され又被覆されると、
保磁性は高いがエネルギー生成の少ない等方性の粉が得
られる。
By spraying in an inert atmosphere, diameter 1
Spherical particles smaller than dragon size are obtained. The oxygen content of this spray alloy is less than 1%. This sprayed alloy is
If you sieve it with a sieve size of 3p or less, it will be 30 to 40IIIR.
F S S S (f'1shersubsieve
5izer ) value fragments are obtained. When such alloy powder is heat treated and coated by the method of the present invention,
An isotropic powder with high coercivity but low energy production is obtained.

霧化された合金の小滴をスプレーする段階で磁界の中を
移動させ、又その中で凝固させると、スプレー合金の磁
気特性が向上する。このスプレー合金を熱処理する前に
、短時間、撹拌機を持つボールミルの中で液体の中でミ
リングし、FSSS値で301!IR以下、好ましくは
3−15pにすると、酸素含有量の少ない磁気的に異方
性の材料が得られる。後でミリングが行われる従来の溶
体スピニング法と比較して、この粉砕法は、粉砕された
粒子の少なくとも1部が球状をしており、従って被覆が
容易に行われると言う利点を持っている。
Moving the atomized alloy droplets through a magnetic field during spraying and solidifying therein improves the magnetic properties of the sprayed alloy. Before heat treating this spray alloy, it was briefly milled in liquid in a ball mill with an agitator, resulting in an FSSS value of 301! Below IR, preferably 3-15p, a magnetically anisotropic material with low oxygen content is obtained. Compared to conventional solution spinning methods, which are subsequently milled, this milling method has the advantage that at least a portion of the milled particles are spherical and therefore coating is easily carried out. .

この合金中の酸素含有量の重要性を説明するために、表
1にNd−Fe−B合金の被覆されていない乾燥粉の酸
素含有量を重機%で示す。その粒度による酸素の吸収量
を決定する為に、この粉は空気中で微粉砕されて2時間
保持された。
To illustrate the importance of the oxygen content in this alloy, Table 1 shows the oxygen content of the uncoated dry powder of the Nd-Fe-B alloy in weight percent. The powder was ground and held in air for 2 hours to determine the amount of oxygen uptake due to its particle size.

表1 粉砕前           0.04%酸素1 mm
以下(スプレー後)    0.08%〃63、z以下
(FSSS35が)0.11%//FSSS  2o4
      0.15%//FSSS  111IIR
0,18%//FSSS   7,07a++    
 0.28%〃FSSS   4,8p    O,4
2%〃FSSS   3.27a+     0.61
%〃若しも不活性な作業環境が得られるならば、普通の
粉砕方法即ち2段ミリングによって希望する粒度が得ら
れる。
Table 1 Before crushing 0.04% oxygen 1 mm
Less than (after spraying) 0.08%〃63, z or less (FSSS35) 0.11% //FSSS 2o4
0.15% //FSSS 111IIR
0,18% //FSSS 7,07a++
0.28%〃FSSS 4,8p O,4
2%〃FSSS 3.27a+ 0.61
%. If an inert working environment is available, the desired particle size can be obtained by conventional grinding methods, ie two-stage milling.

本発明の方法の中で次に重要な段階は、この粉の熱処理
である。この目的の為に、粉は溶剤又は不活性ガス雰囲
気の中で真空キルンに直接運び込まれる。ここで300
−1000℃に1段又は数段で加熱される。このような
熱処理により、FSSS値51nRのミリングされた磁
石合金の保磁力が元の)イ料の222.9kA/mから
802kA/mに増加した。即ちその性質が本質的に改
善変化する。つまり、高品質の磁性粉は」二連の工程段
階を経て始めて作ることが出来るのである。
The next important step in the method of the invention is the heat treatment of this powder. For this purpose, the powder is conveyed directly to a vacuum kiln in a solvent or inert gas atmosphere. 300 here
Heated to -1000°C in one or several stages. Such heat treatment increased the coercive force of the milled magnet alloy with FSSS value of 51 nR from 222.9 kA/m of the original material to 802 kA/m. That is, its properties essentially change for the better. In other words, high-quality magnetic powder can only be produced through two process steps.

但し、本発明の範囲内で、この]連の工程を逆にするこ
とは可能である。即ち、先ずスプレーされた合金を熱処
理し、次にこの熱処理された粉をミリングするのである
However, within the scope of the present invention, it is possible to reverse this series of steps. That is, the sprayed alloy is first heat treated and then the heat treated powder is milled.

この粒子の耐蝕性は、粒子の表面を防蝕用のセラミック
又は金属材料の層で完全に被覆することによって得られ
る。粒子の表面への金属層の沈積は、例えば後述する如
く、電極無しで銅を被覆する電解方法によって行われる
The corrosion resistance of the particles is obtained by completely coating the surface of the particles with a layer of corrosion-protecting ceramic or metallic material. Deposition of the metal layer on the surface of the particles is carried out, for example, by an electrolytic method of coating copper without electrodes, as described below.

この目的の為に、硫酸銅、水酸化すトリウム、及び酒石
酸ナトリウムカリウムの水溶液を準備し、合金粉をこの
中に撹拌しながら混合し、次いでホルムアルデヒドを加
える。金属銅の層がこの粉状粒子の表面に沈積する。
For this purpose, an aqueous solution of copper sulfate, thorium hydroxide and sodium potassium tartrate is prepared, the alloy powder is mixed into it with stirring, and formaldehyde is then added. A layer of metallic copper is deposited on the surface of the powder particles.

これに附随して解かったことは、この水溶液によって合
金粒子は実質的には腐蝕されず、又このことによる合金
粉の酸素含有mの増加は微々たるものだと言うことであ
る。
What has been found along with this is that the alloy particles are not substantially corroded by this aqueous solution, and that the increase in the oxygen content m of the alloy powder due to this is negligible.

被覆材料の所要量は粉状粒子の表面積即ちその粒度によ
って決まる。ここで言う粒度の場合、その量はその粒子
の約10から25重量%である。
The amount of coating material required depends on the surface area of the powder particles and thus their particle size. For the particle sizes referred to herein, the amount is about 10 to 25% by weight of the particles.

各粒子のこの耐蝕性表面層は粉に希望通りの耐蝕性を1
1−え、これから作られた永久磁石を保証する。
This corrosion-resistant surface layer on each particle gives the powder the desired corrosion resistance.
1-Well, I guarantee the permanent magnets made from this.

この粉は直接圧縮成型されて等方性の磁石体に、又は磁
界に置いて異方性の磁石にされる。この磁石が特別に大
きな物体となる仕様の場合は、圧縮成型の前に、金属、
セラミック、又は合成樹脂の粉をこの被覆された磁石合
金に加えることによって作ることが出来る。
This powder can be directly compression molded into an isotropic magnet, or placed in a magnetic field to create an anisotropic magnet. If the magnet is designed to be a particularly large object, it must be made of metal before compression molding.
It can be made by adding ceramic or synthetic resin powder to this coated magnet alloy.

[実施例コ 例1 重量で、33.3%の希土類(その98.7%がNd)
と、1.3%のBと、65.2%の鉄と、及び0.04
%のOとを含む合金の1個のピース又はインゴットが不
活性ガス雰囲気の中で溶融精練され、スプレーされ、次
いで、粒度63.M以下の破片を得る為に篩分された。
[Example 1 By weight, 33.3% rare earth (98.7% of which is Nd)
, 1.3% B, 65.2% iron, and 0.04
A piece or ingot of the alloy containing 63% O is melt-smelted in an inert gas atmosphere, sprayed and then reduced to a grain size of 63. It was sieved to obtain fragments below M.

この破片が630℃の温度で熱処理され、次いで、」二
連の方法で銅が電解被覆された。この目的の為に、スプ
レーされ又熱処理された合金粉か、ノ当り、30gのC
uSO4と、809の60% N a OHと、150
gのKNa10i石酸を含む水溶液に撹拌されながら混
合された。次に、容積で1バートの37%ホルムアルデ
ヒドが上記混合液の容積で5パート当りに加えられた。
The pieces were heat treated at a temperature of 630° C. and then electrolytically coated with copper in a two-part process. For this purpose, sprayed and heat-treated alloy powder or 30 g of C.
uSO4 and 60% NaOH of 809 and 150
The mixture was mixed with an aqueous solution containing 10 g of KNa10i taric acid while being stirred. Next, 1 part by volume of 37% formaldehyde was added per 5 parts by volume of the above mixture.

金属銅が粒子に沈積し、又被覆された粒子が液から篩分
された後、この被覆された合金が完全に洗浄された。こ
の合金は13.2%の銅と0.17%の酸素とを含んで
いた。
The coated alloy was thoroughly cleaned after the metallic copper was deposited on the particles and the coated particles were sieved from the liquid. This alloy contained 13.2% copper and 0.17% oxygen.

表■は中間製品及び最終製品の保磁力の値を示す。Table ■ shows the coercive force values of intermediate products and final products.

表■ 粉            iHc  (kA/m)未
処理−637#”’以下    175銅被覆後、熱処
理前    160 熱処理及び被覆後     640 この粉は等方性であった(BHmax=42kJ/cu
、m、)。
Table ■ Powder iHc (kA/m) Untreated - 637#'' or less 175 After copper coating, before heat treatment 160 After heat treatment and coating 640 This powder was isotropic (BHmax = 42 kJ/cu
,m,).

例2 例1のスプレーされた磁石合金か、そのFSSS値が5
61pになるまでアトリッションミル(aLLri L
or)によりシクロヘキサンの中でミリングされた。未
だ溶剤で湿っている内に、この粉が真空キルンに移され
、又その中で630℃で熱処理された。被覆は例1と同
じ方法で行われ、この被覆された粉は銅を18.2%及
び酸素を0.27%含んでいた。表■は表■と同様にし
て保磁力の値を示したものである。
Example 2 The sprayed magnetic alloy of Example 1 has an FSSS value of 5.
Attrition mill (aLLri L) until it reaches 61p
or) in cyclohexane. While still wet with solvent, the powder was transferred to a vacuum kiln and heat treated therein at 630°C. The coating was carried out in the same manner as in Example 1, and the coated powder contained 18.2% copper and 0.27% oxygen. Table ■ shows the values of coercive force in the same way as Table ■.

表■ 粉            1Hc  (kA/m)未
処理=FSSS値5.2PA7L223銅被覆後、熱処
理前      204熱処理及び被覆後      
 802この粉は異方性であった(BHmax=195
.8kJ/cu、m、)。
Table ■ Powder 1Hc (kA/m) Untreated = FSSS value 5.2 PA7L223 After copper coating, before heat treatment 204 After heat treatment and coating
802 This powder was anisotropic (BHmax=195
.. 8kJ/cu, m,).

Claims (23)

【特許請求の範囲】[Claims] (1)希土類−鉄−ボロンを含む磁石合金の耐蝕性のあ
る強磁性粉を製造する方法で、その手順が、(a)合金
粒子を作る為に上記合金の1ピース又はインゴットを粉
砕し、 (b)その磁気特性を高める為に上記合金粒子を熱処理
し、 (c)次に、上記の熱処理された合金粒子の表面を防蝕
材料の保護層で被覆する、 ことの組合わせから成る、耐蝕性の希土類磁性粉の製造
方法。
(1) A method for producing a corrosion-resistant ferromagnetic powder of a magnetic alloy containing rare earths-iron-boron, the steps of which include: (a) crushing a piece or ingot of said alloy to produce alloy particles; (b) heat-treating said alloy particles to enhance their magnetic properties; and (c) then coating the surface of said heat-treated alloy particles with a protective layer of corrosion-resistant material. A method for manufacturing rare earth magnetic powder.
(2)上記合金粒子が300℃から1000℃の範囲の
温度で熱処理される、特許請求の範囲第1項に記載の耐
蝕性の希土類磁性粉の製造方法。
(2) The method for producing a corrosion-resistant rare earth magnetic powder according to claim 1, wherein the alloy particles are heat-treated at a temperature in the range of 300°C to 1000°C.
(3)上記合金粒子が500℃から800℃の範囲の温
度で熱処理される、特許請求の範囲第2項に記載の耐蝕
性の希土類磁性粉の製造方法。
(3) The method for producing a corrosion-resistant rare earth magnetic powder according to claim 2, wherein the alloy particles are heat-treated at a temperature in the range of 500°C to 800°C.
(4)上記防蝕材料が1種類の金属材料である、特許請
求の範囲第1項に記載の耐蝕性の希土類磁性粉の製造方
法。
(4) The method for producing a corrosion-resistant rare earth magnetic powder according to claim 1, wherein the corrosion-resistant material is one type of metal material.
(5)上記金属材料が銅である、特許請求の範囲第4項
に記載の耐蝕性の希土類磁性粉の製造方法。
(5) The method for producing a corrosion-resistant rare earth magnetic powder according to claim 4, wherein the metal material is copper.
(6)上記防蝕材料が水溶液となっており、又電解によ
り上記粒子の表面にこれが沈積される、特許請求の範囲
第4項に記載の耐蝕性の希土類磁性粉の製造方法。
(6) The method for producing a corrosion-resistant rare earth magnetic powder according to claim 4, wherein the corrosion-resistant material is an aqueous solution and is deposited on the surface of the particles by electrolysis.
(7)上記防蝕材料がセラミック材料である、特許請求
の範囲第1項に記載の耐蝕性の希土類磁性粉の製造方法
(7) The method for producing a corrosion-resistant rare earth magnetic powder according to claim 1, wherein the corrosion-resistant material is a ceramic material.
(8)上記磁石合金が、重量で、25−45%の少なく
とも1種類の希土類と、0.5−3%のボロンを含む、
特許請求の範囲第1項に記載の耐蝕性の希土類磁性粉の
製造方法。
(8) The magnetic alloy contains, by weight, 25-45% of at least one rare earth element and 0.5-3% of boron.
A method for producing a corrosion-resistant rare earth magnetic powder according to claim 1.
(9)上記磁石合金の残余の成分が鉄である、特許請求
の範囲第8項に記載の耐蝕性の希土類磁性粉の製造方法
(9) The method for producing a corrosion-resistant rare earth magnetic powder according to claim 8, wherein the remaining component of the magnetic alloy is iron.
(10)上記磁石合金の残余の成分か、コバルト、アル
ミニウム及びニオビウムから成る1群の中から選ばれた
少なくとも1種類の異なる金属の添加物を含む鉄である
、特許請求の範囲第8項に記載の耐蝕性の希土類磁性粉
の製造方法。
(10) The remaining component of the magnetic alloy is iron containing an additive of at least one different metal selected from the group consisting of cobalt, aluminum and niobium. The method for producing the corrosion-resistant rare earth magnetic powder described above.
(11)粉を得る為に上記合金を不活性ガスの中にスプ
レーし、又上記粉をミリングする手順から成る一連の粉
砕手順によって粉砕が行われる、特許請求の範囲第1項
に記載の耐蝕性の希土類磁性粉の製造方法。
(11) Corrosion-resistant as claimed in claim 1, wherein the grinding is carried out by a series of grinding steps consisting of spraying the alloy into an inert gas to obtain a powder and milling the powder. A method for manufacturing rare earth magnetic powder.
(12)上記粉が保護ガス雰囲気の中でミリングされる
、特許請求の範囲第11項に記載の耐蝕性の希土類磁性
粉の製造方法。
(12) A method for producing a corrosion-resistant rare earth magnetic powder according to claim 11, wherein the powder is milled in a protective gas atmosphere.
(13)上記粉が有機液体の中でミリングされる、特許
請求の範囲第11項に記載の耐蝕性の希土類磁性粉の製
造方法。
(13) A method for producing a corrosion-resistant rare earth magnetic powder according to claim 11, wherein the powder is milled in an organic liquid.
(14)上記粒子の熱処理の前に、上記粉がミリングさ
れる、特許請求の範囲第11項に記載の耐蝕性の希土類
磁性粉の製造方法。
(14) The method for producing a corrosion-resistant rare earth magnetic powder according to claim 11, wherein the powder is milled before the heat treatment of the particles.
(15)上記熱処理の後に上記粉がミリングされる、特
許請求の範囲第11項に記載の耐蝕性の希土類磁性粉の
製造方法。
(15) The method for producing a corrosion-resistant rare earth magnetic powder according to claim 11, wherein the powder is milled after the heat treatment.
(16)上記粉に磁気的方向性を与える為に、スプレー
している間、上記合金を磁界に置く、特許請求の範囲第
11項に記載の耐蝕性の希土類磁性粉の製造方法。
(16) A method for producing a corrosion-resistant rare earth magnetic powder according to claim 11, wherein the alloy is placed in a magnetic field during spraying in order to impart magnetic orientation to the powder.
(17)上記粒子が1から30μmの範囲のサイズにな
るまで上記合金が粉砕される、特許請求の範囲第1項に
記載の耐蝕性の希土類磁性粉の製造方法。
(17) A method for producing a corrosion-resistant rare earth magnetic powder according to claim 1, wherein the alloy is ground until the particles have a size in the range of 1 to 30 μm.
(18)上記粒子が3から15μmの範囲のサイズにな
るまで上記合金が粉砕される、特許請求の範囲第17項
に記載の耐蝕性の希土類磁性粉の製造方法。
(18) A method for producing a corrosion-resistant rare earth magnetic powder according to claim 17, wherein the alloy is ground until the particles have a size in the range of 3 to 15 μm.
(19)上記合金粒子が真空又は不活性ガス雰囲気の中
で熱処理される、特許請求の範囲第1項に記載の耐蝕性
の希土類磁性粉の製造方法。
(19) The method for producing a corrosion-resistant rare earth magnetic powder according to claim 1, wherein the alloy particles are heat-treated in a vacuum or an inert gas atmosphere.
(20)上記粒子を、好ましくはそれを磁界に置いてい
る間に、磁性体に圧縮成型する段階を含む、特許請求の
範囲第1項に記載の耐蝕性の希土類磁性粉の製造方法。
(20) A method for producing a corrosion-resistant rare earth magnetic powder according to claim 1, comprising the step of compression molding the particles into a magnetic material, preferably while placing the particles in a magnetic field.
(21)上記磁性体の固形性を高める為に、上記粒子が
添加物と混合され、共に磁性体に圧縮成型され、上記添
加物が、合成樹脂、金属粉及びセラミック粉から成る1
群の中から選択される、特許請求の範囲第20項に記載
の耐蝕性の希土類磁性粉の製造方法。
(21) In order to increase the solidity of the magnetic material, the particles are mixed with additives and compression molded together into a magnetic material, and the additives are composed of synthetic resin, metal powder, and ceramic powder.
A method for producing a corrosion-resistant rare earth magnetic powder according to claim 20, which is selected from the group consisting of:
(22)希土類−鉄−ボロンを含む磁石合金の磁石合金
粒子を圧縮成型したものを実質的要素とする磁性体で、
上記磁石合金が、重量で、25−45%の少なくとも1
種類の希土類と、0.5−3%のボロンとを含み、上記
合金粒子が防蝕材料の保護層で被覆されている、耐蝕性
の希土類磁性粉から作られた磁性体。
(22) A magnetic material whose substantial element is compression molded magnet alloy particles of a magnet alloy containing rare earths-iron-boron,
The magnetic alloy contains at least 25-45% by weight of at least 1
1. A magnetic body made from corrosion-resistant rare earth magnetic powder, comprising a variety of rare earths and 0.5-3% boron, the alloy particles being coated with a protective layer of corrosion-resistant material.
(23)上記磁石合金の残余の成分が、コバルト、アル
ミニウム及びニオビウムから成る1群の中から選択され
た少なくとも1種類の他の金属の添加物を含む鉄である
、特許請求の範囲第22項に記載の耐蝕性の希土類磁性
粉から作られた磁性体。
(23) Claim 22, wherein the remaining component of the magnet alloy is iron containing an additive of at least one other metal selected from the group consisting of cobalt, aluminum, and niobium. A magnetic material made from the corrosion-resistant rare earth magnetic powder described in .
JP62186775A 1986-08-04 1987-07-28 Manufacture of corrosion-resistant rare-earth magnetic powder and magnetic unit made of the powder Pending JPS6338216A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT209386A AT386554B (en) 1986-08-04 1986-08-04 METHOD FOR PRODUCING CORROSION-RESISTANT, HARD MAGNETIC POWDER FOR MAGNETIC PRODUCTION, MAGNETS FROM HARD MAGNETIC POWDER AND METHOD FOR PRODUCING THE SAME
AT2093/86 1986-08-04

Publications (1)

Publication Number Publication Date
JPS6338216A true JPS6338216A (en) 1988-02-18

Family

ID=3527596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62186775A Pending JPS6338216A (en) 1986-08-04 1987-07-28 Manufacture of corrosion-resistant rare-earth magnetic powder and magnetic unit made of the powder

Country Status (3)

Country Link
EP (1) EP0255816A3 (en)
JP (1) JPS6338216A (en)
AT (1) AT386554B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0239503A (en) * 1988-07-29 1990-02-08 Mitsubishi Metal Corp Rare earth-fe-b anisotropic permanent magnet and its manufacture

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0283905A (en) * 1988-09-20 1990-03-26 Sumitomo Special Metals Co Ltd Corrosion-resistant permanent magnet and manufacture thereof
EP0452580B1 (en) * 1990-04-19 1999-06-23 Seiko Epson Corporation A resin bound magnet and its production process
JP3047239B2 (en) * 1989-04-14 2000-05-29 日立金属株式会社 Warm-worked magnet and manufacturing method thereof
US4990876A (en) * 1989-09-15 1991-02-05 Eastman Kodak Company Magnetic brush, inner core therefor, and method for making such core
CA2070808A1 (en) * 1990-10-09 1992-04-10 Barbara K. Lograsso Method of making permanent magnets
GB9803970D0 (en) 1998-02-26 1998-04-22 Univ Birmingham Method of applying a corrosion-resistant coating
DE19902679C1 (en) * 1999-01-23 2000-11-16 Harman Audio Electronic Sys speaker
TW563139B (en) * 2000-11-30 2003-11-21 Nec Tokin Corp Magnetic core including magnet for magnetic bias and inductor component using the same
DE102013004985A1 (en) 2012-11-14 2014-05-15 Volkswagen Aktiengesellschaft Method for producing a permanent magnet and permanent magnet
DE102013213494A1 (en) 2013-07-10 2015-01-29 Volkswagen Aktiengesellschaft Method for producing a permanent magnet and permanent magnet and electric machine with such a permanent magnet

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1914137B2 (en) * 1969-03-20 1976-09-23 Siemens AG, 1000 Berlin und 8000 München METHOD FOR MANUFACTURING PERMANENT MAGNETS
DE2421605B2 (en) * 1974-05-04 1977-05-05 PROCESS FOR PRODUCING POWDER FOR PERMANENT MAGNETS BASED ON COBALT-RARE-EARTH COMPOUNDS
JPS59155106A (en) * 1983-02-23 1984-09-04 Hitachi Maxell Ltd Manufacture of magnetic metal powder
CA1216623A (en) * 1983-05-09 1987-01-13 John J. Croat Bonded rare earth-iron magnets
JPS6054406A (en) * 1983-09-03 1985-03-28 Sumitomo Special Metals Co Ltd Permanent magnet having excellent oxidation resistance characteristic
JPS60189901A (en) * 1984-03-09 1985-09-27 Sumitomo Special Metals Co Ltd Manufacture of alloy powder for rare earth-boron-iron group magnetic anisotropic permanent magnet
CN1007847B (en) * 1984-12-24 1990-05-02 住友特殊金属株式会社 Process for producing magnets having improved corrosion resistance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0239503A (en) * 1988-07-29 1990-02-08 Mitsubishi Metal Corp Rare earth-fe-b anisotropic permanent magnet and its manufacture

Also Published As

Publication number Publication date
ATA209386A (en) 1988-02-15
AT386554B (en) 1988-09-12
EP0255816A2 (en) 1988-02-10
EP0255816A3 (en) 1988-12-21

Similar Documents

Publication Publication Date Title
KR101534717B1 (en) Process for preparing rare earth magnets
JP4656323B2 (en) Method for producing rare earth permanent magnet material
WO2007119553A1 (en) Process for producing rare-earth permanent magnet material
JP3781095B2 (en) Method for producing corrosion-resistant rare earth magnet
JPS6338216A (en) Manufacture of corrosion-resistant rare-earth magnetic powder and magnetic unit made of the powder
JP2005520351A (en) Bond magnet manufactured using atomized permanent magnet powder
JPH0366105A (en) Rare earth anisotropic powder and magnet, and manufacture thereof
JPS6325904A (en) Permanent magnet and manufacture of the same and compound for manufacture of the permanent magnet
JPH04328805A (en) Anisotropic configuration soft magnet alloy powder and manufacture thereof
JP6171922B2 (en) Rare earth-iron-nitrogen based magnetic alloy and method for producing the same
JP3781094B2 (en) Corrosion resistant rare earth magnet
JP3028337B2 (en) Rare earth magnet alloy powder, method for producing the same, and polymer composite rare earth magnet using the same
CN116168940A (en) Rare earth magnet and method for producing same
JP3201428B2 (en) Manufacturing method of powder for permanent magnet
JPH01251704A (en) Rare earth permanent magnet with excellent oxidation resistance
JPH07122414A (en) Rare earth permanent magnet and manufacture thereof
JP6618858B2 (en) Iron nitride magnet
JP2003064454A (en) Corrosion resistant rare earth magnet, and production method therefor
JPS58193336A (en) Permanent magnet material
KR100285350B1 (en) Manufacturing method of permanent magnet for resin magnet
JP4411840B2 (en) Method for producing oxidation-resistant rare earth magnet powder
JPH04354104A (en) Manufacture of rare earth bond magnet
CN114835484A (en) Permanent magnet composite material and preparation method thereof
JP4433800B2 (en) Oxidation-resistant rare earth magnet powder and method for producing the same
JP3057664B2 (en) Bonded permanent magnet