JPS58193336A - Permanent magnet material - Google Patents

Permanent magnet material

Info

Publication number
JPS58193336A
JPS58193336A JP57074065A JP7406582A JPS58193336A JP S58193336 A JPS58193336 A JP S58193336A JP 57074065 A JP57074065 A JP 57074065A JP 7406582 A JP7406582 A JP 7406582A JP S58193336 A JPS58193336 A JP S58193336A
Authority
JP
Japan
Prior art keywords
less
rare earth
oxygen
carbon
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57074065A
Other languages
Japanese (ja)
Inventor
Naoyuki Ishigaki
山本日登志
Hitoshi Yamamoto
松浦裕
Yutaka Matsuura
石垣尚幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP57074065A priority Critical patent/JPS58193336A/en
Publication of JPS58193336A publication Critical patent/JPS58193336A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To enhance the magnetic characteristics of an obtained permanent magnet material, in a rare earth cobalt type magnet, by respectively adjusting oxygen content and carbon content to a specific amount or less. CONSTITUTION:The oxygen content and the carbon content in an RCo type magnet containing, on the basis of a wt., 20-30% R (wherein R is one kind or more rare earth element of Y, Ce, Sm, Sr and a misch metal) and the remainder Co and one kind or more transition metal element of Fe, Ni or Cu replacing the part of Co are adjusted as mentioned hereinbelow. That is, the oxygen content in the above mentioned magnet is adjusted to 0.25% or less, the carbon content therein to 0.05% or less and the total sum of oxygen and carbon amounts to 0.25% or less. Or, according to necessity, the part of the above mentioned transition metal element is further replaced with one kind or more elements from among Mu, V, Ti, Nb, Zr, Ta and Hf.

Description

【発明の詳細な説明】 本発明は、イツトリウム、セリウム、サマリウム、プラ
セオジムなどの希土類金属またはそれらノ混合物(ミツ
シュメタル)を含有する希土類コバルト系永久磁石に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a rare earth cobalt permanent magnet containing a rare earth metal such as yttrium, cerium, samarium, praseodymium, or a mixture thereof (mitsch metal).

希土類コバルト系磁石は、今日多量生産されているアル
ニコ系磁石、フェライト系磁石と比較して高い保磁力と
大きなエネルギー積を有する優れた永久磁石材料として
近年需要が急速に高まり、その利用分野は電子工業界を
中心に多岐に広まっている。
Demand for rare earth cobalt magnets has increased rapidly in recent years as an excellent permanent magnet material that has a higher coercive force and a larger energy product than the alnico magnets and ferrite magnets that are mass-produced today. It is widely used in a wide range of fields, mainly in the industrial world.

希土類コバルト系合金の溶解は、いずれも不純物の少い
金属原料を用い、酸化防止のためにアルゴン雰囲気中な
どにおいて行なわれる。粉砕工程ではボールミル、振動
ミルなどの粉砕機を用いて微粉砕するが、本系合金のご
とく酸化し易い合金テハ、通常ヘキサン、アセトン、ト
ルエンナト炭素と水素で構成される有機溶媒中において
、いわゆる湿式粉砕法によって実施される。有機tgt
jXを除去した微粉末は、所定の製品形状に近い形状に
The rare earth cobalt alloys are melted using metal raw materials with few impurities and in an argon atmosphere to prevent oxidation. In the pulverization process, a pulverizer such as a ball mill or a vibrating mill is used to finely pulverize the alloy, which is easily oxidized like this alloy. It is carried out by the grinding method. organic tgt
The fine powder from which jX has been removed has a shape close to the prescribed product shape.

金型中において磁界を印加しながら成型され、通常プレ
ス前にパラフィン、カンファーあるいはステアリン酸な
どのバインダーを添加して、成型体のスリップ、われな
どを防止する。その後、既述のバインダーを除去するた
めに真空中で脱バインダー処理をし、ひき続いて酸化防
止のだめの非酸化性雰囲気において、焼結・時効処理の
工程を経て所望の磁気特性を有する永久磁石材料を得る
It is molded in a mold while applying a magnetic field, and a binder such as paraffin, camphor, or stearic acid is usually added before pressing to prevent the molded product from slipping or cracking. After that, a debinding treatment is performed in a vacuum to remove the binder mentioned above, followed by a sintering and aging treatment process in a non-oxidizing atmosphere in an oxidation prevention tank to create a permanent magnet with the desired magnetic properties. Get the materials.

一方、希土類コバルト系磁グの主成分の1つである希土
類金属は、酸素との親和力が強く、連撃製鋼の脱酸剤と
して有効なMg、〜A6. Siなどよシも強いので、
容易に酸化物を形成する。また、炭素との親和力もあり
、希土類元素と結合して炭化物を形成し易い。
On the other hand, rare earth metals, which are one of the main components of rare earth cobalt-based magnets, have a strong affinity with oxygen and are effective as deoxidizers in continuous hammer steelmaking, including Mg, ~A6. Since Si and other Si are also strong,
Easily forms oxides. It also has an affinity for carbon and easily combines with rare earth elements to form carbides.

また、本系永久磁石の磁気特性は、微粉砕粒度、焼結・
時効処理条件など工程要因に基づく合金組成の影響を大
きく受ける。
In addition, the magnetic properties of this permanent magnet include finely pulverized particle size, sintered
It is greatly affected by alloy composition based on process factors such as aging treatment conditions.

そこで、本願発明者らは希土類コバルト系磁石合金にお
ける酸素・カーボン元素の挙動について注目し、酸素・
カーボン量の磁気特性に及ぼす影響についての詳細な検
討を行い、磁気特性の優れた磁石ではわずかに酸化物・
炭化物が結晶粒界に存在するけれども、希土類コバルト
系磁石を構成している結晶粒の内部に存在する希土類元
素との酸化物および炭化物が、水系磁石合金の磁気特性
に非常に大きな影響を及ぼし、特性劣化を生ずることを
見出し本発明を完成したものである。
Therefore, the inventors of the present application focused on the behavior of oxygen and carbon elements in rare earth cobalt magnet alloys, and
We conducted a detailed study on the effect of carbon content on magnetic properties, and found that magnets with excellent magnetic properties have a slight amount of oxides and
Although carbides exist at grain boundaries, oxides and carbides with rare earth elements that exist inside the crystal grains that make up rare earth cobalt magnets have a very large effect on the magnetic properties of water-based magnet alloys. The present invention was completed based on the discovery that characteristic deterioration occurs.

すなわち、前述のごとく、本系合金がきわめて活性であ
るという他の磁石材料にはない特異な性質のために、磁
石製造工程における酸化および微粉砕時の有機溶媒やプ
レス成型用のバインダーの残留に起因する炭素などが、
磁気特性−ヒきわめて有害な影響を及ぼし、結晶粒内に
残留する希土類酸化物や炭化物が磁気特性劣化の重大な
原因となることを見出したものである。       
  11本発明の永久磁石材料は、その組成が、重量比
でR(Rはイツトリウム、セリウム、サマリウム。
In other words, as mentioned above, this alloy is extremely active, which is a unique property not found in other magnet materials, so it is susceptible to oxidation in the magnet manufacturing process and residual organic solvents during pulverization and binder for press molding. Carbon etc. caused by
It has been discovered that rare earth oxides and carbides that remain within crystal grains have a very harmful effect on magnetic properties and are a significant cause of deterioration of magnetic properties.
11 The permanent magnet material of the present invention has a composition of R (R is yttrium, cerium, and samarium) in terms of weight ratio.

プラセオジム、ミツ7ユメタルを含む1種または2種以
」二の希土類元素)20〜30%、残部がCoおよびC
oの一部を1種以上のFe、 Ni、 cuなど遷移金
属元素と置換した希土類コバルト系磁石において5酸素
含有量0.25%以下、カーボン含有量0.05チ以下
および酸素とカーボン含有量の総和が0.25%以下で
あることを特徴とする永久磁石材料であり、さらに上述
遷移金属元素の一部をMn、 V+ Ti、Nb+zr
、 Ta、 Hfの各元素のうち、1種以上の元素と置
換したものである。
20-30% of one or more rare earth elements (including praseodymium, 7 metals), the balance being Co and C
In a rare earth cobalt magnet in which o is partially replaced with one or more transition metal elements such as Fe, Ni, or Cu, 5 oxygen content is 0.25% or less, carbon content is 0.05% or less, and oxygen and carbon content is It is a permanent magnet material characterized in that the total sum of
, Ta, and Hf are substituted with one or more elements.

ここで、希土類コバルト系磁石合金中に含有される酸素
・カーボンが磁気特性を劣化させる原因については、以
下のごとく考えられる。
Here, the reason why the oxygen and carbon contained in the rare earth cobalt magnet alloy deteriorate the magnetic properties is considered as follows.

すなわち、磁石の製造工程中に含有された酸非・カーボ
ンは最終の熱処理工程を経た後は、希土類の酸化物や炭
化物を形成して、磁石中に不純物と17で残留し、これ
が希土類コバルト磁石の結晶粒の内部にまで存在するよ
うになると、逆磁区発生時の核となって保磁力を著しく
低下させる。また、磁気特性−ト、その本質的な構成要
素として望ましくない酸化物・炭化物の不純物の存在は
飽和磁束密度の低下をも生じ、したがって残留磁束密度
と最大磁気エネルギー積の低下を伴って、磁気特性全般
の劣化を生ずるものと考えられる。
In other words, after the final heat treatment process, the acids and carbon contained during the magnet manufacturing process form rare earth oxides and carbides and remain in the magnet as impurities. When it comes to exist inside the crystal grains, it becomes a nucleus when a reverse magnetic domain is generated and significantly reduces the coercive force. In addition, the presence of undesirable oxide/carbide impurities as essential constituents of magnetic properties also causes a decrease in the saturation magnetic flux density, which leads to a decrease in the residual magnetic flux density and the maximum magnetic energy product. This is thought to cause overall deterioration of characteristics.

本発明の希土類コバルト系磁石において酸素含有量0.
25%以下、カーボン含有量0.05%以下、酸素とカ
ーボン量の総和を0.25%以下に限定した理由は下記
による。
In the rare earth cobalt magnet of the present invention, the oxygen content is 0.
The reason why the carbon content was limited to 25% or less, the carbon content was limited to 0.05% or less, and the total amount of oxygen and carbon was limited to 0.25% or less is as follows.

すなわち、これらいずれの元素も本来全く含有しない方
が磁気特性向上の上から望ましいが、前述の如く、本系
合金の磁石製造工程上永久磁石材料として製品になった
状態での含有は免れ得ない。
In other words, it is originally desirable to not contain any of these elements at all in terms of improving magnetic properties, but as mentioned above, their inclusion in the product as a permanent magnet material is unavoidable due to the magnet manufacturing process of this alloy. .

まず、酸素含有量を0,25%以下に限定した理由は、
これを超える酸素を含有した場合には、希土類コバルト
磁石中には約2%を超える希土類酸化物を結晶粒界に加
えて結晶粒内までにも含有することになり、保磁力の著
しい低下と、残留磁束密度の低下を来たし、永久磁石材
料として重要な最大磁気エネルギ・−積の著しい低下を
生ずるためである。
First, the reason for limiting the oxygen content to 0.25% or less is
If oxygen is contained in excess of this amount, the rare earth cobalt magnet will contain more than approximately 2% of rare earth oxides not only at the grain boundaries but also within the grains, resulting in a significant decrease in coercive force. This is because the residual magnetic flux density decreases, resulting in a significant decrease in the maximum magnetic energy product, which is important as a permanent magnet material.

また、カーボン含有量を0.05%以下に限定した理由
は、これを超えるカーボンを含有した場合には、希土類
コバルト磁石中の約0.4チを超える希土類炭化物を結
晶粒界に加えて結晶粒内までにも含有°することになり
、残留磁束密度は余り低下しないが、保磁力は極めて小
さくなシ、これに伴い最大磁電エネルギー積も小さくな
り、実用的な永久磁石材料とならないためである。以上
のように酸素およびカーボン量についてはそれぞれ特有
の磁気特性劣化の原因となり、(−かも各元素量の総和
が0.25%を超えると、酸化物・炭化物の含有量が約
2チを超え、保磁力の著しい低下とそれに伴う磁気特性
の劣化を生ずるので、酸素およびカーボン量の総和につ
いても0.25%以下とした。
Also, the reason why the carbon content is limited to 0.05% or less is that if carbon exceeds this content, rare earth carbides exceeding about 0.4 cm in rare earth cobalt magnets will be added to the grain boundaries and crystallization will occur. This is because it is contained even within the grains, so the residual magnetic flux density does not decrease much, but the coercive force is extremely small, and the maximum magnetoelectric energy product is also small, making it impossible to use as a practical permanent magnet material. be. As mentioned above, the amount of oxygen and carbon each causes a specific deterioration of magnetic properties. Since this causes a significant decrease in coercive force and accompanying deterioration of magnetic properties, the total amount of oxygen and carbon is also set to 0.25% or less.

以下に、実施例により本発明の詳細な説明する。Hereinafter, the present invention will be explained in detail with reference to Examples.

(実施例1) 純度99.9%のSm : 26.7wt%、および純
度99.9%のCo : 47.7wt%、 Fe i
 122wt%、 Ni i 5.5wt%。
(Example 1) Sm with a purity of 99.9%: 26.7 wt%, and Co with a purity of 99.9%: 47.7 wt%, Fe i
122wt%, Nii 5.5wt%.

Cu i 7.9wt%からなる合金を、アークボタン
溶解によって作製し、このボタン状の溶製合金を粗粉砕
後、有機溶媒120CC,ステンレスポール500Ji
’rとともにボールミルにて微粉砕し、平均粒度4μm
の粉末にした。
An alloy consisting of 7.9 wt% Cu i was prepared by arc button melting, and after coarsely pulverizing this button-shaped molten alloy, it was heated with 120 CC of organic solvent and 500 Ji of stainless steel poles.
Finely ground with 'r in a ball mill, average particle size 4μm
It was made into powder.

次に、この粉末を10  TorrO高真空中で溶媒を
十分除去した後、1OKOeの磁界中でバインダーとと
もにプレス成型し、圧縮成型体を作製した。
Next, after sufficiently removing the solvent from this powder in a high vacuum of 10 TorrO, it was press-molded together with a binder in a magnetic field of 1 OKOe to produce a compression-molded body.

この圧縮体を150°CX3時間の真空中脱バインダー
処理後1200°CX2時間純度99.99999係の
アルゴン雰囲気中で焼結した後5800°CX4時間時
効処理を施した。
This compressed body was subjected to debinding treatment in vacuum at 150°C for 3 hours, sintered at 1200°C for 2 hours in an argon atmosphere with a purity of 99.99999, and then aged at 5800°C for 4 hours.

このようにして作製した試料(試料A)について、磁気
特性の測定と酸素およびカーボン含有量について分析を
行った。その結果は第1表に示す通りであった。
The thus prepared sample (Sample A) was measured for magnetic properties and analyzed for oxygen and carbon content. The results were as shown in Table 1.

また、試料Aと同様にして作製した微粉末を、アルゴン
ガス流気中において粉砕し、溶媒を除去した後、10K
Oeの磁界中でバインダーを添加してプレス成型し、圧
縮成型体を作製した。この圧縮体を150℃×2時間の
真空中脱バインダー処8!後、   ;1200°CX
2時間、純度999%のアルゴン雰囲気中で焼結したの
ち、800°CX4時間の時効処理を施した。このよう
にして作製した比較のだめの試料(試料B)の磁気特性
の測定を行い、酸素およびカーボン含有量について分析
した。その結果は同様に第1表に示す。
In addition, a fine powder prepared in the same manner as Sample A was pulverized in an argon gas stream, and after removing the solvent, 10K
A binder was added and press molded in a magnetic field of Oe to produce a compression molded body. This compressed body is debindered in vacuum at 150°C for 2 hours. After ;1200°CX
After sintering in an argon atmosphere with a purity of 999% for 2 hours, aging treatment was performed at 800° C. for 4 hours. The magnetic properties of the comparative sample (sample B) thus prepared were measured, and the oxygen and carbon contents were analyzed. The results are also shown in Table 1.

結果から明らかなように、試料Bは酸素含有料が0.2
5%を超えるため、磁気特性が劣化している。
As is clear from the results, sample B has an oxygen content of 0.2
Since it exceeds 5%, the magnetic properties are deteriorated.

(実施例2) 純度99.9%のSm ; 25.8 wt%および純
度99.9%のC□ ;57.6 wt%、Fe ; 
7.Owt%、 Cu i 9.6 wt%がら成る合
金を、アークボタン溶解によって作製し、このボタン状
の溶製合金を粗粉砕後、有機溶媒120CG、  ステ
ンレスポール’5’00gIrとともに微粉砕し、平均
粒度3μmの粉末にした。
(Example 2) Sm with a purity of 99.9%; 25.8 wt% and C□ with a purity of 99.9%; 57.6 wt%, Fe;
7. An alloy consisting of Cu i 9.6 wt% and Cu i 9.6 wt% was prepared by arc button melting, and this button-shaped molten alloy was coarsely pulverized and then finely pulverized with an organic solvent 120CG and stainless steel pole '5'00gIr. It was made into a powder with a particle size of 3 μm.

次に、この粉末を10  TorrO高真空中で溶媒を
除去した後、カンファー1.0wt%を添加してプレス
成型した。この圧縮体を150℃×3時間の真°C×2
時間時効処理を施した。このようにして作製した試料(
試料C)について磁気特性の測定と酸素およびカーボン
量の分析をした。その結果は第1表に示す通りであった
Next, after removing the solvent from this powder in a high vacuum of 10 TorrO, 1.0 wt % of camphor was added and press molding was performed. This compressed body was heated at 150°C x 3 hours at 2°C.
Time aging treatment was applied. Samples prepared in this way (
Sample C) was measured for magnetic properties and analyzed for oxygen and carbon content. The results were as shown in Table 1.

また、試料Cと同様にして作製した圧縮体を。Also, a compressed body made in the same manner as sample C.

150°CX2時間の真空中脱バインダー処理後、11
90℃×2時間純度99.99mのアルゴン雰囲気中で
焼結を行ない、次いで800°CX2時間の時効処理を
施した。このようにして得た比較のだめの試料りの磁気
特性および酸素・カーボン量の分析を行いその結果を第
1表に示す。
After debinding treatment in vacuum at 150°C for 2 hours, 11
Sintering was performed at 90° C. for 2 hours in an argon atmosphere with a purity of 99.99 m, followed by aging treatment at 800° C. for 2 hours. The comparative samples thus obtained were analyzed for magnetic properties and oxygen and carbon content, and the results are shown in Table 1.

試料りは、酸素量・カーボン量がそれぞれ0.25wt
%、 0.05wt%以下であってもその総和が0.2
5wt%を超えるため磁気特性の劣化が著しいことがわ
かる。
The sample sample has an oxygen content and a carbon content of 0.25wt each.
%, even if it is less than 0.05wt%, the total is 0.2
It can be seen that since the content exceeds 5 wt%, the magnetic properties are significantly deteriorated.

(実施例3) 純度99゜9%のS mi 25.8 w t%および
純度99.9%のC□ i 49.8 wt%、Fe 
i 14.8wt%、Cu: 7.9wt%、Mni 
0.8 wt%、Zl i 0.9wt%から成る合金
を、アークボタン溶解し、この溶製合金を粗粉砕後、こ
レヲ有機溶媒120CC,ステンレスポール500yr
とともにボールミル微粉砕し、平均粒度4.5μか1の
粉末にした。次に、この粉末を10  TorrO高真
空中で溶媒を十分除去した後、l OKOeの磁界中で
バインダーとともにプレス成型し、圧縮成型体を作製し
た。この圧縮体を150℃×3時間の真空中脱バインダ
ー処理後、  1200°CX1時間純度99.999
99%のアルゴン雰囲気中で焼結し、ひき続いて117
0°CX1時間の熱処理を施した。その後850°CX
30分、800℃×1時間、700°CX3時間および
600°CX10時間の多段時効処理を行なった。次に
、こうして得た本発明の試料Eについて磁気特性の測定
および含有酸素・カーボン量の分析を行った。その結果
は第1表に示す通りであった。
(Example 3) S mi 25.8 wt% with a purity of 99°9% and C i 49.8 wt% with a purity of 99.9%, Fe
i 14.8wt%, Cu: 7.9wt%, Mni
An alloy consisting of 0.8 wt% Zl i and 0.9 wt% Zl i was melted in an arc button, and after coarsely pulverizing the melted alloy, it was heated with 120 CC of organic solvent and 500 yr of stainless steel pole.
The mixture was pulverized in a ball mill to obtain a powder with an average particle size of 4.5 μm or 1 μm. Next, after sufficiently removing the solvent from this powder in a high vacuum of 10 TorrO, it was press-molded together with a binder in a magnetic field of 1 OKOe to produce a compression-molded body. After debinding the compressed body in vacuum at 150°C for 3 hours, the purity was 99.999 at 1200°C for 1 hour.
Sintering in a 99% argon atmosphere followed by 117
Heat treatment was performed at 0°C for 1 hour. Then 850°CX
Multi-stage aging treatment was performed for 30 minutes at 800°C for 1 hour, 700°C for 3 hours, and 600°C for 10 hours. Next, the magnetic properties of Sample E of the present invention thus obtained were measured and the amount of oxygen and carbon contained was analyzed. The results were as shown in Table 1.

また、試料Eと同様にして作製した粉末をアルゴンガス
流気中において溶媒を除去した後1.10KOeの磁界
中テ<フィングーとともにプレス成型した。
Further, a powder prepared in the same manner as Sample E was press-molded in a magnetic field of 1.10 KOe after removing the solvent in an argon gas stream.

この圧縮体を150゛″C::X 30分の真空中脱バ
インダー処理後、純度99.99%のアルゴン雰囲気中
で試料Eと同様な熱処理を施しへ。この比較のだめの試
料Fの磁気特性測定結果、並びに酸素・カーボン量の分
析結果は第1表に示す通りであった。
This compressed body was subjected to debinding treatment in vacuum at 150''C::X for 30 minutes, and then subjected to the same heat treatment as sample E in an argon atmosphere with a purity of 99.99%.Magnetic properties of sample F for comparison. The measurement results and the analysis results of oxygen and carbon content are as shown in Table 1.

すなわち、本発明の試料Eと試料Fを比較すると試料F
は、酸素含有量が0.25wt%以下であっても、カー
ボン量が0.05wt%を超えるため、iHcは低下し
、磁気特性は著しく劣化していることがわかる。
That is, when comparing sample E and sample F of the present invention, sample F
It can be seen that even if the oxygen content is 0.25 wt% or less, the carbon content exceeds 0.05 wt%, so the iHc decreases and the magnetic properties are significantly deteriorated.

第  1  表 出願人  住友特殊金属株式会社Table 1 Applicant: Sumitomo Special Metals Co., Ltd.

Claims (1)

【特許請求の範囲】 1 その組成が重量比でR(Rはイツトリウム。 セリウム、サマリウム、プラセオジム、ミツシュメタル
を含む1種又は2種以上の希土類元素)20〜301残
部がCoおよびCoの一部を1種以上のFe、 Ni、
Cuなど遷移金属元素と置換した希土類コバルト系磁石
において、酸素含有量0.25%以下、カーボン含有量
0.05%以下および酸素とカーボン量の総和が025
係以下であることを特徴とする。永久磁石材料。 2 その組成が重量比でR(’Rはイツトリウム、セリ
ウム、サマリウム、プラセオジム、ミツシュメタルを含
む1種又は2種以上の希土類元素)20〜30%、残部
がCoおよびCOの一部を1種以上のFe、 Ni 、
 CBなどの遷移元素と置換した希土類コバルト系磁石
において、前記遷移金属元素の一部をさらにMu、V。 Ti+ Nb+ Zr、 Ta、 Hfの各種元素のう
ち、1種以上の元素と置換し、酸素含有量0.25%以
下、カーボン含有量0.05%以下および酸素とカーボ
ン量の総和が0.25%以下であることを特徴とする永
久磁石材料。
[Claims] 1. The composition is R (R is yttrium, one or more rare earth elements including cerium, samarium, praseodymium, and mitsch metal) in weight ratio 20 to 301, the balance being Co and a part of Co. One or more types of Fe, Ni,
In rare earth cobalt magnets substituted with transition metal elements such as Cu, the oxygen content is 0.25% or less, the carbon content is 0.05% or less, and the total amount of oxygen and carbon is 0.25%.
It is characterized by being less than 100%. Permanent magnetic material. 2 Its composition is R ('R is one or more rare earth elements including yttrium, cerium, samarium, praseodymium, and mitsch metal) 20 to 30% by weight, and the balance is one or more types of Co and a part of CO. of Fe, Ni,
In a rare earth cobalt-based magnet in which a transition metal element such as CB is substituted, a portion of the transition metal element is further replaced with Mu or V. Ti + Nb + Replaced with one or more elements among the various elements Zr, Ta, Hf, oxygen content 0.25% or less, carbon content 0.05% or less, and the total amount of oxygen and carbon is 0.25 % or less.
JP57074065A 1982-05-01 1982-05-01 Permanent magnet material Pending JPS58193336A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57074065A JPS58193336A (en) 1982-05-01 1982-05-01 Permanent magnet material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57074065A JPS58193336A (en) 1982-05-01 1982-05-01 Permanent magnet material

Publications (1)

Publication Number Publication Date
JPS58193336A true JPS58193336A (en) 1983-11-11

Family

ID=13536411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57074065A Pending JPS58193336A (en) 1982-05-01 1982-05-01 Permanent magnet material

Country Status (1)

Country Link
JP (1) JPS58193336A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4836867A (en) * 1986-06-26 1989-06-06 Research Development Corporation Anisotropic rare earth magnet material
JPH02159337A (en) * 1988-12-12 1990-06-19 Fuji Elelctrochem Co Ltd Permanent magnet alloy
JPH02240231A (en) * 1989-03-13 1990-09-25 Fuji Elelctrochem Co Ltd Permanent magnet material
JPH02258940A (en) * 1989-03-30 1990-10-19 Fuji Elelctrochem Co Ltd Permanent magnet alloy and its manufacture
JPH0313501A (en) * 1989-06-12 1991-01-22 Tokin Corp Sintered body and manufacture thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4836867A (en) * 1986-06-26 1989-06-06 Research Development Corporation Anisotropic rare earth magnet material
JPH02159337A (en) * 1988-12-12 1990-06-19 Fuji Elelctrochem Co Ltd Permanent magnet alloy
JPH02240231A (en) * 1989-03-13 1990-09-25 Fuji Elelctrochem Co Ltd Permanent magnet material
JPH049856B2 (en) * 1989-03-13 1992-02-21
JPH02258940A (en) * 1989-03-30 1990-10-19 Fuji Elelctrochem Co Ltd Permanent magnet alloy and its manufacture
JPH0313501A (en) * 1989-06-12 1991-01-22 Tokin Corp Sintered body and manufacture thereof

Similar Documents

Publication Publication Date Title
EP0898778B1 (en) Bonded magnet with low losses and easy saturation
KR20000048146A (en) Rare earth/iron/boron-based per manent magnet alloy composition
JPH04184901A (en) Rare earth iron based permanent magnet and its manufacture
JPS6393841A (en) Rare-earth permanent magnet alloy
EP0386286B1 (en) Rare earth iron-based permanent magnet
JPS58193336A (en) Permanent magnet material
JPH06188113A (en) Manufacture of permanent magnet composed mainly of ndfeb
JPH08181009A (en) Permanent magnet and its manufacturing method
JPS6167752A (en) Permanent magnet alloy
JPS62116756A (en) Permanent magnet alloy
JP2874392B2 (en) Production method of rare earth cobalt 1-5 permanent magnet alloy
JP2868062B2 (en) Manufacturing method of permanent magnet
JPH04214804A (en) Method for molding alloy powder for rare earth-iron-boron based permanent magnet
JP2005281795A (en) R-T-B BASED SINTERED MAGNET ALLOY CONTAINING Dy AND Tb AND ITS PRODUCTION METHOD
JP2577373B2 (en) Sintered permanent magnet
JPH024942A (en) Permanent magnetic alloy
JPH04214803A (en) Method for molding alloy powder for rare earth-iron-boron based permanent magnet
JPS60184602A (en) Method for molding alloy powder for permanent magnet
JPS62257704A (en) Permanent magnet
JPH0897022A (en) Manufacture of rare-earth magnet
JPS61227151A (en) Manufacture of permanent magnet alloy and permanent magnet
JPH05234733A (en) Sintered magnet
JPS6247454A (en) Permanent magnet alloy
JPH0732200A (en) Production of sn-containing ndfeb sintered magnet having excellent corrosion resistance
JPS6179747A (en) Permanent magnet alloy