JPS60184602A - Method for molding alloy powder for permanent magnet - Google Patents

Method for molding alloy powder for permanent magnet

Info

Publication number
JPS60184602A
JPS60184602A JP3996184A JP3996184A JPS60184602A JP S60184602 A JPS60184602 A JP S60184602A JP 3996184 A JP3996184 A JP 3996184A JP 3996184 A JP3996184 A JP 3996184A JP S60184602 A JPS60184602 A JP S60184602A
Authority
JP
Japan
Prior art keywords
alloy powder
atomic
permanent magnet
rare earth
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3996184A
Other languages
Japanese (ja)
Other versions
JPH0480961B2 (en
Inventor
Shigeki Hamada
隆樹 浜田
Michio Yamashita
三千雄 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP3996184A priority Critical patent/JPS60184602A/en
Publication of JPS60184602A publication Critical patent/JPS60184602A/en
Publication of JPH0480961B2 publication Critical patent/JPH0480961B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the friction of the insides of dies and to improve the stability of the magnetic characteristics and quality of a molded body by mixing a prescribed amount of alloy powder contg. a rare earth element which may be Y, B and Fe as principal components with a prescribed amount of an org. molding improver. CONSTITUTION:To 100pts.wt. of alloy powder contg., by atom, 10-30% R (one or more kinds of rare earth elements including Y), 2-28% B and 65-82% Fe as principal components is added with <=0.5 part of one or more kinds of org. molding improvers selected among polyoxyethylene alkyl ethers, polyoxyethylene monofatty acid esters and polyoxyethylene alkylallyl ethers prepared. These are mixed and molded.

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、l’< (KIL、1くはYを包含りる希
土類)I−素のうへ少なくとも11重) 、13’、 
Feを主成分とづる永久磁石用合金粉末の成型方法に係
り、磁気特性がJぐれ、かつ安定した品質の該系永久磁
石が得られる有機系成型性改良剤を使用する該磁石用合
金粉末の成型方法に関−りる。 永久磁石材料は、一般家庭の各種電気製品から大型コン
ビコータの周辺端末機器まで、幅広い分野で使用される
極めて重要な電気・電子材料の一つである。近年の電気
・電子機器の小形化、高効串化の要求にどもない、永久
磁石材料は益々高性能化がめられるようになった。 現在の代表的な永久磁石材料は、アルニコ、ハードフエ
ライ1〜および希土類コバルト磁石である。 近年のコバルトの原料事情の不安定化に伴ない、コバル
トを20〜30W
This invention provides l'
A method for forming an alloy powder for permanent magnets containing Fe as a main component, which uses an organic moldability improver to obtain permanent magnets with stable quality and magnetic properties. Concerning the molding method. Permanent magnetic materials are extremely important electrical and electronic materials used in a wide range of fields, from various household appliances to peripheral terminal equipment for large combi coaters. In response to the recent demand for smaller and more efficient electric and electronic equipment, permanent magnet materials are increasingly required to have higher performance. Current representative permanent magnet materials are alnico, hard ferrite 1 and rare earth cobalt magnets. Due to the instability of cobalt raw material situation in recent years, cobalt has been reduced to 20~30W.

【%含むアルニコ磁石の需要は減り、
鉄の酸化物を主成分とする安価なハードフエライ1〜が
磁石材料の主流を占めるようになった。 一方、希土類コバルト磁石はコバルトを50−(iow
t%も含むうえ、積土゛類鉱石中にあまり含まれていな
いSmを使用づ゛るため大変高価であるが、他の磁石に
比べて、磁気特性が格段に高いため、主として小型で付
加価値の高い磁気回路に多用されるようになった。 そこで、本発明者は先に、高1i11iなSmやらを含
右しない新しい高性能永久磁石としてFe−El−R系
(RはY4i:含む希土類元素のうち少なくとも1種)
永久16石を提案した(特願昭57−145072号)
。また、さらに、Fa −El −R系の磁気異方性焼
結体からなる永久磁石の温度特性を改良するために、F
eの一部を6て置換りることにJ、す、生成合金のキコ
リ一点を1胃さUて温度特性を改善したFe−G。 −、、B−R光異方性焼結体からなる永久磁石を提案し
た(特願昭57− +(i66(i3舅)。 上記のf/iJuなFe −9」り系、 Fe−Co 
−B−1ぐ系([りはYを含む希土類元素のうら少なく
とも1種)永久磁石を、製造ジるための出発原お1の希
土類金属は、一般にCai兜元法、電F//法にJ、り
製造される金属塊Cあり、この希−V類金属塊を用いて
、例えば次の工程に、J、す、上記の新規な永久磁石が
製造される。 ■ 出発涼1’lとしC1純度99.9%の電IFI’
鉄、B19.4%を含右し残部はFe及び/V、 SL
、C等の不純物からなるフェロボロン合金、純度99.
1%以上の希土類金属、あるいはさらに、純度99.9
%の電解ωを高周波溶解し、その後水冷銅鋳型に鋳造す
る、■ スタンプミルにJ5す35メツシユスルーまで
に粗粉砕し、次にボールミルにより、例えば粗粉砕粉3
(10(Iを6時間湿式微粉砕して3−.10互の微細
粉どなす、 ■ 磁界(10KOa)中配向して、成形(1,5t4
にて加圧)リーる、 ■ 焼結、1000℃〜1200℃、1時間、 Ar中
の焼結後に放冷する。 ■ 時効処理、500℃〜1000℃、Ar中。 上記の如く、この永久磁石用合金粉末は、所要組成の鋳
塊を機械的粗粉砕及び微粉砕を行なって1qられるが、
粉砕粉の侭では、成型性が非常に悪く、成型時にダイス
壁面等との摩擦により、ダイス面及び成形体表面にきf
、蹴れ1割れ等が生じ易く、品質上及び製品歩留上に大
きな問題となっていた。 かかる成型性の改良のため、従来はパラフィンワックス
、ステアリン酸、ビス7ンイド、あるいはステアリン酸
亜鉛等のバインダー、潤滑剤の添加配合が17なわれで
いた。 しかし、パラフィンワックスは成型性改良効果が小さく
、′多量にこれを使用りると合金粉末の磁場配向を百1
害して異方性になり難く、また後続工程の焼結1稈にお
いて、焼結体に炭素が残留し、磁気特性を劣化ざばる欠
点があり、スラー11ノン酸の場合は、成形体の強度を
低下さける問題があり、ビスアマイド1ンス7アリン酸
ati鉛の場合は、合金粉末中l\の均 分散化が困T
JIlr:、合金粉末自体のダイス面等のI5擦而への
固着防11−か完゛全Cなく、成形体及びダイス面にき
fが発住りる問題があつノこ1゜ この発明は、安定しlご品質でかつりくれた10気特性
を4q ?lるR EI Fo系永久磁石を寄るだめの
該光磁イ)用合金粉末の4戊型方法をI:目的とし、該
合金V)床中への分散性−にすぐれ、またづぐれた潤滑
性にJ、リタイス面及び成形体の摩擦を大+1に低減し
、成型性の改善効果が高く、さらに磁石の磁気特性の劣
化がない成型性改良剤を使用したRBFo系永久磁石用
合金粉末の成型方法を目的としている。 ずなわら、この発明は、 R10原子%−・30原子% (但し、RはYを包含する希土類元素のうち少なくとも
1種)、 B 2原子%〜28原子%、 F(! 65原子%・〜82原子%、 を主成分とりる合金粉末に、 ポリAキシ」−ブレンアルキルゴーデル、ボリンキシエ
チレンモノ脂肪酸エステル、ポリオキシ1ヂレンアルキ
ルアリルエーテル、から選択した少なくとも1種を、上
記合金粉末100重量部に対して′0.5重量部以下添
加し、混合したのち成型り−ることを特徴とづる永久磁
石用合金粉末の成型方法である。 この発明は、R,B、Feを主成分とり−る永久磁石用
合金の成型に使用覆る成型性改良剤を種々検問した結果
、 特定用のポリオキシエチレンアルキルエーテル、ポリオ
キシエチレンしノ1指肋酸土ス)−ル、ポリi 4ニジ
]ニチレンノlルニ1−ルアリル−[−プル、から選択
した少なくとも1種が最適であることを知見したものぐ
、 合金粉末中l\の分散性にりぐれ、またりぐれた潤滑性
にJ、リタイス面及び成形体の摩擦を犬11]に低減し
、成型性の改善効果が高く、さらに焼結磁石の磁気特性
の劣化がない利点がある。 この発明にJ3いて、 ポリAキシーIニチレンアルキル上−7ルは、ポリオキ
シfヂレンラウリル+−−フル、ボリア11ニジ」ニブ
レンレチル−I−jル、ポリA−Vシ」1−レンズ)ノ
7リルt−フル、ポリオキシ土チレンAレイル」−フル
、ポリオキシ−[チレン高級アル田−ル土−アル、ある
いはその混合物などであり、ラフル゛Vルは長鎖のもか
好ましい、。 ま lこ 、 ポリA =FシJチレン七)脂肪酸]スjルは、ポリ上
チレンクリ」−ル[ノラウレ−1−、ポリ]ニチレング
リコールモノステアレート、ポリーLブーレングリ二1
−ルモノAし土−1〜、あるいはその混合物なとて・あ
り、長鎖の脂肪酸の二■−スプルが好ましく、これらの
製造中に含まれる、例えばポリエチレングリコールジス
アアレ−1・などのジエステルが含まれてし使用ぐきる
が、七ノエスアルが主成分であることが好ましい。 また、 ポリオキシエチレンアル1ルj7リル上−ラールtよ、
ボリア11=シ]ニチレンオクチルフコニニルエーテ−
ル、ポリAキシエチレンノニルフJニルエーテル、ある
いはその混合物などであり、アルキルは長鎖のものが好
ましい。 上記のポリオキシエチレンアルキルエーテル、ポリオキ
シエチレン七ノ脂肪酸土スフル、ポリA゛キシエチレン
アルキルアリルエープルのうち2種以上を混合して使用
でき、合金粉末への湿式混合の場合、溶媒への溶解度あ
るいは分散性から、/1iすA゛二1ジエチレンアルキ
ルニ−ノール」ニヂレンモノ脂肪酸1ースアル、ポリオ
キシ1ブレンアルギルアリルエージ゛ルのt−I L 
B (親水性・親油性比>cizo以トが好ましい。 この発明において、上記の成型性改良剤の単独または複
合添加の添加量は、1止材合金粉末の粒度おJ、びダイ
ス、成形体の形状,寸法.摩擦面積、プレス条f′1等
に応じて適宜選定づればよく、少量の添加で成型性改善
効果が大きく、添加量の増大とともに成型性は大幅に向
上するが、合金粉末100重Φ部にタリしで、上記改良
剤の添加量が0.5重10部を越えると、永久磁石とし
ての磁気特性の劣化が大きくなるため、添加かの上限値
は0.5重41部とする必四があり、好ましい添加量は
(1.01重量部〜0.3重量部である。 ′ また、このブで明において、有機系成型性改良剤の
合金粉末への添加は、該合金粉末が酸素あるいは水分に
対し一C反応しやすく、活性C゛あるため、湿式で行な
うことが好ましく、使用りる溶媒としit,/\’Fリ
ン、トル1ン,1〜リクロル工チレン。 、 弗素系溶媒などの不活性溶媒がkrましい。混合時
の態様は、乾燥状態あるいはスラリー状態のいずれであ
つ−くもよく、例えば、湿式粉砕工程中、あるいはその
前後、または乾燥工程中あるいはその前後に適宜混合4
ることができる。 この発明において、合金粉末の成型は、通常の粉末冶金
法と同様に行なうことができ、加圧成型詩に磁場付与イ
1無により、異方性磁石あるいは等方性磁石を得ること
がCぎる。 以下に、この発明にお1〕る希土類・鉄・ボロン系永久
磁石川原お1合金粉末の組成限定理由を説明づる。 この発明の永久磁石用;京利合金粉末に含有される希土
類元素[ぐは、イツトリウム(Y)を包含し軽イ土類及
び重希土類を包含する希土類元素−Cある。 Rとしては、軽希土類をもつで足り、特にNd。 prが好ましい。又通例Rのうち1種をもって足りるが
、′食用−口よ2種以上の混合物(ミツシュメタル、ジ
ジム等)を入手上の便宜等の理由により用いることがで
き、Sm 、Y.La 、Ce 、Qd 。 等は他の1≧、特にN(1、Pr ′8との渥合物とじ
C用いることができる。なお、この1では純希土類元累
Cなく(もよく、■業上入手可能な範囲で製造上手ii
J避な不純物を含有りるものでも差支えない。 )く(Yを含む希土類元素のうら少なくとt)1種)は
、新規な」記系永久磁石を製造りる合金粉末としく、必
須元素(゛あつ(,10原子%末hk1では、高磁気特
性、特に高保磁ツノが1°Iられf、30原子%を越え
ると、残留磁束密度(+31’)が低手しC,!Jぐれ
た特性の永久磁石が肖られない。よって、弄」類元素は
、10原子%・〜□ 3 (l Il+i 1%の範囲
どりる。 [3は、新規な一1記系永久磁(−1を製造りる合金粉
末としC1必34′j元累Cあ・、)C12原子%未満
Cは、高い保磁力(llIc )は得られり゛、28原
子%を越えると、残留fa朱密lη(1:3r)が但1
;りるため、りくれた永久磁石が得られない。よつ℃、
13は、21jFJ%・〜・28原子%の範囲どりる。 1eは、新規なJ記系永久磁石を製造りる合金粉末どし
て、必須元素Cあるが、651jハr%未満Cは残留磁
束密度(+31=)が(L(トし、82原子%を越える
と、高い保磁ツノが得られないので、「eは61)原子
%・−82原子%に限定覆る。 また、Feの一部をCoで置換づる理由は、永久磁石の
温度特性を向」−さUる効果が術られるためであり、C
oはFeの50%を越えると、高い保磁力が寄られず1
すぐれた永久磁Gが得られない。 ま−)T、COは50%を上限とづる。 この発明の合金粉末において、高い残留16東密度と高
い保磁力を共に右するり−ぐれた永久僅!石を寄るため
には、R1(l原子%−25原子%、[34原子%・〜
2G原子%、l’Te 65原子%〜82原子%か好ま
しい。 また、この発明による合金粉末は、R,B。 「eの伯、工業的生産上不可避的不純物の存在をs′[
容てきるが、Bの 一部を、 4.0原子%以下のC,3,5原j″−%以Fの1−)
、2.5原子96以下のS、3.5原子%以上のCLI
のうら少なくとも1種、合バ1mC4,0原子%以−F
C置換りることにより、磁石合金の製造性改善、低価格
化が可能である。 さらに、前記RA3゜1−二e合金
あるいtよ(:O/i−含有りるl’? 、I3 、I
’e合金に、 9.1)原子%以上のΔ交、4.5原子%以下の11.
9.5j京子%以トのV、8.5原子%以トの0r−8
、(l Ijit了%以上のMn % !l原f%以下
の81.72.5原子%以1;のNb 、 10.’!
i原子原子上の1−819.5原子%以1・のMO19
,!il≦【J′%以下のW。 2.5原子%以トのSb 、7原子%以下のGO13j
) 原f%以下の3n、5.!】原子96以上の/1゛
、5.5原子%以1;の11[のうらライfくどt)1
種を添加金石さUることにJ、す、永久磁イj合金の高
保磁力化が可能になる。 結晶相はEl−相が正Ij晶Cあることか、微細C均一
な合金粉末を得るのに不可欠である。1この発明による
合金微粉末の粒1良は、\11均粒度が10’、amを
越えると、永久磁石の作製時にすぐれた磁気時M、とり
わ()^い保磁力が1qられす、;した、平均粒度が1
/71+1未iai ’C’は、永久磁石の作製工程、
すなわら、プレス成形、焼結9時効処理−に稈におりる
酸化が著しく、りぐれた磁気特性が得られないため、平
均粒11!、1〜10加の合金微粉末が最も望ましい。 この発明による永久磁石用合金微粉末を使用して得られ
る磁気異方性永久磁石合金は、保磁力i l−1c≧1
. K Oe 、残留磁束密[3r > 4KG、を示
し、最大エネルギー積(B It ) maxはハード
フ[ライ1〜と同等以上となり、最も好ましい組成範囲
では、(B l−1) max≧10MGOeを示じ、
最大値は25MGOe以[に達する。 また、この発明による合金微粉末の組成が、R1()原
子%・〜3030原子B22原子・〜2828原子C0
45原子%以下、F865865原子8282原子場合
、得られる磁気異方性永久磁石合金は、上記Ia石合金
と同等の磁気特性を示し、残留磁束vfi度の温瓜係数
が、0.1%/℃以下どなり、すくれた特性が111ら
れる。 また、合金粉末の17の主成分がぞの50%以」−を軽
希土類金属が占める場合C11で12原子%〜20原子
%、B44原子・〜2424原子Fe G55原子・〜
8282原子場合、あるいはさらにCo5原子%〜45
原7%を含有りるとき最もジぐれた磁気特性を示し、特
に軽希土類金属が陶の場合には、(131−1) ma
xはでの最大値が33M G Os以上に達す−る。 以下に実施例を説明する。 実施例1 出発原料どしく、純度99.9%の電M鉄、El 19
,4%を含イ1し残部はFe及びC等の不純物からなる
フI−]」ボロン合金、N!度99.7%以上のMを所
定m配合して高周波溶解し、その後水冷銅鋳型に鋳造し
、15Nd8877Fe (’at%)なる組成の鋳塊
をj!1k。 この鋳塊を機械的粉砕により35メツシ」スルーま(に
粗粉砕した。ついで、ボール・ミルによる微粉砕を行な
い、平均粒度3.3uluの合金粉末を百た。 この合金粉末に、 固形パラフィン、ステアリン酸、 ステアリン酸亜鉛、ビス7マイド、 ポリー■ヂレンンウリルJ−アル、 ポリー■ヂレンスブアリルエーアル、 ポリ1ブ−レングリ、]−ルモノラウレ−1−、ポリE
Iiヂレングリ」−ル七ノスアアレー1〜、ポリA4:
シエチレンノニルノエニルエーテルを、合金粉末100
重が部に対して、各々0.2重罪部、予め1〜リクロロ
1〜リフルオロ、エタンに溶解または分散させたものを
、湿式混合したのち、乾燥さUIこ 。 この乾燥合金粉末を用いC,磁界12KOe中で配向し
、2 tJにて加圧成型し、幅15m口1×長さ16 
mm×高さ10mmの成型体10個を1@た。この成型
時の成型体の抜き圧、圧粉密度、成型体強度及び成型体
の外観、成型状況を測定・観察し、モの結果を第1表に
承り。 なお、第1表中のグリーン強度指数は、う[・ラー試1
1fii機で成型体を100回回転さぜた後の重量残%
で承り。 第1表より明らかな如く、このブを明方法により、扱き
圧は小ざく、圧粉密度が高く、潤滑性が改善され、づぐ
れた成型体強度が得られており、成型体外観においCも
、何らのきすや割れの発生もなく、成型性が大幅に改善
されたことが分かる。 さらに、第1表に示した本発明成型体を、真空下で20
0℃〜300℃、2時間の前処理を施したのら、Ar中
、+H1O℃、1時間、の条件で焼結し、さらに、Ar
中で600℃、 1時間の時効処理を施しC1永久磁石
を作製した。冑られた永久磁石の磁気特性を測定し第2
表に示す。 以下余白 実施例2 出発原石として、純度99.9%の電解鉄、E119,
4%を3右し残部はFo及びC等の不純物からなる71
0小1−1ン合金、純度99.7%以上の陶金属及びD
ν金金属所定fに配合しη高周波溶解し、での後水冷銅
鋳型に鋳造し、15m 1.5Dy 8El 75,5
Fe (at%)なる組成の鋳塊を稈だ。 との訪塊を粗粉砕したのら、湿式微粉砕を施して、平均
粒度3 、2 )piの合金粉末スラリーを得た。 このスラリーに、スラリー中の合金粉末100重M部に
対しC、 ポリオキシ上ブレンスjjノリルr−−j−ルを、0.
025重量部へ・0.8車量部を予め1ヘリクロロ1〜
リノルA+1土タンに溶解ざμたものを添加混合し、ぞ
の後にこれを乾燥さけた9゜ この乾燥合金粉末を用い(,1…¥N12KOe中で配
向し、1,5 tJにて加圧成型し、幅15mmX長さ
16柵×高さ5 mmの成型体を、20個連続成型した
ところ、成型体には何らのさずや欠り疵も認められなか
 ゛)lこ 、l また、上記の乾燥合金粉末を用いて、磁界10KOθ中
で配向し、2[4にて加珪成型し、幅15mmX長さ1
6111n+×高さ10 +nmの成型体を得、この成
型時の成型体の抜き圧、圧粉密度を測定した。また、前
記幅15mmX長さ16 nun X高さ5nIlll
の成型体を、真空中で200℃・〜300℃、2時間の
前処理を施したのち、Ar中、111)0℃、 1時間
、の条件Cvl結し、さらに、Ar中で600℃、 1
時間の峙効処理を施して永久磁石を作製し、ぞ゛の磁気
特性を測定した。測定結果は第3表に示す゛。 第3表より明らかな如く、この発明方法は連続成型にお
いて61抜き圧は小さく、圧粉密度が高く、潤滑性が改
善され、成型体外観においても、何らのき釦や割れの発
生もなく、づぐれた磁気特性が得られており、成型性改
善効果が明白である。 また、この発明にJ、る右機系成型性改良剤の添加晴は
、磁気特性の点から0.5重量部以下が好ましいことが
分る。 以下余白 実施例3 出発原料としく、純度69.9%の電解鉄、919.4
%を/ me及びC等の不純物からなるフェロ −1i
度99.1%以上のM金属及び純1良99.9%の電解
6を所定量配合しC高周波溶解し、その後水冷銅鋳型に
鋳造し、16M7F310Co67Fe(at%)なる
組成の鋳塊を得た。 この鋳塊を粗粉砕した接、微粉砕しく、平均粒度3)s
の合金粉末を得た。 この合金粉末1()O重n′1部に対し−C、ポリニ[
ヂレングリコールモノラウレー1〜とポリAキシ゛f−
ヂレンスアアリルJ−−チル、ポリオキシエチレンラウ
レルエーテルとポリ土ブレングリコールモノステアレー
1−、ポリAキシエチレンノニルフLニルエーテルとポ
リ、■チレングリ」−ルモノスシアレートを第4表のご
とぎ複合添加量で、予め1−ジクロロ1−リノル3口]
タンに溶解さμにものを添加混合し、子の後にこれを乾
燥さけた。 この乾燥合金粉末を用い“(、磁脚12 K Os中C
配向し、2【4にて加圧成型し、幅15mmX長さ16
mm×高さ5mmの成型体を、30個連続成型したとこ
ろ、成型体には何らのさずや欠1)疵も認められなかっ
た。 また、乾燥合金粉末を用いて、磁界12KOe中C配面
し、2 tJにて加圧成型し、幅15 mm X長さ1
6mm X高さ10mmの成型体を得る成型時の成型体
の抜き圧、圧粉密度を測定だ。また前記幅15nunX
長さ16m+nX高さ5mmの成型体を、真空中、20
0℃〜300℃、2時間の前処理を施したのち、Ar中
、1100℃、1時間、の条件で焼結し、さらに、Ar
中で600°C11時間の時効処理を施して永久磁石を
作製し、その磁気特性を測定した。測定結果は第4表に
示づ。 第4表にり明らかな如く、この発明方法は連続成型にお
いても、抜き圧は小ざく、圧粉密度が高く、潤滑性が改
善され、成型体外観においても、何らのさずや割れの発
生もなく、すぐれた磁気特性が得られCおり、成型性改
善効果が明白である。
[Demand for alnico magnets including % decreased,
Inexpensive hard ferrites 1~, which are mainly composed of iron oxides, have become the mainstream of magnet materials. On the other hand, rare earth cobalt magnets contain 50-(iow) of cobalt.
It is very expensive because it contains Sm, which is not included in bulk ores, but it has much higher magnetic properties than other magnets, so it is mainly used in small size. It came to be widely used in high-value magnetic circuits. Therefore, the present inventor first developed a Fe-El-R system (R is Y4i: at least one of the rare earth elements it contains) as a new high-performance permanent magnet that does not contain high 1i11i Sm.
Proposed permanent 16 koku (Special Application No. 145072, Showa 57)
. Moreover, in order to further improve the temperature characteristics of a permanent magnet made of an Fa-El-R magnetically anisotropic sintered body, F
By replacing a part of E with 6, Fe-G has improved the temperature characteristics by eliminating the scratchiness of the produced alloy. -,, proposed a permanent magnet made of a BR optically anisotropic sintered body (Patent Application 1987- + (i66 (i3)).
- The starting rare earth metal for producing permanent magnets of the B-1 type (at least one rare earth element containing Y) is generally produced using the Cai-based method or the electric F// method. There is a metal ingot C that is produced in Japan, and using this rare-V class metal ingot, for example, in the next step, the above-mentioned novel permanent magnet is produced. ■ Starting Ryo 1'l and C1 purity 99.9% electric IFI'
Contains iron, B 19.4%, the balance is Fe and /V, SL
, a ferroboron alloy consisting of impurities such as C, purity 99.
1% or more rare earth metals, or even purity 99.9
% of electrolytic ω is high-frequency melted, and then cast in a water-cooled copper mold.■ Coarsely pulverized in a stamp mill to a J5 35 mesh throughput, and then processed into a coarsely pulverized powder by a ball mill, for example,
(10 (I) was wet-pulverized for 6 hours to form a fine powder with a 3-.
(1) Sintering at 1000°C to 1200°C for 1 hour After sintering in Ar, allow to cool. ■ Aging treatment, 500°C to 1000°C, in Ar. As mentioned above, 1q of this alloy powder for permanent magnets is obtained by mechanically coarsely and finely pulverizing an ingot of the desired composition.
When the powder is still pulverized, moldability is very poor, and friction with the die wall surface, etc. during molding causes scratches on the die surface and the surface of the molded product.
, cracks, cracks, etc. are likely to occur, which poses a major problem in terms of quality and product yield. In order to improve moldability, binders and lubricants such as paraffin wax, stearic acid, bis-7ide, or zinc stearate have traditionally been added. However, paraffin wax has a small effect on improving moldability, and if it is used in large quantities, the magnetic field orientation of the alloy powder will change.
In addition, in the subsequent sintering process, carbon remains in the sintered body, deteriorating the magnetic properties. In the case of bisamide 1st 7 atilead phosphate, it is difficult to uniformly disperse l\ in the alloy powder.
JIlr: When there is a problem that the alloy powder itself does not stick to the die surface, etc., and there is no complete C, there is a problem of scratches occurring on the compact and the die surface. , 4Q 10 Qi characteristics that have been created with stable quality. The purpose of this method is to prepare alloy powder for magneto-optical (a), which is used to hold Fo-based permanent magnets. RBFo alloy powder for permanent magnets that uses a formability improver that reduces the friction between the retiring surface and the compact by a large +1, has a high formability improvement effect, and does not cause deterioration of the magnetic properties of the magnet. It is intended for molding methods. Naturally, this invention has the following properties: R 10 atomic % - 30 atomic % (however, R is at least one kind of rare earth elements including Y), B 2 atomic % - 28 atomic %, F (! 65 atomic %) ~82 atomic % of the above alloy powder, and at least one selected from poly(Axy)-brane alkyl godel, borine xyethylene monofatty acid ester, polyoxy 1-dylene alkyl allyl ether, and the above alloy powder. This is a method for forming an alloy powder for permanent magnets, which is characterized in that 0.5 parts by weight or less is added to 100 parts by weight, mixed, and then molded. As a result of examining various moldability improvers used in the molding of alloys for permanent magnets, we found the following: specific polyoxyethylene alkyl ether, polyoxyethylene chloride, poly(i-4) It has been found that at least one selected from the group consisting of 1-rulyl and 1-rulyl is most suitable. , the friction between the retiring surface and the molded body is reduced to 11], the moldability is highly improved, and the magnetic properties of the sintered magnet are not deteriorated. In this invention, in J3, poly(Axy-I) nytylene alkyl is poly(oxyf-dylenelauryl+--), boria(11-ni), nyrene-retyl-I-j, poly(A-V)(1-lens))-7-lyl. These include t-fluor, polyoxyalkylene, tyrene, ethylene, polyoxy-[tyrene, higher alkaline, and mixtures thereof, and long chains are preferred. Poly(F), Poly(F), Poly(ethylene glycol) monostearate, Poly(ethylene glycol) monostearate, Poly(ethylene glycol) monostearate, Poly(L) ethylene glycol monostearate
- or a mixture thereof, two sprues of long-chain fatty acids are preferred, and diesters such as polyethylene glycol disaare-1, which are included in the production of these, are preferred. may be used, but it is preferable that the main ingredient is 7-no-esal. Also, polyoxyethylene al 1 l j 7 ril upper - lal t,
Boria 11=cy]nitylene octyl fuconinyl ether
alkyl, poly(A)-xyethylene nonylphenyl ether, or a mixture thereof, and the alkyl is preferably a long-chain one. Two or more of the above-mentioned polyoxyethylene alkyl ether, polyoxyethylene heptanofatty acid soil souffle, and polyAxyethylene alkyl allyl aple can be used in combination, and in the case of wet mixing with the alloy powder, it is possible to use a mixture of two or more of the above. From the viewpoint of solubility or dispersibility, /1iS A゛21diethylenealkylni-ol'' diethylene monofatty acid 1-al, polyoxy 1-brene algyl allyl agent t-I L
B (Hydrophilicity/oleophilicity ratio>cizo or less is preferable. In this invention, the amount of the above-mentioned moldability improver added alone or in combination is determined based on the particle size of the stopper alloy powder, the die, and the compact. The shape and dimensions of the alloy powder may be selected appropriately depending on the friction area, press strip f'1, etc. Addition of a small amount has a large effect of improving moldability, and as the amount of addition increases, moldability improves significantly, but alloy powder 100 If the amount of the above-mentioned improver added to the heavy Φ part exceeds 0.5 weight and 10 parts, the magnetic properties as a permanent magnet will deteriorate significantly, so the upper limit for addition is 0.5 weight and 41 parts. The preferred amount is (1.01 parts by weight to 0.3 parts by weight).' Also, in this section, the addition of an organic formability improver to the alloy powder is Since the alloy powder easily reacts with oxygen or moisture and has an active C, it is preferable to carry out the process in a wet manner, and the solvents used include it, /\'F phosphorus, toluene, and cycloethylene. An inert solvent such as a fluorine-based solvent is preferable.The mixing mode may be in either a dry state or a slurry state, for example, during or before or after the wet grinding process, or during or after the drying process. Mix as appropriate before and after 4
can be done. In this invention, the alloy powder can be molded in the same manner as the usual powder metallurgy method, and it is possible to obtain an anisotropic magnet or an isotropic magnet by applying a magnetic field to the pressure molding. . Below, the reasons for limiting the composition of the rare earth-iron-boron permanent magnet Kawahara O1 alloy powder according to the present invention will be explained. For the permanent magnet of the present invention: The rare earth element contained in the Kyori alloy powder is the rare earth element -C, which includes yttrium (Y), light earth metals, and heavy rare earth metals. As R, it is sufficient to have a light rare earth element, especially Nd. pr is preferred. Generally, one type of R is sufficient; however, a mixture of two or more types (such as Mitshumetal, didymium, etc.) may be used for reasons such as availability, and Sm, Y. La, Ce, Qd. etc., other 1≧, especially N(1, Pr '8 compound binding C) can be used.In addition, in this 1, pure rare earth element compound C (it is also possible to use within the commercially available range) Manufacturing skill ii
There is no problem even if it contains unavoidable impurities. ) (at least one type of rare earth element containing Y) is an alloy powder for producing a new type permanent magnet. When the magnetic properties, especially the high coercivity horn, exceeds 1°I and 30 atomic %, the residual magnetic flux density (+31') becomes low, and a permanent magnet with superior characteristics cannot be produced. '' class elements are in the range of 10 atomic % - □ 3 (l Il+i 1%. [3 is an alloy powder for producing a new No. 11 series permanent magnet (-1), and C1 must be 34'j element. A high coercive force (IlIc) can be obtained when C is less than 12 atomic %, but when it exceeds 28 atomic %, the residual fa density lη (1:3r) is
; Because of this, a permanent magnet cannot be obtained. Yotsu℃,
13 is in the range of 21jFJ% to 28 atomic%. 1e is an alloy powder used to manufacture new J series permanent magnets, and has an essential element C, but less than 651j har% C has a residual magnetic flux density (+31=) of (L(t), 82 atomic% If it exceeds , a high coercivity horn cannot be obtained, so e is limited to 61) atomic % and -82 atomic %. Also, the reason for replacing a part of Fe with Co is to improve the temperature characteristics of the permanent magnet. "Towards" - This is because the effect of "Saru" is used, and C
When o exceeds 50% of Fe, the high coercive force is not attracted and the value becomes 1.
Excellent permanent magnetic G cannot be obtained. -) The upper limit for T and CO is 50%. In the alloy powder of the present invention, a high residual 16 density and a high coercive force are achieved together with a permanent trace. In order to bring the stone closer, R1 (l atomic% - 25 atomic%, [34 atomic%...
2G atomic % and l'Te 65 atomic % to 82 atomic % are preferable. Further, the alloy powder according to the present invention is R, B. ``The Count of e, the presence of impurities that are inevitable in industrial production, s'[
However, a part of B can be converted into 4.0 atomic % or less of C, 3,5 atoms or less of F (1-)
, 2.5 atoms 96 or less S, 3.5 atom % or more CLI
At least one kind of Noura, 1 mC4,0 at% or more of F-F
By substituting C, it is possible to improve the manufacturability and reduce the cost of the magnetic alloy. Furthermore, the above-mentioned RA3゜1-2e alloy or t(:O/i-containing rill'?, I3, I
'e alloy, 9.1) Δ intersection of 9.1 atomic % or more, 11. of 4.5 atomic % or less.
9.5j Kyoko% or more of V, 8.5 atomic% or more of 0r-8
, (Mn % greater than or equal to Ijit %! Nb of 81.72.5 atomic % or greater 1 less than or equal to f%, 10.'!
MO19 of 1-819.5 atomic % or more on i atom
,! il≦[W below J′%. 2.5 at% or more Sb, 7 at% or less GO13j
) 3n below the original f%, 5. ! ] 96 or more atoms/1゛, 5.5 atom% or more 1;
By adding seeds to goldstone, it is possible to increase the coercive force of permanent magnetic alloys. The crystal phase is that the El-phase is a positive Ij crystal C, which is essential for obtaining a fine C uniform alloy powder. 1. When the grain size of the fine alloy powder according to the present invention exceeds 10', am, it has an excellent magnetic force when producing a permanent magnet, and a particularly high coercive force of 1q. ; the average particle size is 1
/71+1 uniai 'C' is the production process of permanent magnet,
In other words, during press forming, sintering, and aging treatment, the culm undergoes significant oxidation, making it impossible to obtain excellent magnetic properties, resulting in an average grain size of 11! , 1 to 10% alloy fine powder is most desirable. The magnetically anisotropic permanent magnet alloy obtained using the alloy fine powder for permanent magnets according to the present invention has a coercive force i l-1c≧1
.. K Oe shows a residual magnetic flux density [3r > 4KG, and the maximum energy product (B It ) max is equal to or higher than that of hard fly [1~], and in the most preferable composition range, (B l-1) max ≧ 10 MGOe. character,
The maximum value reaches 25 MGOe or more. Further, the composition of the alloy fine powder according to the present invention is R1() atomic%・~3030 atoms B22 atoms・〜2828 atoms C0
When 45 at% or less and 8282 atoms of F865865, the obtained magnetically anisotropic permanent magnet alloy exhibits magnetic properties equivalent to the above-mentioned Ia stone alloy, and the warming coefficient of the residual magnetic flux vfi degree is 0.1%/℃. The following is a roar, and the characteristic of being depressed is 111. In addition, if the light rare earth metal accounts for 50% or more of the main component of 17 in the alloy powder, 12 at% to 20 at% of C11, B44 atoms ~ 2424 atoms Fe G55 atoms ~
8282 atoms, or even Co5 at% to 45
When the light rare earth metal contains 7%, it exhibits the most extreme magnetic properties, and especially when the light rare earth metal is ceramic, (131-1) ma
The maximum value of x reaches 33 M G Os or more. Examples will be described below. Example 1 Starting material, 99.9% pure electric steel, El 19
, 4%, with the remainder consisting of impurities such as Fe and C, N! A predetermined amount of M with a concentration of 99.7% or more is mixed and high-frequency melted, and then cast in a water-cooled copper mold to form an ingot with a composition of 15Nd8877Fe ('at%). 1k. This ingot was mechanically pulverized to a rough pulverization of 35 mesh.Then, it was finely pulverized using a ball mill to obtain an alloy powder with an average particle size of 3.3 ulu.To this alloy powder, solid paraffin, Stearic acid, zinc stearate, bis-7mide, poly-dilene-uryl J-al, poly-dilene-butaryl-al, poly-1-butylene glycol, ]-rumonolaure-1-, poly-E
Ii Direnguri”-Le Seven Nosare Alley 1~, Poly A4:
ethylene nonylnoenyl ether, alloy powder 100
0.2 parts by weight per part of weight, each pre-dissolved or dispersed in ethane, 1 to 1 to 1 to 1 to 1 to 1, is wet-mixed, and then dried. Using this dry alloy powder, it was oriented in a magnetic field of 12 KOe and molded under pressure at 2 tJ to form a mold with a width of 15 m, opening of 1 x length of 16 mm.
10 molded bodies of mm×height 10 mm were sold at 1@. During this molding, the ejection pressure, green density, strength of the molded body, appearance of the molded body, and molding conditions were measured and observed, and the results are shown in Table 1. In addition, the green strength index in Table 1 is
Weight remaining after rotating the molded body 100 times with a 1fii machine
Accepted. As is clear from Table 1, by using the light method, the handling pressure was small, the powder density was high, the lubricity was improved, and the strength of the molded product was improved, and the appearance of the molded product was improved. It can be seen that there were no scratches or cracks, and the moldability was greatly improved. Furthermore, the molded bodies of the present invention shown in Table 1 were heated for 20 minutes under vacuum.
After pretreatment at 0°C to 300°C for 2 hours, sintering was performed in Ar at +H1O°C for 1 hour, and then Ar
A C1 permanent magnet was produced by aging treatment at 600°C for 1 hour. The magnetic properties of the crushed permanent magnet were measured and the second
Shown in the table. Below is the margin Example 2 As a starting raw stone, electrolytic iron with a purity of 99.9%, E119,
4% is 3, and the remainder consists of impurities such as Fo and C71
0 small 1-1 alloy, ceramic metal with purity of 99.7% or more and D
ν Gold metal is mixed to a specified f and η high-frequency melted, then cast into a water-cooled copper mold, 15m 1.5Dy 8El 75,5
A culm is an ingot with a composition of Fe (at%). After coarsely pulverizing the agglomerates, wet pulverization was performed to obtain an alloy powder slurry with an average particle size of 3.2)pi. To this slurry, 0.0% of C, 0.0% of Noryl on polyoxygen was added to 100 parts by weight of the alloy powder in the slurry.
0.8 parts by weight to 025 parts by weight in advance from 1 helichloro 1 to 0.8 parts by weight
Add and mix the dissolved material to Linol A+1 clay tongue, and then avoid drying it. Using this dry alloy powder (,1...\N12KOe, orientate and pressurize at 1,5 tJ. When 20 molded bodies of width 15 mm x length 16 fences x height 5 mm were successively molded, no blemishes or defects were observed on the molded bodies. Using the above dry alloy powder, it was oriented in a magnetic field of 10 KOθ, and molded into a silicone with 2[4] width of 15 mm x length of 1.
A molded body of 6111n+×height 10 + nm was obtained, and the ejection pressure and green density of the molded body during molding were measured. Also, the width 15mm x length 16nun x height 5nIllll
The molded body was pretreated in vacuum at 200°C to 300°C for 2 hours, then cured in Ar at 111) 0°C for 1 hour, and further heated at 600°C in Ar. 1
Permanent magnets were fabricated by subjecting them to time-dependent treatment, and their magnetic properties were measured. The measurement results are shown in Table 3. As is clear from Table 3, in continuous molding, the method of this invention has a small extraction pressure, a high green density, improved lubricity, and no cracks or cracks in the appearance of the molded product. Poor magnetic properties were obtained, and the moldability improvement effect was obvious. Further, it can be seen that the addition amount of the moldability improver referred to in this invention is preferably 0.5 parts by weight or less from the viewpoint of magnetic properties. Below is the blank space Example 3 The starting material is electrolytic iron with a purity of 69.9%, 919.4
% / Ferro-1i consisting of impurities such as me and C
A predetermined amount of M metal with a purity of 99.1% or more and electrolytic 6 with a purity of 99.9% are mixed, C high-frequency melted, and then cast in a water-cooled copper mold to obtain an ingot with a composition of 16M7F310Co67Fe (at%). Ta. This ingot is coarsely crushed, finely crushed, and has an average particle size of 3)s.
An alloy powder was obtained. For 1 part of this alloy powder 1()O weight n', -C,
Dilene glycol monolaure 1~ and polyA xyf-
Addition of ethylene glycol monostearate, polyoxyethylene lauryl ether, polyethylene glycol monostearate, polyAxyethylene nonylphyl monostearate, and polyethylene glycol monostearate as shown in Table 4. 3 mouthfuls of 1-dichloro-1-linol]
Add the one dissolved in the tunic to the µm, mix and avoid drying this after the child. Using this dry alloy powder
Oriented and pressure molded at 2 [4, width 15 mm x length 16
When 30 molded bodies of mm x height 5 mm were continuously molded, no blemishes, chips, or defects were observed in the molded bodies. In addition, using dry alloy powder, C orientation was applied in a magnetic field of 12 KOe, pressure molded at 2 tJ, and a width of 15 mm x length of 1
To obtain a molded product of 6mm x height 10mm, the ejection pressure and green density of the molded product were measured during molding. Also, the width is 15nunX
A molded body with a length of 16 m + n x height of 5 mm was placed in a vacuum for 20 minutes.
After pretreatment at 0°C to 300°C for 2 hours, sintering was performed at 1100°C for 1 hour in Ar.
A permanent magnet was produced by aging at 600° C. for 11 hours in a vacuum chamber, and its magnetic properties were measured. The measurement results are shown in Table 4. As is clear from Table 4, even in continuous molding, the method of the present invention has a small ejection pressure, a high green density, improved lubricity, and no cracks or cracks in the appearance of the molded product. Excellent magnetic properties were obtained without any heat loss, and the effect of improving moldability was obvious.

Claims (1)

【特許請求の範囲】 1 R10原子%・〜3030原 子但し、RはYを包含する希土類元素のうち少なくとも
1秤)、 132原子%〜28原子%、 [e 65原子%・・・82原子%、 を主成分とり−る合金粉末に、 ポリAキシエチレンアルキルーL−テール、ポリオキシ
エチレンモノ脂肪酸ニスフル、ポリオキシ1チレンアル
キルアリル−J−フル、から選択した少なくとも1種を
、上記合金粉末100車Ji部に対して0 、5 tJ
 fQ f15以下添加し、混合したのち成型りること
を特徴どりる永久磁石用合金粉末の成型方法。
[Claims] 1 R 10 atomic % - 3030 atoms, where R is at least one of the rare earth elements including Y), 132 atomic % - 28 atomic %, [e 65 atomic %...82 atomic % , and at least one selected from polyA xyethylene alkyl-L-tail, polyoxyethylene monofatty acid nisful, and polyoxy 1-tyrene alkylaryl-J-ful, to the alloy powder 100 containing as the main components. 0,5 tJ for car Ji part
A method for molding alloy powder for permanent magnets, which is characterized by adding fQ f15 or less, mixing, and then molding.
JP3996184A 1984-03-01 1984-03-01 Method for molding alloy powder for permanent magnet Granted JPS60184602A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3996184A JPS60184602A (en) 1984-03-01 1984-03-01 Method for molding alloy powder for permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3996184A JPS60184602A (en) 1984-03-01 1984-03-01 Method for molding alloy powder for permanent magnet

Related Child Applications (3)

Application Number Title Priority Date Filing Date
JP59141874A Division JPH0649886B2 (en) 1984-07-09 1984-07-09 Molding improver for Fe-BR system alloy powder for permanent magnets
JP3059680A Division JPH04214804A (en) 1991-02-28 1991-02-28 Method for molding alloy powder for rare earth-iron-boron based permanent magnet
JP3059679A Division JPH04214803A (en) 1991-02-28 1991-02-28 Method for molding alloy powder for rare earth-iron-boron based permanent magnet

Publications (2)

Publication Number Publication Date
JPS60184602A true JPS60184602A (en) 1985-09-20
JPH0480961B2 JPH0480961B2 (en) 1992-12-21

Family

ID=12567548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3996184A Granted JPS60184602A (en) 1984-03-01 1984-03-01 Method for molding alloy powder for permanent magnet

Country Status (1)

Country Link
JP (1) JPS60184602A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4978398A (en) * 1988-09-30 1990-12-18 Hitachi Metals, Ltd. Magnetically anisotropic hot-worked magnet and method of producing same
US5026419A (en) * 1989-05-23 1991-06-25 Hitachi Metals, Ltd. Magnetically anisotropic hotworked magnet and method of producing same
US5098486A (en) * 1989-05-23 1992-03-24 Hitachi Metals, Ltd. Magnetically anisotropic hotworked magnet and method of producing same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5822304A (en) * 1981-08-03 1983-02-09 Toshiba Tungaloy Co Ltd Molding auxiliary for raw powder for powder metallurgy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5822304A (en) * 1981-08-03 1983-02-09 Toshiba Tungaloy Co Ltd Molding auxiliary for raw powder for powder metallurgy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4978398A (en) * 1988-09-30 1990-12-18 Hitachi Metals, Ltd. Magnetically anisotropic hot-worked magnet and method of producing same
US5026419A (en) * 1989-05-23 1991-06-25 Hitachi Metals, Ltd. Magnetically anisotropic hotworked magnet and method of producing same
US5098486A (en) * 1989-05-23 1992-03-24 Hitachi Metals, Ltd. Magnetically anisotropic hotworked magnet and method of producing same

Also Published As

Publication number Publication date
JPH0480961B2 (en) 1992-12-21

Similar Documents

Publication Publication Date Title
EP0898778B1 (en) Bonded magnet with low losses and easy saturation
JPWO2002103719A1 (en) Rare earth permanent magnet material
EP0249973B1 (en) Permanent magnetic material and method for producing the same
JPS6325904A (en) Permanent magnet and manufacture of the same and compound for manufacture of the permanent magnet
JP4449900B2 (en) Method for producing rare earth alloy powder and method for producing rare earth sintered magnet
JPS60184602A (en) Method for molding alloy powder for permanent magnet
JPS6134101A (en) Molding improving agent of alloy powder for permanent magnet
JPH05335120A (en) Anisotropic bonded manget manufacturing magnet powder coated with solid resin binder and manufacture thereof
JPS62173704A (en) Manufacture of permanent magnet
JPS58193336A (en) Permanent magnet material
JPH04214804A (en) Method for molding alloy powder for rare earth-iron-boron based permanent magnet
JPH11307330A (en) Manufacture of r-fe-b system magnet
JPH0480962B2 (en)
JP5235264B2 (en) Rare earth sintered magnet and manufacturing method thereof
JP3498395B2 (en) Manufacturing methods and molding materials for rare earth and iron-based sintered permanent magnets
JPH0555561B2 (en)
JP3338590B2 (en) Method for producing R-Fe-B based sintered magnet by injection molding method
JPH06290919A (en) Rare earth-iron-boron permanent magnet and manufacture thereof
JP3174442B2 (en) Method for producing R-Fe-B sintered anisotropic permanent magnet
JPH0649886B2 (en) Molding improver for Fe-BR system alloy powder for permanent magnets
JP4972919B2 (en) Rare earth sintered magnet and manufacturing method thereof
JP3174443B2 (en) Method for producing sintered R-Fe-B magnet by injection molding method
JPH04214803A (en) Method for molding alloy powder for rare earth-iron-boron based permanent magnet
JP4645336B2 (en) Rare earth sintered magnet and manufacturing method thereof
JPH05214406A (en) Method for compacting alloy powder for rare-earth element-iron-boron permanent magnet

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term