JPH05214406A - Method for compacting alloy powder for rare-earth element-iron-boron permanent magnet - Google Patents

Method for compacting alloy powder for rare-earth element-iron-boron permanent magnet

Info

Publication number
JPH05214406A
JPH05214406A JP21542892A JP21542892A JPH05214406A JP H05214406 A JPH05214406 A JP H05214406A JP 21542892 A JP21542892 A JP 21542892A JP 21542892 A JP21542892 A JP 21542892A JP H05214406 A JPH05214406 A JP H05214406A
Authority
JP
Japan
Prior art keywords
atomic
alloy powder
permanent magnet
iron
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21542892A
Other languages
Japanese (ja)
Other versions
JPH0798962B2 (en
Inventor
Shigeki Hamada
隆樹 浜田
Michio Yamashita
三千雄 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP4215428A priority Critical patent/JPH0798962B2/en
Publication of JPH05214406A publication Critical patent/JPH05214406A/en
Publication of JPH0798962B2 publication Critical patent/JPH0798962B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the compact of an alloy powder suitable for the industrial production of a novel rare-earth element-iron-boron group permanent magnet. CONSTITUTION:At least one kind between solid paraffin and camphor is mixed as a lubricant into an alloy powder consisting essentially of 10-30 atomic % of R (R is at least one kind among the rare-earth elements including Y), 2-28 atomic % of B and 65-82 atomic % of Fe, and the mixture is compacted. The compatibility is drastically improved, especially a thin compact is produced, and the releasing pressure is reduced which is advantageous in industrial production.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、R(但し、RはYを
包含する希土類元素のうち少なくとも1種)、B、Fe
を主成分とする新規な希土類・鉄・ボロン系永久磁石用
合金粉末の成形方法に係り、合金粉末に所要の潤滑剤を
混合することにより、成形時の成形体の抜き圧を低くし
て工業生産に適合させた希土類・鉄・ボロン系永久磁石
用合金粉末の成形方法に関する。
This invention relates to R (where R is at least one of rare earth elements including Y), B and Fe.
A new rare earth / iron / boron-based alloy powder for permanent magnets, whose main component is, is manufactured by mixing the alloy powder with the required lubricant to reduce the drawing pressure of the molded product during molding. The present invention relates to a molding method of rare earth / iron / boron alloy powder for permanent magnets suitable for production.

【0002】[0002]

【従来の技術】永久磁石材料は、一般家庭の各種電気製
品から大型コンピュータの周辺端末機器まで、幅広い分
野で使用される極めて重要な電気・電子材料の一つであ
る。近年の電気・電子機器の小形化、高効率化の要求に
ともない、永久磁石材料は益々高性能化が求められるよ
うになった。
2. Description of the Related Art Permanent magnet materials are one of the extremely important electric and electronic materials used in a wide range of fields from various household electric appliances to peripheral terminals for large computers. With the recent demand for miniaturization and high efficiency of electric and electronic devices, permanent magnet materials are required to have higher performance.

【0003】現在の代表的な永久磁石材料は、アルニ
コ、ハードフェライトおよび希土類コバルト磁石であ
る。近年のコバルトの原料事情の不安定化に伴ない、コ
バルトを20〜30wt%含むアルニコ磁石の需要は減
り、鉄の酸化物を主成分とする安価なハードフェライト
が磁石材料の主流を占めるようになった。
The typical current permanent magnet materials are alnico, hard ferrite and rare earth cobalt magnets. With the destabilization of the situation of cobalt raw materials in recent years, the demand for alnico magnets containing 20 to 30 wt% of cobalt has decreased, and inexpensive hard ferrite containing iron oxide as a main component has become the mainstream of magnet materials. became.

【0004】一方、希土類コバルト磁石はコバルトを5
0〜60wt%も含むうえ、希土類鉱石中にあまり含ま
れていないSmを使用するため大変高価であるが、他の
磁石に比べて、磁気特性が格段に高いため、主として小
型で付加価値の高い磁気回路に多用されるようになっ
た。そこで、本発明者は先に、高価なSmやCoを必ず
しも含有しない新しい高性能永久磁石としてFe−B−
R系(RはYを含む希土類元素のうち少なくとも1種、
Fe−B−R三元化合物はRの種類によらず存在する)
永久磁石を提案した(特願昭57ー145072号)。
On the other hand, rare earth cobalt magnets contain cobalt 5
It is very expensive because it contains 0 to 60 wt% and uses Sm that is rarely contained in rare earth ores, but its magnetic properties are significantly higher than other magnets, so it is mainly small and has high added value. It has become widely used in magnetic circuits. Therefore, the present inventor has previously proposed Fe-B- as a new high-performance permanent magnet that does not necessarily contain expensive Sm or Co.
R type (R is at least one of rare earth elements including Y,
Fe-BR ternary compounds exist regardless of the type of R)
Proposed a permanent magnet (Japanese Patent Application No. 57-145072).

【0005】また、さらに、Fe−B−R系の磁気異方
性焼結体からなる永久磁石の温度特性を改良するため
に、Feの一部をCoで置換することにより、生成合金
のキュリー点を上昇させて温度特性を改善したFe−C
o−B−R系異方性焼結体からなる永久磁石を提案した
(特願昭57ー166663号)。
Further, in order to improve the temperature characteristics of the permanent magnet made of an Fe—BR system magnetically anisotropic sintered body, a part of Fe is replaced with Co to form a Curie alloy. Fe-C whose temperature characteristics are improved by raising the temperature
A permanent magnet composed of an o-B-R anisotropic sintered body has been proposed (Japanese Patent Application No. 57-166663).

【0006】上記の新規なFe−B−R系、Fe−Co
−B−R系(RはYを含む希土類元素のうち少なくとも
1種)永久磁石を、製造するための出発原料の希土類金
属は、一般にCa還元法、電解法により製造される金属
塊であり、この希土類金属塊を用いて、例えば焼結磁石
の場合は次の工程により、上記の新規な永久磁石が製造
される。
The above-mentioned novel Fe-BR system, Fe-Co
A rare earth metal as a starting material for producing a —B—R type (R is at least one of rare earth elements including Y) permanent magnet is a metal block generally produced by a Ca reduction method or an electrolytic method, Using this rare earth metal block, for example, in the case of a sintered magnet, the above new permanent magnet is manufactured by the following steps.

【0007】出発原料として、純度99.9%の電解
鉄、B19.4%を含有し残部はFe及びAl、Si、
C等の不純物からなるフェロボロン合金、純度99.7
%以上の希土類金属、あるいはさらに、純度99.9%
の電解Coを高周波溶解し、その後水冷銅鋳型に鋳造す
る。 スタンプミルにより35メッシュスルーまでに粗粉砕
し、次にボールミルにより、例えば粗粉砕粉300gを
6時間湿式微粉砕して3〜10μmの微細粉となす。 磁界(10kOe)中配向して、成形(1.5t/c
2にて加圧)する。 焼結、1000℃〜1200℃、1時間、Ar中の焼
結後に放冷する。 時効処理、500℃〜1000℃、Ar中。
As starting materials, electrolytic iron having a purity of 99.9% and B19.4% are contained, and the balance is Fe and Al, Si,
Ferroboron alloy consisting of impurities such as C, purity 99.7
% Or more rare earth metal, or further, purity 99.9%
Electrolytic Co is melted by high frequency and then cast in a water-cooled copper mold. Coarsely pulverized by a stamp mill to a size of 35 mesh through, and then by a ball mill, for example, 300 g of coarsely pulverized powder is wet finely pulverized for 6 hours to form fine powder of 3 to 10 μm. Oriented in a magnetic field (10 kOe) and molded (1.5 t / c
(pressurize at m 2 ). Sintering, 1000 ° C. to 1200 ° C., 1 hour, sintering in Ar, and then allowed to cool. Aging treatment, 500 ° C to 1000 ° C, in Ar.

【0008】[0008]

【発明が解決しようとする課題】上記の如く、この新規
な永久磁石用合金粉末は、所要組成の鋳塊を粗粉砕及び
微粉砕を行なって得られるが、粉砕粉のままでは成形性
が非常に悪く、成形時にダイス壁面等との摩擦により、
ダイス面及び成形体表面にきず、剥がれ、割れ等が生じ
易く、品質上及び製品歩留上に大きな問題となってい
た。
As described above, this new alloy powder for permanent magnets can be obtained by coarsely pulverizing and finely pulverizing an ingot of the required composition. Unfavorably, due to friction with the die wall surface during molding,
Scratches, peeling, cracks and the like are likely to occur on the die surface and the surface of the molded product, which has been a serious problem in terms of quality and product yield.

【0009】この発明は、工業的に安定した成形性を有
しかつ十分な磁気特性を有する希土類・鉄・ボロン系永
久磁石を得るための該系磁石用合金粉末の成形方法を目
的とし、すぐれた潤滑性によりダイス面及び成形体の摩
擦を低減して成形性を改善し、磁石の磁気特性の劣化が
少ない潤滑剤を使用した希土類・鉄・ボロン系永久磁石
用合金粉末の成形方法の提供を目的としている。
The present invention has an object of a method for molding an alloy powder for a rare earth / iron / boron permanent magnet having industrially stable moldability and having sufficient magnetic properties, which is excellent. Provides a method for forming alloy powder for rare earth / iron / boron permanent magnets that uses a lubricant that reduces friction between the die surface and the formed body by improved lubricity and improves formability, and that does not deteriorate the magnetic properties of the magnet. It is an object.

【0010】[0010]

【課題を解決するための手段】この発明は、R10原子
%〜30原子%(但し、RはYを包含する希土類元素の
うち少なくとも1種)、B2原子%〜28原子%、Fe
65原子%〜82原子%を主成分とする合金粉末に潤滑
剤として、固形パラフィン、ショウノウのうち少なくと
も1種を用いて混合した後成形することを特徴とする希
土類・鉄・ボロン系永久磁石用合金粉末の成形方法であ
る。
According to the present invention, R is 10 atom% to 30 atom% (provided that R is at least one of rare earth elements including Y), B2 atom% to 28 atom%, and Fe.
For rare earth / iron / boron-based permanent magnets, characterized by mixing alloy powder containing 65 atomic% to 82 atomic% as a main component with at least one of solid paraffin and camphor as a lubricant, and then molding the mixture. This is a method for molding alloy powder.

【0011】この発明は、R、B、Feを主成分とする
新規な永久磁石用合金粉末の成形に使用可能な潤滑剤に
ついて種々検討した結果、特定量の固形パラフィン、シ
ョウノウのうち少なくとも1種が適していることを知見
したもので、粉末の結合性にすぐれ、また少量添加です
ぐれた潤滑性によりダイス面及び成形体の摩擦を低減し
て成形性を改善し、薄肉成形体の製造が可能でさらに焼
結磁石の磁気特性の劣化が少ない利点があり、特に成形
時の成形体の抜き圧を低くでき、工業生産上きわめて有
利である。
As a result of various studies on a lubricant that can be used for molding a new alloy powder for permanent magnets containing R, B and Fe as main components, the present invention shows that at least one of solid paraffin and camphor of a specific amount. It has been found that is suitable for the production of thin-walled molded products by improving the bondability of the powder and reducing the friction between the die surface and the molded product by adding a small amount to improve the lubricity. It is possible, and further, there is an advantage that the magnetic characteristics of the sintered magnet are less deteriorated. Particularly, the drawing pressure of the molded body at the time of molding can be lowered, which is extremely advantageous in industrial production.

【0012】[0012]

【作用】この発明において、固形パラフィンは、一般市
販品が使用でき、成形体の強度向上のためには常温付近
でワックス状あるいはろう状ないしは固体状が好まし
く、また、合金粉末への湿式混合の際、溶媒への溶解性
から、その分子量はあまり大きくないものがよく、炭素
数が50以下のものが好ましい。ショウノウは天然と合
成のものがあり、また英語のカンファとも呼ばれ、一般
市販品が使用できる。
In the present invention, as the solid paraffin, general commercially available products can be used, and in order to improve the strength of the molded product, a waxy or waxy or solid form is preferable at around room temperature. At this time, it is preferable that the molecular weight thereof is not so large in view of solubility in a solvent, and that having a carbon number of 50 or less is preferable. There are natural and synthetic camphor, also called English camphor, and general commercial products can be used.

【0013】この発明において、潤滑剤の添加量は、原
料合金粉末の粒度およびダイス、成形体の形状、寸法、
摩擦面積、プレス条件等に応じて適宜選定すればよく、
少量の添加で成形性改善効果があり、添加量の増大とと
もに抜き圧など成形性は向上するが、多量に添加すると
合金粉末の磁場配向を阻害して異方性になり難く、また
後続の焼結工程において、焼結体に炭素が残留して磁気
特性を劣化させる。好ましい添加量は単独、複合添加と
も合金粉末100重量部に対して、0.5重量部以下で
ある。
In the present invention, the amount of lubricant added is such that the grain size and die of the raw material alloy powder, the shape and size of the compact,
It may be appropriately selected according to the friction area, press conditions, etc.,
Addition of a small amount has the effect of improving formability, and with an increase in the amount added, the formability such as drawing pressure improves. In the binding step, carbon remains in the sintered body and deteriorates the magnetic characteristics. The preferable addition amount is 0.5 parts by weight or less with respect to 100 parts by weight of the alloy powder in both single addition and composite addition.

【0014】また、この発明において、潤滑剤の合金粉
末への添加は、乾式混合また溶媒をもちいての湿式混合
のいずれでもよいが、該合金粉末が酸素あるいは水分に
対して反応しやすく活性であるため、湿式で行なうこと
が好ましく、使用する溶媒としては、ヘキサン、トルエ
ン、トリクロルエチレン、弗素系溶媒などの不活性溶媒
が好ましい。混合時の態様は、乾燥状態あるいはスラリ
ー状態のいずれであってもよく、例えば、湿式粉砕工程
中、あるいはその前後、または乾燥工程中あるいはその
前後に適宜混合することができる。
In the present invention, the lubricant may be added to the alloy powder by either dry mixing or wet mixing using a solvent. However, the alloy powder easily reacts with oxygen or moisture and is active. Therefore, it is preferably carried out by a wet method, and the solvent used is preferably an inert solvent such as hexane, toluene, trichloroethylene, or a fluorine-based solvent. The state of mixing may be either in a dry state or a slurry state, and for example, they can be appropriately mixed during or before or after the wet pulverization step, or during or before or after the drying step.

【0015】この発明において、合金粉末の成形は、通
常の粉末冶金法と同様に行なうことができ、加圧成形時
に磁場付与有無により、異方性磁石あるいは等方性磁石
を得ることができる。
In the present invention, the alloy powder can be molded in the same manner as in the ordinary powder metallurgy method, and an anisotropic magnet or an isotropic magnet can be obtained depending on whether a magnetic field is applied during pressure molding.

【0016】以下に、この発明における希土類・鉄・ボ
ロン系永久磁石用原料合金粉末の組成限定理由を説明す
る。この発明の永久磁石用原料合金粉末に含有される希
土類元素Rは、イットリウム(Y)を包含し軽希土類及
び重希土類を包含する希土類元素であり、Rとしては、
Nd、Pr、La、Ce、Tb、Dy、Ho、Er、E
u、Sm、Gd、Pm、Tm、Yb、Lu及びYが包含
される。Rとしては、軽希土類をもって足り、特にN
d、Prが好ましい。また通例Rのうち1種をもって足
りるが、実用上は2種以上の混合物(ミッシュメタル、
ジジム等)を入手上の便宜等の理由により用いることが
でき、Sm、Y、La、Ce、Gd、等は他のR、特に
Nd、Pr等との混合物として用いることができる。な
お、このRは純希土類元素でなくてもよく、工業上入手
可能な範囲で製造上不可避な不純物を含有するものでも
差支えない。
The reasons for limiting the composition of the raw material alloy powder for rare earth / iron / boron permanent magnets in the present invention will be described below. The rare earth element R contained in the raw material alloy powder for a permanent magnet of the present invention is a rare earth element including yttrium (Y) and including light rare earths and heavy rare earths.
Nd, Pr, La, Ce, Tb, Dy, Ho, Er, E
u, Sm, Gd, Pm, Tm, Yb, Lu and Y are included. For R, light rare earths are sufficient, especially N
d and Pr are preferred. Usually, one of R is sufficient, but in practice, a mixture of two or more (Misch metal,
Didymium, etc.) can be used for reasons of availability, and Sm, Y, La, Ce, Gd, etc. can be used as a mixture with other R, especially Nd, Pr, etc. It should be noted that this R does not have to be a pure rare earth element, and may contain an impurity that is unavoidable in manufacturing within a range that is industrially available.

【0017】R(Yを含む希土類元素のうち少なくとも
1種)は、新規な上記系永久磁石を製造する合金粉末と
して必須元素であって、10原子%未満では高磁気特
性、特に高保磁力が得られず、30原子%を越えると残
留磁束密度(Br)が低下して、すぐれた特性の永久磁
石が得られない。よって、Rは10原子%〜30原子%
の範囲とする。
R (at least one of rare earth elements including Y) is an essential element as an alloy powder for producing the novel permanent magnet, and if it is less than 10 atomic%, high magnetic properties, particularly high coercive force can be obtained. If it exceeds 30 atomic%, the residual magnetic flux density (Br) is lowered, and a permanent magnet having excellent characteristics cannot be obtained. Therefore, R is 10 atom% to 30 atom%.
The range is.

【0018】Bは、新規な上記系永久磁石を製造する合
金粉末として必須元素であって、2原子%未満では高い
保磁力(iHc)は得られず、28原子%を越えると残
留磁束密度(Br)が低下するため、すぐれた永久磁石
が得られない。よって、Bは2原子%〜28原子%の範
囲とする。
B is an essential element as an alloy powder for producing the above-mentioned new permanent magnet. When it is less than 2 atomic%, a high coercive force (iHc) cannot be obtained, and when it exceeds 28 atomic%, the residual magnetic flux density ( Since Br) decreases, an excellent permanent magnet cannot be obtained. Therefore, B is in the range of 2 at% to 28 at%.

【0019】Feは、新規な上記系永久磁石を製造する
合金粉末として必須元素であるが、65原子%未満では
残留磁束密度(Br)が低下し、82原子%を越えると
高い保磁力が得られないので、Feは65原子%〜82
原子%に限定する。また、Feの一部をCoで置換する
理由は、永久磁石の温度特性を向上させる効果が得られ
るためであり、CoはFeの50%を越えると高い保磁
力が得られず、すぐれた永久磁石が得られない。よっ
て、Coは50%を上限とする。
Fe is an essential element as an alloy powder for producing the above new permanent magnet, but if it is less than 65 atom%, the residual magnetic flux density (Br) is lowered, and if it exceeds 82 atom%, a high coercive force is obtained. Therefore, the Fe content is 65 atomic% to 82.
Limit to atomic%. Further, the reason for substituting a part of Fe with Co is that the effect of improving the temperature characteristics of the permanent magnet can be obtained, and when Co exceeds 50% of Fe, a high coercive force cannot be obtained, which is an excellent permanent magnet. I can't get a magnet. Therefore, Co has an upper limit of 50%.

【0020】この発明の合金粉末において、高い残留磁
束密度と高い保磁力を共に有するすぐれた永久磁石を得
るためには、R10原子%〜25原子%、B4原子%〜
26原子%、Fe65原子%〜82原子%が好ましい。
In order to obtain an excellent permanent magnet having both a high residual magnetic flux density and a high coercive force in the alloy powder of the present invention, R10 atomic% to 25 atomic% and B4 atomic% to
26 at% and Fe at 65 to 82 at% are preferable.

【0021】また、この発明による合金粉末は、R、
B、Feの他、工業的生産上不可避的不純物の存在を許
容できるが、Bの一部を、4.0原子%以下のC、3.
5原子%以下のP、2.5原子%以下のS、3.5原子
%以下のCuのうち少なくとも1種、合計量で4.0原
子%以下で置換することにより、磁石合金の製造性改
善、低価格化が可能である。
The alloy powder according to the present invention contains R,
In addition to B and Fe, the presence of impurities that are unavoidable in industrial production can be tolerated, but a part of B is 4.0 atomic% or less of C, 3.
Manufacturability of a magnet alloy by substituting at least one of P at 5 atomic% or less, S at 2.5 atomic% or less, and Cu at 3.5 atomic% or less by a total amount of 4.0 atomic% or less. Improvements and lower prices are possible.

【0022】さらに、前記R,B,Fe合金あるいはC
oを含有するR,B,Fe合金に、 9.5原子%以下のAl、4.5原子%以下のTi、 9.5原子%以下のV、8.5原子%以下のCr、 8.0原子%以下のMn、5原子%以下のBi、 12.5原子%以下のNb、10.5原子%以下のT
a、 9.5原子%以下のMo、9.5原子%以下のW、 2.5原子%以下のSb、7原子%以下のGe、 3.5原子%以下のSn、5.5原子%以下のZr、 5.5原子%以下のHfのうち少なくとも1種を添加含
有させることにより、永久磁石合金の高保磁力化が可能
になる。
Further, the R, B, Fe alloy or C
7. O-containing R, B, Fe alloys with 9.5 atomic% or less Al, 4.5 atomic% or less Ti, 9.5 atomic% or less V, 8.5 atomic% or less Cr, 8. Mn of 0 atomic% or less, Bi of 5 atomic% or less, Nb of 12.5 atomic% or less, T of 10.5 atomic% or less
a, Mo at 9.5 atomic% or less, W at 9.5 atomic% or less, Sb at 2.5 atomic% or less, Ge at 7 atomic% or less, Sn at 3.5 atomic% or less, 5.5 atomic% By adding at least one of the following Zr and Hf of 5.5 atomic% or less, it becomes possible to increase the coercive force of the permanent magnet alloy.

【0023】この発明のR−B−Fe系永久磁石におい
て、結晶相は主相が正方晶であることが不可欠であり、
特に、微細で均一な合金粉末を得て、すぐれた磁気特性
を有する焼結永久磁石を作製するのに効果的である。
In the RB-Fe system permanent magnet of the present invention, it is essential that the main phase of the crystal phase is a tetragonal crystal,
In particular, it is effective for obtaining a fine and uniform alloy powder and producing a sintered permanent magnet having excellent magnetic properties.

【0024】この発明による合金微粉末の粒度は、平均
粒度が10μmを越えると永久磁石の作製時にすぐれた
磁気特性、とりわけ高い保磁力が得られず、また、平均
粒度が1μm未満では永久磁石の作製工程、すなわちプ
レス成形、焼結、時効処理工程における酸化が著しく、
すぐれた磁気特性が得られないため、平均粒度1〜10
μmの合金微粉末が最も望ましい。
With respect to the particle size of the alloy fine powder according to the present invention, when the average particle size exceeds 10 μm, excellent magnetic properties, particularly high coercive force, cannot be obtained at the time of producing a permanent magnet. Oxidation in the manufacturing process, that is, press molding, sintering, and aging treatment is remarkable,
Average particle size 1 to 10 because excellent magnetic properties cannot be obtained
A micron alloy fine powder is most desirable.

【0025】この発明による永久磁石用合金微粉末を使
用して得られる磁気異方性永久磁石合金は、保磁力iH
c≧1kOe、残留磁束密度Br>4kGを示し、最大
エネルギー積(BH)maxはハードフェライトと同等
以上となり、最も好ましい組成範囲では、(BH)ma
x≧10MGOeを示し、最大値は25MGOe以上に
達する。また、この発明による合金微粉末の組成が、R
10原子%〜30原子%、B2原子%〜28原子%、C
o45原子%以下、Fe65原子%〜82原子%の場
合、得られる磁気異方性永久磁石合金は上記磁石合金と
同等の磁気特性を示し、残留磁束密度の温度係数が0.
1%/℃以下となり、すぐれた特性が得られる。また、
合金粉末のRの主成分がその50%以上を軽希土類金属
が占める場合で、R12原子%〜20原子%、B4原子
%〜24原子%、Fe65原子%〜82原子%の場合、
あるいはさらにCo5原子%〜45原子%を含有すると
き最もすぐれた磁気特性を示し、特に軽希土類金属がN
dの場合には、(BH)maxはその最大値が33MG
Oe以上に達する。
The magnetic anisotropic permanent magnet alloy obtained by using the alloy fine powder for permanent magnet according to the present invention has a coercive force iH.
c ≧ 1 kOe, residual magnetic flux density Br> 4 kG, the maximum energy product (BH) max is equal to or greater than that of hard ferrite, and in the most preferable composition range, (BH) ma
x ≧ 10 MGOe, and the maximum value reaches 25 MGOe or more. The composition of the alloy fine powder according to the present invention is R
10 atom% to 30 atom%, B2 atom% to 28 atom%, C
When the content is 45 atomic% or less and Fe is 65 atomic% to 82 atomic%, the obtained magnetic anisotropic permanent magnet alloy exhibits magnetic characteristics equivalent to those of the above magnetic alloy, and the residual magnetic flux density has a temperature coefficient of 0.
It is 1% / ° C or less, and excellent characteristics are obtained. Also,
When the main component of R of the alloy powder occupies 50% or more of the light rare earth metal, and when R12 atomic% to 20 atomic%, B4 atomic% to 24 atomic%, and Fe65 atomic% to 82 atomic%,
Further, when it further contains Co 5 at% to 45 at%, it exhibits the best magnetic characteristics, and in particular, the light rare earth metal is N
In the case of d, the maximum value of (BH) max is 33 MG.
Reach more than Oe.

【0026】[0026]

【実施例】出発原料として、純度99.9%の電解鉄、
B19.4%を含有し残部はFe及びC等の不純物から
なるフェロボロン合金、純度99.7%以上のNdを所
定量配合して高周波溶解し、その後水冷銅鋳型に鋳造
し、15Nd8B77Fe(at%)なる組成の鋳塊を
得た。この鋳塊を機械的粉砕により35メッシュスルー
までに粗粉砕した。ついで、ボール・ミルによる微粉砕
を行ない、平均粒度3.3μmの合金粉末を得た。この
合金粉末に、固形パラフィンとショウノウを、合金粉末
100重量部に対して、各々0.5重量部、予めトリク
ロロトリフルオロエタンに溶解または分散させたものを
湿式混合したのち、乾燥させた。
[Example] As a starting material, electrolytic iron having a purity of 99.9%,
Ferroborone alloy containing B19.4% with the balance being Fe and C and other impurities, Nd having a purity of 99.7% or more was blended in a predetermined amount and high-frequency melted, and then cast in a water-cooled copper mold to obtain 15Nd8B77Fe (at% ) Was obtained. This ingot was coarsely pulverized by mechanical pulverization to a 35 mesh through. Then, fine pulverization was performed with a ball mill to obtain an alloy powder having an average particle size of 3.3 μm. To this alloy powder, 0.5 parts by weight of solid paraffin and camphor, each dissolved in or dispersed in trichlorotrifluoroethane, were wet mixed with 100 parts by weight of the alloy powder, and then dried.

【0027】この乾燥合金粉末並びに潤滑剤を添加しな
い合金粉末を用いて、磁界12kOe中で配向し、2t
/cm2にて加圧成形し、幅15mm×長さ16mm×
高さ10mmの成形体を得た。この成形時の成形体の抜
き圧、圧粉密度、グリーン強度を測定し、その結果を表
1に示す。なお、グリーン強度指数はラトラー試験機で
成形体を100回回転させた後の重量残%で示す。
Using this dry alloy powder and the alloy powder without addition of a lubricant, orientation was performed in a magnetic field of 12 kOe and 2 t
Pressurizing and pressure molded at / cm 2, width 15 mm × length 16 mm ×
A molded body having a height of 10 mm was obtained. The drawing pressure, the green compact density and the green strength of the molded product during this molding were measured, and the results are shown in Table 1. The green strength index is represented by the residual weight% after the molded body was rotated 100 times with a Ratler tester.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【発明の効果】表1より明らかな如く、固形パラフィ
ン、ショウノウを潤滑剤として混合した後成形するこの
発明方法により、抜き圧が小さく、圧粉密度とグリーン
強度が高く、潤滑性が改善され、きずや割れの発生も少
なく、成形性が大幅に改善される。特に、粉末の結合性
がよく薄肉成形体の製造が可能で、さらに抜き圧を小さ
くできることから、成形金型に対する負荷を少なくでき
長寿命化が可能であり、また作業性がよく新規な希土類
・鉄・ボロン系永久磁石の工業生産に適した合金粉末の
成形方法を提供できる。
As is clear from Table 1, according to the method of the present invention in which solid paraffin and camphor are mixed as a lubricant and then molded, the drawing pressure is small, the green compact density and the green strength are high, and the lubricity is improved. There are few flaws and cracks, and the formability is greatly improved. In particular, since it is possible to manufacture a thin-walled molded product with good powder binding properties and further reduce the drawing pressure, it is possible to reduce the load on the molding die and prolong the life of the mold. An alloy powder molding method suitable for industrial production of iron-boron permanent magnets can be provided.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 R10原子%〜30原子%(但し、Rは
Yを包含する希土類元素のうち少なくとも1種)、 B2原子%〜28原子%、 Fe65原子%〜82原子%を主成分とする合金粉末に
潤滑剤として、固形パラフィン、ショウノウのうち少な
くとも1種を用いて混合した後成形することを特徴とす
る希土類・鉄・ボロン系永久磁石用合金粉末の成形方
法。
1. R10 atomic% to 30 atomic% (provided that R is at least one of rare earth elements including Y), B2 atomic% to 28 atomic%, Fe65 atomic% to 82 atomic% as main components. A method for forming an alloy powder for a rare earth / iron / boron permanent magnet, which comprises mixing at least one of solid paraffin and camphor as a lubricant with an alloy powder and then forming the mixture.
JP4215428A 1992-07-20 1992-07-20 Forming method of alloy powder for rare earth / iron / boron permanent magnet Expired - Lifetime JPH0798962B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4215428A JPH0798962B2 (en) 1992-07-20 1992-07-20 Forming method of alloy powder for rare earth / iron / boron permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4215428A JPH0798962B2 (en) 1992-07-20 1992-07-20 Forming method of alloy powder for rare earth / iron / boron permanent magnet

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP3996384A Division JPS60184603A (en) 1984-03-01 1984-03-01 Method for molding alloy powder for permanent magnet

Publications (2)

Publication Number Publication Date
JPH05214406A true JPH05214406A (en) 1993-08-24
JPH0798962B2 JPH0798962B2 (en) 1995-10-25

Family

ID=16672178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4215428A Expired - Lifetime JPH0798962B2 (en) 1992-07-20 1992-07-20 Forming method of alloy powder for rare earth / iron / boron permanent magnet

Country Status (1)

Country Link
JP (1) JPH0798962B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5822304A (en) * 1981-08-03 1983-02-09 Toshiba Tungaloy Co Ltd Molding auxiliary for raw powder for powder metallurgy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5822304A (en) * 1981-08-03 1983-02-09 Toshiba Tungaloy Co Ltd Molding auxiliary for raw powder for powder metallurgy

Also Published As

Publication number Publication date
JPH0798962B2 (en) 1995-10-25

Similar Documents

Publication Publication Date Title
EP0126179A1 (en) Process for producing permanent magnet materials
JP2746818B2 (en) Manufacturing method of rare earth sintered permanent magnet
JPH0232761B2 (en)
JPH0316761B2 (en)
JP2853838B2 (en) Manufacturing method of rare earth permanent magnet
JPH0320046B2 (en)
JP2610798B2 (en) Permanent magnet material
JPH061726B2 (en) Method of manufacturing permanent magnet material
JPH0461042B2 (en)
JPH0535210B2 (en)
JPH045739B2 (en)
JPH0445573B2 (en)
JPH0549737B2 (en)
JPH04214804A (en) Method for molding alloy powder for rare earth-iron-boron based permanent magnet
JPH0535211B2 (en)
JP3178848B2 (en) Manufacturing method of permanent magnet
JPH0547533A (en) Sintered permanent magnet and manufacture thereof
JPH04214803A (en) Method for molding alloy powder for rare earth-iron-boron based permanent magnet
JPH05214406A (en) Method for compacting alloy powder for rare-earth element-iron-boron permanent magnet
JPH0480961B2 (en)
JPH0475303B2 (en)
JPH045737B2 (en)
JPH0633444B2 (en) Permanent magnet alloy
JPH0477066B2 (en)
JPH04246803A (en) Rare earth-fe-b anisotropic magnet

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term