JPH04214803A - Method for molding alloy powder for rare earth-iron-boron based permanent magnet - Google Patents

Method for molding alloy powder for rare earth-iron-boron based permanent magnet

Info

Publication number
JPH04214803A
JPH04214803A JP3059679A JP5967991A JPH04214803A JP H04214803 A JPH04214803 A JP H04214803A JP 3059679 A JP3059679 A JP 3059679A JP 5967991 A JP5967991 A JP 5967991A JP H04214803 A JPH04214803 A JP H04214803A
Authority
JP
Japan
Prior art keywords
rare earth
alloy powder
atomic
permanent magnet
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3059679A
Other languages
Japanese (ja)
Other versions
JPH0561340B2 (en
Inventor
Shigeki Hamada
隆樹 浜田
Michio Yamashita
三千雄 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP3059679A priority Critical patent/JPH04214803A/en
Publication of JPH04214803A publication Critical patent/JPH04214803A/en
Publication of JPH0561340B2 publication Critical patent/JPH0561340B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To offer a novel method for molding alloy powder suitable for the industrial production of a rare earth-iron-boron based permanent magnet. CONSTITUTION:The powder of an alloy consisting essentially of, by atom, 10 to 30% R (where R denotes at least one kind among rare earth elements including Y), 2 to 28% B and 65 to 82% Fe is mixed with at least one kind among stearic acid, zinc stearate and bisamid as a lubricant, and this mixture is thereafter molded. Its moldability is remarkably improved, its draft can be reduced and an advantage can be given from the viewpoint of industrial production.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、R(但し、RはYを
包含する希土類元素のうち少なくとも1種)、B、Fe
を主成分とする新規な希土類・鉄・ボロン系永久磁石用
合金粉末の成型方法に係り、合金粉末に所要の潤滑剤を
混合することにより、成型時の成型体の抜き圧を低くし
て工業生産に適合させた希土類・鉄・ボロン系永久磁石
用合金粉末の成型方法に関する。
[Industrial Application Field] The present invention relates to R (where R is at least one rare earth element including Y), B, Fe,
The method for molding a new alloy powder for permanent magnets based on rare earths, iron, and boron, which is mainly composed of This invention relates to a method for molding alloy powder for rare earth, iron, and boron permanent magnets that is suitable for production.

【0002】0002

【従来の技術】永久磁石材料は、一般家庭の各種電気製
品から大型コンピュータの周辺端末機器まで、幅広い分
野で使用される極めて重要な電気・電子材料の一つであ
る。近年の電気・電子機器の小形化、高効率化の要求に
ともない、永久磁石材料は益々高性能化が求められるよ
うになった。
2. Description of the Related Art Permanent magnetic materials are one of the extremely important electrical and electronic materials used in a wide range of fields, from various household electrical appliances to peripheral terminal equipment for large computers. In recent years, with the demand for smaller size and higher efficiency of electrical and electronic equipment, permanent magnet materials are required to have increasingly higher performance.

【0003】現在の代表的な永久磁石材料は、アルニコ
、ハードフェライトおよび希土類コバルト磁石である。 近年のコバルトの原料事情の不安定化に伴ない、コバル
トを20〜30wt%含むアルニコ磁石の需要は減り、
鉄の酸化物を主成分とする安価なハードフェライトが磁
石材料の主流を占めるようになった。
Current typical permanent magnet materials are alnico, hard ferrite, and rare earth cobalt magnets. As the raw material situation for cobalt has become unstable in recent years, demand for alnico magnets containing 20 to 30 wt% cobalt has decreased.
Inexpensive hard ferrite, whose main component is iron oxide, has come to dominate magnet materials.

【0004】一方、希土類コバルト磁石はコバルトを5
0〜60wt%も含むうえ、希土類鉱石中にあまり含ま
れていないSmを使用するため大変高価であるが、他の
磁石に比べて、磁気特性が格段に高いため、主として小
型で付加価値の高い磁気回路に多用されるようになった
。そこで、本発明者は先に、高価なSmやCoを必ずし
も含有しない新しい高性能永久磁石としてFe−B−R
系(RはYを含む希土類元素のうち少なくとも1種)永
久磁石を提案した(特願昭57ー145072号)。
On the other hand, rare earth cobalt magnets contain 5 cobalt.
It is very expensive because it contains 0 to 60 wt% and uses Sm, which is not included in rare earth ores, but it has much higher magnetic properties than other magnets, so it is mainly small and has high added value. It has come to be widely used in magnetic circuits. Therefore, the present inventor first developed Fe-B-R as a new high-performance permanent magnet that does not necessarily contain expensive Sm or Co.
proposed a permanent magnet (R is at least one rare earth element including Y) (Japanese Patent Application No. 145072/1982).

【0005】また、さらに、Fe−B−R系の磁気異方
性焼結体からなる永久磁石の温度特性を改良するために
、Feの一部をCoで置換することにより、生成合金の
キュリー点を上昇させて温度特性を改善したFe−Co
−B−R系異方性焼結体からなる永久磁石を提案した(
特願昭57ー166663号)。
Furthermore, in order to improve the temperature characteristics of permanent magnets made of Fe-B-R based magnetically anisotropic sintered bodies, some of the Fe is replaced with Co, thereby increasing the Curie of the produced alloy. Fe-Co with improved temperature characteristics by raising the point
-We proposed a permanent magnet made of B-R anisotropic sintered body (
(Special Application No. 166663/1982).

【0006】上記の新規なFe−B−R系、Fe−Co
−B−R系(RはYを含む希土類元素のうち少なくとも
1種)永久磁石を、製造するための出発原料の希土類金
属は、一般にCa還元法、電解法により製造される金属
塊であり、この希土類金属塊を用いて、例えば焼結磁石
の場合は次の工程により、上記の新規な永久磁石が製造
される。
[0006] The above novel Fe-B-R system, Fe-Co
- The rare earth metal that is the starting material for manufacturing the B-R system (R is at least one rare earth element including Y) permanent magnet is generally a metal lump manufactured by a Ca reduction method or an electrolytic method, Using this rare earth metal lump, for example, in the case of a sintered magnet, the above-mentioned novel permanent magnet is manufactured through the following steps.

【0007】■出発原料として、純度99.9%の電解
鉄、B19.4%を含有し残部はFe及びAl、Si、
C等の不純物からなるフェロボロン合金、純度99.7
%以上の希土類金属、あるいはさらに、純度99.9%
の電解Coを高周波溶解し、その後水冷銅鋳型に鋳造す
る。■スタンプミルにより35メッシュスルーまでに粗
粉砕し、次にボールミルにより、例えば粗粉砕粉300
gを6時間湿式微粉砕して3〜10μmの微細粉となす
。■磁界(10kOe)中配向して、成形(1.5t/
cm2にて加圧)する。■焼結、1000℃〜1200
℃、1時間、Ar中の焼結後に放冷する。■時効処理、
500℃〜1000℃、Ar中。
■ As a starting material, electrolytic iron with a purity of 99.9%, containing 19.4% B, the balance being Fe, Al, Si,
Ferroboron alloy consisting of impurities such as C, purity 99.7
% or more of rare earth metals, or even with a purity of 99.9%
of electrolytic Co is high-frequency melted and then cast into a water-cooled copper mold. ■ Coarsely pulverize to 35 mesh through using a stamp mill, then use a ball mill to coarsely pulverize, e.g.
g was wet-pulverized for 6 hours to form a fine powder of 3 to 10 μm. ■Oriented in a magnetic field (10kOe) and molded (1.5t/
Pressurize at cm2). ■Sintering, 1000℃~1200℃
C. for 1 hour in Ar and then allowed to cool. ■Aging processing,
500°C to 1000°C in Ar.

【0008】[0008]

【発明が解決しようとする課題】上記の如く、この新規
な永久磁石用合金粉末は、所要組成の鋳塊を粗粉砕及び
微粉砕を行なって得られるが、粉砕粉の侭では成型性が
非常に悪く、成型時にダイス壁面等との摩擦により、ダ
イス面及び成形体表面にきず、剥がれ、割れ等が生じ易
く、品質上及び製品歩留上に大きな問題となっていた。
[Problems to be Solved by the Invention] As mentioned above, this new alloy powder for permanent magnets can be obtained by coarsely and finely pulverizing an ingot of the desired composition, but the formability of the pulverized powder is extremely poor. During molding, friction with the die wall surface, etc., tends to cause scratches, peeling, cracks, etc. on the die surface and the surface of the molded product, which poses a major problem in terms of quality and product yield.

【0009】この発明は、工業的に安定した成型性を有
しかつ十分な磁気特性を有する希土類・鉄・ボロン系永
久磁石を得るための該系磁石用合金粉末の成型方法を目
的とし、すぐれた潤滑性によりダイス面及び成形体の摩
擦を低減して成型性を改善し、磁石の磁気特性の劣化が
少ない潤滑剤を使用した希土類・鉄・ボロン系永久磁石
用合金粉末の成型方法の提供を目的としている。
The purpose of the present invention is to provide an excellent method for molding alloy powder for rare earth/iron/boron based permanent magnets, which have industrially stable formability and sufficient magnetic properties. Provided is a method for molding rare earth/iron/boron alloy powder for permanent magnets using a lubricant that reduces friction between the die surface and the molded body, improves moldability, and causes less deterioration of the magnetic properties of the magnet. It is an object.

【0010】0010

【課題を解決するための手段】この発明は、R10原子
%〜30原子%(但し、RはYを包含する希土類元素の
うち少なくとも1種)、 B2原子%〜28原子%、 Fe65原子%〜82原子% を主成分とする合金粉末に潤滑剤として、ステアリン酸
、ステアリン酸亜鉛及びビスアマイドのうち少なくとも
1種を用いて混合した後成型することを特徴とする希土
類・鉄・ボロン系永久磁石用合金粉末の成型方法である
[Means for Solving the Problems] This invention provides R10 at% to 30 at% (wherein R is at least one kind of rare earth elements including Y), B2 at% to 28 at%, Fe65 at% to For use in rare earth/iron/boron based permanent magnets, which is characterized in that alloy powder containing 82 atomic % as a main component is mixed with at least one of stearic acid, zinc stearate, and bisamide as a lubricant, and then molded. This is a method for molding alloy powder.

【0011】この発明は、R、B、Feを主成分とする
永久磁石用合金粉末の成型に使用可能な潤滑剤について
種々検討した結果、特定量のステアリン酸、ステアリン
酸亜鉛及びビスアマイドのうち少なくとも1種が適して
いることを知見したもので、すぐれた潤滑性によりダイ
ス面及び成形体の摩擦を低減して成型性を改善し、さら
に焼結磁石の磁気特性の劣化が少ない利点があり、特に
成型時の成型体の抜き圧を低くでき、工業生産上きわめ
て有利である。
[0011] As a result of various studies on lubricants that can be used for molding alloy powder for permanent magnets containing R, B, and Fe as main components, the present invention has revealed that at least a specific amount of stearic acid, zinc stearate, and bisamide. It was found that type 1 is suitable, and it has excellent lubricity, reduces friction between the die surface and the compact, improves moldability, and has the advantage of less deterioration of the magnetic properties of the sintered magnet. In particular, the ejection pressure of the molded body during molding can be lowered, which is extremely advantageous in industrial production.

【0012】0012

【作用】この発明において、潤滑剤の添加量は、原料合
金粉末の粒度およびダイス、成形体の形状、寸法、摩擦
面積、プレス条件等に応じて適宜選定すればよく、少量
の添加で成型性改善効果が大きく、添加量の増大ととも
に抜き圧など成型性は向上するが、好ましい添加量は単
独、複合添加ともに合金粉末100重量部に対して、0
.2重量部以下である。
[Function] In this invention, the amount of lubricant added may be appropriately selected depending on the particle size of the raw alloy powder, die, shape and dimensions of the compact, friction area, press conditions, etc. The improvement effect is large, and as the amount added increases, the moldability such as ejection pressure improves, but the preferable addition amount is 0 to 100 parts by weight of alloy powder for both individual and combined additions.
.. It is 2 parts by weight or less.

【0013】また、この発明において、潤滑剤の合金粉
末への添加は、乾式混合また溶媒をもちいての湿式混合
のいずれでもよいが、該合金粉末が酸素あるいは水分に
対して反応しやすく活性であるため、湿式で行なうこと
が好ましく、使用する溶媒としては、ヘキサン、トルエ
ン、トリクロルエチレン、弗素系溶媒などの不活性溶媒
が好ましい。混合時の態様は、乾燥状態あるいはスラリ
ー状態のいずれであってもよく、例えば、湿式粉砕工程
中、あるいはその前後、または乾燥工程中あるいはその
前後に適宜混合することができる。
Furthermore, in the present invention, the lubricant may be added to the alloy powder by either dry mixing or wet mixing using a solvent. Therefore, it is preferable to carry out the process in a wet manner, and the solvent used is preferably an inert solvent such as hexane, toluene, trichloroethylene, or a fluorine-based solvent. The mixing state may be either a dry state or a slurry state, and for example, mixing may be carried out as appropriate during or before or after the wet pulverization process, or during or before or after the drying process.

【0014】この発明において、合金粉末の成型は、通
常の粉末冶金法と同様に行なうことができ、加圧成型時
に磁場付与有無により、異方性磁石あるいは等方性磁石
を得ることができる。
[0014] In the present invention, the alloy powder can be molded in the same manner as a normal powder metallurgy method, and an anisotropic magnet or an isotropic magnet can be obtained depending on whether or not a magnetic field is applied during pressure molding.

【0015】以下に、この発明における希土類・鉄・ボ
ロン系永久磁石用原料合金粉末の組成限定理由を説明す
る。この発明の永久磁石用原料合金粉末に含有される希
土類元素Rは、イットリウム(Y)を包含し軽希土類及
び重希土類を包含する希土類元素である。Rとしては、
軽希土類をもって足り、特にNd、Prが好ましい。ま
た通例Rのうち1種をもって足りるが、実用上は2種以
上の混合物(ミッシュメタル、ジジム等)を入手上の便
宜等の理由により用いることができ、Sm、Y、La、
Ce、Gd、等は他のR、特にNd、Pr等との混合物
として用いることができる。なお、このRは純希土類元
素でなくてもよく、工業上入手可能な範囲で製造上不可
避な不純物を含有するものでも差支えない。
The reasons for limiting the composition of the raw material alloy powder for rare earth/iron/boron permanent magnets in the present invention will be explained below. The rare earth element R contained in the raw material alloy powder for permanent magnets of this invention is a rare earth element that includes yttrium (Y) and includes light rare earths and heavy rare earths. As R,
Light rare earth elements are sufficient, and Nd and Pr are particularly preferred. Generally, one type of R is sufficient, but in practice, a mixture of two or more types (mischmetal, dididium, etc.) can be used for reasons such as convenience of acquisition, Sm, Y, La,
Ce, Gd, etc. can be used as a mixture with other R, especially Nd, Pr, etc. Note that this R does not have to be a pure rare earth element, and may contain impurities that are unavoidable in production within an industrially available range.

【0016】R(Yを含む希土類元素のうち少なくとも
1種)は、新規な上記系永久磁石を製造する合金粉末と
して必須元素であって、10原子%未満では高磁気特性
、特に高保磁力が得られず、30原子%を越えると残留
磁束密度(Br)が低下して、すぐれた特性の永久磁石
が得られない。よって、Rは10原子%〜30原子%の
範囲とする。
[0016] R (at least one rare earth element including Y) is an essential element as an alloy powder for manufacturing the new above-mentioned permanent magnet, and if it is less than 10 atomic %, high magnetic properties, especially high coercive force can be obtained. If it exceeds 30 at %, the residual magnetic flux density (Br) decreases, making it impossible to obtain a permanent magnet with excellent characteristics. Therefore, R is set in the range of 10 atomic % to 30 atomic %.

【0017】Bは、新規な上記系永久磁石を製造する合
金粉末として必須元素であって、2原子%未満では高い
保磁力(iHc)は得られず、28原子%を越えると残
留磁束密度(Br)が低下するため、すぐれた永久磁石
が得られない。よって、Bは2原子%〜28原子%の範
囲とする。
[0017] B is an essential element as an alloy powder for producing the above-mentioned novel permanent magnet, and if it is less than 2 atomic %, high coercive force (iHc) cannot be obtained, and if it exceeds 28 atomic %, the residual magnetic flux density ( Br) decreases, making it impossible to obtain an excellent permanent magnet. Therefore, B is in the range of 2 atomic % to 28 atomic %.

【0018】Feは、新規な上記系永久磁石を製造する
合金粉末として必須元素であるが、65原子%未満では
残留磁束密度(Br)が低下し、82原子%を越えると
高い保磁力が得られないので、Feは65原子%〜82
原子%に限定する。また、Feの一部をCoで置換する
理由は、永久磁石の温度特性を向上させる効果が得られ
るためであり、CoはFeの50%を越えると高い保磁
力が得られず、すぐれた永久磁石が得られない。よって
、Coは50%を上限とする。
[0018] Fe is an essential element in the alloy powder for manufacturing the new permanent magnet of the above system, but if it is less than 65 atomic %, the residual magnetic flux density (Br) decreases, and if it exceeds 82 atomic %, a high coercive force cannot be obtained. Therefore, Fe is 65 at% to 82
Limited to atomic percent. In addition, the reason why a part of Fe is replaced with Co is that it has the effect of improving the temperature characteristics of the permanent magnet, and if Co exceeds 50% of Fe, high coercive force cannot be obtained. I can't get a magnet. Therefore, the upper limit of Co is 50%.

【0019】この発明の合金粉末において、高い残留磁
束密度と高い保磁力を共に有するすぐれた永久磁石を得
るためには、R10原子%〜25原子%、B4原子%〜
26原子%、Fe65原子%〜82原子%が好ましい。
In the alloy powder of the present invention, in order to obtain an excellent permanent magnet having both a high residual magnetic flux density and a high coercive force, it is necessary to contain R10 at % to 25 at % and B4 at % to
26 atomic % and Fe 65 atomic % to 82 atomic % are preferable.

【0020】また、この発明による合金粉末は、R、B
、Feの他、工業的生産上不可避的不純物の存在を許容
できるが、Bの一部を、 4.0原子%以下のC、3.5原子%以下のP、2.5
原子%以下のS、3.5原子%以下のCuのうち少なく
とも1種、合計量で4.0原子%以下で置換することに
より、磁石合金の製造性改善、低価格化が可能である。
[0020] Furthermore, the alloy powder according to the present invention has R, B
, In addition to Fe, the presence of unavoidable impurities in industrial production can be tolerated, but a part of B can be replaced with 4.0 atomic % or less of C, 3.5 atomic % or less of P, 2.5
By substituting at least one of S at % or less and Cu at 3.5 atomic% or less in a total amount of 4.0 atomic% or less, it is possible to improve the manufacturability and lower the price of the magnetic alloy.

【0021】さらに、前記R,B,Fe合金あるいはC
oを含有するR,B,Fe合金に、 9.5原子%以下のAl、4.5原子%以下のTi、9
.5原子%以下のV、8.5原子%以下のCr、8.0
原子%以下のMn、5原子%以下のBi、12.5原子
%以下のNb、10.5原子%以下のTa、 9.5原子%以下のMo、9.5原子%以下のW、2.
5原子%以下のSb、7原子%以下のGe、3.5原子
%以下のSn、5.5原子%以下のZr、5.5原子%
以下のHfのうち少なくとも1種を添加含有させること
により、永久磁石合金の高保磁力化が可能になる。
Furthermore, the R, B, Fe alloy or C
9.5 atomic % or less of Al, 4.5 atomic % or less of Ti, 9
.. 5 at% or less V, 8.5 at% or less Cr, 8.0
Mn below 5 atomic %, Bi below 5 atomic %, Nb below 12.5 atomic %, Ta below 10.5 atomic %, Mo below 9.5 atomic %, W below 9.5 atomic %, 2 ..
5 at% or less Sb, 7 at% or less Ge, 3.5 at% or less Sn, 5.5 at% or less Zr, 5.5 at%
By adding and containing at least one of the following Hf types, it is possible to increase the coercive force of the permanent magnet alloy.

【0022】この発明のR−B−Fe系永久磁石におい
て、結晶相は主相が正方晶であることが不可欠であり、
特に、微細で均一な合金粉末を得て、すぐれた磁気特性
を有する焼結永久磁石を作製するのに効果的である。
In the R-B-Fe permanent magnet of the present invention, it is essential that the main crystal phase is tetragonal,
In particular, it is effective in obtaining fine and uniform alloy powder and producing sintered permanent magnets with excellent magnetic properties.

【0023】この発明による合金微粉末の粒度は、平均
粒度が10μmを越えると永久磁石の作製時にすぐれた
磁気特性、とりわけ高い保磁力が得られず、また、平均
粒度が1μm未満では永久磁石の作製工程、すなわちプ
レス成形、焼結、時効処理工程における酸化が著しく、
すぐれた磁気特性が得られないため、平均粒度1〜10
μmの合金微粉末が最も望ましい。
Regarding the particle size of the alloy fine powder according to the present invention, if the average particle size exceeds 10 μm, excellent magnetic properties, especially high coercive force, cannot be obtained when producing a permanent magnet, and if the average particle size is less than 1 μm, the permanent magnet will not be able to produce a permanent magnet. There is significant oxidation during the manufacturing process, that is, press forming, sintering, and aging treatment.
Because excellent magnetic properties cannot be obtained, the average particle size is 1 to 10.
Micron alloy powder is most desirable.

【0024】この発明による永久磁石用合金微粉末を使
用して得られる磁気異方性永久磁石合金は、保磁力iH
c≧1kOe、残留磁束密度Br>4kGを示し、最大
エネルギー積(BH)maxはハードフェライトと同等
以上となり、最も好ましい組成範囲では、(BH)ma
x≧10MGOeを示し、最大値は25MGOe以上に
達する。また、この発明による合金微粉末の組成が、R
10原子%〜30原子%、B2原子%〜28原子%、C
o45原子%以下、Fe65原子%〜82原子%の場合
、得られる磁気異方性永久磁石合金は上記磁石合金と同
等の磁気特性を示し、残留磁束密度の温度係数が0.1
%/℃以下となり、すぐれた特性が得られる。また、合
金粉末のRの主成分がその50%以上を軽希土類金属が
占める場合で、R12原子%〜20原子%、B4原子%
〜24原子%、Fe65原子%〜82原子%の場合、あ
るいはさらにCo5原子%〜45原子%を含有するとき
最もすぐれた磁気特性を示し、特に軽希土類金属がNd
の場合には、(BH)maxはその最大値が33MGO
e以上に達する。
The magnetically anisotropic permanent magnet alloy obtained using the alloy fine powder for permanent magnets according to the present invention has a coercive force iH
c≧1kOe, residual magnetic flux density Br>4kG, maximum energy product (BH)max is equal to or higher than hard ferrite, and in the most preferable composition range, (BH)max
x≧10MGOe, and the maximum value reaches 25MGOe or more. Further, the composition of the alloy fine powder according to the present invention is R
10 atom% to 30 atom%, B2 atom% to 28 atom%, C
When O is 45 atomic % or less and Fe is 65 atomic % to 82 atomic %, the resulting magnetically anisotropic permanent magnet alloy exhibits magnetic properties equivalent to those of the above magnet alloy, and the temperature coefficient of residual magnetic flux density is 0.1.
%/℃ or less, and excellent characteristics can be obtained. In addition, when the main component of R in the alloy powder is a light rare earth metal that accounts for 50% or more, R12 at % to 20 at %, B4 at %
The best magnetic properties are exhibited when the content of Fe is 65 at % to 82 at %, or when Co is 5 at % to 45 at %, especially when the light rare earth metal is Nd.
In the case of (BH)max, its maximum value is 33MGO
Reach more than e.

【0025】[0025]

【実施例】出発原料として、純度99.9%の電解鉄、
B19.4%を含有し残部はFe及びC等の不純物から
なるフェロボロン合金、純度99.7%以上のNdを所
定量配合して高周波溶解し、その後水冷銅鋳型に鋳造し
、15Nd8B77Fe(at%)なる組成の鋳塊を得
た。この鋳塊を機械的粉砕により35メッシュスルーま
でに粗粉砕した。ついで、ボール・ミルによる微粉砕を
行ない、平均粒度3.3μmの合金粉末を得た。この合
金粉末に、ステアリン酸、ステアリン酸亜鉛、ビスアマ
イドを、合金粉末100重量部に対して、各々0.2重
量部、予めトリクロロトリフルオロエタンに溶解または
分散させたものを湿式混合したのち、乾燥させた。
[Example] As a starting material, electrolytic iron with a purity of 99.9%,
A ferroboron alloy containing 19.4% B and the remainder consisting of impurities such as Fe and C is blended with a predetermined amount of Nd with a purity of 99.7% or higher, high-frequency melted, and then cast in a water-cooled copper mold to produce 15Nd8B77Fe (at% ) was obtained. This ingot was mechanically crushed to a size of 35 mesh. Then, fine pulverization was performed using a ball mill to obtain an alloy powder with an average particle size of 3.3 μm. Stearic acid, zinc stearate, and bisamide, each dissolved or dispersed in trichlorotrifluoroethane in an amount of 0.2 parts by weight per 100 parts by weight of the alloy powder, were wet-mixed with this alloy powder, and then dried. I let it happen.

【0026】この乾燥合金粉末並びに潤滑剤を添加しな
い合金粉末を用いて、磁界12kOe中で配向し、2t
/cm2にて加圧成型し、幅15mm×長さ16mm×
高さ10mmの成型体10個を得た。この成型時の成型
体の抜き圧、圧粉密度、グリーン強度を測定し、その結
果を表1に示す。なお、グリーン強度指数はラトラー試
験機で成型体を100回回転させた後の重量残%で示す
Using this dry alloy powder and the alloy powder to which no lubricant is added, it is oriented in a magnetic field of 12 kOe, and a 2t
Pressure molded at /cm2, width 15mm x length 16mm x
Ten molded bodies each having a height of 10 mm were obtained. The ejection pressure, green density, and green strength of the molded body during this molding were measured, and the results are shown in Table 1. Note that the green strength index is expressed as the weight remaining after the molded body is rotated 100 times using a Rattler tester.

【0027】[0027]

【表1】[Table 1]

【0028】[0028]

【発明の効果】表1より明らかな如く、ステアリン酸、
ステアリン酸亜鉛、ビスアマイドを潤滑剤として混合し
た後成型するこの発明方法により、抜き圧は小さく、圧
粉密度が高く、潤滑性が改善され、成型体外観において
もきずや割れの発生も少なく、成型性が大幅に改善され
る。特に、抜き圧を小さくできることから、成型金型に
対する負荷を少なくでき長寿命化が可能であり、また作
業性がよく新規な希土類・鉄・ボロン系永久磁石の工業
生産に適した合金粉末の成型方法を提供できる。
[Effect of the invention] As is clear from Table 1, stearic acid,
This invention method, in which zinc stearate and bisamide are mixed as lubricants and then molded, results in low ejection pressure, high green density, improved lubricity, and fewer scratches and cracks on the appearance of the molded product. performance is significantly improved. In particular, since the extraction pressure can be reduced, the load on the molding die can be reduced and its life can be extended, and the alloy powder can be molded with good workability and is suitable for the industrial production of new rare earth, iron, and boron permanent magnets. I can provide a method.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  R10原子%〜30原子%(但し、R
はYを包含する希土類元素のうち少なくとも1種)、B
2原子%〜28原子%、 Fe65原子%〜82原子% を主成分とする合金粉末に潤滑剤として、ステアリン酸
、ステアリン酸亜鉛及びビスアマイドのうち少なくとも
1種を用いて混合した後成型することを特徴とする希土
類・鉄・ボロン系永久磁石用合金粉末の成型方法。
Claim 1: R10 atomic% to 30 atomic% (however, R
is at least one rare earth element including Y), B
An alloy powder mainly composed of 2 atomic % to 28 atomic % and Fe 65 atomic % to 82 atomic % is mixed with at least one of stearic acid, zinc stearate, and bisamide as a lubricant, and then molded. Characteristic method for forming alloy powder for rare earth, iron, and boron permanent magnets.
JP3059679A 1991-02-28 1991-02-28 Method for molding alloy powder for rare earth-iron-boron based permanent magnet Granted JPH04214803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3059679A JPH04214803A (en) 1991-02-28 1991-02-28 Method for molding alloy powder for rare earth-iron-boron based permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3059679A JPH04214803A (en) 1991-02-28 1991-02-28 Method for molding alloy powder for rare earth-iron-boron based permanent magnet

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP3996184A Division JPS60184602A (en) 1984-03-01 1984-03-01 Method for molding alloy powder for permanent magnet

Publications (2)

Publication Number Publication Date
JPH04214803A true JPH04214803A (en) 1992-08-05
JPH0561340B2 JPH0561340B2 (en) 1993-09-06

Family

ID=13120128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3059679A Granted JPH04214803A (en) 1991-02-28 1991-02-28 Method for molding alloy powder for rare earth-iron-boron based permanent magnet

Country Status (1)

Country Link
JP (1) JPH04214803A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5486224A (en) * 1993-12-28 1996-01-23 Sumitomo Metal Industries, Ltd. Powder mixture for use in compaction to produce rare earth iron sintered permanent magnets
EP3067191A1 (en) 2015-03-05 2016-09-14 Shin-Etsu Chemical Co., Ltd. Powder molding apparatus and manufacture of rare earth sintered magnet using the apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5486224A (en) * 1993-12-28 1996-01-23 Sumitomo Metal Industries, Ltd. Powder mixture for use in compaction to produce rare earth iron sintered permanent magnets
US5527504A (en) * 1993-12-28 1996-06-18 Sumitomo Metal Industries, Ltd. Powder mixture for use in compaction to produce rare earth iron sintered permanent magnets
EP3067191A1 (en) 2015-03-05 2016-09-14 Shin-Etsu Chemical Co., Ltd. Powder molding apparatus and manufacture of rare earth sintered magnet using the apparatus
KR20160108180A (en) 2015-03-05 2016-09-19 신에쓰 가가꾸 고교 가부시끼가이샤 Powder molding device and method for making rare earth sintered magnet using said molding device
US10607773B2 (en) 2015-03-05 2020-03-31 Shin-Etsu Chemical Co., Ltd. Powder molding apparatus and manufacture of rare earth sintered magnet using the apparatus

Also Published As

Publication number Publication date
JPH0561340B2 (en) 1993-09-06

Similar Documents

Publication Publication Date Title
EP0126179A1 (en) Process for producing permanent magnet materials
JP2746818B2 (en) Manufacturing method of rare earth sintered permanent magnet
JPH0424401B2 (en)
JPH0316761B2 (en)
JPH03236202A (en) Sintered permanent magnet
JPH0320046B2 (en)
JP2610798B2 (en) Permanent magnet material
JPH061726B2 (en) Method of manufacturing permanent magnet material
JPH0422011B2 (en)
JPH04214804A (en) Method for molding alloy powder for rare earth-iron-boron based permanent magnet
JPH0535210B2 (en)
JPH04214803A (en) Method for molding alloy powder for rare earth-iron-boron based permanent magnet
JPH045739B2 (en)
JPH0549737B2 (en)
JPH0535211B2 (en)
JPS60138056A (en) Material for sintered magnet
JP2935376B2 (en) permanent magnet
JPH0480961B2 (en)
JPH0547533A (en) Sintered permanent magnet and manufacture thereof
JPH0316763B2 (en)
JP5235264B2 (en) Rare earth sintered magnet and manufacturing method thereof
JPH0475303B2 (en)
JPH0320047B2 (en)
JPH0480962B2 (en)
JPH045737B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term