JPS60138056A - Material for sintered magnet - Google Patents

Material for sintered magnet

Info

Publication number
JPS60138056A
JPS60138056A JP58244791A JP24479183A JPS60138056A JP S60138056 A JPS60138056 A JP S60138056A JP 58244791 A JP58244791 A JP 58244791A JP 24479183 A JP24479183 A JP 24479183A JP S60138056 A JPS60138056 A JP S60138056A
Authority
JP
Japan
Prior art keywords
less
additive
rare earth
elements
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58244791A
Other languages
Japanese (ja)
Other versions
JPH0474427B2 (en
Inventor
Hitoshi Yamamoto
日登志 山本
Masato Sagawa
眞人 佐川
Setsuo Fujimura
藤村 節夫
Yutaka Matsuura
裕 松浦
Masao Togawa
戸川 雅夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP58244791A priority Critical patent/JPS60138056A/en
Publication of JPS60138056A publication Critical patent/JPS60138056A/en
Publication of JPH0474427B2 publication Critical patent/JPH0474427B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To improve the press formability of a material for a sintered magnet without deteriorating the magnet characteristics by adding a small amount of Li, Zn, In, Ag, Sn, Pb or the like to the material contg. a rare earth element, B and Fe blended as essential components in a specified ratio. CONSTITUTION:This material for a sintered magnet consists of, by atom, 8-30% one or more kinds of rare earth elements including Y, 2-28% B, 65-82% Fe and a prescribed amount or less of one or more kinds of added elements selected from a group A consisting of <=0.5% Li, <=2.0% Zn, <=1.0% In, <=2.0% Ag, <=2.0% Sn and <=2.0% Pb and a group M consisting of Al, Ti, V, Cr, Mn, Zr, Hf, Nb, Ta, Mo, Ge, Sb, Sn, Bi, Ni and W. The material may further contain <25% Co. By the composition, a sintered permanent magnet having high performance can be formed without using much Co.

Description

【発明の詳細な説明】 〔技術的分野〕 本発明は、高価で資源希少なコバルトCOを全く使用し
ない、希土類・鉄系永久磁石に関し、とくにプレス成形
性を改善するようにした焼結磁石に関する。
[Detailed Description of the Invention] [Technical Field] The present invention relates to a rare earth/iron permanent magnet that does not use cobalt CO, which is an expensive and scarce resource, and particularly relates to a sintered magnet that improves press formability. .

〔背景技術〕[Background technology]

永久磁石材料は一般家庭の各種電機製品から大型コンピ
ュータの端末機器まで巾広い分野で使用されている重要
な電気・電子材料の一つであり、近年電気機器の小型化
、高効率化の要求にともない、永久磁石材料はますます
小を、高性能化がめられている。
Permanent magnetic materials are important electrical and electronic materials that are used in a wide range of fields, from various household electrical appliances to large computer terminal equipment. As a result, permanent magnet materials are becoming increasingly smaller and more sophisticated.

現在使用されている高性能磁石として希土類コバルト磁
石があるが、この希土類コバルト磁石は、資源的に希少
なSmを必要とし供給が不安定なCOを多量に使用する
ため1価格的にも高価である。
Rare-earth cobalt magnets are currently used as high-performance magnets, but these rare-earth cobalt magnets require Sm, which is a rare resource, and use a large amount of CO, which is in unstable supply, so they are expensive. be.

そこで本発明者らは、Sm等の希少な希土類元素を必ず
しも用いる必要がなくまた00等資源的に不安定な成分
を多量に含まない新規な永久磁石を得るために鋭意研究
したところ、FeBR系を主成分とするFeBR系(鉄
−ボロン−希土類元素系)の高性能焼結磁石を見出した
(特願昭58−176248号など)。
Therefore, the present inventors conducted intensive research to obtain a new permanent magnet that does not necessarily require the use of rare earth elements such as Sm, and does not contain large amounts of resource-unstable components such as 00. We have discovered a high-performance sintered magnet of the FeBR system (iron-boron-rare earth element system) whose main components are (Japanese Patent Application No. 176248/1984, etc.).

FeBR系焼結未焼結永久磁石能磁石であるため小を電
気機器への用途が多く、プレス成形時の単重は0.5〜
5.0gと極めて小さいので、このことに伴なうプレス
サイクルの向上、ダイス寿命の向上は、水系磁石の生産
能率の向上、製造コストの低減に大きく寄与する。
Since it is a FeBR-based sintered unsintered permanent magnet, it is often used in small electrical equipment, and the unit weight when press-molded is 0.5~
Since it is extremely small at 5.0 g, the accompanying improvements in press cycle and die life greatly contribute to improving production efficiency and reducing manufacturing costs of water-based magnets.

FeBR系焼結磁石は粉末冶金的方法により製造され、
その成形は乾式プレス、湿式プレスいずれの方式も可能
であるが、湿式プレスによれば。
FeBR-based sintered magnets are manufactured by powder metallurgy methods,
The molding can be done by either dry press or wet press, but according to wet press.

単重のバラツキが乾式プレスに比較して大きいため原料
費の歩留の低下、最終製造工程の加工工程での煩雑さが
増加するという欠点がある。
Since the variation in unit weight is larger than that in dry pressing, there are drawbacks such as a decrease in raw material cost yield and an increase in complexity in the processing process of the final manufacturing process.

〔本発明の課題〕[Problem of the present invention]

他方の乾式プレスにおいては、ダイス、パンチ間に原料
粉末が粉かみを起こしゃすく、高価なダイス、パンチの
寿命が短くなるため、一般に、所定プレス回数毎にダイ
ス、パンチに離型剤を塗付して粉末の離型性を向上させ
ることが行われるが、そうすると、離型剤を塗付する工
程がふえるため単重の小さく、プレス回数の多い製品は
ど、プレスサイクルが著しく低下してしまうという難点
があった。
On the other hand, in dry presses, the raw material powder tends to accumulate between the dies and punches, which shortens the life of the expensive dies and punches. This is done to improve the mold release properties of the powder, but this increases the process of applying the mold release agent, which significantly reduces the press cycle for products with small unit weight and many presses. The problem was that it was difficult to store.

〔目的〕〔the purpose〕

本発明の目的は、FeBR系焼結磁石の高性能の磁石特
性を損なうことなく、製造にさいしてのプレス成形性を
一段と弛善することである。
An object of the present invention is to further improve the press formability of FeBR-based sintered magnets without impairing their high-performance magnetic properties.

〔発明の構成概要〕[Summary of configuration of the invention]

本発明者らはこれらプレス成形性を改善すべく鋭意検討
した結果、FeBR系を主成分とした合金系に、添加元
素AとしテL i+ Z n * I n +Ag、S
n、Pbのうちの一種又は二種以上を所定量以下添加す
ることによりプレス成形性が改善されることを見出した
As a result of intensive studies to improve these press formability, the present inventors added the additive element A to the alloy system mainly composed of FeBR system.
It has been found that press formability is improved by adding one or more of Pb and Pb in a predetermined amount or less.

すなわち、この発明のFeBR系焼結磁石によれば、製
造にさいして出発原料粉の見掛は密度を向上させるとと
もにパンチの抜工を低下させられるので、プレスサイク
ルおよびダイス寿命の向上等のプレス成形性がかなり改
善できるのである。
That is, according to the FeBR-based sintered magnet of the present invention, the apparent density of the starting raw material powder during production can be improved and the number of punches removed can be reduced. The moldability can be considerably improved.

もちろん、FeBR系磁石としての良好な磁石特性は、
後述するデータが示すように十分に確保されている。
Of course, the good magnetic properties of FeBR magnets are
As shown by the data described below, this is sufficient.

そのために本発明のFeBR系焼結磁石は、原子百分率
で8〜30%の希土類元素Rと、同じく2〜28%のB
と、同じく65〜82%のFeを主成分とするとともに
、所定量の一種又は二種以上の添加元素Aを加えてなる
。このうち希土類元素Rは、Yを包含する希土類元素の
一種又は二種以上からなり、また添加元素Aは、M 0
%を除き、原子百分率で各々の元素につき Li 0.5%以下、 Zn 2.0%以下、In 1
.0%以下、 Ag 2.0%以下、Sn 2.0%以
下、 Pb 2.0%以下。
For this reason, the FeBR-based sintered magnet of the present invention contains 8 to 30% of the rare earth element R and 2 to 28% of the B by atomic percentage.
Similarly, the main component is 65 to 82% Fe, and a predetermined amount of one or more additive elements A is added. Among these, the rare earth element R is composed of one or more rare earth elements including Y, and the additive element A is M 0
Li 0.5% or less, Zn 2.0% or less, In 1 for each element in atomic percentage except %
.. 0% or less, Ag 2.0% or less, Sn 2.0% or less, Pb 2.0% or less.

とするとともに、添加元素Aが二種以−ヒの場合は添加
元素Aの含量が、含有するAの当該各添加元素のうちの
最大値以下になるようにする。
In addition, when the additive element A is of two or more types, the content of the additive element A is set to be less than or equal to the maximum value of the respective additive elements of the contained A.

〔好適な態様〕[Preferred aspect]

以下本発明についてさらに詳述する。 The present invention will be explained in further detail below.

希土類元素R含有量は、保磁力を1koe以上とするた
めに8%以上とし、またその性質上燃え易く工業的取扱
・製造が困難なため、さらに高価であることから30%
以下とする。
The content of the rare earth element R is set at 8% or more in order to achieve a coercive force of 1 koe or more, and it is also 30% because it is expensive because it is easily flammable due to its nature and is difficult to handle and manufacture industrially.
The following shall apply.

B含有量は保磁力が1kOe以上を得るために2%以上
、かつハードフェライトの残留磁束密度(Br)4kG
以上とするために28%以下とする。
The B content is 2% or more to obtain a coercive force of 1 kOe or more, and the residual magnetic flux density (Br) of hard ferrite is 4 kG.
In order to achieve the above, it is set to 28% or less.

Feの含有量は65〜82%とする。Feの含有量が8
2%を越えると保磁力が1koe未満となり、一方65
%よりも少ないと、残留磁束密度(Br)が4kG未満
となるからである。
The content of Fe is 65 to 82%. Fe content is 8
If it exceeds 2%, the coercive force becomes less than 1 koe, while 65
%, the residual magnetic flux density (Br) will be less than 4 kG.

このような本発明の焼結磁石の最大エネルギ積(BH)
maxはハードフェライト磁石(〜4MGOe)と同等
あるいはそれ以上となる。
The maximum energy product (BH) of such a sintered magnet of the present invention
max is equal to or higher than that of a hard ferrite magnet (~4MGOe).

添加元素Aは、プレス成形時に粉末の見かけ密度を向上
させてプレスサイクルを向上させ、ダイス寿命を向上さ
せ、さらにパンチ押出時のいわゆる抜き圧を低下させて
ダイス寿命の向上に資する効果がある。
Additive element A has the effect of improving the apparent density of the powder during press molding, improving the press cycle, improving the life of the die, and further reducing the so-called extraction pressure during punch extrusion, contributing to the improvement of the life of the die.

添加元素Aが前記所定量Li0.5%、Zn2%、In
1.0%、Ag2.0%、Sn2.0%、Pb2.0%
を越えると、合金がねぼくなるため、鋳塊方式の製造法
による場合、合金の粉砕時間が長くなり、また磁石の磁
気特性も、添加元素Aの含有量の増大に伴ない徐々に低
下するため、工業的メリットが低下する。
The additive element A is the predetermined amount of Li0.5%, Zn2%, In
1.0%, Ag2.0%, Sn2.0%, Pb2.0%
If it exceeds this, the alloy becomes sluggish, so if the ingot method is used, the grinding time of the alloy becomes longer, and the magnetic properties of the magnet gradually decrease as the content of additive element A increases. Therefore, the industrial merit will be reduced.

好ましい有効添加量はA合計0.05%程度以上であり
、各添加元素について夫々0.05%程度以上であれば
よいが、さらに好ましくはA合計0.1%、単独の場合
各添加元素について夫々0.1%以上含有する。
A preferable effective amount of addition is about 0.05% or more in total for A, and about 0.05% or more for each additive element, but more preferably 0.1% in total for A, and for each additive element when added alone. Each contains 0.1% or more.

また、添加元素Aはプレス成形時の粉体のタップ密度を
向上する効果があるため、粉末のダイスへの供給のサイ
クルが向上し、粉末の供給ホッパーへの充填性を向上さ
せいずれもプレス成形能率、生産性の向上に著しく寄与
する。
In addition, additive element A has the effect of improving the tap density of powder during press forming, which improves the cycle of powder supply to the die and improves the filling of the powder into the supply hopper, both of which improve the tap density of powder during press forming. It significantly contributes to improving efficiency and productivity.

さらに好ましいFeBHに関する組成範囲は、例えばネ
オジムNd、プラセオジムPrなどの軽希土類元素を全
R中の50%以上含有し、かつ11〜2−4%のR13
〜27%のBおよび68〜80%のFeを主成分とし、
添加元素AはLi 0.3%以下、 Zn 1.5%以
下、In 0.8%以下、Ag 1.5%以下、Sn 
1.5%以下、 Pb 1.5%以下とする(但し、二
種以上の添加元素Aを含む場合のAの含量は、含有する
Aの当該各元素のうち最大値を有するものの原子百分率
以下とする。)。
A more preferable composition range for FeBH includes light rare earth elements such as neodymium Nd and praseodymium Pr in an amount of 50% or more of the total R, and 11 to 2-4% of R13.
The main components are ~27% B and 68-80% Fe,
Additional elements A include Li 0.3% or less, Zn 1.5% or less, In 0.8% or less, Ag 1.5% or less, Sn
1.5% or less, Pb 1.5% or less (however, when two or more types of additive elements A are included, the content of A is not more than the atomic percentage of the one having the maximum value among the respective elements of A contained ).

この場合の最大エネルギ積(BH)maxは7 M G
 Oe以上になる。
The maximum energy product (BH) max in this case is 7 M G
It becomes more than Oe.

さらに磁石特性が優れかつプレス成形性、工業的生産性
の共に良好なる最も望ましいFeBRに関する組成範囲
は、軽希土類元素を全R中の50%以上含有し、かつ1
2〜20%のR14〜24%のB、70〜78%のFe
を主成分とし、添加元素Aは Li 0.2%以下、 Zn 1.0%以下、In 0
.5%以下、 Ag 1.0%以下、Sn 1.0%以
下、 Pb 1.0%以下であり、二種以上の添加元素
Aを含む場合のAの含量は、含有するAの当該各元素の
うち最大値を有するものの原子百分率以下とする。この
場合の最大エネルギ積(BH)maxはlOMGOe以
上であり、最高のエネルギ積は33MGOe以上に達す
る。
Furthermore, the most desirable composition range for FeBR, which has excellent magnetic properties and good press formability and industrial productivity, contains light rare earth elements in an amount of 50% or more of the total R, and 1
2-20% R14-24% B, 70-78% Fe
is the main component, and the additive elements A are Li 0.2% or less, Zn 1.0% or less, In 0
.. 5% or less, Ag 1.0% or less, Sn 1.0% or less, Pb 1.0% or less, and when two or more types of additive elements A are included, the content of A is the content of each element of A contained. It shall be less than the atomic percentage of the one with the maximum value. The maximum energy product (BH) max in this case is more than 1OMGOe, and the highest energy product reaches 33MGOe or more.

〔製造例〕[Manufacturing example]

次に本発明の焼結磁石の製造の一例を磁気異方性磁石の
場合について説明するが、磁気等方性磁石についてもプ
レス成形時に磁場を印加せずに実施することによりその
他は同様の製造方法が採用できる。
Next, an example of manufacturing the sintered magnet of the present invention will be explained in the case of a magnetically anisotropic magnet, but a magnetically isotropic magnet can also be manufactured in the same manner by performing press forming without applying a magnetic field. method can be adopted.

出発原料としてのFeは純度99.9wt%以上の電解
鉄、Bはフェロボロンまたは99wt%以上のポロン、
Rは純度99.7wt%以上、添加元素Aは純度98w
t%以上のものを用いる。
Fe as a starting material is electrolytic iron with a purity of 99.9 wt% or more, B is ferroboron or poron with a purity of 99 wt% or more,
R has a purity of 99.7wt% or more, and the additive element A has a purity of 98w.
t% or more is used.

合金はアーク溶解または高周波溶解し、水冷銅鋳型に鋳
造して得る。粉砕はスタンプミルにより35メツシユ(
500ILm)スルーまで粗粉砕し、次いでボールミル
により0.5〜10pmに微粉砕を行う、プレス成形は
8kOe以上の磁場を印加して0.5〜2.5ton/
cm”にて加圧する。焼結は1000〜1200℃の温
度で0.5〜4時間Ar雰囲気中で行う。さらに時効処
理なAr雰囲気中350℃から当該焼結温度以下の温度
範囲で0.5〜8時間行うことにより水系合金磁石が得
られる。
The alloy is obtained by arc melting or radio frequency melting and casting into water-cooled copper molds. Grinding is done by stamp mill at 35 mesh (
500 ILm) is coarsely pulverized to a through-hole, and then finely pulverized to 0.5-10 pm using a ball mill.Press molding is performed by applying a magnetic field of 8 kOe or more to 0.5-2.5 ton/min.
cm". Sintering is performed at a temperature of 1000 to 1200°C for 0.5 to 4 hours in an Ar atmosphere. Further, aging treatment is performed in an Ar atmosphere at a temperature range from 350°C to the sintering temperature of 0.5 to 4 hours. A water-based alloy magnet can be obtained by carrying out the process for 5 to 8 hours.

以下、本発明の効果を明らかにするために、いくつかの
実施例を挙げて、その周辺組成の比較例と対比する。
Hereinafter, in order to clarify the effects of the present invention, several examples will be given and compared with comparative examples of peripheral compositions.

実施例 1 下記原子百分率を有する合金を秤量、アルゴン中で高周
波溶解、鋳造して得た後、スタンプミルにより40me
sh (4207im)以下に粗粉砕後2〜5pmに微
粉砕して合金粉末を得た。得られた合金粉末の見掛は密
度、タップ密度、及びアムスラー・プレス機で抜き圧を
測定した0本粉末を10kOe磁界中で1.ot/ct
n’で加圧成形して成形体を得たのち、99.99wt
%純度のAr中で1100℃、2時間焼結し室温まで冷
却した。さらに550℃、4時間の時効処理を行い水系
合金磁石を得た。その結果を第1表に示す。
Example 1 An alloy having the following atomic percentage was weighed, high-frequency melted in argon, and cast.
After coarsely pulverizing the powder to a particle size of 2 to 5 pm, an alloy powder was obtained. The apparent density, tap density, and extraction pressure of the obtained alloy powder were measured using an Amsler press machine. ot/ct
After pressure molding with n' to obtain a molded product, 99.99wt
% purity Ar at 1100° C. for 2 hours and cooled to room temperature. Further, aging treatment was performed at 550° C. for 4 hours to obtain a water-based alloy magnet. The results are shown in Table 1.

実施例 2 下記原子百分率を有する合金を秤量、アルゴン中で高周
波溶解、鋳造して得た後、スタンプミルにより40me
 s h以下に粗粉砕後2〜5ILmに微粉砕して合金
粉末を得た。得られた合金粉末の見掛は密度、タップ密
度、及びアムスラー・プレス機で抜き圧を測定した0本
粉末を15kOe磁界中で1.2t/cm’で成形して
成形体を得たのち、99.99wj%純度cl)Ar中
−1?1120℃、2時間焼結し室温まで冷却した。さ
らに650℃、2時間の時効処理を行い本系合金磁石を
得た。その結果を第2表に示す。
Example 2 An alloy having the following atomic percentage was weighed, high-frequency melted in argon, and cast.
After coarsely pulverizing the powder to 2 to 5 ILm, an alloy powder was obtained. The apparent density, tap density, and ejection pressure of the obtained alloy powder were measured using an Amsler press machine. After compacting the powder at 1.2 t/cm' in a 15 kOe magnetic field to obtain a compact, 99.99wj% purity cl) Sintered in Ar at -1~1120°C for 2 hours and cooled to room temperature. Further, an aging treatment was performed at 650° C. for 2 hours to obtain the present alloy magnet. The results are shown in Table 2.

実施例 3 下記原子百分率を有する合金を秤量、アルゴン、中で高
周波溶解、鋳造して得た後、スタンプミルにより40m
esh以下に粗粉砕後2〜5pmに微粉砕して合金粉末
を得た。得られた合金粉末の見掛は密度、タップ密度、
及びアムスラーφプレス機で抜き圧を測定した0本粉末
を10kOe磁界中で1.0t/crn’で成形して成
形体を得たのち、99.99wt%純度のAr中で11
00℃、2時間焼結し室温まで冷却した。さらに600
℃、2時間の時効処理を行い本系合金磁石を得た。その
結果を第3表に示す。
Example 3 An alloy having the following atomic percentage was weighed, melted at high frequency in argon, cast, and then molded by a stamp mill for 40 m.
After coarsely pulverizing the powder to esh or less, it was finely pulverized to 2 to 5 pm to obtain an alloy powder. The appearance of the obtained alloy powder is density, tap density,
The powder, whose extraction pressure was measured using an Amsler φ press, was molded at 1.0t/crn' in a 10kOe magnetic field to obtain a compact, and then molded in Ar with a purity of 99.99wt%.
It was sintered at 00°C for 2 hours and cooled to room temperature. Another 600
Aging treatment was performed at ℃ for 2 hours to obtain the present alloy magnet. The results are shown in Table 3.

実施例 4 下記原子百分率を有する合金を秤量、アルゴン中で高周
波溶解、鋳造して得た後、スタンプミルにより40me
Sh以下に粗粉砕後2〜5ILmに微粉砕して合金粉末
を得た。得られた合金粉末の見掛は密度、タップ密度、
及びアムスラー・プレス機で抜き圧を測定した0本粉末
を1okoe磁界中で1.5t/ctn’で成形して成
形体を得たのち、99.99wt%純度のAr中”c’
toa。
Example 4 An alloy having the following atomic percentage was weighed, high-frequency melted in argon, and cast.
After coarsely pulverizing to Sh or less, finely pulverizing to 2 to 5 ILm, an alloy powder was obtained. The appearance of the obtained alloy powder is density, tap density,
Then, the powder whose extraction pressure was measured using an Amsler press machine was molded at 1.5t/ctn' in a 1okoe magnetic field to obtain a molded body.
toa.

℃、2時間焼結し室温まで冷却した。さらに650℃、
2時間の時効処理を行い本系合金磁石を得た。その結果
を第4表に示す。
℃ for 2 hours and cooled to room temperature. Furthermore, 650℃,
Aging treatment was performed for 2 hours to obtain the present alloy magnet. The results are shown in Table 4.

実施例 5 下記原子百分率を有する合金を秤量、アルゴン中で高周
波溶解、鋳造して得た後、スタンプミルにより40me
sh以下に粗粉砕後2〜5pmに微粉砕して合金粉末を
得たン得られた合金粉末の見掛は密度、タップ密度、及
びアムスラー・プレス機で抜き圧を測定した0本粉末を
無磁界中で1、Ot/crn’で成形して成形体を得た
のち、99.99wt%純度のAr中で1120℃、2
時間焼結し室温まで冷却した。さらに650℃、2時間
の時効処理を行い本系合金磁石を得た。
Example 5 An alloy having the following atomic percentage was weighed, high-frequency melted in argon, cast, and then stamped with a stamp mill for 40 me
After coarsely pulverizing the powder to 2 to 5 pm, the alloy powder was obtained. After molding in a magnetic field at 1 Ot/crn' to obtain a molded body, it was molded at 1120°C in Ar with a purity of 99.99 wt% at 2 Ot/crn'.
It was sintered for an hour and cooled to room temperature. Further, an aging treatment was performed at 650° C. for 2 hours to obtain the present alloy magnet.

その結果を第5表に示す。The results are shown in Table 5.

このようにして上記比較テストの実験結果が示すように
、FeBR系合金粉末に所定量の添加元素Aを加えるこ
とにより、出発原料としての合金粉末の見掛は密度が、
どの実施例においても比較例と比べて著しく向上してい
ることがわかる。このことに伴ってプレス成形時のタッ
プ密度を上昇することができ、またパンチ押出時の抜き
圧をかなり低下させることができた。
In this way, as the experimental results of the above comparative test show, by adding a predetermined amount of additive element A to the FeBR alloy powder, the apparent density of the alloy powder as a starting material increases.
It can be seen that all of the Examples are significantly improved compared to the Comparative Examples. Accordingly, it was possible to increase the tap density during press molding, and it was also possible to considerably reduce the extraction pressure during punch extrusion.

また本発明の焼結合金は、磁石特性の点においても優れ
ていることはもとよりであり、上記実験結果が示すよう
に、従来のFeBR系焼結磁石と同等もしくはそれ以上
の、保磁力iHc、最大エネルギ積(BH)max等を
発揮する。
Furthermore, the sintered alloy of the present invention is not only superior in terms of magnetic properties, but also has coercive force iHc, which is equal to or higher than that of conventional FeBR-based sintered magnets, as shown by the above experimental results. Demonstrates maximum energy product (BH) max, etc.

なお、本発明の永久磁石には原料、製造工程等から混入
するC u 、 S 、 C、P 、 Ca 、 M 
g *O,St等の元素(x)が含まれていてもよく、
Cu3.5%以下、S2.0%以下、C4,0%以下、
P3.0%以下、Ca4.0%以下、Mg4.0%以下
、02.0%以下、Si5.0%以下であればハードフ
ェライトと同等以上の特性が得られる。しかし、元素(
X)が上述含有量を越えると、残留磁束密度(B r)
が低下するため実用永久磁石となり得ない。
In addition, the permanent magnet of the present invention contains Cu, S, C, P, Ca, M mixed from raw materials, manufacturing processes, etc.
g * May contain elements (x) such as O, St, etc.
Cu3.5% or less, S2.0% or less, C4.0% or less,
If P is 3.0% or less, Ca is 4.0% or less, Mg is 4.0% or less, 0.02.0% or less, and Si is 5.0% or less, properties equivalent to or better than those of hard ferrite can be obtained. However, the element (
When X) exceeds the above content, the residual magnetic flux density (B r)
It cannot be used as a practical permanent magnet because of the decrease in

本発明のFe−B−R−A合金の主成分たるFeを一部
COで置換することによりキュリ一点を上昇せしめ温度
特性を改善できる。FeのCO置換において、Co置換
量の増大に伴いキュリ一点はHによらず急激に増大する
ため、Co置換量に応じてそれぞれ任意の量温度特性が
改善される* Co25%以下では他の磁気特性に悪影
響を与えることなくキュリ一点を増大させ、Co5%以
上でBrの温度係数的0.1%/℃となる。またCoの
含有量はFeの下限値により規定され25%未満となる
。Coは少量(例えば0.1〜1%)でも有効である。
By partially replacing Fe, which is the main component of the Fe-B-R-A alloy of the present invention, with CO, the Curie point can be raised by one point and the temperature characteristics can be improved. In replacing Fe with CO, as the amount of Co replaced increases, the Curie point increases rapidly regardless of H, so the temperature characteristics can be improved by any amount depending on the amount of Co replaced. * Below 25% Co, other magnetic The Curie point is increased by one point without adversely affecting the characteristics, and the temperature coefficient of Br is 0.1%/° C. when Co is 5% or more. Further, the Co content is defined by the lower limit of Fe and is less than 25%. Co is effective even in small amounts (for example, 0.1 to 1%).

また本発明ノF e −B −R−A合金又はFe−C
o−B−R−A合金に下述の添加元素M(MはAl 、
Ti 、V、Cr、Mn、Zr、Hf。
Also, Fe-B-R-A alloy or Fe-C of the present invention
The following additive elements M (M is Al,
Ti, V, Cr, Mn, Zr, Hf.

Nb、Ta、Mo、Ge、Sb、Sn、BitNiを一
種または二種以上)の所定量を添加することにより保磁
力を増加させることができ、強い反磁界や逆磁界の加え
られる用途だけでなく、高温環境下で用いられる用途に
も、十分供し得る永久磁石と成る。
Coercive force can be increased by adding a predetermined amount of one or more of Nb, Ta, Mo, Ge, Sb, Sn, BitNi. This makes it a permanent magnet that can be used in high-temperature environments.

添加元素Mの量は、 AI 9.5%以下、 Ti 4.5%以下、■ 9.
5%以下、 Cr 8.5%以下、Mn8.0%以下、
 Zr 5.5%以下、Hf 5.5%以下、Nb12
.5%以下、Ta1O,5%以下、Mo 9.5%以下
、Ge 7.0%以下、 Sb 2.5%以下、Sn 
3.5%以下、 Bi 5.0%以下、Ni 8.0%
以下、 W 9.5%以下である。
The amount of the additional element M is: AI 9.5% or less, Ti 4.5% or less, ■9.
5% or less, Cr 8.5% or less, Mn 8.0% or less,
Zr 5.5% or less, Hf 5.5% or less, Nb12
.. 5% or less, Ta1O, 5% or less, Mo 9.5% or less, Ge 7.0% or less, Sb 2.5% or less, Sn
3.5% or less, Bi 5.0% or less, Ni 8.0%
Below, W is 9.5% or less.

ここでMとして二種以上を用いる場合のM合量は当該添
加元素のうち最大値を有するものの%以下として、夫々
は前記の所定値以下とする。Mの含有量が前記所定値を
越えると、残留磁束密度がB r 4 kG未満に劣化
するため実用永久磁石となり得ない。
Here, when two or more types of M are used, the total amount of M is not more than % of the maximum value of the added elements, and each is not more than the above-mentioned predetermined value. If the content of M exceeds the predetermined value, the residual magnetic flux density deteriorates to less than B r 4 kG, so that it cannot be used as a practical permanent magnet.

手続補正書 昭和60年3月27日 l 事件の表示 昭和58年特許願第244791号(
昭和58年12月27日出願) 2 発明の名称 焼結磁石材料 3 補正をする者 事件との関係 出願人 氏名 住友特殊金属株式会社 4 代理人 5 補正の対象 明細書の発明の詳細な説明の欄6 補
正の内容 別紙の通り 明細書中の発明の詳細な説明の欄を次の通り補正する。
Procedural amendment dated March 27, 1985 l Case description Patent Application No. 244791 of 1988 (
Filed on December 27, 1982) 2 Title of the invention Sintered magnet material 3 Relationship with the case of the person making the amendment Name of applicant Sumitomo Special Metals Co., Ltd. 4 Agent 5 Subject of amendment Detailed explanation of the invention in the specification Column 6: Contents of amendment The column for detailed explanation of the invention in the specification is amended as follows, as shown in the attached sheet.

(1)第5頁第5〜6行目、rCoを全く使用しない」
をrCoを多量に使用しない」に補正する。
(1) Page 5, lines 5-6, rCo is not used at all.”
"Do not use large amounts of rCo."

以上that's all

Claims (4)

【特許請求の範囲】[Claims] (1)原子百分率で8〜30%の希土類元素E(但しR
はYを包含する希土類元素の少なくとも一種)と、2〜
28%のBと、65〜82%のFeを主成分とするとと
もに、下記所定量以下の一種又は二種以上の添加元素A
を含有することを特徴とする焼結磁石材料: 但し、添加元素Aは、A 0%を除き、jio、5%、
 Zn 2.0%。 In、、1.0%、 Ag 2.0%、Sn 2.0%
、 Pb 2.0% であり、二種以上の添加元素Aを含む場合、添加元素A
の含量は含有するAの当該各添加元素の上記値のうちの
最大値以下とする。
(1) 8 to 30% rare earth element E (however, R
is at least one kind of rare earth element including Y), and 2 to
The main components are 28% B and 65-82% Fe, and one or more additional elements A below the specified amount below.
Sintered magnet material characterized by containing: However, the additive element A is 0% of A, jio, 5%,
Zn 2.0%. In, 1.0%, Ag 2.0%, Sn 2.0%
, Pb 2.0%, and when two or more types of additive element A are included, additive element A
The content of A should be less than or equal to the maximum value of the above values of each additional element contained in A.
(2)原子百分率で8〜30%の希土類元素R(但しR
はYを包含する希土類元素の少なくとも一種)、2〜2
8%17)B、65〜82%c7)Fe、25%未満の
Co(但しCo 0%を除く)を主成分とするとともに
、下記所定量以下の一種又は二種以上の添加元素Aを含
有することを特徴とする焼結磁石材料: 但し、添加元素Aは、A 0%を除き、Li 0.5%
、 Zn 2.0%、 In 1.0%、 Ag 2.0%、 Sn 2.0%、 Pb 2.0% であり、二種以上の添加元素Aを含む場合、添加元素A
の含量は含有するAの当該各添加元素の上記値のうちの
最大値以下とする。
(2) Rare earth element R with 8 to 30% atomic percentage (however, R
is at least one rare earth element including Y), 2-2
8%17) B, 65-82%c7) Fe, less than 25% Co (excluding 0% Co) as the main component, and also contains one or more additive elements A below the specified amount Sintered magnet material characterized by: However, the additive element A is 0.5% Li except A 0%.
, Zn 2.0%, In 1.0%, Ag 2.0%, Sn 2.0%, Pb 2.0%, and when two or more types of additive elements A are included, the additive element A
The content of A should be less than or equal to the maximum value of the above values of each additional element contained in A.
(3)原子百分率で8〜30%の希土類元素R(但しR
はYを包含する希土類元素の少なくとも一種)、2〜2
8%のB、65〜82%0) F eを主成分とすると
ともに、下記所定量以下の夫々一種又は二種以上の添加
元素A及び添加元素Mを含有することを特徴とする焼結
磁石材料:(イ)但し、添加元素AはAO%を除き、L
i O,5%、 Zn 2.0%、 In 1.0%、 Ag 2.0%、 Sn 2.0%、 Pb 2.0% であり、二種以上のAを含む場合、Aの含量は含有する
Aの当該各添加元素の上記値のうちの最大値以下とし、
また (口)添加元素MはMO%を除き、 AI 9.5%、Ti 4.5%、 ■ 9.5%、Cr 8.5%、 Mn 8.0%、Zr 5.5%、 Hf 5.5%、Nb 12.5%、 Ta 10.5%、Mo 9.5%、 Ge 7.0%、Sb 2.5%、 Sn 3.5%、Bi 5.0%、 Ni−8,0%、 及びW 9.5% であり、二種以上のMを含む場合Mの含量は含有するM
の当該各添加元素の上記値のうちの最大値以下とする。
(3) Rare earth element R with an atomic percentage of 8 to 30% (however, R
is at least one rare earth element including Y), 2-2
8% B, 65-82% 0) Fe as a main component, and a sintered magnet characterized by containing one or more additive elements A and M in the following predetermined amounts or less. Material: (a) However, additive element A is L, except for AO%.
i O, 5%, Zn 2.0%, In 1.0%, Ag 2.0%, Sn 2.0%, Pb 2.0%, and when it contains two or more types of A, the content of A shall be less than or equal to the maximum value of the above values of each additional element contained in A,
Additionally, the additional elements M (excluding MO%) are as follows: AI 9.5%, Ti 4.5%, ■ 9.5%, Cr 8.5%, Mn 8.0%, Zr 5.5%, Hf 5.5%, Nb 12.5%, Ta 10.5%, Mo 9.5%, Ge 7.0%, Sb 2.5%, Sn 3.5%, Bi 5.0%, Ni-8 , 0%, and W 9.5%, and when two or more types of M are included, the content of M is the amount of M contained.
be below the maximum value of the above values for each additional element.
(4)原子百分率で8〜30%の粘土i元素R(但しR
はYを包含する希土類元素の少なくとも一種)、2〜2
8%のB、65〜82%のFe、25%未満のCo(但
しCo 0%を除く)を主成分とするとともに、下記所
定量以下の夫々一種又は二種以上の禄加元素A及び添加
元素Mを含有することを特徴とする焼結磁石材料: (イ)但し、添加元素AはA 0%を除き、Li 0.
5%、 Zn 2.0%、 In 1.0%、 Ag 2.0%。 Sn 2.0%、 Pb 2.0%。 であり、二種以上のAを、含む場合、Aの含量は含有す
るAの当該各添加元素の上記値のうちの最大値以下とし
、また (口)添加元素MはM 0%を除き、 AI 9.5%、T i 4 、5%、■ 9.5%、
Cr 8.5%、 M n 8 、0%、 Zr 5.5%、Hf 5.’
5%、Nb 12.5%、Ta 10.5%、Mo 9
.5%、 Ge 7.0%、Sb 2.5%、 Sn 3.5%、Bi 5.0%、 Ni、 8.0%、及び W 9.5%であり、二種以
上のMを含む場合Mの合量は含有するMの当該各添加元
素の上記値のうちの最大値以下とする。
(4) 8 to 30% clay i element R in atomic percentage (however, R
is at least one rare earth element including Y), 2-2
The main components are 8% B, 65 to 82% Fe, and less than 25% Co (excluding 0% Co), as well as one or more additive elements A and additives each below the specified amount below. Sintered magnet material characterized by containing element M: (a) However, the additive element A is 0% Li, excluding A 0%.
5%, Zn 2.0%, In 1.0%, Ag 2.0%. Sn 2.0%, Pb 2.0%. and when it contains two or more types of A, the content of A shall be less than or equal to the maximum value of the above values of each of the added elements of the contained A, and the added element M (excluding M 0%), AI 9.5%, T i 4, 5%, ■ 9.5%,
Cr 8.5%, Mn8, 0%, Zr 5.5%, Hf 5. '
5%, Nb 12.5%, Ta 10.5%, Mo 9
.. 5%, Ge 7.0%, Sb 2.5%, Sn 3.5%, Bi 5.0%, Ni, 8.0%, and W 9.5%, and contains two or more types of M. In this case, the total amount of M is less than or equal to the maximum value of the above values of each additional element of M contained.
JP58244791A 1983-12-27 1983-12-27 Material for sintered magnet Granted JPS60138056A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58244791A JPS60138056A (en) 1983-12-27 1983-12-27 Material for sintered magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58244791A JPS60138056A (en) 1983-12-27 1983-12-27 Material for sintered magnet

Publications (2)

Publication Number Publication Date
JPS60138056A true JPS60138056A (en) 1985-07-22
JPH0474427B2 JPH0474427B2 (en) 1992-11-26

Family

ID=17123978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58244791A Granted JPS60138056A (en) 1983-12-27 1983-12-27 Material for sintered magnet

Country Status (1)

Country Link
JP (1) JPS60138056A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60224757A (en) * 1984-04-23 1985-11-09 Seiko Epson Corp Permanent magnet alloy
JPS62240742A (en) * 1986-03-27 1987-10-21 シ−メンス、アクチエンゲゼルシヤフト Production of permanent magnet material
JPH024939A (en) * 1987-10-08 1990-01-09 Kawasaki Steel Corp Rare earth-transition metallic magnetic alloy
DE112006000070T5 (en) 2005-07-15 2008-08-14 Hitachi Metals, Ltd. Rare earth sintered magnet and process for its production
JP2009302256A (en) * 2008-06-12 2009-12-24 Tdk Corp Method of manufacturing rare earth magnet
CN110835704A (en) * 2019-12-10 2020-02-25 徐州格雷安环保设备有限公司 Wear-resistant alloy metal material

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60224757A (en) * 1984-04-23 1985-11-09 Seiko Epson Corp Permanent magnet alloy
JPS62240742A (en) * 1986-03-27 1987-10-21 シ−メンス、アクチエンゲゼルシヤフト Production of permanent magnet material
JPH024939A (en) * 1987-10-08 1990-01-09 Kawasaki Steel Corp Rare earth-transition metallic magnetic alloy
JPH0518898B2 (en) * 1987-10-08 1993-03-15 Kawasaki Steel Co
DE112006000070T5 (en) 2005-07-15 2008-08-14 Hitachi Metals, Ltd. Rare earth sintered magnet and process for its production
US9551052B2 (en) 2005-07-15 2017-01-24 Hitachi Metals, Ltd. Rare earth sintered magnet and method for production thereof
JP2009302256A (en) * 2008-06-12 2009-12-24 Tdk Corp Method of manufacturing rare earth magnet
CN110835704A (en) * 2019-12-10 2020-02-25 徐州格雷安环保设备有限公司 Wear-resistant alloy metal material

Also Published As

Publication number Publication date
JPH0474427B2 (en) 1992-11-26

Similar Documents

Publication Publication Date Title
JP2746818B2 (en) Manufacturing method of rare earth sintered permanent magnet
JPH0319296B2 (en)
CN100394521C (en) Forming method in magnetic field, and method for producing rare-earth sintered magnet
JPH0424401B2 (en)
US20070240790A1 (en) Rare-earth sintered magnet and method for producing the same
JPH0316761B2 (en)
JPS60138056A (en) Material for sintered magnet
EP0414645B1 (en) Permanent magnet alloy having improved resistance to oxidation and process for production thereof
JPH0320046B2 (en)
JPS59132105A (en) Permanent magnet
JPH0553842B2 (en)
JPS62173704A (en) Manufacture of permanent magnet
JPH0535210B2 (en)
JPH0146574B2 (en)
JPS59219453A (en) Permanent magnet material and its production
JPH0316763B2 (en)
JPH0535211B2 (en)
JPH04214804A (en) Method for molding alloy powder for rare earth-iron-boron based permanent magnet
JPH0467324B2 (en)
JPH04214803A (en) Method for molding alloy powder for rare earth-iron-boron based permanent magnet
JP2571403B2 (en) Manufacturing method of rare earth magnet material
JPH06290919A (en) Rare earth-iron-boron permanent magnet and manufacture thereof
JPS6077961A (en) Permanent magnet material and its manufacture
JPH045737B2 (en)
JPH0480961B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees