JPS62173704A - Manufacture of permanent magnet - Google Patents

Manufacture of permanent magnet

Info

Publication number
JPS62173704A
JPS62173704A JP61015401A JP1540186A JPS62173704A JP S62173704 A JPS62173704 A JP S62173704A JP 61015401 A JP61015401 A JP 61015401A JP 1540186 A JP1540186 A JP 1540186A JP S62173704 A JPS62173704 A JP S62173704A
Authority
JP
Japan
Prior art keywords
alloy
combination
permanent magnet
powder
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61015401A
Other languages
Japanese (ja)
Inventor
Masaaki Tokunaga
徳永 雅亮
Minoru Endo
実 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP61015401A priority Critical patent/JPS62173704A/en
Publication of JPS62173704A publication Critical patent/JPS62173704A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To remove the formation of a nonmagnetic phase unnecessary for a permanent magnet, and to obtain a sufficient lubrication effect by using the impalpable powder of a B1-mFem(0<=m<=0.6) alloy as a lubricant. CONSTITUTION:An alloy having the composition of R(Fe1-x-y-zCoxByMz)A is dissolved and pulverized, and boron B is diffused and reacted, thus acquiring a permanent magnet employing a compound having a tetragonal system crystal structure as a main phase. Where R represents single Nd or one kind or combi nation of two kinds or more of rare earth elements centering Nd and Pr, M represents one kind or combination of two kinds or more of Al, U, P, W, Ti, Ni, Nb, Cr, Mo, Si, and 0<=x<=0.55, 0<=y<=0.02, 0<=z<=0.04, 3<=A<=7.5 hold. The finely-ground powder and pulverized B1-mFem (0<=m<=0.6) alloy are mixed at that time, and molded in a magnetic field, and B is reacted and diffused and the whole is baked. Accordingly, the formation of a nonmagnetic phase is re moved, and a sufficient lubrication effect is acquired.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はNdと1を主成分とする金属間化合物永久(荘
石合金、持にNd−Fe−B系永久磁石の製造方法に関
するものである。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to a method for producing permanent intermetallic compound (Zhuangseki alloy) mainly composed of Nd and 1, especially Nd-Fe-B permanent magnets. be.

(従来の技術〕 R−Fe−B系永久磁石材料はR−Co系永久磁石材料
よりも高い磁気特性が得られる新しい組成系として開発
が進んでいる。(特開昭59−=16008号公報、特
開昭59−64733号公報、特開昭59−89401
号公報、M、Sagawa et al J、A、P、
 55 (6)2083(1984)  New Ma
terials for   ’Permanent 
magnets on a base of Nd a
nd Fe ″)コレらによれば、例えば、Nd+5F
etJs(原子%)、すなわちモル分率比率で表示する
と、Nd(Fo、、+Bo、 +19) S、 ?なる
合金で(B H) IIIax 〜35MGOe。
(Prior art) R-Fe-B permanent magnet materials are being developed as a new composition system that can obtain higher magnetic properties than R-Co permanent magnet materials. , JP-A-59-64733, JP-A-59-89401
Publication, M, Sagawa et al J, A, P,
55 (6) 2083 (1984) New Ma
terials for 'Permanent
magnets on a base of nda
According to Kore et al., for example, Nd+5F
When expressed as etJs (atomic %), that is, the mole fraction ratio, Nd(Fo, , +Bo, +19) S, ? (B H) IIIax ~35MGOe.

111c〜10KOeの磁気特性が得られ、またFeの
1部をCoで置換することによりキューグ一点が向上す
ること、Ti、Ni、Bi、V、Nb+Ta、Cr、M
o、W、Mn、A l tSb。
Magnetic properties of 111c to 10KOe can be obtained, and by replacing a part of Fe with Co, the Kugu point can be improved by one point, Ti, Ni, Bi, V, Nb+Ta, Cr, M
o, W, Mn, Al tSb.

Ge、Sn、Zr、t(fなどの添加によりiHcが向
上することが示されている。
It has been shown that addition of Ge, Sn, Zr, t(f, etc.) improves iHc.

これらR−Fe−B合金で得られる(BH)waxは3
5MGOeにも達し、R−Co系磁石で得られている(
B H) wax 〜30 MGOeを大きく上回って
いる。
The (BH) wax obtained with these R-Fe-B alloys is 3
It reaches as much as 5MGOe, which is obtained with R-Co magnets (
BH) wax ~30 Much higher than MGOe.

而して、これら永久磁石材料は粉末冶金法によって製作
される。すなわち、真空溶解によるインゴット作製、粉
砕、磁界中成形、焼結、熱処理、加工の工程によって製
造される。溶解は通常の方法で^rないし真空中で行う
。Bはフェロボロンを用いることも可能であり、希土類
元素は最後に投入する。粉砕は粗粉砕と微粉砕に分かれ
、粗粉砕はスタンプミル、ショークラッシャー、ブラウ
ンミル、ディスクミルで、また微粉砕はジエ・ノドミル
、振動ミル、ボールミル等で行われる。いずれも酸化を
防ぐために非酸化性雰囲気で行うが、有機溶剤や不活性
ガスも用いられる。
These permanent magnet materials are manufactured by powder metallurgy. That is, it is manufactured through the steps of ingot preparation by vacuum melting, crushing, molding in a magnetic field, sintering, heat treatment, and processing. The melting is carried out in a conventional manner or in a vacuum. Ferroboron can also be used as B, and the rare earth element is added last. Grinding is divided into coarse grinding and fine grinding. Coarse grinding is carried out using a stamp mill, Shaw crusher, Brown mill, or disc mill, and fine grinding is carried out using a die-nod mill, vibration mill, ball mill, etc. Both are carried out in a non-oxidizing atmosphere to prevent oxidation, but organic solvents and inert gases are also used.

なお、成形は金型成形により磁場中で行われる。Note that the molding is performed in a magnetic field by molding.

これは異方性をつけるために行われるものであり、本合
金の場合、粉砕粉のC軸をそろえるために不可欠な工程
である。
This is done to impart anisotropy, and in the case of this alloy, it is an essential step to align the C-axes of the pulverized powder.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述の如く、上記R−Fe−B系永久磁石は、従来、粉
末冶金法によって製造されており、合金原料は金型を用
いて成形されている。
As mentioned above, the R-Fe-B permanent magnets are conventionally manufactured by powder metallurgy, and the alloy raw material is molded using a mold.

しかしながらR−Fe−B系永久磁石合金微粉末は成形
性の悪いという欠点を持つ。すなわち本系合金微粉末は
成形時の圧力伝達率が低く11例えば50%を下まわる
こともある。本現象を回避するため一般にはステアリン
酸カルシウム、ステアリン酸マグネシウム、ステアリン
酸アルミニウム等のステアリン酸系金属石ケンやワック
スが潤滑剤として添加される。しかし潤滑剤の添加はB
rや+IIc+ (Bll)maに等の磁気特性の低下
がさけられなかった。又これら潤滑剤は磁場中成形時に
磁粉と分離する傾向も見られ焼結体の巣の原因でもあっ
た。
However, the R-Fe-B permanent magnet alloy fine powder has a drawback of poor formability. In other words, the present alloy fine powder has a low pressure transmission rate during molding, which may be less than 50%, for example. To avoid this phenomenon, stearate-based metal soaps and waxes such as calcium stearate, magnesium stearate, and aluminum stearate are generally added as lubricants. However, the addition of lubricant is B
Deterioration of magnetic properties such as r and +IIc+ (Bll)ma was unavoidable. Furthermore, these lubricants tended to separate from the magnetic powder during compaction in a magnetic field, and were the cause of cavities in the sintered body.

〔問題点を解決するための手段および作用〕上記問題点
を解決するために、本発明は磁石用合金粉末の成形体を
焼結するのではなく、母合金粉末とボロンとの混合物を
磁場中で成形した上で、反応焼成することにある。
[Means and effects for solving the problems] In order to solve the above problems, the present invention does not sinter a compact of alloy powder for magnets, but sinters a mixture of master alloy powder and boron in a magnetic field. The process involves molding the material and then firing it by reaction.

すなわちR(Fe+−x−y−scOxB、MJA(こ
こでRはNdjXL独あるいはNdとPrを中心とした
希土類元素の1種又は2種以上の組み合せ;MはA e
 、v、P、W、Ti+Ni+Nb、Cr、Mo、Si
+Zr、llf、Mn、旧、Sn、Sbの1種又は2種
以上の組み合せ;0≦x≦0.55 ; 0≦y≦0.
02;0≦z≦0.04;3≦A≦7.5)なる組成の
合金を溶解、微粉砕後、B(硼素)を拡散反応せしめる
ことにより実質的に正方晶系の結晶構造を有する化合物
を主相としたR (Fe+−x−y−zcOx8yMJ
A(ここでRはNd単独あるいはNdとPrを中心とし
た希土類元素の1種又は2種以上の組み合せ;Mは^1
 、V、P、W、Ti、Ni、Nb、Cr、Mo、Si
、Zr、Hf、Mn、Bi、Sn。
That is, R(Fe+-x-y-scOxB, MJA (here, R is NdjXL or a combination of one or more rare earth elements centered on Nd and Pr; M is Ae
, v, P, W, Ti+Ni+Nb, Cr, Mo, Si
+One or a combination of two or more of Zr, llf, Mn, old, Sn, and Sb; 0≦x≦0.55; 0≦y≦0.
02; 0≦z≦0.04; 3≦A≦7.5) After melting and pulverizing an alloy, the alloy has a substantially tetragonal crystal structure by causing B (boron) to undergo a diffusion reaction. R (Fe+-x-y-zcOx8yMJ
A (here, R is Nd alone or a combination of one or more rare earth elements centered on Nd and Pr; M is ^1
, V, P, W, Ti, Ni, Nb, Cr, Mo, Si
, Zr, Hf, Mn, Bi, Sn.

Sbの1種又は2種以上の組み合せ;0≦x≦0.55
;0.02≦y≦0.3;O≦z≦0.03 ; 4≦
A≦7.5)なる組成の永久磁石を製造する方法におい
て、前記微粉砕粉と微粉砕されたBl−MPes(0部
m≦0.6)合金と混合、磁場中成形、B反応拡散焼成
を行なうことを特徴とする。すなわち本発明では潤滑剤
としてa+−mpem(o≦m≦0.6)合金の微粉末
を用いる。よってステアリン酸系金属石ケンやワックス
を用いずに本系磁石合金の構成元素であるBt−Je、
R(0部m≦0.6)を用いるため、永久磁石にとって
不必要な非磁性相の生成がなく、又充分な潤滑効果が得
られる。
One type or combination of two or more types of Sb; 0≦x≦0.55
;0.02≦y≦0.3;O≦z≦0.03;4≦
In the method for manufacturing a permanent magnet having a composition of A≦7.5), the finely pulverized powder is mixed with a finely pulverized Bl-MPes (0 part m≦0.6) alloy, molded in a magnetic field, and B reaction diffusion firing. It is characterized by carrying out the following. That is, in the present invention, a fine powder of an a+-mpem (o≦m≦0.6) alloy is used as a lubricant. Therefore, Bt-Je, which is a constituent element of this magnetic alloy, can be used without using stearic acid-based metal soap or wax.
Since R (0 part m≦0.6) is used, there is no generation of non-magnetic phase unnecessary for the permanent magnet, and a sufficient lubricating effect can be obtained.

以下本発明についてさらに詳細に説明する。The present invention will be explained in more detail below.

本発明においては、R(Fe+−x−y−gcoxBy
M2)Aなる組成のものを溶製し、次いでこれを鋳造粉
砕する。
In the present invention, R(Fe+-x-y-gcoxBy
M2) A product having the composition A is melted and then cast and pulverized.

母合金粉のR,Mの具体的元素及びx、  y、  z
の範囲は上述の通りであるが、これらのうちRlMの種
類ないしは組み合せ、及び、R,Fe、 Co。
Specific elements of R and M of the master alloy powder and x, y, z
The range of is as described above, and among these, the type or combination of RIM, R, Fe, Co.

Mの含有量は、得ようとする磁石の組成および潤滑剤と
して用いるBI−、Fe、(0部m≦0.6)合金の組
成によって決定される。したがって磁石の形状や大きさ
等によって潤滑剤の必要量、組成が決まり、これにより
磁石母体となるべき微粉末の組成が決定される。
The content of M is determined by the composition of the magnet to be obtained and the composition of the BI-, Fe, (0 part m≦0.6) alloy used as the lubricant. Therefore, the required amount and composition of the lubricant are determined by the shape and size of the magnet, and this determines the composition of the fine powder that is to become the magnet matrix.

一方B+−aFelI(0部m≦0.6)を溶解、鋳造
する。
On the other hand, B+-aFelI (0 parts m≦0.6) is melted and cast.

m=oの場合はクリスタルボロンを用い又組成が適当で
あれば市販のフェロボロンをB −Fe合金として使用
することも可能である。R(pel−X−V−gCOX
ByMz) A母合金およびB、’−,Fe、合金をそ
れぞれジェットミル等により微粉末化する。両微粉末を
目標組成になるよう又充分な潤滑効果が得られるよう秤
量混合し、磁場中で圧縮成形する。B 、 −、Fe。
When m=o, crystal boron is used, and if the composition is appropriate, commercially available ferroboron can also be used as the B--Fe alloy. R(pel-X-V-gCOX
ByMz) A master alloy and B,'-,Fe, alloy are each pulverized by a jet mill or the like. Both fine powders are weighed and mixed so as to have a target composition and to obtain a sufficient lubricating effect, and then compression molded in a magnetic field. B, -, Fe.

合金粉の利用によりグイ壁と成形体のカジリ現象はなく
圧力伝達率も85%が容易に得られる。得られた成形体
は1〜4hrsllOO℃近傍の温度で真空中ないし、
Ar雰囲気中で焼成される。焼成温度、時間はat−m
Fem (0部m≦0.6)合金の組成によって変動す
る。
By using alloy powder, there is no galling phenomenon between the goo wall and the compact, and a pressure transmission rate of 85% can be easily achieved. The obtained molded body is heated in a vacuum at a temperature around 1 to 4 hrsllOO℃,
It is fired in an Ar atmosphere. Firing temperature and time are at-m
Fem (0 part m≦0.6) varies depending on the composition of the alloy.

得られた焼成体を900℃X2hrs加熱し、1.5℃
/minの冷却速度で常温まで冷却する。さらに550
〜680℃でlhr時効し水中に急冷する。
The obtained fired body was heated to 900°C for 2 hours and heated to 1.5°C.
Cool to room temperature at a cooling rate of /min. Another 550
Aging for lhr at ~680°C and quenching in water.

本発明において用いるR’ (Fe量−x−y−zcO
xByMz)A(ここでRはNd単独あるいはNdとP
rを中心とした希土類元素の1種又は2種以上の組み合
せ;MはA l 、 V、 P、W、Ti、Ni、Nb
、Cr、 Mo、Si、Zr+ Ilf、 Mn、 B
i、Sn。
R' (Fe amount-x-y-zcO
xByMz) A (here, R is Nd alone or Nd and P
One or a combination of two or more rare earth elements centered on r; M is Al, V, P, W, Ti, Ni, Nb
, Cr, Mo, Si, Zr+ Ilf, Mn, B
i, Sn.

Sbの1種又は2種以上の組み合せ;0≦x≦0.55
;0≦y≦0.02;O≦z≦0.04;3≦A≦7.
5)母合金のBilは0.02以下とした。これは0.
02を超えるBを含有させると潤滑剤として必要なり、
、Fe、合金を加えられないためである。又s、−1l
pen(0部m≦0.6)合金のFe量は0.6以下と
した。これは0.6を等えるFeを含有する場合潤滑効
果が得られないためである。又B+−、Fe、、1合金
の1部にA 12 、V、P、JTi、Ni+Nb、C
r、Mo、Si、Zr、Hf、Mn。
One type or combination of two or more types of Sb; 0≦x≦0.55
;0≦y≦0.02;O≦z≦0.04;3≦A≦7.
5) Bil of the master alloy was 0.02 or less. This is 0.
If B exceeding 02 is contained, it becomes necessary as a lubricant,
, Fe, and alloys cannot be added. Also s, -1l
The amount of Fe in the pen (0 part m≦0.6) alloy was 0.6 or less. This is because a lubricating effect cannot be obtained when Fe equal to 0.6 is contained. Also, A 12 , V, P, JTi, Ni+Nb, C in a part of B+-, Fe, 1 alloy.
r, Mo, Si, Zr, Hf, Mn.

Br + Sn、 Sbの微量添加も可能である。It is also possible to add trace amounts of Br + Sn and Sb.

本発明の永久磁石における合金組成の限定理由を次に説
明する。
The reasons for limiting the alloy composition in the permanent magnet of the present invention will be explained below.

X:COの置換ff1xが0.55を超える場合は4π
Irの低下が大きく、永久磁石材料として好ましくない
。Xが0.55以下の場合はキューリ一点の向上を利用
できる。
X: 4π if CO substitution ff1x exceeds 0.55
The decrease in Ir is large, making it undesirable as a permanent magnet material. If X is less than 0.55, you can take advantage of a one point improvement.

y:B置換量yが0.02未満の場合、キューリ一点が
上昇せず、高いiHcも得られない。
If the y:B substitution amount y is less than 0.02, the Curie point will not increase and high iHc will not be obtained.

一方、yが0.3を超える場合には逆にキューリ一点、
4πrrが低下し、磁気特性の好ましくない相の発生が
見られる。
On the other hand, if y exceeds 0.3, one cuuri point,
4πrr decreases, and a phase with unfavorable magnetic properties appears.

z:M元素は含有されていなくともよいが、M元素の含
有により保磁力が上り、2が o、oooi以上の場合111cの向上を期待できる。
z: The M element does not need to be contained, but the coercive force increases by containing the M element, and when 2 is o, oooi or more, an improvement in 111c can be expected.

一方、2が0.03を超える場合には4πIr(Br)
および角型性が低下し、永久磁石材料として好ましくな
い。Aが4未満の場合、4πlrが低下し、7.5を超
えるとFe、 Coに冨んだ相が現われ、1llcの低
下が顕著となる。
On the other hand, if 2 exceeds 0.03, 4πIr(Br)
and the squareness is decreased, making it undesirable as a permanent magnet material. When A is less than 4, 4πlr decreases, and when it exceeds 7.5, a phase rich in Fe and Co appears, and the decrease in 1llc becomes significant.

以下実施例により本発明を説明する。The present invention will be explained below with reference to Examples.

実施例l NdFe4. sなる合金をアーク溶解により作成し、
ディスクミルで粗粉砕し、32メツシユ以下に調整した
。調整された粗粉をジェットミルにて微粉砕し、3.5
μm (FSSS)の微粉砕粉を得た。ジェットミルの
圧力媒体はN2ガスを用いた。一方市販のクリスタルボ
ロンをディスク・ミルで粗粉砕し32メソシユ以下にI
llした。さらにジェットミルを用い2.17 m (
FSSS)の微粉砕粉を得た。NdFe4.5およびB
i粉砕粉を混合しNd(Feo、 q B o、 +)
sなる目標組成になるよう調整した。得られた調整扮を
横磁場成形した。磁場強度は15KOeで、試料形状は
15X15X15(am)とした。成形圧力は4 to
n / cnlである。連続成形が可能で、圧力伝達率
は、85%であった。本成形体を真空中で1100”C
X3hrs焼成した。焼成後試料を室温まで炉中冷却し
、再度900°CX2hrs加熱し、1℃/minの冷
却速度で連続冷却した。室温への冷却後、620℃で時
効処理を行った。
Example l NdFe4. An alloy called s is created by arc melting,
It was coarsely ground with a disc mill and adjusted to 32 mesh or less. The adjusted coarse powder is finely pulverized with a jet mill to give 3.5
A finely ground powder of μm (FSSS) was obtained. N2 gas was used as the pressure medium of the jet mill. On the other hand, commercially available crystal boron is coarsely pulverized using a disk mill to give I.
I did it. Furthermore, using a jet mill, 2.17 m (
A finely ground powder of FSSS) was obtained. NdFe4.5 and B
i Mix the crushed powder and Nd(Feo, q Bo, +)
Adjustments were made to achieve a target composition of s. The obtained prepared molding was subjected to transverse magnetic field molding. The magnetic field strength was 15 KOe, and the sample shape was 15×15×15 (am). Molding pressure is 4 to
n/cnl. Continuous molding was possible, and the pressure transmission rate was 85%. This molded body was heated to 1100”C in vacuum.
It was fired for 3 hours. After firing, the sample was cooled to room temperature in a furnace, heated again at 900° C. for 2 hrs, and continuously cooled at a cooling rate of 1° C./min. After cooling to room temperature, aging treatment was performed at 620°C.

得られた磁気性特性は Br−9950G 、Hc 〜72500e 、tic〜81000e (811)max〜22.8 MGOeであった。The obtained magnetic properties are Br-9950G , Hc ~72500e ,tic~81000e (811)max~22.8 MGOe.

(実施例2) Nd(Feo、 qaBo、 0f)5.2なる母合金
を実施例1と同様の方法で溶解、粗粉砕 微粉砕した。
(Example 2) A master alloy of Nd(Feo, qaBo, Of) 5.2 was melted, coarsely pulverized and finely pulverized in the same manner as in Example 1.

本合金と実施例1と同様の方法で微45)砕したクリス
タルボロンを混合し、Nd(Feo、 qzBo、 o
ll)3.、を目標組成としたJ整↓5)を得た。本凋
整粉を実施例1と同様の方法で横磁場中成形した。本調
整粉においても連続成形が可能で圧力伝達率は80%で
あった。得られた成形体を実施例1と同様の方法で焼成
、熱処理した。
This alloy was mixed with finely crushed crystal boron in the same manner as in Example 1, and Nd (Feo, qzBo, o
ll)3. , was obtained as the target composition. This refined powder was molded in a transverse magnetic field in the same manner as in Example 1. Continuous molding was also possible with this adjusted powder, and the pressure transmission rate was 80%. The obtained molded body was fired and heat treated in the same manner as in Example 1.

得られた磁気特性は Br−12300G 、、llc〜81000e 、110〜85000e (Bll)max〜36. I nGOeであった。The obtained magnetic properties are Br-12300G ,,llc~81000e , 110-85000e (Bll)max~36. It was InGOe.

実施例3 Nd。、 xDyo、 z <Feo、 q l 2C
OQ、 obaBo、 02) 4. llおよびB、
。Fes。なる合金をそれぞれ実施例1と同様の方法で
溶解、粗粉砕、微粉砕した。両合金と目標組成Nd0、
eDyo、 z (Feo、 l16CO0,06BO
,os) s、 sなるように混合、調整した。本調整
粉を実施例1と同様の方法で横磁場成形したが連続成形
可能であり、圧力伝達率は78%であった。なお成形圧
は2ton/cx1とした。得られた成形体を実施例1
と同様の方法で焼成、熱処理した。ただし時効温度1よ
600°Cとした。
Example 3 Nd. , xDyo, z <Feo, q l 2C
OQ, obaBo, 02) 4. ll and B,
. Fes. The alloys were respectively melted, coarsely pulverized, and finely pulverized in the same manner as in Example 1. Both alloys and target composition Nd0,
eDyo, z (Feo, l16CO0,06BO
, os) s, s. This adjusted powder was subjected to transverse magnetic field molding in the same manner as in Example 1, but continuous molding was possible and the pressure transmission rate was 78%. Note that the molding pressure was 2 ton/cx1. The obtained molded body was used in Example 1.
It was fired and heat treated in the same manner. However, the aging temperature was set at 1 to 600°C.

得られた磁気特性は Br−10600G 、1(c〜102000e +IIc〜2 3 0 0 00e (Bit)max〜26.9 MGOeであった。The obtained magnetic properties are Br-10600G , 1(c~102000e +IIc~2 3 0 0 00e (Bit)max~26.9 MGOe.

(実施例4) 表1に示した母合金を実施例1と同様の方法で溶解、粗
粉砕、微粉砕し、微粉砕した潤滑材クリスタルボロンと
混合した。目標組成は表1に同時に示した。混合調整扮
を横磁場成型したが連続成形可能であった。得られた成
形体を実施例1と同様の方法で焼成、熱処理した。時効
温度は600°Cとした。得られた磁気特性を表2に示
す。
(Example 4) The master alloy shown in Table 1 was melted, coarsely ground, and finely ground in the same manner as in Example 1, and mixed with the finely ground lubricant crystal boron. The target composition is also shown in Table 1. The mixed adjustment mask was molded in a transverse magnetic field, but continuous molding was possible. The obtained molded body was fired and heat treated in the same manner as in Example 1. The aging temperature was 600°C. The obtained magnetic properties are shown in Table 2.

(以下余白) 〔発明の効果〕 以上実施例において説明したように8.、Fe、(0≦
m≦0.6)微粉砕粉を潤滑剤として用いることにより
連続成形が可能となり、又磁気特性も充分実用材として
の値を示す。
(The following is a blank space) [Effects of the invention] As explained in the above embodiments, 8. , Fe, (0≦
m≦0.6) Continuous molding is possible by using finely pulverized powder as a lubricant, and the magnetic properties also show sufficient values as a practical material.

ど−)−Do-)-

Claims (2)

【特許請求の範囲】[Claims] (1)R(Fe_1_−_x_−_y_−_zCo_x
B_yM_z)_A(ここでRはNd単独あるいはNd
とPrを中心とした希土類元素の1種又は2種以上の組
み合せ;MはAl、V、P、W、Ti、Ni、Nb、C
r、Mo、Si、Zr、Hf、Mn、Bi、Sn、Sb
の1種又は2種以上の組み合せ;0≦x≦0.55;0
≦y≦0.02;0≦z≦0.04;3≦A≦7.5)
なる組成の合金を溶解、微粉砕後、B(硼素)を拡散反
応せしめることにより実質的に正方晶系の結晶構造を有
する化合物を主相としたR(Fe_1_−_x_−_y
_−_zCo_xB_yM_z)_A、(ここでRはN
d単独あるいはNdとPrを中心とした希土類元素の1
種又は2種以上の組み合せ;MはAl、V、P、W、T
i、Ni、Nb、Cr、Mo、Si、Zr、Hf、Mn
、Bi、Sn、Sbの1種又は2種以上の組み合せ;0
≦x≦0.55;0.02≦y≦0.3;0≦z≦0.
03;4≦A≦7.5)なる組成の永久磁石を製造する
方法において、前記微粉砕粉と微粉砕されたB_1_−
_mFe_m(0≦m≦0.6)合金と混合、磁場中成
形、B反応拡散焼成を行なうことを特徴とする永久磁石
の製造方法。
(1) R(Fe_1_-_x_-_y_-_zCo_x
B_yM_z)_A(Here, R is Nd alone or Nd
and a combination of one or more rare earth elements centered on Pr; M is Al, V, P, W, Ti, Ni, Nb, C
r, Mo, Si, Zr, Hf, Mn, Bi, Sn, Sb
One or a combination of two or more; 0≦x≦0.55; 0
≦y≦0.02; 0≦z≦0.04; 3≦A≦7.5)
After melting and finely pulverizing an alloy having the following composition, B (boron) is subjected to a diffusion reaction to produce R (Fe_1_-_x_-_y
____zCo_xB_yM_z)_A, (here R is N
d alone or one of the rare earth elements mainly Nd and Pr
species or combination of two or more species; M is Al, V, P, W, T
i, Ni, Nb, Cr, Mo, Si, Zr, Hf, Mn
, Bi, Sn, Sb or a combination of two or more; 0
≦x≦0.55; 0.02≦y≦0.3; 0≦z≦0.
03; 4≦A≦7.5), in which the finely pulverized powder and the finely pulverized B_1_-
_mFe_m (0≦m≦0.6) alloy, forming in a magnetic field, B reaction diffusion firing.
(2)R(Fe_1_−_x_−_y_−_zCo_x
B_yM_z)_A(ここでRはNd単独あるいはNd
とPrを中心とした希土類元素の1種又は2種以上の組
み合せ;MはAl、V、P、W、Ti、Ni、Nb、C
r、Mo、Si、Zr、Hf、Mn、Bi、Sn、Sb
の1種又は2種以上の組み合せ;0≦x≦0.55;0
≦y≦0.02;0≦z≦0.04;3≦A≦7.5)
なる組成の合金およびB_1_−_mFe_m(0≦m
≦0.6)合金の平均粉砕粒度が0.5〜50μmであ
ることを特徴とする特許請求の範囲第1項記載の永久磁
石の製造方法。
(2) R(Fe_1_-_x_-_y_-_zCo_x
B_yM_z)_A(Here, R is Nd alone or Nd
and a combination of one or more rare earth elements centered on Pr; M is Al, V, P, W, Ti, Ni, Nb, C
r, Mo, Si, Zr, Hf, Mn, Bi, Sn, Sb
One or a combination of two or more; 0≦x≦0.55; 0
≦y≦0.02; 0≦z≦0.04; 3≦A≦7.5)
Alloys with the composition and B_1_−_mFe_m (0≦m
≦0.6) The method for producing a permanent magnet according to claim 1, wherein the average crushed particle size of the alloy is 0.5 to 50 μm.
JP61015401A 1986-01-27 1986-01-27 Manufacture of permanent magnet Pending JPS62173704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61015401A JPS62173704A (en) 1986-01-27 1986-01-27 Manufacture of permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61015401A JPS62173704A (en) 1986-01-27 1986-01-27 Manufacture of permanent magnet

Publications (1)

Publication Number Publication Date
JPS62173704A true JPS62173704A (en) 1987-07-30

Family

ID=11887705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61015401A Pending JPS62173704A (en) 1986-01-27 1986-01-27 Manufacture of permanent magnet

Country Status (1)

Country Link
JP (1) JPS62173704A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6453507A (en) * 1987-08-25 1989-03-01 Shinetsu Chemical Co Manufacture of rare-earth permanent magnet
US4898625A (en) * 1986-09-16 1990-02-06 Tokin Corporation Method for producing a rare earth metal-iron-boron permanent magnet by use of a rapidly-quenched alloy powder
EP0539592A1 (en) * 1990-07-16 1993-05-05 Aura Systems, Inc. Magnetic material
EP0663672A2 (en) * 1994-01-12 1995-07-19 Yasunori Takahashi Method of producing rare earth-iron-boron magnets
US5480495A (en) * 1991-03-27 1996-01-02 Kabushiki Kaisha Toshiba Magnetic material
US5549766A (en) * 1993-08-31 1996-08-27 Kabushiki Kaisha Toshiba Magnetic material
JP2013032270A (en) * 2011-06-27 2013-02-14 General Electric Co <Ge> Jet milling of boron powder using inert gases to meet purity requirements

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4898625A (en) * 1986-09-16 1990-02-06 Tokin Corporation Method for producing a rare earth metal-iron-boron permanent magnet by use of a rapidly-quenched alloy powder
JPS6453507A (en) * 1987-08-25 1989-03-01 Shinetsu Chemical Co Manufacture of rare-earth permanent magnet
EP0539592A1 (en) * 1990-07-16 1993-05-05 Aura Systems, Inc. Magnetic material
US5480495A (en) * 1991-03-27 1996-01-02 Kabushiki Kaisha Toshiba Magnetic material
US5549766A (en) * 1993-08-31 1996-08-27 Kabushiki Kaisha Toshiba Magnetic material
EP0663672A2 (en) * 1994-01-12 1995-07-19 Yasunori Takahashi Method of producing rare earth-iron-boron magnets
EP0663672A3 (en) * 1994-01-12 1995-08-09 Takahashi Yasunori
KR100390309B1 (en) * 1994-01-12 2003-09-02 다카하시야스노리 A method of producing sintered- or bond- rare earth elementironboron magnets
JP2013032270A (en) * 2011-06-27 2013-02-14 General Electric Co <Ge> Jet milling of boron powder using inert gases to meet purity requirements

Similar Documents

Publication Publication Date Title
US4541877A (en) Method of producing high performance permanent magnets
JP2023509225A (en) Heavy rare earth alloy, neodymium iron boron permanent magnet material, raw material and manufacturing method
JPH0424401B2 (en)
JPH0685369B2 (en) Permanent magnet manufacturing method
JPS62173704A (en) Manufacture of permanent magnet
JPS63317643A (en) Production of rare earth-iron permanent magnetic material
JPS6181603A (en) Preparation of rare earth magnet
JPH01175705A (en) Manufacture of rare earth magnet
US5849109A (en) Methods of producing rare earth alloy magnet powder with superior magnetic anisotropy
JPS6181607A (en) Preparation of rare earth magnet
JPS6350444A (en) Manufacture of nd-fe-b sintered alloy magnet
JPS61264133A (en) Permanent magnet alloy and its manufacture
JP2770248B2 (en) Manufacturing method of rare earth cobalt magnet
JPS62213102A (en) Manufacture of rare-earth permanent magnet
JP2874392B2 (en) Production method of rare earth cobalt 1-5 permanent magnet alloy
JPH0119461B2 (en)
JPS61143553A (en) Production of material for permanent magnet
JPH06290919A (en) Rare earth-iron-boron permanent magnet and manufacture thereof
JP3174442B2 (en) Method for producing R-Fe-B sintered anisotropic permanent magnet
JP3227613B2 (en) Manufacturing method of powder for rare earth sintered magnet
JPS6236366B2 (en)
JPH04240703A (en) Manufacture of permanent magnet
JPS59154004A (en) Manufacture of permanent magnet
JPH04214804A (en) Method for molding alloy powder for rare earth-iron-boron based permanent magnet
JPH05234733A (en) Sintered magnet