JPH06112027A - Manufacture of high-quality magnet material - Google Patents

Manufacture of high-quality magnet material

Info

Publication number
JPH06112027A
JPH06112027A JP4256969A JP25696992A JPH06112027A JP H06112027 A JPH06112027 A JP H06112027A JP 4256969 A JP4256969 A JP 4256969A JP 25696992 A JP25696992 A JP 25696992A JP H06112027 A JPH06112027 A JP H06112027A
Authority
JP
Japan
Prior art keywords
magnet
alloy
temperature
composition
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4256969A
Other languages
Japanese (ja)
Inventor
Teruo Kiyomiya
宮 照 夫 清
Takaaki Yasumura
村 隆 明 安
Yasutoshi Suzuki
木 保 敏 鈴
Haruhiro Yukimura
村 治 洋 幸
Tomoyuki Hayashi
智 幸 林
Yoshiteru Nakagawa
川 吉 輝 中
Kazuo Matsui
井 一 雄 松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP4256969A priority Critical patent/JPH06112027A/en
Publication of JPH06112027A publication Critical patent/JPH06112027A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To manufacture a low-cost material for high-quality R-Fe-B magnets relatively easily. CONSTITUTION:This high characteristic magnet material is manufactured by the method, wherein a molten alloy mainly comprising 12-19 at% of R (R represents at least one kind of rare earth element including Y), 5-8.5 at% of B5 and 72.5-82.5at% of Fe is homogenized by heat-treatment at the temperature of 900 deg.C-1150 deg.C, next the particles produced by fine crushing the alloy are molded in a magnetic field to be processed at the temperature of 600-1000 deg.C in hydrogen and then sintered within the temperature range of 1000 deg.C-1150 deg.C in vacuum of Ar inert gas atmosphere.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、Fe、B、R(希土類
元素)を主成分とするFe‐B‐R系高特性磁石材料の
新しい製法に関し、特に最大エネルギー積(BH)max
40MGOe以上の高特性を有するFe‐B‐R系永久
磁石を容易に得るための製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a new method for producing a Fe-BR high-performance magnet material containing Fe, B and R (rare earth elements) as main components, and particularly to a maximum energy product (BH) max.
The present invention relates to a manufacturing method for easily obtaining a Fe-BR type permanent magnet having high characteristics of 40 MGOe or more.

【0002】[0002]

【従来の技術と解決しようとする課題】近年、高価なサ
マリウムとコバルトを含まない又は必須としない永久磁
石材料として安価で高性能のFe‐B‐R系磁石材料が
種々開発されている。
2. Description of the Related Art In recent years, various inexpensive and high-performance Fe-BR magnet materials have been developed as permanent magnet materials containing no or essential samarium and cobalt, which are expensive.

【0003】たとえば、組成Fe‐B‐Rの合金を高周
波溶解で作製した後、熱処理(溶体化乃至均質化処理)
し、後粗粉砕する。これをジェットミル等で数ミクロン
の大きさまで微粉砕した後、この微粉体を磁場中で成型
後真空中で焼結し、更に時効処理して磁石とする(特開
昭61−295342号公報参照)。その一例は後で従
来法1として示される。
For example, after an alloy of composition Fe-BR is produced by high frequency melting, heat treatment (solution treatment or homogenization treatment)
And then coarsely pulverize. After finely pulverizing this to a size of several microns with a jet mill or the like, this fine powder is molded in a magnetic field, sintered in a vacuum, and further aged to obtain a magnet (see JP-A-61-295342). ). An example thereof will be shown as a conventional method 1 later.

【0004】さらに例えば、特開昭62−23902号
公報には、R(RはNd又はPrの少くとも1種を80
%以上、残部はNd、Prを除く、Yを含む希土類元素
のうち少くとも1種)12〜19at%、B 5.5〜
8.5at%、Fe 72.5〜82.5at%を主成分と
し且つ実質上Fe軟磁性相を含まずH2 吸蔵崩壊させて
なるR‐Fe‐B系正方晶合金粉末が開示されている。
これはたとえば上記従来法1の溶体化処理後200Torr
〜50kg f/cm2 の圧力で水素処理して水素を吸蔵さ
せ、自然崩壊させた後脱水素処理し、次いで同様に粗粉
砕、微粉砕等の処理を行なってえられる。その一例は後
で従来法2として示される。この合金はR2Fe14B正
方晶が大部分を占め、ごく僅かの非磁性粒界相を含んで
おり、この粉末を用いた場合最大エネルギー積が40M
GOe 以上の高性能磁石が得られている。
Further, for example, in JP-A-62-23902, R (R is at least one of Nd and Pr is 80
%, And the balance is at least one of rare earth elements including Y excluding Nd and Pr) 12 to 19 at%, B 5.5 to
Disclosed is an R-Fe-B type tetragonal alloy powder containing 8.5 at% and Fe 72.5 to 82.5 at% as main components and containing substantially no Fe soft magnetic phase and undergoing H 2 storage collapse. .
This is, for example, 200 Torr after the solution treatment of the conventional method 1 described above.
It can be obtained by hydrogenating at a pressure of up to 50 kg f / cm 2 to occlude hydrogen, allowing it to spontaneously disintegrate, then dehydrogenating, and then similarly subjecting it to coarse pulverization and fine pulverization. An example thereof will be shown as Conventional Method 2 later. This alloy is dominated by R 2 Fe 14 B tetragonal crystal and contains a very small amount of non-magnetic grain boundary phase. When this powder is used, the maximum energy product is 40M.
High-performance magnets of GOe or better have been obtained.

【0005】また米国特許4898625号明細書によ
れば、主相R2 Fe14Bと焼結時の液相の組成に等しい
急冷薄帯粉末を別個に作製し、混合粉砕することで得た
粉末を成形、焼結、熱処理することにより、比較的容易
に高エネルギー積の磁石が得られている。その製法の一
例は後で従来法3として示される。
Further, according to US Pat. No. 4,898,625, a powder obtained by separately producing a quenched ribbon powder having a composition of a main phase R 2 Fe 14 B and a liquid phase at the time of sintering, and mixing and grinding the powder. A magnet having a high energy product can be obtained relatively easily by molding, sintering, and heat treatment. An example of the manufacturing method is shown as a conventional method 3 later.

【0006】これらの従来技術によれば高性能の永久磁
石が得られるが夫々次の如き難点があった。
According to these conventional techniques, high-performance permanent magnets can be obtained, but each has the following drawbacks.

【0007】たとえば従来法1,2,3の場合、磁石は
共に主相R2 Fe14BをR‐リッチ相がとり囲んだ組織
となっている。保磁力発生のメカニズムの点で、このR
‐リッチ相の存在は不可欠である。R‐リッチ相は非磁
性相であるため、そのR‐リッチ相の分だけ主相のもつ
ポテンシャルを薄めた形で磁石になっている。そのた
め、非常に高い(BH)max は望めない。
For example, in the case of the conventional methods 1, 2, and 3, the magnets both have a structure in which the main phase R 2 Fe 14 B is surrounded by the R-rich phase. In terms of the mechanism of coercive force generation, this R
-The existence of a rich phase is essential. Since the R-rich phase is a non-magnetic phase, the potential of the main phase is diluted by the amount of the R-rich phase to form a magnet. Therefore, a very high (BH) max cannot be expected.

【0008】又後者によれば、焼結時の液相の組成に等
しい急冷薄帯粉末を別個に作製する必要があって複雑と
なり、またその製造設備はかなり大がかりなものであ
り、特に量産するにはかなりコストアップを招くことと
なる。
Further, according to the latter, it is necessary to separately prepare a rapidly cooled ribbon powder having the same composition as the liquid phase at the time of sintering, and it becomes complicated, and its manufacturing equipment is considerably large-scale, and especially mass production. Would incur a significant cost increase.

【0009】[0009]

【課題を解決するための手段】本発明の目的はかかる難
点を解決して、R‐Fe‐Bをベースとする希土類磁石
において、特に高特性の磁石材料を比較的容易にしかも
安価に製造する方法を提供することである。
SUMMARY OF THE INVENTION The object of the present invention is to solve the above problems and to manufacture a magnet material having particularly high characteristics in an R-Fe-B based rare earth magnet relatively easily and at low cost. Is to provide a method.

【0010】かかる目的は、R(RはYを含む希土類元
素の少なくとも1種)12〜19at%、B5.5〜8.
5at%、Fe72.5〜82.5at%を主成分とした溶
解合金を900℃以上1150℃以下の熱処理により均
質化後、この合金を微粉砕して得た粉体を磁場中成形し
た後、これを水素中で600〜1000℃の温度で処理
した後、真空又は不活性雰囲気中1000℃〜1150
℃の温度範囲で焼結することを特徴とする高特性磁石材
料の製造方法により達成される。
The objects are as follows: R (R is at least one kind of rare earth element containing Y) 12 to 19 at%, B 5.5 to 8.
After homogenizing a molten alloy containing 5 at% and Fe72.5 to 82.5 at% as a main component by heat treatment at 900 ° C. or higher and 1150 ° C. or lower, and finely pulverizing the alloy, the obtained powder was molded in a magnetic field. This is treated in hydrogen at a temperature of 600 to 1000 ° C. and then in a vacuum or an inert atmosphere at 1000 ° C. to 1150 ° C.
This is achieved by a method for producing a high-performance magnetic material, which is characterized by sintering in a temperature range of ° C.

【0011】本発明について詳しく説明する。出発原料
として電解鉄、一定割合のホウ素を有するフェロボロン
合金、希土類元素を用い、高周波等によって溶解、鋳造
して合金をつくる。希土類元素(R)としてはたとえば
Nd、Pr、Dy等が好んで用いられ、特にNdがよく
用いられる。これらは1種用いてもよく、或いは2種以
上適宜組合わせて用いることもできる。
The present invention will be described in detail. Electrolytic iron, a ferroboron alloy having a certain proportion of boron, and a rare earth element are used as a starting material, and an alloy is prepared by melting and casting at high frequencies. As the rare earth element (R), for example, Nd, Pr, Dy, etc. are preferably used, and particularly Nd is often used. These may be used alone or in combination of two or more kinds.

【0012】これにより得られた合金は、初晶としてα
‐Fe相を析出する。α‐Fe相が存在した状態で合金
を粉砕してもα‐Fe相は粘性があるため微粉砕化が困
難で配向性、焼結性すなわち高特性化に悪影響を及ぼ
す。更に、α‐Fe相は強磁性相なため、焼結後残存し
ていると逆磁区の発生源となり保磁力が非常に小さくな
る可能性がある。このα‐Fe相を熱処理により消失さ
せるために均質化処理を行なう。その熱処理温度として
は、900℃以下では効果がなく、1150℃以上では
主相R2 Fe14B化合物が分解してしまうので900℃
〜1150℃範囲の温度で行なう。
The alloy thus obtained has α as a primary crystal.
-Precipitate the Fe phase. Even if the alloy is pulverized in the presence of the α-Fe phase, the α-Fe phase is viscous, so that it is difficult to finely pulverize the alloy, which adversely affects the orientation and the sinterability, that is, the improvement of the characteristics. Furthermore, since the α-Fe phase is a ferromagnetic phase, if it remains after sintering, it may become a source of reverse magnetic domains and the coercive force may be very small. A homogenization treatment is performed to remove the α-Fe phase by heat treatment. If the heat treatment temperature is 900 ° C. or lower, there is no effect, and if it is 1150 ° C. or higher, the main phase R 2 Fe 14 B compound is decomposed.
Perform at a temperature in the range of ˜1150 ° C.

【0013】このように均質化処理した合金をジェット
ミル等の粉砕機により、10μm以下好ましくは2〜3
μmにまで微粉砕する。
The alloy thus homogenized is crushed by a crusher such as a jet mill to a size of 10 μm or less, preferably 2-3.
Finely pulverize to μm.

【0014】この微粉体を磁場中成形した後、これを水
素中600〜1000℃の温度で処理をする。水素中6
00〜1000℃の温度で処理することにより主相R2
Fe14BがRH2 、Fe2 B、α‐Feへと分解する。
After molding this fine powder in a magnetic field, it is treated in hydrogen at a temperature of 600 to 1000 ° C. 6 in hydrogen
By treating at a temperature of 00 to 1000 ° C., the main phase R 2
Fe 14 B decomposes into RH 2 , Fe 2 B and α-Fe.

【0015】この分解はH2 ガス圧力が10Torr未満で
は起こらない。また50kg f/cm2を越えると装置や作
業の安全性からは好ましくないため、10Torr〜50kg
/cm2 とすることが好ましい。量産性からは1kg f/cm
2 〜10kg f/cm2 がより好ましい。
This decomposition does not occur when the H 2 gas pressure is less than 10 Torr. Also, if it exceeds 50 kg f / cm 2 , it is not preferable from the viewpoint of safety of equipment and work, so 10 Torr to 50 kg
/ Cm 2 is preferable. 1 kg f / cm for mass production
2 to 10 kg f / cm 2 is more preferable.

【0016】成型体を水素中で熱処理後、真空又は不活
性雰囲気特にAr不活性雰囲気中で加熱して焼結する。
この過程で脱水素が起こると同時に分解したものが元の
主相へともどる反応が起こる。この時、非常に微細な主
相の結晶が析出するが、この微細な結晶粒を保ったまま
緻密に焼結することができる。
After the molded body is heat-treated in hydrogen, it is heated in a vacuum or an inert atmosphere, particularly an Ar inert atmosphere, and sintered.
In this process, dehydrogenation occurs and at the same time, a reaction occurs in which the decomposed material returns to the original main phase. At this time, very fine crystals of the main phase are deposited, but it is possible to perform dense sintering while maintaining these fine crystal grains.

【0017】1000℃未満の温度では高密度の焼結体
が得られず、1150℃を超えると主相R2 Fe14Bが
分解してしまう。よって1000℃〜1150℃の温度
範囲で焼結する。
If the temperature is lower than 1000 ° C., a high density sintered body cannot be obtained, and if the temperature exceeds 1150 ° C., the main phase R 2 Fe 14 B is decomposed. Therefore, it sinters in the temperature range of 1000 ° C-1150 ° C.

【0018】このようにして得た焼結体は主相が単磁区
の大きさに近い状態で析出しているため、保持力発生機
構はピンニング型となっており、R‐リッチ相がなくて
も保磁力が発生する構造となっている。よって、ほとん
ど主相に近い組成でも磁石化するため、特に高特性な磁
石材料を得ることができる。
In the sintered body thus obtained, the main phase is precipitated in a state close to the size of a single magnetic domain, so that the coercive force generating mechanism is a pinning type and there is no R-rich phase. Has a structure that generates a coercive force. Therefore, even if the composition is close to the main phase, it is magnetized, so that a magnet material having particularly high characteristics can be obtained.

【0019】尚、出発合金組成は40MGOe 以上の高
エネルギー積が得られるための条件である。希土類Rが
12at%未満では保磁力が急激に低下して好ましくなく
19at%を超えると残留磁束密度(Br)が低下し、所
要のすぐれた特性が得られないのでRは12〜19at%
とする。
The starting alloy composition is a condition for obtaining a high energy product of 40 MGOe or more. When the rare earth R is less than 12 at%, the coercive force sharply decreases, and when it exceeds 19 at%, the residual magnetic flux density (Br) decreases, and the required excellent characteristics cannot be obtained. Therefore, R is 12 to 19 at%.
And

【0020】B<5.5at%では保磁力及び角型性の低
下を招来し、又B>8.5at%ではBrが低下して、す
ぐれた磁石特性が得られないのでBは5.5〜8.5at
%とする。
When B <5.5 at%, coercive force and squareness are deteriorated, and when B> 8.5 at%, Br is decreased, and excellent magnet characteristics cannot be obtained, so B is 5.5. ~ 8.5 at
%.

【0021】Fe<72.5at%ではBrが低下し、
又、Fe>82.5at%では保磁力が急激に低下してし
まうので、Feは72.5〜82.5at%とする。
When Fe <72.5 at%, Br decreases,
Further, when Fe> 82.5 at%, the coercive force is drastically reduced, so Fe is set to 72.5 to 82.5 at%.

【0022】又、Feの一部を30at%までのCoで置
換することにより、磁石のキュリー点Tcを上昇させる
と共に温度特性を改善することができて有効である。
又、本発明においてはFeの一部を保磁力向上のため、
2at%以下のTi、V、Cr、Ga、Zr、Hf、N
b、Ta、Mo、W、Al、Siの少くとも1種と置換
することができるが、一般にこれらの添加元素は残留磁
束密度Brの低下傾向を示し置換量が2at%を越える
と、Brの低下が顕著になるので好ましくない。添加元
素の好ましい量は0.1〜1at%程度である。
Further, by substituting a part of Fe with Co up to 30 at%, the Curie point Tc of the magnet can be raised and the temperature characteristic can be improved, which is effective.
Further, in the present invention, a part of Fe is used to improve coercive force.
2 at% or less of Ti, V, Cr, Ga, Zr, Hf, N
At least one of b, Ta, Mo, W, Al and Si can be substituted, but in general, these additive elements tend to decrease the residual magnetic flux density Br, and when the amount of substitution exceeds 2 at%, the amount of Br It is not preferable because the decrease becomes remarkable. The preferable amount of the additional element is about 0.1 to 1 at%.

【0023】[0023]

【実施例】以下に本発明の実施例と参考例をあげる。尚
各例においては、出発原料として純度99.8%の電解
鉄、B 20.8wt%を含有し、残部はFe及びC等の
不純物からなるフェロボロン合金、純度99.6%以上
の希土類元素を用いた。 (実施例1) <本発明>表1に示す組成1−1,2,3の合金を高周
波溶解で作製した後、これを真空中1100℃24時間
の熱処理により均質化処理を施した後一旦ジョークラッ
シャーにて35メッシュスルーまでに粗粉砕した後、こ
れをジェットミルでN2 気流中3μまで微粉砕した。
EXAMPLES Examples and reference examples of the present invention will be given below. In each example, as a starting material, electrolytic iron having a purity of 99.8%, B 20.8 wt% are contained, and the balance is a ferroboron alloy containing impurities such as Fe and C, and a rare earth element having a purity of 99.6% or more. Using. (Example 1) <Invention> After alloys having compositions 1-1, 2, and 3 shown in Table 1 were prepared by high-frequency melting, they were homogenized by heat treatment at 1100 ° C for 24 hours in a vacuum, and then once. After roughly pulverizing to 35 mesh through with a jaw crusher, this was finely pulverized with a jet mill in an N 2 gas stream to 3 μ.

【0024】次にこの微粉体を10KOe の磁場中で1
t/cm2 の成型圧で成型後、H2 ガス1kg f/cm2 フロ
ー中800℃の温度にて3時間処理した後、真空中11
20℃・3時間焼結して磁石を作製した。 <従来法>比較のため、本発明と同じ工程で得た成型体
をH2 ガス処理なしで、真空中1120℃・3時間で焼
結した後、真空中570℃・2時間の時効処理を施し磁
石を作製した(従来法1)。
Next, this fine powder was subjected to 1 in a magnetic field of 10 KOe.
After molding with a molding pressure of t / cm 2 , after processing for 3 hours at a temperature of 800 ° C. in a H 2 gas 1 kg f / cm 2 flow, it was vacuumed for 11 hours.
A magnet was produced by sintering at 20 ° C. for 3 hours. <Conventional method> For comparison, the molded body obtained in the same process as the present invention was sintered at 1120 ° C for 3 hours in vacuum without H 2 gas treatment, and then subjected to aging treatment at 570 ° C for 2 hours in vacuum. The applied magnet was produced (conventional method 1).

【0025】 表 1 組 成 No. 合金組成 1−1 Nd13Fe807 1−2 Pr14Fe797 1−3 (Nd0.9 Dy0.1 13Fe816 <本発明>及び<従来法>より得られた磁石特性を表2
に示す。
Table 1 Composition No. Alloy composition 1-1 Nd 13 Fe 80 B 7 1-2 Pr 14 Fe 79 B 7 1-3 (Nd 0.9 Dy 0.1 ) 13 Fe 81 B 6 Table 2 shows the magnet characteristics obtained by the <present invention> and <conventional method>.
Shown in.

【0026】 表 2 (BH)max 組成No. 方 法 Br(KG) iHc(KOe) bHc(KOe) (MGOe) 1−1 本発明 14.4 10.1 9.3 49.0 従来法 13.6 6.2 6.0 38.0 1−2 本発明 14.0 9.9 8.5 46.7 従来法 13.1 5.8 5.5 35.5 1−3 本発明 14.1 10.3 9.8 48.3 従来法 13.0 6.6 6.1 36.0 以上の結果より、本発明法を用いることにより従来法と
比べBr、iHc、(BH)max とも高い磁石が得られ
ることがわかる。 (実施例2)表3に示す合金を高周波溶解で作製した
後、これを真空中1100℃24時間の熱処理により均
質化処理を施した後、後工程は(実施例1)<本発明>
と同じ条件で微粉砕、磁場中成形、H2 処理、焼結を施
し磁石を作製した。
Table 2 (BH) max Composition No. Method Br (KG) iHc (KOe) bHc (KOe) (MGOe) 1-1 Present Invention 14.4 10.1 9.3 49.0 Conventional method 13.6 6.2 6.0 38.0 1-2 The present invention 14.0 9.9 8.5 46.7 Conventional method 13.1 5.8 5.5 5.5 35.5 1-3 The present invention 14.1 10.3 9.8 48.3 Conventional method 13.0 6.6 6.1 36.0 From the above results, it is understood that by using the method of the present invention, a magnet having higher Br, iHc, and (BH) max can be obtained as compared with the conventional method. (Example 2) After the alloys shown in Table 3 were prepared by high-frequency melting, the alloy was homogenized by heat treatment in vacuum at 1100 ° C for 24 hours, and the subsequent steps were (Example 1) <present invention>.
Under the same conditions as described above, pulverization, forming in a magnetic field, H 2 treatment, and sintering were performed to produce a magnet.

【0027】表3に得られた磁石特性も合わせて示す。
組成No.3−1と3−7と3−10の場合は規定に合
致せず、磁気特性が不十分である。
Table 3 also shows the obtained magnet characteristics.
Composition No. In the cases of 3-1 and 3-7 and 3-10, the regulations are not met and the magnetic characteristics are insufficient.

【0028】たとえば組成3−1の場合Nd=11.8
で規定より少なく、えられた磁石の保磁力は0で従って
最大エネルギー積も0となっている。又組成3−7の場
合はNd=20で規定より多く、又B=5.2で規定よ
り少なく、更に組成3−10の場合はB=8.8で規定
より多くなっており、そのためえられた磁石は最大エネ
ルギー積が夫々38.5、38.3(MGOe)であ
り、いずれも目標とする40MGOeの最大エネルギー
積が得られていない。しかしその他の組成の磁石は本発
明で規定する組成を有しており夫々目標とする40MG
Oeの最大エネルギー積を得、その他の磁気特性も十分
である。
For example, in the case of composition 3-1 Nd = 11.8
The coercive force of the obtained magnet is 0, and therefore the maximum energy product is also 0. In the case of composition 3-7, Nd = 20 is more than specified, and in case of composition B = 5.2, it is less than specified, and in case of composition 3-10, B = 8.8 is more than specified. The maximum energy products of the magnets obtained are 38.5 and 38.3 (MGOe), respectively, and neither of them has the target maximum energy product of 40 MGOe. However, magnets having other compositions have the compositions specified in the present invention, and the respective target magnets are 40 MG.
The maximum energy product of Oe is obtained, and other magnetic properties are sufficient.

【0029】以上の結果より本発明法を用いることによ
り、しかも次の組成範囲の時40MGOe以上の高エネ
ルギー積磁石が得られることがわかる。
From the above results, it can be seen that by using the method of the present invention, a high energy product magnet of 40 MGOe or more can be obtained in the following composition range.

【0030】12≦Nd≦19at% 5.5≦B≦8.5at% 72.5≦Fe≦82.5at% 表 3 組 成 磁石合金組成(at%) 磁 石 特 性 No. Nd Fe B Br(KG) iHc(KOe) (BH)max (MGOe) 3−1 11.8 82.4 5.9 15.5 0 0 3−2 12.0 82.1 5.9 15.1 7.1 45.6 3−3 12.5 81.7 5.8 14.8 8.8 53.0 3−4 15.0 79.3 5.7 14.0 12.0 46.1 3−5 17.0 77.5 5.6 13.6 12.7 42.2 3−6 19.0 75.6 5.5 13.2 13.0 40.0 3−7 20.0 74.7 5.2 13.1 13.3 38.5 3−8 14.7 78.0 7.3 13.7 8.9 45.5 3−9 12.3 79.4 8.5 13.8 6.5 42.2 3−10 12.2 79.0 8.8 13.3 5.8 38.3 (参考例)(実施例2)の組成No. 3−3で得られた本
発明による磁石を他の従来より知られている次に示す3
つの方法により作製し、比較してみた。
12 ≦ Nd ≦ 19 at% 5.5 ≦ B ≦ 8.5 at% 72.5 ≦ Fe ≦ 82.5 at% Table 3 Composition Magnet alloy composition (at%) Magnetism Characteristics No. Nd Fe B Br (KG) iHc (KOe) (BH) max (MGOe) 3-1 11.8 82.4 5.9 15.5 0 0 3-2 12.0 82.1 5.9 15.1 7.1 7.1 45.6 3-3 12.5 81.7 5.8 14.8 8.8 53.0 3-4 15.0 79.3 5.7 14.0 12.0 46.1 3-5 17.0 77.5 5.6 13.6 12.7 42.2 3-6 19.0 75.6 5.5 13.2 13.0 40.0 3-7 20.0 74.7 5.2 5.2 13.1 13.3 38.5 3-8 14.7 78.0 7.3 13.7 8.9 45.5 3-9 12.3 79.4 8.5 13.8 3.8 6.5 42.2 3-10 12.2 79.0 8.8 13.3 5.8 38.3 (Reference Example) The magnet according to the present invention obtained with the composition No. 3-3 of (Example 2) was compared with other conventional magnets. The following 3 known
Two methods were used for comparison.

【0031】(従来法1)組成Nd12.5Fe81.75.8
の合金を高周波溶解で作製後、これを真空中1100℃
24時間の熱処理を施した後、35メッシュスルーま
でに粗粉砕した。これを、ジェットミルでN2 気流中3
μまで微粉砕した後、この微粉体を10KOe の磁場中で
1t/cm2 の成形圧で成形後真空中1120℃ 3時間
で焼結した後、真空中570℃ 2時間の時効処理を施
し、磁石を作製した。
(Conventional method 1) Composition Nd 12.5 Fe 81.7 B 5.8
After manufacturing the alloy of the above by high frequency melting, this is vacuumed at 1100 ℃
After heat treatment for 24 hours, it was roughly crushed to 35 mesh through. Using a jet mill, apply this in an N 2 stream 3
After finely pulverizing to μ, this fine powder was compacted at a compacting pressure of 1 t / cm 2 in a magnetic field of 10 KOe, sintered at 1120 ° C. for 3 hours in vacuum, and then subjected to aging treatment at 570 ° C. for 2 hours in vacuum. A magnet was produced.

【0032】(従来法2)組成Nd12.5Fe81.75.8
の合金を高周波溶解で作製後これを真空中1100℃
24時間の熱処理を施した後、これを室温で1Kgf /cm
2 のH2 ガス圧力で2時間処理してH2 吸蔵により自然
崩壊させた後、真空中で3時間脱水素処理し、35メッ
シュスルーまでに粗粉砕した。後工程は(従来法1)と
同様に微粉砕、磁場中成形、焼結、時効を施し磁石を作
製した。
(Conventional method 2) Composition Nd 12.5 Fe 81.7 B 5.8
After making the alloy of the above by high frequency melting, this is 1100 ℃ in vacuum
After heat treatment for 24 hours, this is 1Kgf / cm at room temperature.
After being treated with H 2 gas pressure of 2 for 2 hours to spontaneously disintegrate by H 2 occlusion, dehydrogenation treatment was performed in vacuum for 3 hours, and coarsely pulverized to 35 mesh through. In the subsequent step, a magnet was produced by finely pulverizing, molding in a magnetic field, sintering and aging in the same manner as (conventional method 1).

【0033】(従来法3)化学量論組成Nd2 Fe14
の合金(主相合金)を高周波溶解で作製した後、これを
真空中1100℃ 24時間の熱処理により均質化処理
を施した後、35メッシュスルーまでに粗粉砕した。
(Conventional method 3) Stoichiometric composition Nd 2 Fe 14 B
Alloy (main phase alloy) was prepared by high-frequency melting, homogenized by heat treatment in vacuum at 1100 ° C. for 24 hours, and then coarsely pulverized to a size of 35 mesh through.

【0034】次にNd単体金属を液体急冷法を用い、2
0m/sec で回転するロール表面に石英ノズルを通して
アルゴンガス圧をかけて噴射して高速冷却し、これより
得た急冷薄帯を35メッシュスルーまでに粗粉砕した。
Next, using a liquid quenching method for Nd elemental metal, 2
Argon gas pressure was applied to the surface of the roll rotating at 0 m / sec by jetting, and high speed cooling was performed, and the rapidly cooled thin strip obtained from this was coarsely pulverized to 35 mesh through.

【0035】次にこれら主相合金粉体とNd急冷粉体と
を組成がNd12.5Fe81.75.8 となるように秤量後V
型混合機により混合する。後工程は(従来法1)と同様
に微粉砕、磁場中成形、焼結、時効を施し磁石を作製し
た。
Next, the main phase alloy powder and the Nd quenched powder were weighed so that the composition was Nd 12.5 Fe 81.7 B 5.8, and V was measured.
Mix with a mold mixer. In the subsequent step, a magnet was produced by finely pulverizing, molding in a magnetic field, sintering and aging in the same manner as (conventional method 1).

【0036】以上3つの従来法により得られた磁石特性
を、本発明法により得た磁石特性と合わせて表4に示
す。
The magnet characteristics obtained by the above three conventional methods are shown in Table 4 together with the magnet characteristics obtained by the method of the present invention.

【0037】 表 4(磁石組成Nd12.5Fe81.75.8 磁 石 特 性 Br(KG) iHc(KOe) bHc(KOe) (BH)max(MGOe) 本発明法 14.8 8.8 8.5 53.0 従来法1 13.1 3.9 3.7 26.5 従来法2 14.3 7.0 6.8 48.0 従来法3 14.5 7.7 7.4 49.7 以上から、本発明法を用いることにより、従来より知ら
れている方法を用いて得られる磁石特性が更に向上し、
高いエネルギー積が得られることがわかる。
Table 4 (Magnet composition Nd 12.5 Fe 81.7 B 5.8 ) Porcelain characteristic Br (KG) iHc (KOe) bHc (KOe) (BH) max (MGOe) Inventive Method 14.8 8.8 8.5 53.0 Conventional method 1 13.1 3.9 3.7 26.5 Conventional method 2 14.3 7.0 6.8 48.0 Conventional method 3 14.5 7.7 7.4 49.7 From the above, by using the method of the present invention, the magnet characteristics obtained by using the conventionally known method are further improved,
It can be seen that a high energy product is obtained.

【0038】[0038]

【発明の効果】以上の説明から明らかなように本発明の
方法によるときは、40MGOeを超える最大エネルギ
ー積など高い磁気特性を有するR‐Fe‐B系永久磁石
を容易に得ることができるが、特に、本発明の場合、微
粉砕した後水素処理するのでH2 処理を施す対象は10
μ以下の大きさの微粉体となるため、H2 処理は低圧力
で行なうことができ、装置上、工程上、簡便なものでも
可能となる。
As is apparent from the above description, according to the method of the present invention, an R-Fe-B system permanent magnet having high magnetic characteristics such as a maximum energy product exceeding 40 MGOe can be easily obtained. Particularly, in the case of the present invention, since hydrogen treatment is performed after finely pulverizing, the target of H 2 treatment is
Since it becomes a fine powder having a size of μ or less, the H 2 treatment can be performed at a low pressure, and it becomes possible to use a simple one in terms of equipment and steps.

【0039】また、急冷法というコストのかかる手段を
使用しないため、高特性な磁石材料を比較的容易にしか
も安価な方法で作製できる。
Further, since the rapid cooling method, which is a costly means, is not used, it is possible to manufacture a high-performance magnet material relatively easily and at a low cost.

【0040】又、本発明法による磁石は酸化しやすいR
‐リッチ相が極力少なくても高保磁力が得られ、しかも
2 処理による還元作用のため焼結体の酸素含有量が極
めて少なくなり、銹の発生や経時劣化などの不安要因を
少なくすることができる。
Further, the magnet according to the method of the present invention is easily oxidized to R
-High coercive force can be obtained even if the rich phase is as small as possible, and the oxygen content of the sintered body is extremely low due to the reducing action by H 2 treatment, and anxiety factors such as rust generation and deterioration over time can be reduced. it can.

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C22C 33/02 K 38/00 303 D H01F 1/06 (72)発明者 幸 村 治 洋 東京都港区新橋五丁目36番11号 富士電気 化学株式会社内 (72)発明者 林 智 幸 東京都港区新橋五丁目36番11号 富士電気 化学株式会社内 (72)発明者 中 川 吉 輝 東京都港区新橋五丁目36番11号 富士電気 化学株式会社内 (72)発明者 松 井 一 雄 東京都港区新橋五丁目36番11号 富士電気 化学株式会社内Continuation of front page (51) Int.Cl. 5 Identification number Office reference number FI technical display location C22C 33/02 K 38/00 303 D H01F 1/06 (72) Inventor Yuko Murahiro Shimbashi, Minato-ku, Tokyo 5-36-11 Fuji Electric Chemical Co., Ltd. (72) Inventor Tomoyuki Hayashi Shimbashi 5-36-11 Fuji Electric Chemical Co., Ltd. (72) Inventor Yoshiteru Nakagawa Minato-ku, Tokyo Shimbashi 5-36-11 Fuji Electric Chemical Co., Ltd. (72) Inventor Kazuo Matsui 5-36-11 Shimbashi, Minato-ku, Tokyo Fuji Electric Chemical Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】R(RはYを含む希土類元素の少なくとも
1種)12〜19at%、B5.5〜8.5at%、Fe7
2.5〜82.5at%を主成分とした溶解合金を900
℃以上1150℃以下の熱処理により均質化後、この合
金を微粉砕して得た粉体を磁場中成形した後、これを水
素中で600〜1000℃の温度で処理した後、真空又
は不活性雰囲気中1000℃〜1150℃の温度範囲で
焼結することを特徴とする高特性磁石材料の製造方法。
1. R (R is at least one of rare earth elements including Y) 12 to 19 at%, B 5.5 to 8.5 at%, Fe7
900 for molten alloys containing 2.5 to 82.5 at% as a main component
After homogenizing by heat treatment at ℃ or more and 1150 ℃ or less, finely pulverizing this alloy, molding powder in a magnetic field, treating this in hydrogen at a temperature of 600 to 1000 ℃, then vacuum or inert A method for producing a high-performance magnetic material, which comprises sintering in a temperature range of 1000 ° C to 1150 ° C in an atmosphere.
JP4256969A 1992-09-25 1992-09-25 Manufacture of high-quality magnet material Pending JPH06112027A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4256969A JPH06112027A (en) 1992-09-25 1992-09-25 Manufacture of high-quality magnet material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4256969A JPH06112027A (en) 1992-09-25 1992-09-25 Manufacture of high-quality magnet material

Publications (1)

Publication Number Publication Date
JPH06112027A true JPH06112027A (en) 1994-04-22

Family

ID=17299891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4256969A Pending JPH06112027A (en) 1992-09-25 1992-09-25 Manufacture of high-quality magnet material

Country Status (1)

Country Link
JP (1) JPH06112027A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007135981A1 (en) * 2006-05-18 2007-11-29 Hitachi Metals, Ltd. R-Fe-B POROUS MAGNET AND METHOD FOR PRODUCING THE SAME
WO2008065903A1 (en) 2006-11-30 2008-06-05 Hitachi Metals, Ltd. R-Fe-B MICROCRYSTALLINE HIGH-DENSITY MAGNET AND PROCESS FOR PRODUCTION THEREOF
JP2009123968A (en) * 2007-11-15 2009-06-04 Hitachi Metals Ltd POROUS MATERIAL FOR R-Fe-B BASED PERMANENT MAGNET, AND MANUFACTURING METHOD THEREOF
CN103377791A (en) * 2012-04-11 2013-10-30 信越化学工业株式会社 Rare earth sintered magnet and its making method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007135981A1 (en) * 2006-05-18 2007-11-29 Hitachi Metals, Ltd. R-Fe-B POROUS MAGNET AND METHOD FOR PRODUCING THE SAME
US8268093B2 (en) 2006-05-18 2012-09-18 Hitachi Metals, Ltd. R-Fe-B porous magnet and method for producing the same
EP1970916A1 (en) * 2006-05-18 2008-09-17 Hitachi Metals, Ltd. R-Fe-B POROUS MAGNET AND METHOD FOR PRODUCING THE SAME
JP4873008B2 (en) * 2006-05-18 2012-02-08 日立金属株式会社 R-Fe-B porous magnet and method for producing the same
EP1970916A4 (en) * 2006-05-18 2011-11-09 Hitachi Metals Ltd R-Fe-B POROUS MAGNET AND METHOD FOR PRODUCING THE SAME
EP2043114A4 (en) * 2006-11-30 2011-11-09 Hitachi Metals Ltd R-Fe-B MICROCRYSTALLINE HIGH-DENSITY MAGNET AND PROCESS FOR PRODUCTION THEREOF
JPWO2008065903A1 (en) * 2006-11-30 2010-03-04 日立金属株式会社 R-Fe-B fine crystal high-density magnet and method for producing the same
EP2043114A1 (en) * 2006-11-30 2009-04-01 Hitachi Metals, Ltd. R-Fe-B MICROCRYSTALLINE HIGH-DENSITY MAGNET AND PROCESS FOR PRODUCTION THEREOF
US8128758B2 (en) 2006-11-30 2012-03-06 Hitachi Metals, Ltd. R-Fe-B microcrystalline high-density magnet and process for production thereof
JP4924615B2 (en) * 2006-11-30 2012-04-25 日立金属株式会社 R-Fe-B fine crystal high-density magnet and method for producing the same
WO2008065903A1 (en) 2006-11-30 2008-06-05 Hitachi Metals, Ltd. R-Fe-B MICROCRYSTALLINE HIGH-DENSITY MAGNET AND PROCESS FOR PRODUCTION THEREOF
JP2009123968A (en) * 2007-11-15 2009-06-04 Hitachi Metals Ltd POROUS MATERIAL FOR R-Fe-B BASED PERMANENT MAGNET, AND MANUFACTURING METHOD THEREOF
CN103377791A (en) * 2012-04-11 2013-10-30 信越化学工业株式会社 Rare earth sintered magnet and its making method

Similar Documents

Publication Publication Date Title
KR101855530B1 (en) Rare earth permanent magnet and their preparation
US6506265B2 (en) R-Fe-B base permanent magnet materials
JP2010121167A (en) Permanent magnet, permanent magnet motor with the use of the same, and generator
JP2006210893A (en) Nd-fe-b based rare earth permanent magnet material
JPH0340082B2 (en)
JP3715573B2 (en) Magnet material and manufacturing method thereof
JP2000234151A (en) Rare earth-iron-boron system rare earth permanent magnet material
JP3777199B2 (en) Method for producing high performance R-Fe-B permanent magnet material
JP2904571B2 (en) Manufacturing method of rare earth anisotropic sintered permanent magnet
JPS63317643A (en) Production of rare earth-iron permanent magnetic material
JP3148581B2 (en) Method for producing R-Fe-BC-based permanent magnet material having excellent corrosion resistance
JPH06112027A (en) Manufacture of high-quality magnet material
JPH0831626A (en) Rare earth magnetic powder, permanent magnet thereof, and manufacture of them
JP3645312B2 (en) Magnetic materials and manufacturing methods
JP3053187B2 (en) Manufacturing method of permanent magnet
JP2745042B2 (en) Rare earth-iron-boron alloy thin plate, alloy powder and method for producing permanent magnet
JPH0931608A (en) High performance rare earth-iron-boron-carbon magnet material excellent in corrosion resistance
JP3178848B2 (en) Manufacturing method of permanent magnet
JPH0524975B2 (en)
JPH07211570A (en) Manufacture of rare-earth permanent magnet
JP4687493B2 (en) Rare earth sintered magnet and manufacturing method thereof
JP3086334B2 (en) Anisotropic rare earth alloy powder for permanent magnet
JPH0582319A (en) Permanent magnet
JP3148573B2 (en) Method for producing R-Fe-BC-based permanent magnet material having excellent corrosion resistance
JPH06283318A (en) Manufacture of rare-earth permanent magnet