JP3178848B2 - Manufacturing method of permanent magnet - Google Patents

Manufacturing method of permanent magnet

Info

Publication number
JP3178848B2
JP3178848B2 JP00699491A JP699491A JP3178848B2 JP 3178848 B2 JP3178848 B2 JP 3178848B2 JP 00699491 A JP00699491 A JP 00699491A JP 699491 A JP699491 A JP 699491A JP 3178848 B2 JP3178848 B2 JP 3178848B2
Authority
JP
Japan
Prior art keywords
permanent magnet
sintering
magnet
examples
coercive force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00699491A
Other languages
Japanese (ja)
Other versions
JPH04240703A (en
Inventor
昭彦 津田井
政司 佐橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP00699491A priority Critical patent/JP3178848B2/en
Publication of JPH04240703A publication Critical patent/JPH04240703A/en
Application granted granted Critical
Publication of JP3178848B2 publication Critical patent/JP3178848B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0557Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together sintered

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】〔発明の目的〕[Object of the invention]

【0002】[0002]

【産業上の利用分野】本発明は永久磁石の製造方法に係
り、特に従来のSm−Co系、Nd−Fe−B系の磁石
と比較して磁気特性を低下させることなく、高保磁力を
備えた焼結体から成る永久磁石の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a permanent magnet, and more particularly to a method for producing a permanent magnet having a high coercive force without deteriorating magnetic properties as compared with conventional Sm-Co and Nd-Fe-B magnets. To a method for manufacturing a permanent magnet made of a sintered body.

【0003】[0003]

【従来の技術】従来から公知で量産化されている高性能
希土類永久磁石としてSm−Co系磁石や Nd−Fe
−B系磁石などがある。これらの磁石にはSm,Nd等
の希土類元素が特性発現成分として含有されている。す
なわち磁石体に含まれる希土類元素は結晶場中における
4f電子の挙動に由来する非常に大きな磁気異方性をも
たらし、これにより保磁力の増大化が図られ、高性能な
磁石が実現されている。このような高特性磁石は、主と
してスピーカー、モーター、計測器等の電気機器に使用
されている。
2. Description of the Related Art Conventionally known and mass-produced high-performance rare earth permanent magnets such as Sm-Co based magnets and Nd-Fe
-B-based magnets and the like. These magnets contain a rare earth element such as Sm, Nd, etc., as a property developing component. That is, the rare-earth element contained in the magnet body causes a very large magnetic anisotropy derived from the behavior of the 4f electrons in the crystal field, thereby increasing the coercive force and realizing a high-performance magnet. . Such high-performance magnets are mainly used for electrical devices such as speakers, motors, and measuring instruments.

【0004】しかしながら、希土類元素は一般に非常に
高価であり、上記のような高性能磁石の低コスト化を図
るためには、希土類元素の含有量を低減させることが必
要である。
[0004] However, rare earth elements are generally very expensive, and it is necessary to reduce the content of rare earth elements in order to reduce the cost of the above-mentioned high-performance magnet.

【0005】このような希土類含有量を低減した高特性
の磁石材料として、最近液体急冷法を使用して形成した
ThMn12型の結晶構造を有する1−12系希土類鉄系
金属間化合物が注目されている。この金属間化合物は、
従来のSm2 Co17やNd2 Fe141 等の磁石体を構
成する金属間化合物と比較して化学量論的希土類量が小
さいため原料コストが安く、またFeの比率が相対的に
高いため、大きな飽和磁束密度Bsと高い最大エネルギ
ー積(BH)max を有している。
As a high-performance magnet material having a reduced rare earth content, a 1-12 based rare earth iron-based intermetallic compound having a ThMn 12 type crystal structure recently formed by using a liquid quenching method has attracted attention. ing. This intermetallic compound
As compared with the conventional intermetallic compounds such as Sm 2 Co 17 and Nd 2 Fe 14 B 1, which have a small stoichiometric amount of rare earth elements, the raw material cost is low and the ratio of Fe is relatively high. Therefore, it has a large saturation magnetic flux density Bs and a high maximum energy product (BH) max .

【0006】[0006]

【発明が解決しようとする課題】このように液体急冷法
によって形成された1−12系金属間化合物は大きな保
磁力が得られることが報告されている一方、より高いエ
ネルギー積が期待できる焼結体では保磁力が急速に低下
してしまうという問題点が米国応用物理学会誌(J.A
ppl.Phys.67.4954(1990))等に
報告されている。
It has been reported that the 1-12 type intermetallic compound formed by the liquid quenching method can obtain a large coercive force, while sintering can expect a higher energy product. The problem of the coercive force dropping rapidly in the body is the problem of the American Society of Applied Physics (J.A.).
ppl. Phys. 67.9544 (1990)).

【0007】本発明は上記の問題点を解決するためにな
されたものであり、磁気異方性を低下させることなく、
特に高い保磁力を備えた焼結体から成る永久磁石の製造
方法を提供することを目的とする。 〔発明の構成〕
The present invention has been made to solve the above problems, and has been made without reducing magnetic anisotropy.
In particular, it is an object of the present invention to provide a method for manufacturing a permanent magnet made of a sintered body having a high coercive force. [Configuration of the invention]

【0008】[0008]

【課題を解決するための手段と作用】本発明者らは、高
価な希土類元素の使用量を極力抑制し、従来のSm−C
o系磁石等が有する磁気異方性を損うことなく、高保磁
力を有する永久磁石を得るべく、希土類元素、遷移金属
元素等の組成や焼結時間を変えて研究試験を繰り返し、
種々の磁石体を形成して、その特性を調査した結果、あ
る組成範囲に調整した合金粉末を短時間で焼結一体化さ
せたときに、極めて保磁力が高い焼結体が得られ、優れ
た磁気特性を有する永久磁石を形成することが可能とな
るという知見を得て本願発明を完成した。
Means and Action for Solving the Problems The present inventors have minimized the use of expensive rare earth elements and have succeeded in reducing the conventional Sm-C
To obtain a permanent magnet with a high coercive force without losing the magnetic anisotropy of the o-based magnet, etc., repeated research and testing by changing the composition and sintering time of rare earth elements, transition metal elements, etc.
As a result of forming various magnet bodies and investigating their characteristics, when the alloy powder adjusted to a certain composition range was sintered and integrated in a short time, a sintered body with extremely high coercive force was obtained and excellent. The present invention has been completed based on the finding that a permanent magnet having improved magnetic properties can be formed.

【0009】すなわち本発明に係る永久磁石の製造方法
は組成式RFe100−x−y(式中RはYを含
む希土類元素から選択された少なくとも1種の元素、M
はSi,Cr,V,Mo,W,Ti,Zr,Hfおよび
Alから選択された少なくとも1種の元素であり、原子
%でxが4〜20%、yが20%以下である)で示され
る合金粉末の圧粉体を、その合金粉末の融点未満の温度
で、0.8時間以下の時間で焼結することにより、最大
エネルギー積(BH)maxが17.2MGOe以上の
永久磁石を形成することを特徴とする。
[0009] That at least one element manufacturing method of a permanent magnet according to the present invention the composition formula R x M y Fe 100-x -y ( wherein R is selected from rare earth elements including Y, M
Is at least one element selected from Si, Cr, V, Mo, W, Ti, Zr, Hf and Al, where x is 4 to 20% and y is 20% or less in atomic%. By sintering the green compact of the alloy powder to be obtained at a temperature lower than the melting point of the alloy powder for 0.8 hours or less, a permanent magnet having a maximum energy product (BH) max of 17.2 MGOe or more is formed. It is characterized by doing.

【0010】また、上記合金粉末の平均粒径を100μ
m以下に設定するとよい。
The average particle size of the alloy powder is 100 μm.
m or less.

【0011】本発明に係る永久磁石の製造方法におい
て、合金粉末の組成を上記のように限定した理由は下記
の通りである。
The reasons for limiting the composition of the alloy powder as described above in the method of manufacturing a permanent magnet according to the present invention are as follows.

【0012】前記Rとしては、La,Ce,Pr,N
d,Sm,Eu,Gd,Tb,Dy,Ho,Er,T
m,Yb,Luの希土類元素およびYが挙げられ、これ
らの1種または2種以上の混合物が使用される。Rはい
ずれも磁石体に磁気異方性をもたらし、高い保磁力を付
与するために4〜20原子%の範囲で添加される。
The R is La, Ce, Pr, N
d, Sm, Eu, Gd, Tb, Dy, Ho, Er, T
Rare earth elements of m, Yb, and Lu and Y are mentioned, and one or a mixture of two or more of them is used. R brings about magnetic anisotropy to the magnet body and is added in the range of 4 to 20 atomic% in order to give a high coercive force.

【0013】Rの添加量が4原子%未満の場合にはα−
Fe等が大量に析出し保磁力(iHc)が大幅に低下し
てしまう。一方、Rの添加量が20原子%を超える場合
には、飽和磁束密度(Bs)が大幅に低下してしまうと
ともに、高価な希土類元素を多量に使用することにな
り、製造コストの上昇を招来し、不利になってしまう。
When the added amount of R is less than 4 atomic%, α-
A large amount of Fe or the like precipitates and the coercive force (iHc) is greatly reduced. On the other hand, when the addition amount of R exceeds 20 atomic%, the saturation magnetic flux density (Bs) is greatly reduced, and a large amount of expensive rare earth element is used, which leads to an increase in manufacturing cost. And it becomes disadvantageous.

【0014】M元素としてはSi,Cr,V,Mo,
W,Ti,Zr,HfおよびAlから選択される1種ま
たは2種以上の混合物が使用される。本来希土類元素R
およびFeのみでは安定した結晶構造は形成し得ない
が、上記M元素を20原子%以下の範囲で添加すること
により、安定したThMn12型の結晶構造を有する希土
類鉄系の正方晶化合物を形成することができ、磁石の磁
気特性および熱的安定性を高めることができる。
As the M element, Si, Cr, V, Mo,
One or a mixture of two or more selected from W, Ti, Zr, Hf and Al is used. Rare earth element R
And Fe alone cannot form a stable crystal structure, but by adding the above-mentioned M element within a range of 20 atomic% or less, a rare-earth iron-based tetragonal compound having a stable ThMn 12 type crystal structure can be formed. And enhance the magnetic properties and thermal stability of the magnet.

【0015】M元素の添加量が20原子%を超えると、
飽和磁束密度(Bs)が大幅に低下してしまうため、M
元素の添加量は20原子%以下に設定される。
When the amount of the element M exceeds 20 atomic%,
Since the saturation magnetic flux density (Bs) is greatly reduced, M
The addition amount of the element is set to 20 atom% or less.

【0016】またFeの一部をFe以外のCo,Ni等
の遷移金属で置換することにより、磁石のキュリー温度
を大幅に上昇させ、磁石体の熱安定性が改善され、また
保磁力を増大させることができる。しかしながら、例え
ば50原子%以上の鉄をCoで置換すると、結晶磁気異
方性の低下、ひいては保磁力の低下が顕著となるため、
その置換量は原子分率でFeの50%以下とすることが
望ましい。また高価なCoの使用量を可及的に抑制する
ためにも、置換量は上記範囲内とすることが好ましい。
Further, by substituting a part of Fe with a transition metal other than Fe, such as Co or Ni, the Curie temperature of the magnet is greatly increased, the thermal stability of the magnet body is improved, and the coercive force is increased. Can be done. However, for example, when 50% by atom or more of iron is replaced with Co, a decrease in crystal magnetic anisotropy and a decrease in coercive force become remarkable.
The substitution amount is desirably 50% or less of Fe in atomic fraction. In order to minimize the amount of expensive Co used, the amount of substitution is preferably within the above range.

【0017】次に本発明に係る永久磁石の製造方法につ
いて説明する。
Next, a method for manufacturing a permanent magnet according to the present invention will be described.

【0018】まず、所定量のFe,R,M元素を含有す
る合金粉末を調製する。この場合、原料粉末をアーク溶
解または高周波溶解により溶解後、鋳造して所定組成を
有する合金を調製し、得られた合金を粉砕する。
First, an alloy powder containing predetermined amounts of Fe, R, and M elements is prepared. In this case, the raw material powder is melted by arc melting or high frequency melting and then cast to prepare an alloy having a predetermined composition, and the obtained alloy is pulverized.

【0019】また合金粉末の他の調製方法として、上記
R,M,Feの各元素粉末の混合体に機械的エネルギー
を付加して、合金化させるメカニカルアロイング法また
はメカニカルグラインディング法を採用することもでき
る。これらの方法はR,Fe,M成分を含有する粉末の
混合体を固相反応させて合金化する方法であり、固相反
応を起こす具体的な方法としては、例えば遊星ボールミ
ル、回転式ボールミル、アトライタ、振動ボールミル、
スクリュー式ボールミル等に原料混合体を投入し、粉末
粒子に機械的な衝撃を与える方法が採用される。
As another method for preparing the alloy powder, a mechanical alloying method or a mechanical grinding method for applying alloying by applying mechanical energy to the above-mentioned mixture of the respective element powders of R, M and Fe is employed. You can also. These methods are methods in which a mixture of powders containing R, Fe, and M components is subjected to solid-phase reaction to form an alloy, and specific methods for causing a solid-phase reaction include, for example, a planetary ball mill, a rotary ball mill, Attritor, vibrating ball mill,
A method in which the raw material mixture is charged into a screw ball mill or the like and a mechanical impact is applied to the powder particles is employed.

【0020】このメカニカルアロイング法等によれば原
料粉末粒子が薄片状に粉砕され、その薄片が相互に面接
触した部位で異種原子が相互に拡散することにより、原
料混合体が均質に一体化される。
According to the mechanical alloying method or the like, the raw material powder particles are crushed into flakes, and heterogeneous atoms are mutually diffused at the portions where the flakes are in surface contact with each other, so that the raw material mixture is homogeneously integrated. Is done.

【0021】また上記いずれの方法によって合金粉末を
調製する場合においても、合金粉末の平均粒径は、より
緻密で磁気特性が優れた焼結体を形成するために、10
0μm以下に設定するとよい。合金粉末の平均粒径が1
00μmを超えると、緻密な焼結体を得ることが困難に
なるとともに、保磁力等の磁気特性が大幅に低下してし
まうからである。
In the case of preparing the alloy powder by any of the above methods, the average particle size of the alloy powder is set to 10% in order to form a denser sintered body having excellent magnetic properties.
It is good to set it to 0 μm or less. The average particle size of the alloy powder is 1
If the thickness exceeds 00 μm, it becomes difficult to obtain a dense sintered body, and magnetic properties such as coercive force are significantly reduced.

【0022】得られた合金粉末は、次に成形機の金型に
充填され、加圧されて所定形状の成形体(圧粉体)とな
る。ここで加圧時に成形体に磁場を印加し結晶方位を揃
えることにより、高磁束密度を有する磁石体を得ること
ができる。
The obtained alloy powder is then filled in a mold of a molding machine and pressed to form a compact (compact) having a predetermined shape. Here, a magnet body having a high magnetic flux density can be obtained by applying a magnetic field to the compact at the time of pressurization and aligning the crystal orientation.

【0023】こうして得られた成形体は、次に真空中ま
たは不活性ガス雰囲気中で焼結する。焼結条件としての
温度は、合金組成によって変化するが、通常は合金粉末
の融点直下の温度、または融点より100℃程度低い温
度に設定され、400〜1200℃の範囲が好ましい。
なお加熱焼結時に同時に成形体を加圧するホットプレス
処理を行なうことにより焼結性が向上し、より緻密な焼
結体とすることができる。
The compact thus obtained is then sintered in a vacuum or in an inert gas atmosphere. The temperature as the sintering condition varies depending on the alloy composition, but is usually set to a temperature immediately below the melting point of the alloy powder or a temperature about 100 ° C. lower than the melting point, and preferably in a range of 400 to 1200 ° C.
Note that sinterability is improved by performing a hot press treatment of pressing the molded body at the same time as the heat sintering, so that a denser sintered body can be obtained.

【0024】また上記のような通常の焼結法やホットプ
レス法の他に、いわゆる通電焼結によって短時間に成形
体を焼結する方法も採用できる。すなわち金型に充填し
た合金粉末を成形機のパンチによって加圧成形しつつ、
真空中または不活性ガス雰囲気中において成形体に直接
通電し、ジュール加熱によって焼結を行なってもよい。
In addition to the ordinary sintering method and hot pressing method as described above, a method of sintering a compact in a short time by so-called electric current sintering can be adopted. That is, while pressing the alloy powder filled in the mold with the punch of the molding machine,
Sintering may be performed by applying a current directly to the compact in a vacuum or an inert gas atmosphere and heating it with Joule.

【0025】いずれの焼結方法を採用する場合において
も、焼結時間は0.8時間以内に設定することが必要で
ある。0.8時間を超える焼結操作を行なうと、焼結体
の保磁力の低下を招き、磁気特性が低下してしまう。
Regardless of which sintering method is employed, the sintering time must be set within 0.8 hours. If the sintering operation is performed for more than 0.8 hours, the coercive force of the sintered body will be reduced, and the magnetic properties will be reduced.

【0026】また焼結体の磁気特性をより高めるため、
焼結後に必要に応じて時効処理を行なう場合もある。こ
の場合の時効処理温度は合金組成によって変化するが、
通常500〜1000℃程度の温度範囲が好ましい。
In order to further enhance the magnetic properties of the sintered body,
After sintering, aging treatment may be performed as necessary. The aging temperature in this case varies depending on the alloy composition,
Usually, a temperature range of about 500 to 1000 ° C. is preferable.

【0027】[0027]

【実施例】次に本発明を以下の実施例に基づいてより具
体的に説明する。
Next, the present invention will be described more specifically based on the following examples.

【0028】実施例1〜3、比較例1〜3 実施例1〜3として高純度のSm,Nd,Er,Zr,
Ti,V,Si,Mo,Fe粉末を表1に示す組成に調合
して高周波溶解炉で溶解後、鋳型に注入して各インゴッ
トを調製した。次に各インゴットをジェットミルによっ
て平均粒径3μmの大きさに微粉砕した。次に得られた
各合金粉末を成形機の金型に充填し、20KOeの磁場
において配向させつつ、2ton/cm2 の成形圧力で圧
縮成形して圧粉体を形成し、さらに各圧粉体をArガス
雰囲気中でSm蒸気を供給しつつ、温度1120℃で3
0分間焼結を行なった後に室温まで急冷し、さらに得ら
れた各焼結体を真空中で温度740℃で30分間熱処理
して磁石体を調製した。そして各磁石体の残留磁束密度
(Br)、保磁力(iHc)、および最大エネルギー積
(BH)max を測定して、表1に示す結果を得た。
Examples 1-3, Comparative Examples 1-3 As Examples 1-3, high purity Sm, Nd, Er, Zr,
Ti, V, Si, Mo, and Fe powders were prepared to have the compositions shown in Table 1, melted in a high-frequency melting furnace, and then poured into a mold to prepare each ingot. Next, each ingot was finely pulverized by a jet mill to a size having an average particle diameter of 3 μm. Next, each of the obtained alloy powders is filled in a mold of a molding machine, and while being oriented in a magnetic field of 20 KOe, compression molding is performed at a molding pressure of 2 ton / cm 2 to form a green compact. At a temperature of 1120 ° C. while supplying Sm vapor in an Ar gas atmosphere.
After sintering for 0 minutes, the mixture was rapidly cooled to room temperature, and each obtained sintered body was heat-treated at 740 ° C. for 30 minutes in a vacuum to prepare a magnet body. The residual magnetic flux density (Br), coercive force (iHc), and maximum energy product (BH) max of each magnet were measured, and the results shown in Table 1 were obtained.

【0029】一方、比較例1〜3として、実施例1〜3
で調製したインゴットを使用し焼結時間を90分間とし
た以外は実施例1〜3と同様の条件で磁石体を調製し、
その磁気特性を測定した。すなわち、実施例1〜3で使
用した各インゴットを平均粒径3μmまで微粉砕し、得
られた各粉末を20KOeの磁場で配向させて圧粉体と
した後に、1120℃でArガス雰囲気下で焼結処理を
行なった。次に得られた各焼結体を740℃で30分間
熱処理を施した後に、磁気特性を測定したところ下記表
1に示す結果を得た。
On the other hand, as Comparative Examples 1 to 3, Examples 1 to 3
A magnet body was prepared under the same conditions as in Examples 1 to 3, except that the sintering time was 90 minutes using the ingot prepared in
The magnetic properties were measured. That is, each ingot used in Examples 1 to 3 was finely pulverized to an average particle size of 3 μm, and each obtained powder was oriented in a magnetic field of 20 KOe to form a green compact. A sintering process was performed. Next, after each of the obtained sintered bodies was subjected to a heat treatment at 740 ° C. for 30 minutes, the magnetic properties were measured. The results shown in Table 1 below were obtained.

【0030】[0030]

【表1】 [Table 1]

【0031】表1に示す結果から明らかなように実施例
1〜3によれば、焼結時間が短く、磁石体を構成する金
属間化合物の安定性が阻害されることが少ないため、比
較例1〜3と比較して残留磁束密度や保磁力等の磁気特
性が優れ、特に最大エネルギー積(BH)max が大幅に
改善されることが判明した。
As is clear from the results shown in Table 1, according to Examples 1 to 3, the sintering time was short, and the stability of the intermetallic compound constituting the magnet body was hardly hindered. It was found that the magnetic properties such as the residual magnetic flux density and the coercive force were superior to those of Nos. 1 to 3, and the maximum energy product (BH) max was greatly improved.

【0032】なお実施例1〜3で調製した磁石素体の結
晶構造をX線回析法により測定したところ、いずれもT
hMn12型の安定した結晶構造が存在していることが確
認された。
The crystal structures of the magnet bodies prepared in Examples 1 to 3 were measured by an X-ray diffraction method.
It was confirmed that a stable crystal structure of the hMn 12 type was present.

【0033】実施例4〜6、比較例4〜6 実施例4〜6として、高純度のSm,Ti,Al,W,
Cr,Si,Fe粉末を表2に示す組成に調合して高周
波溶解炉で溶解後、鋳型に注入して各合金インゴットを
調製した。次に各合金インゴットしをジェットミルによ
ってそれぞれ平均粒径1,50,80μmにまで微粉砕
した。次に得られた合金粉末を絶縁材料で形成した成形
型内に充填し、成形型に20KOeの外部磁場を印加し
つつ、導電材で形成したパンチによって圧縮成形して圧
粉体を形成すると同時に、上記パンチを経由して圧粉体
に通電し、発生するジュール熱によって焼結した。ここ
で焼結操作はAr雰囲気中で行ない、通電時間は2分間
とした。
Examples 4-6, Comparative Examples 4-6 As Examples 4-6, high purity Sm, Ti, Al, W,
Cr, Si, and Fe powders were prepared to have the compositions shown in Table 2, melted in a high-frequency melting furnace, and then poured into molds to prepare alloy ingots. Next, each alloy ingot was finely pulverized by a jet mill to an average particle size of 1, 50 and 80 μm, respectively. Next, the obtained alloy powder is filled into a mold formed of an insulating material, and while applying an external magnetic field of 20 KOe to the mold, compression molding is performed by a punch formed of a conductive material to form a compact. Electric power was supplied to the compact through the punch, and the compact was sintered by the generated Joule heat. Here, the sintering operation was performed in an Ar atmosphere, and the energization time was 2 minutes.

【0034】そして、得られた各焼結体の残留磁束密度
(Br)、保磁力(iHc)および最大エネルギー積
(BH)max を測定して、表2に示す結果を得た。
The residual magnetic flux density (Br), coercive force (iHc) and maximum energy product (BH) max of each of the obtained sintered bodies were measured, and the results shown in Table 2 were obtained.

【0035】一方、比較例4〜6として、実施例4〜6
で調製した各インゴットを使用し、粉砕後の合金粉末の
平均粒径をそれぞれ150,200,300μmとした
以外は実施例4〜6と同一条件によって焼結体を調製
し、同様に磁気特性を測定し、下記表2に示す結果を得
た。
On the other hand, as Comparative Examples 4 to 6, Examples 4 to 6
A sintered body was prepared under the same conditions as in Examples 4 to 6, except that the average particle size of the pulverized alloy powder was set to 150, 200, and 300 μm, respectively, using the ingots prepared in the above, and the magnetic properties were similarly measured. It measured and obtained the result shown in the following Table 2.

【0036】[0036]

【表2】 [Table 2]

【0037】表2に示す結果から明らかなように、実施
例4〜6においては合金粉末の平均粒径を100μm以
下に設定しているため、緻密で結晶構造が安定した焼結
体が得られる。そのため、いずれも磁気特性が高い永久
磁石を形成することができた。
As is clear from the results shown in Table 2, in Examples 4 to 6, since the average particle size of the alloy powder is set to 100 μm or less, a dense sintered body having a stable crystal structure can be obtained. . Therefore, a permanent magnet having high magnetic properties could be formed.

【0038】一方、比較例4〜6においては、焼結体の
緻密化が充分に進行しないため、保磁力は1〜3KOe
程度であった。
On the other hand, in Comparative Examples 4 to 6, since the densification of the sintered body did not proceed sufficiently, the coercive force was 1 to 3 KOe.
It was about.

【0039】実施例7〜9 実施例7〜9として、平均粒径が0.5mmのSm,P
r,Nd粉末、平均粒径が5〜40μmの範囲にあるF
e,Co,Ti粉末をそれぞれ表3に示す組成に調合し
て原料混合体を調製し、得られた各原料混合体をボール
ミルに投入し、Arガス雰囲気中で60時間粉砕混合処
理して各原料粉末をメカニカルアロイによって合金化し
た。
[0039] As Examples 7-9 Examples 7-9, the average particle diameter of 0.5mm of Sm, P
r, Nd powder, F having an average particle size in the range of 5 to 40 μm
e, Co, and Ti powders were each prepared to have the composition shown in Table 3 to prepare a raw material mixture, and each obtained raw material mixture was put into a ball mill, and pulverized and mixed in an Ar gas atmosphere for 60 hours. The raw material powder was alloyed with a mechanical alloy.

【0040】次に得られた各合金粉末を、絶縁材料で形
成した成型金型に充填し、Arガス雰囲気中で導電性を
有するパンチで合金粉末を加圧して圧縮成形すると同時
に、このパンチを通じて成形体を通電加熱して焼結し実
施例7〜9の磁石体を調製した。なお、通電時間は2分
間に設定した。次に得られた各磁石体の磁気特性を実施
例1〜6と同様に測定して表3に示す結果を得た。
Next, each of the obtained alloy powders is filled in a molding die formed of an insulating material, and the alloy powder is pressed and compressed by a conductive punch in an Ar gas atmosphere. The molded body was heated by electric current and sintered to prepare magnet bodies of Examples 7 to 9. Note that the energization time was set to 2 minutes. Next, the magnetic properties of each of the obtained magnet bodies were measured in the same manner as in Examples 1 to 6, and the results shown in Table 3 were obtained.

【0041】[0041]

【表3】 [Table 3]

【0042】表3に示す結果から明らかなように、実施
例7〜9においては、いずれも通電焼結によって極めて
短時間に焼結処理を行なっており、安定した化合物相が
形成されているため、いずれも磁気特性が優れ、特に保
磁力(iHc)が高い永久磁石が得られることが判明し
た。
As is clear from the results shown in Table 3, in Examples 7 to 9, sintering was performed in a very short time by electric current sintering, and a stable compound phase was formed. It was found that a permanent magnet having excellent magnetic properties and particularly high coercive force (iHc) was obtained.

【0043】[0043]

【発明の効果】以上説明の通り、本発明方法によれば、
焼結時間を短く設定しているため、安定したThMn12
型結晶構造を有する希土類鉄系正方晶化合物が形成さ
れ、特に保磁力等の磁気特性が優れた永久磁石を提供す
ることができる。
As described above, according to the method of the present invention,
Since the sintering time is set short, stable ThMn 12
A rare-earth iron-based tetragonal compound having a type crystal structure is formed, and a permanent magnet excellent in magnetic properties such as coercive force can be provided.

フロントページの続き (56)参考文献 特開 平1−175205(JP,A) 特開 昭59−215460(JP,A) 特開 昭64−67902(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01F 1/04 H01F 1/08 C22C 38/00 303 Continuation of front page (56) References JP-A-1-175205 (JP, A) JP-A-59-215460 (JP, A) JP-A-64-67902 (JP, A) (58) Fields investigated (Int .Cl. 7 , DB name) H01F 1/04 H01F 1/08 C22C 38/00 303

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 組成式RFe100−x−y(式
中RはYを含む希土類元素から選択された少なくとも1
種の元素、MはSi,Cr,V,Mo,W,Ti,Z
r,HfおよびAlから選択された少なくとも1種の元
素であり、原子%でxが4〜20%、yが20%以下で
ある)で示される合金粉末の圧粉体を、その合金粉末の
融点未満の温度で、0.8時間以下の時間で焼結するこ
とにより、最大エネルギー積(BH)maxが17.2
MGOe以上の永久磁石を形成することを特徴とする永
久磁石の製造方法。
1. A composition formula R x M y Fe 100-x -y ( at least 1 wherein R is selected from rare earth elements including Y
Seed element, M is Si, Cr, V, Mo, W, Ti, Z
at least one element selected from the group consisting of r, Hf, and Al, where x is 4 to 20% and y is 20% or less in atomic%. By sintering at a temperature lower than the melting point for a time of 0.8 hours or less, the maximum energy product (BH) max is 17.2.
A method for producing a permanent magnet, comprising forming a permanent magnet of MGOe or more.
JP00699491A 1991-01-24 1991-01-24 Manufacturing method of permanent magnet Expired - Fee Related JP3178848B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00699491A JP3178848B2 (en) 1991-01-24 1991-01-24 Manufacturing method of permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00699491A JP3178848B2 (en) 1991-01-24 1991-01-24 Manufacturing method of permanent magnet

Publications (2)

Publication Number Publication Date
JPH04240703A JPH04240703A (en) 1992-08-28
JP3178848B2 true JP3178848B2 (en) 2001-06-25

Family

ID=11653687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00699491A Expired - Fee Related JP3178848B2 (en) 1991-01-24 1991-01-24 Manufacturing method of permanent magnet

Country Status (1)

Country Link
JP (1) JP3178848B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015039546A (en) * 2013-08-22 2015-03-02 株式会社タニタ Activity meter, and health management system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7151238B2 (en) * 2018-07-23 2022-10-12 Tdk株式会社 rare earth permanent magnet
JP7166615B2 (en) * 2019-01-11 2022-11-08 国立研究開発法人物質・材料研究機構 Rare earth magnets, films, laminates, methods of manufacturing rare earth magnets, motors, generators, and automobiles.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015039546A (en) * 2013-08-22 2015-03-02 株式会社タニタ Activity meter, and health management system

Also Published As

Publication number Publication date
JPH04240703A (en) 1992-08-28

Similar Documents

Publication Publication Date Title
US4601875A (en) Process for producing magnetic materials
JP3143156B2 (en) Manufacturing method of rare earth permanent magnet
KR960008185B1 (en) Rare earth-iron system permanent magnet and process for producing the same
EP0126179A1 (en) Process for producing permanent magnet materials
JPH0531807B2 (en)
JPH0574618A (en) Manufacture of rare earth permanent magnet
JPH04245403A (en) Rare earth-fe-co-b-based anisotropic magnet
JPH01219143A (en) Sintered permanent magnet material and its production
JP3222482B2 (en) Manufacturing method of permanent magnet
JPH10106875A (en) Manufacturing method of rare-earth magnet
JP3135665B2 (en) Magnetic materials and bonded magnets
JPH06207203A (en) Production of rare earth permanent magnet
JPH0320046B2 (en)
JPH045740B2 (en)
JP3178848B2 (en) Manufacturing method of permanent magnet
KR900006533B1 (en) Anisotropic magnetic materials and magnets made with it and making method for it
JPH0461042B2 (en)
JPH045739B2 (en)
JP2725004B2 (en) Manufacturing method of permanent magnet
JPH045738B2 (en)
JPH045737B2 (en)
JPH0521219A (en) Production of rare-earth permanent magnet
JPS6077961A (en) Permanent magnet material and its manufacture
JPH044383B2 (en)
JPH0320047B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees