JPH04240703A - Manufacture of permanent magnet - Google Patents

Manufacture of permanent magnet

Info

Publication number
JPH04240703A
JPH04240703A JP3006994A JP699491A JPH04240703A JP H04240703 A JPH04240703 A JP H04240703A JP 3006994 A JP3006994 A JP 3006994A JP 699491 A JP699491 A JP 699491A JP H04240703 A JPH04240703 A JP H04240703A
Authority
JP
Japan
Prior art keywords
examples
coercive force
sintering
permanent magnet
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3006994A
Other languages
Japanese (ja)
Other versions
JP3178848B2 (en
Inventor
Akihiko Tsudai
津田井 昭彦
Masashi Sahashi
政司 佐橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP00699491A priority Critical patent/JP3178848B2/en
Publication of JPH04240703A publication Critical patent/JPH04240703A/en
Application granted granted Critical
Publication of JP3178848B2 publication Critical patent/JP3178848B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0557Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together sintered

Abstract

PURPOSE:To provide a method for manufacturing a permanent magnet which is formed of a sintered compact having a remarkably high coercive force without decreasing a magnetic anisotropy as compared with the conventional Sm-Co or Nd-Fe-B magnet. CONSTITUTION:A pressed powder compact of alloy powder which is expressed by the composition formula RxMyFe100-x-y (R is at least one kind of element selected among rare earth elements which include Y, M is at least one kind of element selected among Si, Cr, V, Mo, W, Ti, Zr, Hf and Al, x is 4-20 atomic% and y is 20 or less atomic %) is sintered at the temperatures less than the melting point of the alloy powder for 0.8 hours or shorter.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】〔発明の目的〕[Object of the invention]

【0002】0002

【産業上の利用分野】本発明は永久磁石の製造方法に係
り、特に従来のSm−Co系、Nd−Fe−B系の磁石
と比較して磁気特性を低下させることなく、高保磁力を
備えた焼結体から成る永久磁石の製造方法に関する。
[Industrial Application Field] The present invention relates to a method of manufacturing a permanent magnet, and in particular, it has a high coercive force without deteriorating magnetic properties compared to conventional Sm-Co-based or Nd-Fe-B-based magnets. The present invention relates to a method of manufacturing a permanent magnet made of a sintered body.

【0003】0003

【従来の技術】従来から公知で量産化されている高性能
希土類永久磁石としてSm−Co系磁石や  Nd−F
e−B系磁石などがある。これらの磁石にはSm,Nd
等の希土類元素が特性発現成分として含有されている。 すなわち磁石体に含まれる希土類元素は結晶場中におけ
る4f電子の挙動に由来する非常に大きな磁気異方性を
もたらし、これにより保磁力の増大化が図られ、高性能
な磁石が実現されている。このような高特性磁石は、主
としてスピーカー、モーター、計測器等の電気機器に使
用されている。
[Prior Art] Sm-Co magnets and Nd-F are known high-performance rare earth permanent magnets that have been mass-produced.
Examples include e-B magnets. These magnets include Sm, Nd
Rare earth elements such as these are contained as properties-expressing components. In other words, the rare earth elements contained in the magnet body bring about a very large magnetic anisotropy derived from the behavior of 4f electrons in the crystal field, which increases the coercive force and realizes a high-performance magnet. . Such high-performance magnets are mainly used in electrical equipment such as speakers, motors, and measuring instruments.

【0004】しかしながら、希土類元素は一般に非常に
高価であり、上記のような高性能磁石の低コスト化を図
るためには、希土類元素の含有量を低減させることが必
要である。
However, rare earth elements are generally very expensive, and in order to reduce the cost of high-performance magnets as described above, it is necessary to reduce the content of rare earth elements.

【0005】このような希土類含有量を低減した高特性
の磁石材料として、最近液体急冷法を使用して形成した
ThMn12型の結晶構造を有する1−12系希土類鉄
系金属間化合物が注目されている。この金属間化合物は
、従来のSm2 Co17やNd2 Fe14B1 等
の磁石体を構成する金属間化合物と比較して化学量論的
希土類量が小さいため原料コストが安く、またFeの比
率が相対的に高いため、大きな飽和磁束密度Bsと高い
最大エネルギー積(BH)max を有している。
Recently, 1-12 rare earth iron intermetallic compounds having a ThMn12 type crystal structure formed using a liquid quenching method have attracted attention as high-performance magnetic materials with reduced rare earth content. There is. This intermetallic compound has a lower stoichiometric amount of rare earths than conventional intermetallic compounds such as Sm2Co17 and Nd2Fe14B1 that make up the magnet body, so the raw material cost is low, and the Fe ratio is relatively high. Therefore, it has a large saturation magnetic flux density Bs and a high maximum energy product (BH) max.

【0006】[0006]

【発明が解決しようとする課題】このように液体急冷法
によって形成された1−12系金属間化合物は大きな保
磁力が得られることが報告されている一方、より高いエ
ネルギー積が期待できる焼結体では保磁力が急速に低下
してしまうという問題点が米国応用物理学会誌(J.A
ppl.Phys.67.4954(1990))等に
報告されている。
[Problems to be Solved by the Invention] While it has been reported that the 1-12 series intermetallic compound formed by the liquid quenching method has a large coercive force, sintering is expected to yield a higher energy product. The problem that the coercive force rapidly decreases in the body was reported in the Journal of the American Society of Applied Physics (J.A.
ppl. Phys. 67.4954 (1990)) etc.

【0007】本発明は上記の問題点を解決するためにな
されたものであり、磁気異方性を低下させることなく、
特に高い保磁力を備えた焼結体から成る永久磁石の製造
方法を提供することを目的とする。 〔発明の構成〕
The present invention has been made to solve the above-mentioned problems.
It is an object of the present invention to provide a method for manufacturing a permanent magnet made of a sintered body having a particularly high coercive force. [Structure of the invention]

【0008】[0008]

【課題を解決するための手段と作用】本発明者らは、高
価な希土類元素の使用量を極力抑制し、従来のSm−C
o系磁石等が有する磁気異方性を損うことなく、高保磁
力を有する永久磁石を得るべく、希土類元素、遷移金属
元素等の組成や焼結時間を変えて研究試験を繰り返し、
種々の磁石体を形成して、その特性を調査した結果、あ
る組成範囲に調整した合金粉末を短時間で焼結一体化さ
せたときに、極めて保磁力が高い焼結体が得られ、優れ
た磁気特性を有する永久磁石を形成することが可能とな
るという知見を得て本願発明を完成した。
[Means and effects for solving the problem] The present inventors have solved the problem by suppressing the amount of expensive rare earth elements used and
In order to obtain a permanent magnet with high coercive force without impairing the magnetic anisotropy of o-based magnets, we repeated research tests by changing the composition of rare earth elements, transition metal elements, etc. and sintering time.
As a result of forming various magnetic bodies and investigating their properties, it was found that when alloy powders adjusted to a certain composition range were sintered and integrated in a short period of time, a sintered body with extremely high coercive force was obtained, which was an excellent result. The present invention was completed based on the knowledge that it is possible to form a permanent magnet with magnetic properties.

【0009】すなわち本発明に係る永久磁石の製造方法
は組成式RxMyFe100−x−y (式中RはYを
含む希土類元素から選択された少なくとも1種の元素、
MはSi,Cr,V,Mo,W,Ti,Zr,Hfおよ
びAlから選択された少なくとも1種の元素であり、原
子%でxが4〜20%、yが20%以下である)で示さ
れる合金粉末の圧粉体を、その合金粉末の融点未満の温
度で、0.8時間以下の時間で焼結することを特徴とす
る。
That is, the method for producing a permanent magnet according to the present invention has the composition formula RxMyFe100-x-y (wherein R is at least one element selected from rare earth elements including Y,
M is at least one element selected from Si, Cr, V, Mo, W, Ti, Zr, Hf and Al, and x is 4 to 20% and y is 20% or less in atomic %). A green compact of the indicated alloy powder is sintered at a temperature below the melting point of the alloy powder for 0.8 hours or less.

【0010】また、上記合金粉末の平均粒径を100μ
m以下に設定するとよい。
[0010] Furthermore, the average particle size of the above alloy powder is 100 μm.
It is recommended to set it to less than m.

【0011】本発明に係る永久磁石の製造方法において
、合金粉末の組成を上記のように限定した理由は下記の
通りである。
The reason why the composition of the alloy powder is limited as described above in the method for producing a permanent magnet according to the present invention is as follows.

【0012】前記Rとしては、La,Ce,Pr,Nd
,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,
Yb,Luの希土類元素およびYが挙げられ、これらの
1種または2種以上の混合物が使用される。Rはいずれ
も磁石体に磁気異方性をもたらし、高い保磁力を付与す
るために4〜20原子%の範囲で添加される。
[0012] The R mentioned above is La, Ce, Pr, Nd.
, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm,
Examples include rare earth elements Yb, Lu, and Y, and one or a mixture of two or more of these may be used. R is added in a range of 4 to 20 at % in order to bring magnetic anisotropy to the magnet body and impart high coercive force.

【0013】Rの添加量が4原子%未満の場合にはα−
Fe等が大量に析出し保磁力(iHc)が大幅に低下し
てしまう。一方、Rの添加量が20原子%を超える場合
には、飽和磁束密度(Bs)が大幅に低下してしまうと
ともに、高価な希土類元素を多量に使用することになり
、製造コストの上昇を招来し、不利になってしまう。
[0013] When the amount of R added is less than 4 at%, α-
A large amount of Fe etc. precipitates and the coercive force (iHc) decreases significantly. On the other hand, if the amount of R added exceeds 20 atomic percent, the saturation magnetic flux density (Bs) will decrease significantly and a large amount of expensive rare earth elements will be used, leading to an increase in manufacturing costs. And you will be at a disadvantage.

【0014】M元素としてはSi,Cr,V,Mo,W
,Ti,Zr,HfおよびAlから選択される1種また
は2種以上の混合物が使用される。本来希土類元素Rお
よびFeのみでは安定した結晶構造は形成し得ないが、
上記M元素を20原子%以下の範囲で添加することによ
り、安定したThMn12型の結晶構造を有する希土類
鉄系の正方晶化合物を形成することができ、磁石の磁気
特性および熱的安定性を高めることができる。
[0014] M elements include Si, Cr, V, Mo, and W.
, Ti, Zr, Hf and Al, or a mixture of two or more thereof is used. Originally, a stable crystal structure cannot be formed only with the rare earth elements R and Fe, but
By adding the above M element in a range of 20 atomic % or less, it is possible to form a rare earth iron-based tetragonal compound having a stable ThMn12 type crystal structure, which improves the magnetic properties and thermal stability of the magnet. be able to.

【0015】M元素の添加量が20原子%を超えると、
飽和磁束密度(Bs)が大幅に低下してしまうため、M
元素の添加量は20原子%以下に設定される。
[0015] When the amount of M element added exceeds 20 atomic %,
Since the saturation magnetic flux density (Bs) will decrease significantly, M
The amount of the element added is set to 20 atomic % or less.

【0016】またFeの一部をFe以外のCo,Ni等
の遷移金属で置換することにより、磁石のキュリー温度
を大幅に上昇させ、磁石体の熱安定性が改善され、また
保磁力を増大させることができる。しかしながら、例え
ば50原子%以上の鉄をCoで置換すると、結晶磁気異
方性の低下、ひいては保磁力の低下が顕著となるため、
その置換量は原子分率でFeの50%以下とすることが
望ましい。また高価なCoの使用量を可及的に抑制する
ためにも、置換量は上記範囲内とすることが好ましい。
[0016] Furthermore, by substituting a part of Fe with a transition metal other than Fe such as Co or Ni, the Curie temperature of the magnet can be significantly increased, the thermal stability of the magnet body can be improved, and the coercive force can be increased. can be done. However, if more than 50 atomic % of iron is replaced with Co, for example, the decrease in magnetocrystalline anisotropy and, as a result, the decrease in coercive force becomes significant.
The amount of substitution is desirably 50% or less of Fe in terms of atomic fraction. Furthermore, in order to suppress the amount of expensive Co used as much as possible, the amount of substitution is preferably within the above range.

【0017】次に本発明に係る永久磁石の製造方法につ
いて説明する。
Next, a method for manufacturing a permanent magnet according to the present invention will be explained.

【0018】まず、所定量のFe,R,M元素を含有す
る合金粉末を調製する。この場合、原料粉末をアーク溶
解または高周波溶解により溶解後、鋳造して所定組成を
有する合金を調製し、得られた合金を粉砕する。
First, an alloy powder containing predetermined amounts of Fe, R, and M elements is prepared. In this case, the raw material powder is melted by arc melting or high frequency melting, then cast to prepare an alloy having a predetermined composition, and the resulting alloy is pulverized.

【0019】また合金粉末の他の調製方法として、上記
R,M,Feの各元素粉末の混合体に機械的エネルギー
を付加して、合金化させるメカニカルアロイング法また
はメカニカルグラインディング法を採用することもでき
る。これらの方法はR,Fe,M成分を含有する粉末の
混合体を固相反応させて合金化する方法であり、固相反
応を起こす具体的な方法としては、例えば遊星ボールミ
ル、回転式ボールミル、アトライタ、振動ボールミル、
スクリュー式ボールミル等に原料混合体を投入し、粉末
粒子に機械的な衝撃を与える方法が採用される。
[0019] As another method for preparing the alloy powder, a mechanical alloying method or a mechanical grinding method is employed in which mechanical energy is applied to the mixture of the R, M, and Fe element powders to form an alloy. You can also do that. These methods are methods in which a mixture of powders containing R, Fe, and M components is subjected to a solid phase reaction to form an alloy.Specific methods for causing a solid phase reaction include, for example, a planetary ball mill, a rotary ball mill, Attritor, vibrating ball mill,
A method is adopted in which the raw material mixture is placed in a screw ball mill or the like and a mechanical impact is applied to the powder particles.

【0020】このメカニカルアロイング法等によれば原
料粉末粒子が薄片状に粉砕され、その薄片が相互に面接
触した部位で異種原子が相互に拡散することにより、原
料混合体が均質に一体化される。
[0020] According to this mechanical alloying method, raw material powder particles are crushed into flakes, and the raw material mixture is homogeneously integrated by mutually diffusing different atoms at the parts where the flakes are in surface contact with each other. be done.

【0021】また上記いずれの方法によって合金粉末を
調製する場合においても、合金粉末の平均粒径は、より
緻密で磁気特性が優れた焼結体を形成するために、10
0μm以下に設定するとよい。合金粉末の平均粒径が1
00μmを超えると、緻密な焼結体を得ることが困難に
なるとともに、保磁力等の磁気特性が大幅に低下してし
まうからである。
[0021] In addition, when preparing the alloy powder by any of the above methods, the average particle size of the alloy powder is set to 10 to form a sintered body that is denser and has excellent magnetic properties.
It is preferable to set it to 0 μm or less. The average particle size of the alloy powder is 1
This is because if it exceeds 00 μm, it becomes difficult to obtain a dense sintered body, and magnetic properties such as coercive force are significantly reduced.

【0022】得られた合金粉末は、次に成形機の金型に
充填され、加圧されて所定形状の成形体(圧粉体)とな
る。ここで加圧時に成形体に磁場を印加し結晶方位を揃
えることにより、高磁束密度を有する磁石体を得ること
ができる。
[0022] The obtained alloy powder is then filled into a mold of a molding machine and pressurized to form a molded body (green compact) of a predetermined shape. By applying a magnetic field to the compact during pressurization to align the crystal orientation, a magnet having a high magnetic flux density can be obtained.

【0023】こうして得られた成形体は、次に真空中ま
たは不活性ガス雰囲気中で焼結する。焼結条件としての
温度は、合金組成によって変化するが、通常は合金粉末
の融点直下の温度、または融点より100℃程度低い温
度に設定され、400〜1200℃の範囲が好ましい。 なお加熱焼結時に同時に成形体を加圧するホットプレス
処理を行なうことにより焼結性が向上し、より緻密な焼
結体とすることができる。
The molded body thus obtained is then sintered in vacuum or in an inert gas atmosphere. The temperature as a sintering condition varies depending on the alloy composition, but is usually set to a temperature just below the melting point of the alloy powder, or a temperature about 100°C lower than the melting point, and is preferably in the range of 400 to 1200°C. Note that by performing a hot press treatment in which the molded body is pressurized at the same time as heating and sintering, sinterability is improved and a denser sintered body can be obtained.

【0024】また上記のような通常の焼結法やホットプ
レス法の他に、いわゆる通電焼結によって短時間に成形
体を焼結する方法も採用できる。すなわち金型に充填し
た合金粉末を成形機のパンチによって加圧成形しつつ、
真空中または不活性ガス雰囲気中において成形体に直接
通電し、ジュール加熱によって焼結を行なってもよい。
[0024] In addition to the usual sintering method and hot press method as described above, a method of sintering the molded body in a short time by so-called electric sintering can also be employed. In other words, while the alloy powder filled in the mold is pressurized and molded by the punch of the molding machine,
Sintering may be performed by directly applying electricity to the molded body in a vacuum or in an inert gas atmosphere to perform Joule heating.

【0025】いずれの焼結方法を採用する場合において
も、焼結時間は0.8時間以内に設定することが必要で
ある。0.8時間を超える焼結操作を行なうと、焼結体
の保磁力の低下を招き、磁気特性が低下してしまう。
Regardless of which sintering method is used, the sintering time must be set within 0.8 hours. If the sintering operation is performed for more than 0.8 hours, the coercive force of the sintered body will decrease, resulting in a decrease in magnetic properties.

【0026】また焼結体の磁気特性をより高めるため、
焼結後に必要に応じて時効処理を行なう場合もある。こ
の場合の時効処理温度は合金組成によって変化するが、
通常500〜1000℃程度の温度範囲が好ましい。
[0026] Furthermore, in order to further enhance the magnetic properties of the sintered body,
After sintering, aging treatment may be performed as necessary. The aging treatment temperature in this case varies depending on the alloy composition, but
Usually, a temperature range of about 500 to 1000°C is preferred.

【0027】[0027]

【実施例】次に本発明を以下の実施例に基づいてより具
体的に説明する。
EXAMPLES Next, the present invention will be explained in more detail based on the following examples.

【0028】実施例1〜3、比較例1〜3実施例1〜3
として高純度のSm,Nd,Er,Zr,Ti,V,S
i,Mo,Fe粉末を表1に示す組成に調合して高周波
溶解炉で溶解後、鋳型に注入して各インゴットを調製し
た。次に各インゴットをジェットミルによって平均粒径
3μmの大きさに微粉砕した。次に得られた各合金粉末
を成形機の金型に充填し、20KOeの磁場において配
向させつつ、2ton/cm2 の成形圧力で圧縮成形
して圧粉体を形成し、さらに各圧粉体をArガス雰囲気
中でSm蒸気を供給しつつ、温度1120℃で30分間
焼結を行なった後に室温まで急冷し、さらに得られた各
焼結体を真空中で温度740℃で30分間熱処理して磁
石体を調製した。そして各磁石体の残留磁束密度(Br
)、保磁力(iHc)、および最大エネルギー積(BH
)max を測定して、表1に示す結果を得た。
Examples 1-3, Comparative Examples 1-3 Examples 1-3
High purity Sm, Nd, Er, Zr, Ti, V, S
Ingots were prepared by blending i, Mo, and Fe powders into the compositions shown in Table 1, melting them in a high-frequency melting furnace, and pouring them into molds. Next, each ingot was pulverized to an average particle size of 3 μm using a jet mill. Next, each of the obtained alloy powders is filled into a mold of a molding machine, and while oriented in a magnetic field of 20 KOe, compression molding is performed at a molding pressure of 2 tons/cm2 to form a green compact. While supplying Sm vapor in an Ar gas atmosphere, sintering was performed at a temperature of 1120°C for 30 minutes, then rapidly cooled to room temperature, and each of the obtained sintered bodies was further heat-treated in a vacuum at a temperature of 740°C for 30 minutes. A magnet was prepared. And the residual magnetic flux density (Br
), coercive force (iHc), and maximum energy product (BH
)max was measured, and the results shown in Table 1 were obtained.

【0029】一方、比較例1〜3として、実施例1〜3
で調製したインゴットを使用し焼結時間を90分間とし
た以外は実施例1〜3と同様の条件で磁石体を調製し、
その磁気特性を測定した。すなわち、実施例1〜3で使
用した各インゴットを平均粒径3μmまで微粉砕し、得
られた各粉末を20KOeの磁場で配向させて圧粉体と
した後に、1120℃でArガス雰囲気下で焼結処理を
行なった。次に得られた各焼結体を740℃で30分間
熱処理を施した後に、磁気特性を測定したところ下記表
1に示す結果を得た。
On the other hand, as Comparative Examples 1 to 3, Examples 1 to 3
Magnets were prepared under the same conditions as in Examples 1 to 3, except that the ingot prepared in was used and the sintering time was 90 minutes.
Its magnetic properties were measured. That is, each ingot used in Examples 1 to 3 was finely pulverized to an average particle size of 3 μm, each of the obtained powders was oriented in a magnetic field of 20 KOe to form a green compact, and then pulverized at 1120° C. in an Ar gas atmosphere. A sintering process was performed. Next, each of the obtained sintered bodies was heat-treated at 740° C. for 30 minutes, and then the magnetic properties were measured, and the results shown in Table 1 below were obtained.

【0030】[0030]

【表1】[Table 1]

【0031】表1に示す結果から明らかなように実施例
1〜3によれば、焼結時間が短く、磁石体を構成する金
属間化合物の安定性が阻害されることが少ないため、比
較例1〜3と比較して残留磁束密度や保磁力等の磁気特
性が優れ、特に最大エネルギー積(BH)max が大
幅に改善されることが判明した。
As is clear from the results shown in Table 1, according to Examples 1 to 3, the sintering time is short and the stability of the intermetallic compound constituting the magnet body is less likely to be inhibited. It was found that magnetic properties such as residual magnetic flux density and coercive force were superior to those of Examples 1 to 3, and in particular, the maximum energy product (BH) max was significantly improved.

【0032】なお実施例1〜3で調製した磁石素体の結
晶構造をX線回析法により測定したところ、いずれもT
hMn12型の安定した結晶構造が存在していることが
確認された。
[0032] When the crystal structures of the magnet bodies prepared in Examples 1 to 3 were measured by X-ray diffraction, all of them showed T.
It was confirmed that a stable crystal structure of hMn12 type exists.

【0033】実施例4〜6、比較例4〜6実施例4〜6
として、高純度のSm,Ti,Al,W,Cr,Si,
Fe粉末を表2に示す組成に調合して高周波溶解炉で溶
解後、鋳型に注入して各合金インゴットを調製した。次
に各合金インゴットしをジェットミルによってそれぞれ
平均粒径1,50,80μmにまで微粉砕した。次に得
られた合金粉末を絶縁材料で形成した成形型内に充填し
、成形型に20KOeの外部磁場を印加しつつ、導電材
で形成したパンチによって圧縮成形して圧粉体を形成す
ると同時に、上記パンチを経由して圧粉体に通電し、発
生するジュール熱によって焼結した。ここで焼結操作は
Ar雰囲気中で行ない、通電時間は2分間とした。
Examples 4-6, Comparative Examples 4-6 Examples 4-6
As, high purity Sm, Ti, Al, W, Cr, Si,
Fe powder was mixed into the composition shown in Table 2, melted in a high frequency melting furnace, and then poured into a mold to prepare each alloy ingot. Next, each alloy ingot was pulverized by a jet mill to an average particle size of 1, 50, and 80 μm, respectively. Next, the obtained alloy powder is filled into a mold made of an insulating material, and while an external magnetic field of 20 KOe is applied to the mold, compression molding is performed using a punch made of a conductive material to form a green compact. The green compact was sintered by the Joule heat generated by passing electricity through the punch. Here, the sintering operation was performed in an Ar atmosphere, and the current application time was 2 minutes.

【0034】そして、得られた各焼結体の残留磁束密度
(Br)、保磁力(iHc)および最大エネルギー積(
BH)max を測定して、表2に示す結果を得た。
Then, the residual magnetic flux density (Br), coercive force (iHc) and maximum energy product (
BH)max was measured and the results shown in Table 2 were obtained.

【0035】一方、比較例4〜6として、実施例4〜6
で調製した各インゴットを使用し、粉砕後の合金粉末の
平均粒径をそれぞれ150,200,300μmとした
以外は実施例4〜6と同一条件によって焼結体を調製し
、同様に磁気特性を測定し、下記表2に示す結果を得た
On the other hand, as Comparative Examples 4 to 6, Examples 4 to 6
Sintered bodies were prepared under the same conditions as in Examples 4 to 6, except that the ingots prepared in 1. The results shown in Table 2 below were obtained.

【0036】[0036]

【表2】[Table 2]

【0037】表2に示す結果から明らかなように、実施
例4〜6においては合金粉末の平均粒径を100μm以
下に設定しているため、緻密で結晶構造が安定した焼結
体が得られる。そのため、いずれも磁気特性が高い永久
磁石を形成することができた。
[0037] As is clear from the results shown in Table 2, in Examples 4 to 6, the average particle size of the alloy powder was set to 100 μm or less, so a sintered body that was dense and had a stable crystal structure could be obtained. . Therefore, permanent magnets with high magnetic properties could be formed in both cases.

【0038】一方、比較例4〜6においては、焼結体の
緻密化が充分に進行しないため、保磁力は1〜3KOe
程度であった。
On the other hand, in Comparative Examples 4 to 6, the densification of the sintered body did not progress sufficiently, so the coercive force was 1 to 3 KOe.
It was about.

【0039】実施例7〜9 実施例7〜9として、平均粒径が0.5mmのSm,P
r,Nd粉末、平均粒径が5〜40μmの範囲にあるF
e,Co,Ti粉末をそれぞれ表3に示す組成に調合し
て原料混合体を調製し、得られた各原料混合体をボール
ミルに投入し、Arガス雰囲気中で60時間粉砕混合処
理して各原料粉末をメカニカルアロイによって合金化し
た。
Examples 7 to 9 As Examples 7 to 9, Sm, P with an average particle size of 0.5 mm
r, Nd powder, F with an average particle size in the range of 5 to 40 μm
A raw material mixture was prepared by blending e, Co, and Ti powders to the compositions shown in Table 3, and each of the obtained raw material mixtures was put into a ball mill, and pulverized and mixed for 60 hours in an Ar gas atmosphere to obtain each powder. The raw material powder was alloyed by mechanical alloying.

【0040】次に得られた各合金粉末を、絶縁材料で形
成した成型金型に充填し、Arガス雰囲気中で導電性を
有するパンチで合金粉末を加圧して圧縮成形すると同時
に、このパンチを通じて成形体を通電加熱して焼結し実
施例7〜9の磁石体を調製した。なお、通電時間は2分
間に設定した。次に得られた各磁石体の磁気特性を実施
例1〜6と同様に測定して表3に示す結果を得た。
Next, each of the obtained alloy powders is filled into a mold made of an insulating material, and at the same time, the alloy powders are compressed and molded using a conductive punch in an Ar gas atmosphere, and at the same time, the alloy powders are compressed through the punch. The molded bodies were sintered by heating with electricity to prepare magnet bodies of Examples 7 to 9. Note that the current application time was set to 2 minutes. Next, the magnetic properties of each of the obtained magnet bodies were measured in the same manner as in Examples 1 to 6, and the results shown in Table 3 were obtained.

【0041】[0041]

【表3】[Table 3]

【0042】表3に示す結果から明らかなように、実施
例7〜9においては、いずれも通電焼結によって極めて
短時間に焼結処理を行なっており、安定した化合物相が
形成されているため、いずれも磁気特性が優れ、特に保
磁力(iHc)が高い永久磁石が得られることが判明し
た。
[0042] As is clear from the results shown in Table 3, in Examples 7 to 9, the sintering process was performed in an extremely short time by energization sintering, and a stable compound phase was formed. It has been found that permanent magnets with excellent magnetic properties, particularly high coercive force (iHc), can be obtained in both cases.

【0043】[0043]

【発明の効果】以上説明の通り、本発明方法によれば、
焼結時間を短く設定しているため、安定したThMn1
2型結晶構造を有する希土類鉄系正方晶化合物が形成さ
れ、特に保磁力等の磁気特性が優れた永久磁石を提供す
ることができる。
[Effects of the Invention] As explained above, according to the method of the present invention,
Stable ThMn1 due to short sintering time
A rare earth iron-based tetragonal compound having a type 2 crystal structure is formed, and a permanent magnet can be provided that has particularly excellent magnetic properties such as coercive force.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  組成式RxMyFe100−x−y 
(式中RはYを含む希土類元素から選択された少なくと
も1種の元素、MはSi,Cr,V,Mo,W,Ti,
Zr,HfおよびAlから選択された少なくとも1種の
元素であり、原子%でxが4〜20%、yが20%以下
である)で示される合金粉末の圧粉体を、その合金粉末
の融点未満の温度で、0.8時間以下の時間で焼結する
ことを特徴とする永久磁石の製造方法。
[Claim 1] Compositional formula RxMyFe100-x-y
(In the formula, R is at least one element selected from rare earth elements including Y, M is Si, Cr, V, Mo, W, Ti,
A green compact of an alloy powder containing at least one element selected from Zr, Hf, and Al, in which x is 4 to 20% and y is 20% or less in atomic %, is A method for producing a permanent magnet, comprising sintering at a temperature below the melting point for 0.8 hours or less.
JP00699491A 1991-01-24 1991-01-24 Manufacturing method of permanent magnet Expired - Fee Related JP3178848B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00699491A JP3178848B2 (en) 1991-01-24 1991-01-24 Manufacturing method of permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00699491A JP3178848B2 (en) 1991-01-24 1991-01-24 Manufacturing method of permanent magnet

Publications (2)

Publication Number Publication Date
JPH04240703A true JPH04240703A (en) 1992-08-28
JP3178848B2 JP3178848B2 (en) 2001-06-25

Family

ID=11653687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00699491A Expired - Fee Related JP3178848B2 (en) 1991-01-24 1991-01-24 Manufacturing method of permanent magnet

Country Status (1)

Country Link
JP (1) JP3178848B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020017575A (en) * 2018-07-23 2020-01-30 Tdk株式会社 Rare earth permanent magnet
JP2020113648A (en) * 2019-01-11 2020-07-27 国立研究開発法人物質・材料研究機構 Rare earth magnet, film, laminate, manufacturing method for rare earth magnet, motor, generator, and automobile

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6090788B2 (en) * 2013-08-22 2017-03-08 株式会社タニタ Activity meter and health management system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020017575A (en) * 2018-07-23 2020-01-30 Tdk株式会社 Rare earth permanent magnet
JP2020113648A (en) * 2019-01-11 2020-07-27 国立研究開発法人物質・材料研究機構 Rare earth magnet, film, laminate, manufacturing method for rare earth magnet, motor, generator, and automobile

Also Published As

Publication number Publication date
JP3178848B2 (en) 2001-06-25

Similar Documents

Publication Publication Date Title
JPH0531807B2 (en)
JPH0424401B2 (en)
JP3777199B2 (en) Method for producing high performance R-Fe-B permanent magnet material
JPH04245403A (en) Rare earth-fe-co-b-based anisotropic magnet
JPS6393841A (en) Rare-earth permanent magnet alloy
JP3222482B2 (en) Manufacturing method of permanent magnet
JPH06207203A (en) Production of rare earth permanent magnet
JPH0685369B2 (en) Permanent magnet manufacturing method
JPH06207204A (en) Production of rare earth permanent magnet
JP3178848B2 (en) Manufacturing method of permanent magnet
KR900006533B1 (en) Anisotropic magnetic materials and magnets made with it and making method for it
JP3645312B2 (en) Magnetic materials and manufacturing methods
JPS6181607A (en) Preparation of rare earth magnet
JP3611870B2 (en) Method for producing R-Fe-B permanent magnet material
JP2725004B2 (en) Manufacturing method of permanent magnet
JPH058562B2 (en)
JPH0521219A (en) Production of rare-earth permanent magnet
JPH0745412A (en) R-fe-b permanent magnet material
JP5235264B2 (en) Rare earth sintered magnet and manufacturing method thereof
JPH06112027A (en) Manufacture of high-quality magnet material
JPH0582319A (en) Permanent magnet
JPH06112019A (en) Nitride magnetic material
JPH0362775B2 (en)
JP4645336B2 (en) Rare earth sintered magnet and manufacturing method thereof
JP3300570B2 (en) Method for producing R-Fe-BC-based permanent magnet material having excellent corrosion resistance

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees